
344 TUGboat, Volume 34 (2013), No. 3

LATEX and graphics: Basics and packages

Aleksandra Hankus and Zofia Walczak

1 Introduction

There are the number of distinct ways of producing
graphics, each with advantages and disadvantages in
terms of flexibility, device independence and ability
to include arbitrary TEX text. In this paper we will
discuss two ways of placing graphics inside a LATEX
document. The first is about graphics imported to
the TEX file from an external graphic program, and
the second about creating graphics inside a TEX
document. We will discuss documents with graphics
which are intended to be printed, and presentations
made with the beamer class.

2 Importing graphics into LATEX

When we want to include graphics in a document we
have to take into account that LATEX cannot manage
pictures directly. LATEX just creates a box with the
desired size for the image we want to include and
embeds a reference to the picture, without any other
processing. This means we have to take care of the
format and size of the images to be included. This
is not such a hard task because LATEX supports the
most common picture formats around.

2.1 The graphicx package

Since LATEX can’t manage pictures directly, we load
the graphicx package for help by placing the follow-
ing in the preamble of our document:

\usepackage{graphicx}

The image formats we can use depend on the
driver that graphicx is using, and since the driver is
automatically chosen according to the compiler (TEX
variant) being used, in practice the allowed image
formats depend on the compiler.

The only format you can include while compiling
with latex is Encapsulated PostScript (EPS). An
EPS file declares the size of the image, which makes
it easy for LATEX to arrange the text and the graphics
in the best way. EPS is (typically) a vector format,
meaning that it can have very high quality if it is
created properly, namely with programs that are able
to manage vector graphics.

If we are compiling with pdflatex to produce a
PDF, we have a wider choice. We can insert graphics
in JPG, PNG, PDF. EPS format can also be used if
it is converted to PDF; in current distributions, that
happens automatically with the help of epstopdf.

The same LATEX source can be compiled in both
latex and pdflatex without any change, as long as
we avoid using particular packages. We can use both

compilers for documents with pictures as well, if we
remember to provide the pictures in proper format
(both EPS and one of JPG, PNG or PDF).

2.2 Including graphics

After we have loaded the graphicx package in the
preamble, we can include images using the command
\includegraphics, whose syntax is the following:

\includegraphics[arg1,arg2,...,argn]{imgname}

The arguments in square brackets are optional,
whereas arguments in curly braces are compulsory.

2.3 Examples

For scaling images we can use the optional argument
scale=〈number〉:

\includegraphics[scale=.16]{name}

We can give image dimensions with either or
both of the optional arguments width=〈number〉 and
height=〈number〉. When we specify only one or
the other, the second will be chosen proportionally.
When we specify both, the image will be resized
without preserving proportions.

\includegraphics[width=3cm]{name}

\includegraphics[height=4.5cm]{name}

Aleksandra Hankus and Zofia Walczak

TUGboat, Volume 34 (2013), No. 3 345

\includegraphics[width=5cm,height=3cm]{name}

To rotate the image, the option angle=〈number〉 is
used.

\includegraphics[scale=0.18,angle=90]{name}

And finally, here is an example of how to crop
an image to focus on one particular area of interest.
For this purpose we use the trim argument; in order,
its parameters are 〈left〉 〈bottom〉 〈right〉 〈top〉.

\includegraphics[trim=.5cm 1.1cm .3cm .5cm,clip,

width=3.5cm]{name}

We can specify which image file is to be preferred
by pdflatex through this preamble command:

\DeclareGraphicsExtensions{.pdf,.png,.jpg}

This specifies the files to include in the document
(in order of preference), if there exist files with the
same name but with different extensions.

2.4 The figure environment

There are many situations where we want to add to
the image a caption and possibly a cross-reference.
We can do that with the figure environment, but
we have to take into account that this is a so-called
“floating” environment. The minimum required code
is the following:

\begin{figure}[pos]

\includegraphics{image name.png}

\end{figure}

where the optional argument [pos] stands for the
allowed positions of the figure on the page. Such a
float placement specifier can consist of the following
characters in any order: htb!p. For example, speci-

fying [bt] means that our picture can be placed on
the bottom or top area of the page.

The above code is relatively trivial, and doesn’t
offer much functionality. The next sample shows
an extended use of the figure environment which is
almost universally useful, offering a caption, label
and centering the image, placed at either the current
position (“here”) or the top of the page.

\begin{figure}[ht]

\centering

\includegraphics{name}

\caption{Caption}

\label{fig:1}

\end{figure}

Figure 1: Just the lion

3 Supporting the creation of graphics
directly in LATEX

There are many packages to do pictures in (LA)TEX
itself rather than importing graphics created exter-
nally, starting with simple use of the LATEX picture

environment.

3.1 The picture environment

The picture environment is used to draw pictures
composed of text, straight lines, arrows and circles.
The objects in the picture are positioning by specify-
ing their coordinates. The first picture environment
was created by Leslie Lamport.

The basic syntax for the environment is:

\begin{picture}(width,height)(xoffset,yoffset)

picture commands

\end{picture}

Thus, the picture environment has one manda-
tory argument, which specifies the size of the picture.
The environment produces a rectangular box with
width and height determined by the values of these
two arguments. Coordinates are specified in the
usual way with respect to an origin, which is nor-
mally at the lower-left corner of the picture. The
optional positioning argument following the size ar-
gument can change the origin. If we decide to modify
our picture by shifting everything, we can just add
the appropriate optional argument.

Everything that appears in a picture is drawn
by the \put command.

LATEX and graphics: Basics and packages

346 TUGboat, Volume 34 (2013), No. 3

Using the picture environment we can “deco-
rate” our previous image, for example to add to our
image “glasses”.

��
��

��
��

Figure 2: Adding glasses

\setlength{\unitlength}{1cm}

\begin{picture}(4,2.5)

\includegraphics[width=3.5cm]{image name.jpg}

\put(-1.9,1.9){\circle{.8}}

\put(-1.5,1.2){\circle{.8}}

\end{picture}

3.2 XY-pic package

XY-pic is a special package for drawing diagrams. It
works smoothly with most formats, including LATEX,
AMS-LATEX, AMS-TEX, and plain TEX. To use
it, add the following line to the preamble of your
document:

\usepackage[all]{xy}

where “all” means you want to load a large standard
set of functions from XY-pic, suitable for developing
complex diagrams. Below we show an example.

G/T
= //

��

G/T

��
E

f̂ //

π
��

BT

p

��
S2k f // BG

{

G/T \ar[r]^=\ar[d]

& G/T \ar[d]\\

E\ar[r]^{\hat f}

\ar[d]^{\pi}

& BT \ar[d]^{p}\\

S^{2k}\ar[r]^f& BG

}

3.3 PSTricks— the pstricks package

Here, the basic package to use is pstricks, to be
loaded with the usual command \usepackage in
the document preamble. PSTricks commands are
usually placed in a pspicture environment, whose
mandatory argument gives the coordinates of the
upper-right corner (the lower-left is the origin by
default).

\begin{pspicture}(x1,y1)

pstricks commands

\end{pspicture}

Here is a basic example. The \psframe command
draws an unfilled rectangle, and its starred version
makes it filled.

\begin{pspicture}(6,4)

\psframe(1,1)(3,3)

\psframe*(1,1)(2,2)

\psframe*(2,2)(3,3)

\end{pspicture}

3.4 PSTricks— the psfrag package

The psfrag package allows LATEX users to replace
text strings in EPS files created by external programs
with LATEX text or equations. To use psfrag, create
an EPS file and then perform the following steps

• In the document, use the \psfrag command
to specify the PostScript text in the EPS to
be replaced, and the replacement LATEX string.
This makes the specified substitution occur in
any subsequent \includegraphics command
issued in the same environment.

• Use the \includegraphics command as usual.

The \psfrag command has the following syntax:
\psfrag{PStext}[posn][PSposn][scale][rot]

{text}

Remark: PSfrag cannot be used with pdfTEX. If
such substitution is needed, one option is to use the
LATEX-to-DVI-to-PostScript-to-PDF route that was
used before pdfTEX. PSfrag also doesn’t work with
beamer. An alternative there is to use the TikZ
package (with the EPS figure converted to PDF).

3.5 The amscd package

The amscd package provides a CD environment that
emulates the commutative diagram capabilities of
AMSTEX version 2.x. This means that only simple
rectangular diagrams are supported, with no diagonal
arrows or more exotic features.

APL(Y) −−−−→ APL(X) −−−−→ APL(F)

mY

x m

x m̄

x
(ΛVY , d) −−−−→ (ΛVY ⊗ ΛV, d) −−−−→ (ΛV, d̄)

$$ \CD

A_{PL}(Y) @>>> A_{PL}(X)

@>>> A_{PL}(F)\\

@A{m_Y}AA @A{m}AA

@A{\bar m}AA\\

(\Lambda V_Y,d) @>>>

(\Lambda V_Y\otimes\Lambda V,d)

@>>> (\Lambda V,\bar d)

\endCD $$

Aleksandra Hankus and Zofia Walczak

TUGboat, Volume 34 (2013), No. 3 347

Remark: The amscd package does not work with
the beamer class.

3.6 MusiXTEX

MusiXTEX is a set of macros and fonts which enables
music typesetting within the TEX system.

It contains symbols for staves, notes, chords,
beams, slurs and ornaments, ready to be arranged
to form a sheet of music.

But it must be told how to position those sym-
bols on the page. This can be done manually, if you
elect to proceed by entering MusiXTEX commands
manually into an input file.

However most users will find it far less taxing to
let such decisions be made largely by the preprocessor
PMX, which also uses a much simpler input language
than MusiXTEX. Here is an example of the output.

Remark: MusiXTEX needs LATEX, which is auto-
matically invoked when needed; but in general, LATEX
and MusiXTEX cannot be combined. For typeset-
ting a large musical score it is better to use another
alternative.

3.7 Graphics with PGF/TikZ

One possible solution for drawing graphics directly
with TEX commands is PGF/TikZ. TikZ can pro-
duce portable graphics in both PDF and PostScript
formats using either plain (pdf)TEX, (pdf)LATEX or
ConTEXt. It comes with very good documentation,
and there is an extensive collection of examples at
http://www.texample.net/tikz.

Using TikZ in a LATEX document requires load-
ing the tikz package

\usepackage{tikz}

somewhere in the preamble, as usual. This automati-
cally loads the pgf package. To load further libraries
use

\usetikzlibrary{list of libraries}

Some useful existing libraries are: arrows, automata,
backgrounds, calendar, chains, matrix, mindmap,
patterns, petri, shadows, shapes.geometric, and
there are plenty more.

Drawing commands are usually enclosed in a
tikzpicture environment:

\begin{tikzpicture}[options]

tikz commands

\end{tikzpicture}

or alternatively we can use the \tikz command:

\tikz[options]{tikz commands}

If we specify the bounding box (it’s an optional
argument to the environment) with the baseline

option as we show here:

\begin{tikzpicture}

[x=0.0714\textwidth,y=0.5cm,

baseline=(current bounding box.east)]

\path[use as bounding box](0,-1)rectangle(2,1);

\draw (0,0)--(2,0);

we can draw a table with different pictures in every
cell in the row, all aligned together.

a b

0 23 .15 2

4 Some packages based on PGF/TikZ

4.1 The bchart package

bchart is a LATEX package for drawing simple bar
charts with horizontal bars on a numerical x-axis. It
is based on the TikZ drawing package.

4

2

3C

0 5

\begin{bchart}[max=5,scale=.9]

\bcbar[color=gray!20]{4}

\bcbar[color=gray!70]{2}

\bcbar[text=\scriptsize{C},color=gray!50]{3}

\end{bchart}

Remark: The bchar package can be used with both
latex and pdflatex, and it also works with the
beamer class.

LATEX and graphics: Basics and packages

348 TUGboat, Volume 34 (2013), No. 3

4.2 The pgf-soroban package

The soroban is an abacus developed in Japan; the
pgf-soroban package lets us typeset representations
of soroban values. We load the package in the usual
way, with \usepackage{pgf-soroban} in the pream-
ble. There is no need to load any corresponding
graphics package, as all required packages are loaded
by the soroban package. The package sets a base
unit as 1 mm, as well as other lengths. If we want to
change the size, the units can be changed with, e.g.,
\ladj{0.25}. The soroban picture below represents
the number 321.45.

\ladj{0.5}

\begin{tikzpicture}

\tige{1}{0}{1} \tige{2}{3}{0}

\tige{3}{2}{0} \tige{4}{1}{1}

\tige{5}{4}{0} \tige{6}{5}{0}

\cadre{6}

\end{tikzpicture}

There is also a soroban package for PSTricks,
named pst-soroban.

References

[1] D.P. Carlisle, Packages in the ‘graphics’ bundle,
2005, ctan.org/pkg/grfguide.

[2] A. Delmotte, pgf-soroban— Create images of
the soroban using TikZ/PGF, ctan.org/pkg/
pgf-soroban.

[3] M. Goossens, F. Mittelbach, S. Rahtz, D. Roegel,
H. Voß, LATEX Graphics Companion, second
edition, Addison-Wesley, 2007.

[4] H. Kopka and P.W. Daly, A Guide to LATEX2ε,
fourth edition, Addison-Wesley, 2003.

[5] T. Kuhn, bchart: Simple bar charts in LATEX,
version 0.1.2, ctan.org/pkg/bchart.

[6] L. Lamport, LATEX: A Document Preparation
System, Addison-Wesley, second edition, 1994.

[7] L. Lamport, LATEX: A Document Preparation
System, Wydawnictwa Naukowo-Techniczne,
Warszawa, 2004 (in Polish).

[8] E. Rafaj lowicz and W. Myszka, LATEX, Zaawan-
sowane Narzȩdzia, Akad. Ofic. Wydawn. PLJ,
Warszawa, 1996 (in Polish).

[9] D. Taupin, MusiXTEX. Using TEX to write
polyphonic or instrumental music, Version 1.15,
ctan.org/pkg/musixtex.

[10] Z. Walczak, LATEX for the Impatient, Wydawn.
Uniwersytetu Lódzkiego, 2012 (in Polish).

� Aleksandra Hankus
Institute of Mathematics,
University of Silesia, Poland
aleksandra.hankus (at) us dot

edu dot pl

� Zofia Walczak
Faculty of Mathematics and

Computer Science,
University of Lodz, Poland
zofia.walczak (at) math dot uni

dot lodz dot pl

Aleksandra Hankus and Zofia Walczak

