
302 TUGboat, Volume 34 (2013), No. 3

A gentle introduction to PythonTEX

Andrew Mertz and William Slough

Abstract

The PythonTEX package allows authors to combine
computational and typesetting tasks by embedding
Python code in TEX documents. This package allows
access to many powerful Python modules, providing
support for such things as symbolic mathematics,
plotting, arbitrary precision numerical calculations,
and networking. Python’s intuitive syntax, popular-
ity, and extensibility along with TEX’s formatting
strengths make them a logical combination for pro-
gramming documents. By examining a variety of
examples, we will provide an overview of the capa-
bilities and possibilities of PythonTEX.

1 Motivation and overview

As widely appreciated by its users, TEX is a typeset-
ting system with numerous strengths and capabilities,
providing the ability to create beautiful documents.
Although it provides a capability for the definition
of macros, designing and implementing them can be
a daunting experience, especially for non-experts.

Python [9] is a programming language which
has attracted a large number of users. As a further
enhancement, scientific and technical computing is
supported by an extensive collection of modules and
utilities. These provide capabilities for numerical in-
tegration, linear algebra, linear programming, sparse
matrix manipulation, symbolic mathematics, and
plotting, for example.

PythonTEX [8] allows authors to combine the
computational power of Python with the typesetting
capabilities of TEX. This marriage of computational
and typesetting worlds yields some exciting possibil-
ities, as we intend to show in this paper.

Using the PythonTEX package, Python code
may be placed directly into a LATEX document. Dur-
ing processing of this document — and “behind the
scenes” — wherever Python code appears, a Python
interpreter is executed, producing results which are
then injected into the document in place of that code.

PythonTEX provides a variety of macros and
environments with various optional arguments. It
also has a tool, depythontex, for creating merged
documents consisting of the original LATEX source
and the Python output. This resulting document
can then be processed without PythonTEX. Our aim
is to provide an introduction, so we limit ourselves
to a small, yet powerful, subset of PythonTEX.

2 Getting started

To begin, some installation will probably be needed.
The PythonTEX package can be found at CTAN and
installed, for example, by use of a package manager
such as TEX Live’s tlmgr.

In addition, a Python installation is needed,
with Python 2.7 being the recommended version.
The exact details of how this is done depend on your
system, but one relatively simple way to obtain it
is to download and install Anaconda [1]. (We are
grateful to Richard Koch, from whom we learned
about this resource.) Anaconda is a free Python
distribution which supports GNU/Linux, Windows,
and Mac OS X.

Not surprisingly, a document to be processed
with PythonTEX will need to indicate this in its
preamble:

\usepackage{pythontex}

A number of optional arguments can be supplied,
though none of these are needed for what is being
described in this introduction. For full details, refer
the PythonTEX documentation.

Three steps are needed to process a PythonTEX
document: first, LATEX, then PythonTEX, and fi-
nally LATEX. (Various engines are possible, including
pdfLATEX, LuaLATEX, and X ELATEX.) For example,
the document sample.tex could be processed with
the following sequence of commands.

pdflatex -interaction nonstopmode \

-draftmode sample.tex

pythontex sample.tex

pdflatex sample.tex

The first step extracts the Python code from the doc-
ument (to the file sample.pytxcode). In the second
step, this code is given to the Python interpreter
and the results are saved to a variety of files within
the subdirectory pythontex-files-sample. In the
final step, the results from Python are merged with
the original document.

3 Fundamental PythonTEX

We begin our exploration by considering two macro
commands intended for inline code: \py and \pyc.
To use \py, a single-line Python expression is sup-
plied as an argument:

\py{expression}

In response, the Python interpreter evaluates the
expression, computes the result and stores the result
as a string. This string then takes the place of the
\py command which is subsequently typeset. For
example, \py{2**26} produces 67108864, the value
of 226.

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 303

\begin{pycode}

print(r"\begin{tabular}{c|c}")

print(r"m & 2^m \\ \hline")

print(r"%d & %d \\" % (1, 2**1))

print(r"%d & %d \\" % (2, 2**2))

print(r"%d & %d \\" % (3, 2**3))

print(r"%d & %d \\" % (4, 2**4))

print(r"\end{tabular}")

\end{pycode}

\begin{tabular}{c|c}

m & 2^m \\ \hline

1 & 2 \\

2 & 4 \\

3 & 8 \\

4 & 16 \\

\end{tabular}

Figure 1: Generation of a table using the pycode environment; resulting LATEX code shown on the right

A related macro is \pyc, which has a subtle
yet important difference. To use \pyc, a single-line
Python statement is given:

\pyc{statement}

Here, the given statement is executed and anything
printed by it takes the place of the \pyc command,
which is subsequently formatted by TEX. As an
example, \pyc{print(2**26)} yields 67108864.

At this point, it may appear that \pyc does not
add much beyond what \py provides. However, this
is far from the truth, as we intend to show. But
before we can illustrate the power of \pyc, we need
to discuss some additional features of PythonTEX
and Python itself.

An analog of the \pyc command is the pycode

environment:

\begin{pycode}

Python statements
\end{pycode}

Unlike \pyc, this environment allows multiple-line
Python statements to appear. As with \pyc, all of
the printed output gets inserted into the document
at that point, to be subsequently typeset.

To illustrate, consider Figure 1. This exam-
ple shows how a pycode environment may be uti-
lized to generate a table of values consisting of the
pairs (m, 2m), using Python to generate powers of 2.
Although this example does not use sophisticated
Python code, it does illustrate an important idea:
the code embedded within a pycode environment
should generate the appropriate typesetting markup
to achieve the desired effect. The typeset result of
this code follows:

m 2m

1 2
2 4
3 8
4 16

Like the C language, Python uses escape se-
quences (such as \\, \n, \f, etc.) to describe certain
characters. Python uses “raw” strings, denoted with

an r prefix, to disable escape sequences, allowing
their content to appear verbatim. So, for example,

print("\\")

would output a single \, whereas

print(r"\\")

outputs \\. Since Python is being used to generate
LATEX code, the use of raw strings is often needed.

Another feature of Python being used here is
the % operator, which is used for formatting strings.
The %d specifies a placeholder, to be filled by a deci-
mal integer value obtained from an expression. For
example,

"%d and %d" % (3, 2**3)

produces the string "3 and 8". These two features,
raw strings and formatted strings, allow for the un-
derstanding of the example shown in Figure 1.

With this background, we can improve the code
by introducing a loop which iterates over the desired
values of m. The Python range function generates a
list of integer values over a specified interval. Given
integers l and h, range(l, h) generates a list of the
integers from l to h− 1. The example code shown in
Figure 2 produces the same tabular output as before,
but adds flexibility. The multiple assignment

lo, hi = 1, 4

allows an arbitrary range of table values to be spec-
ified; the for loop generates the table entries, one
row per iteration. As a side note, Python provides
arbitrary precision integer arithmetic; thus, tables
of powers of 2 involving a large number of digits can
be produced by simply adjusting lo and hi. For
example, with lo = 100 and hi = 102 the following
table is produced:

m 2m

100 1267650600228229401496703205376
101 2535301200456458802993406410752
102 5070602400912917605986812821504

Python provides the ability to define functions
as a way to promote program modularity. By defin-
ing a function within a pycode environment, we can

A gentle introduction to PythonTEX

304 TUGboat, Volume 34 (2013), No. 3

\begin{pycode}

lo, hi = 1, 4

print(r"\begin{tabular}{c|c}")

print(r"m & 2^m \\ \hline")

for m in range(lo, hi + 1):

print(r"%d & %d \\" % (m, 2**m))

print(r"\end{tabular}")

\end{pycode}

Figure 2: Generation of a table using a loop

subsequently evaluate it using \py or a similar com-
mand. To illustrate this capability, consider the
well-known Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

defined by F0 = 0, F1 = 1, and Fk = Fk−2+Fk−1 for
k ≥ 2. Figure 3 provides the definition of a function
which computes the nth Fibonacci number.

Since range(n) generates the list of integers
from 0 through n − 1, the for loop in fib makes
exactly n iterations. One way to understand this
function is to imagine scrolling across the Fibonacci
sequence with a window capable of exposing two
adjacent numbers in the sequence. Initially, the
window is positioned over F0 and F1; to expose Fn

the window is advanced n times.

\begin{pycode}

def fib(n):

a, b = 0, 1

for i in range(n):

a, b = b, a + b

return a

\end{pycode}

Figure 3: A Python function to compute the nth

Fibonacci number

With this function definition in place, we can
use \py to evaluate arbitrary values of the Fibonacci
sequence. For example, \py{fib(10)} produces 55,
the value of F10. As we saw earlier, arbitrary pre-
cision arithmetic is available “out of the box”. so
we can use this function with equal ease on larger
values. For example, the claim

F100 = 354224848179261915075

is produced by $F_{100} = \py{fib(100)}$.

4 Getting fancier

So far, we have considered just two commands, \py
and \pyc, and one environment, pycode. Even with
this limited collection, we have many possibilities.

However, an awareness of a few more features
of PythonTEX will allow for improved processing
times and additional flexibility. One such feature is

the concept of sessions. Without naming sessions,
as we have done up to this point, all Python code
runs sequentially in one default session. This can
have several advantages. For example, variables and
functions defined in one pycode environment are
available to subsequent pycode environments, which
avoids redundant code.

On the other hand, running all Python code in
one session has the disadvantage that multiple cores
are not utilized. As the amount of Python code in
a document increases, there is a time penalty to be
paid. By utilizing multiple Python sessions, code
can be executed in parallel, providing a welcome
speedup. All of the PythonTEX commands and en-
vironments provide for an optional session name. If
no such specification appears, it runs in the default
session. Judicious use of sessions can have dramatic
improvement in processing time.

Another speed-related benefit of sessions derives
from the fact that Python will run only for those
sessions where the code has recently changed. This
allows the user to place time-intensive Python code
in their own sessions — and if that code doesn’t need
to be modified, then it is executed just once.

Multiple sessions are independent. They do not
share variables or function definitions, for example.
Sometimes this will be exactly what we want, but
other times not. It is for these latter situations
that the pythontexcustomcode environment exists.
This environment allows a code block to be specified,
which is then made available to all sessions, irre-
spective of session name. Let’s look at an example,
shown in Figure 4, to explore this idea further.

\begin{pythontexcustomcode}{py}

def makeTable(lo, hi):

print(r"\begin{tabular}{c|c}")

print(r"m & 2^m \\ \hline")

for m in range(lo, hi + 1):

print(r"%d & %d \\" % (m, 2**m))

print(r"\end{tabular}")

\end{pythontexcustomcode}

Figure 4: Informing all sessions how to generate a
table of powers of 2

As a small detail, we first note that the custom
code in this example specifies py, which indicates the
py family of commands and environments to which
it applies. As an introduction to PythonTEX, we
have chosen to focus exclusively on the py family, but
more sophisticated uses of PythonTEX may benefit
from other families of commands. Full details are
given in the PythonTEX manual.

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 305

Notice that the custom code provided here is
simply an abstraction based on the earlier example
from Figure 2. In the present case, starting and
ending rows can be specified. So,

\pyc{makeTable(1, 4)}

would generate a table of powers with m between 1
and 4, whereas

\pyc{makeTable(4, 10)}

would generate a similar table, with m between 4
and 10. Using independent sessions would allow for
potential speedup:

\pyc[one]{makeTable(1, 4)}

\pyc[two]{makeTable(4, 10)}

The session names, one and two, are arbitrary. Ad-
mittedly, the time gains for this example are likely
to be negligible, but these examples were chosen for
their simplicity and ability to illustrate sessions.

As a further illustration, we can extend our code
so that it generates tables of arbitrary functions. To
do this, we include two additional parameters: one
to specify the function and one for the desired table
heading. These two parameters, f and hd, appear in
the revised version shown in Figure 5.

\begin{pythontexcustomcode}{py}

def makeTable2(lo, hi, f, hd):

print(r"\begin{tabular}{c|c}")

print(r"m & %s \\ \hline" % hd)

for m in range(lo, hi + 1):

print(r"%d & %d \\" % (m, f(m)))

print(r"\end{tabular}")

\end{pythontexcustomcode}

Figure 5: Informing all sessions how to generate a
table for an arbitrary function

With this abstraction, we can produce a portion
of the Fibonacci sequence displayed as a table, using
the command

\pyc{makeTable2(4, 8, fib, "F_m")}

This call produces the table:

m Fm

4 3
5 5
6 8
7 13
8 21

Python has a wealth of predefined functions,
made available from its library of modules. These can
be accessed with an appropriate import statement.
For example, to make the factorial function available
to all sessions, we could write:

\newif\ifprime \newif\ifunknown % booleans

\newcount\n \newcount\p \newcount\d

\newcount\a % integer variables

\def\primes#1{2,~3% assume #1 is at least 3

\n=#1 \advance\n by-2 % n more to go

\p=5 % odd primes starting with p

\loop\ifnum\n>0

\printifprime\advance\p by2 \repeat}

% we will invoke \printp if p is prime

\def\printp{,

\ifnum\n=1 and~\fi % "and~" precedes last value

\number\p \advance\n by -1 }

\def\printifprime{\testprimality

\ifprime\printp\fi}

\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}}

\def\trialdivision{\a=\p \divide\a by\d

\ifnum\a>\d \unknowntrue\else\unknownfalse\fi

\multiply\a by\d

\ifnum\a=\p \global\primefalse\unknownfalse\fi}

Figure 6: Knuth’s code for generating prime numbers
(editorial changes to line breaks and comments)

\begin{pythontexcustomcode}{py}

from math import factorial

\end{pythontexcustomcode}

With this import in effect, the table generation call

\pyc{makeTable2(10, 17, factorial, "$m!$")}

produces the following result:

m m!
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000

These examples illustrate how a wide assortment of
tables can be generated and typeset with relatively
little effort.

5 A table of primes

A recent post appeared on TEX Stack Exchange [12]
asking how one might generate a collection of prime
numbers using LATEX. Among the responses was the
comment that Knuth himself had provided code for
this [5, p. 218]. Figure 6 shows his implementation.

Knuth’s code is not for the timid — he gives it his
most difficult rating, a double dangerous bend. Some
years later, Roegel [10] explains this 16-line macro,
in the span of four pages, providing further evidence
of the subtlety involved in its implementation.

A gentle introduction to PythonTEX

306 TUGboat, Volume 34 (2013), No. 3

\begin{pythontexcustomcode}{py}

from sympy import prime

def generatePrimes(n): # Assume n >= 3

for i in range(1, n):

print("%d, " % prime(i))

print("and %d%%" % prime(n))

\end{pythontexcustomcode}

Figure 7: How to generate the first n prime numbers
using PythonTEX

For comparison, we show an equivalent using
PythonTEX in Figure 7. This code hides the com-
putational details within a function prime which
computes the ith prime number. To use this we
might write

Thirty primes: \pyc{generatePrimes(30)}.

which generates the following output:

Thirty primes: 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, and 113.

We think this provides a nice illustration of the suit-
ability of PythonTEX for documents that can benefit
from programmed output, especially for those TEX
users who do not intend to become highly skilled in
the art of macro writing.

This function has a small subtlety. The final
line of output produced by generatePrimes(30) is

and 113%

followed by a newline supplied by the print state-
ment. (A single % is produced by the Python spec-
ifier %%.) We want the terminating % to appear so
generatePrimes can be included in the context of
other text — such as the terminating period in the
preceding example.

6 Python data structures

Python has several useful native data structures,
such as lists, sets, and dictionaries. Furthermore, list
objects have methods that allow them to be treated
as stacks or queues. This section demonstrates the
basic syntax for working with lists and dictionaries.
These capabilities will be needed for examples in
subsequent sections.

A list is an integer-indexed sequence of items,
possibly of different types. In other words, a list
can contain a mixture of numbers, strings, and other
objects. Items can be removed from, added to, or
retrieved from lists. Lists can be defined with a
comma separated sequence of items within square
brackets. For example:

\pyc{myList=["Iris", "Azalea", "Rose"]}

defines a new list named myList that contains three
strings. The indexing operator, [], can be used
to retrieve items from a list. Lists in Python are
indexed from zero. Thus, \py{myList[0]} is “Iris”
and \py{myList[1]} is “Azalea”.

A for loop can be used to iterate over any
sequence. For example:

\begin{pycode}

for name in myList:

print(name)

\end{pycode}

becomes “Iris Azalea Rose”.
The enumerate function may be used if both

the index and the value of an item are needed. For
example,

\begin{pycode}

for index, name in enumerate(myList):

print(r"%d: %s" % (index, name))

\end{pycode}

prints both the index and value each item in the list,
that is, “0: Iris 1: Azalea 2: Rose”.

While lists are indexed by integers, dictionaries
can be indexed by any immutable type, often strings.
Dictionaries can be thought of as sets of key-value
pairs where the keys are unique. Dictionaries can
be defined with a comma-separated sequence of key-
value pairs within braces. For example,

\begin{pycode}

myDict = {"Illinois": "Violet",

"New Mexico": "Yucca",

"Indiana": "Peony"}

\end{pycode}

defines a dictionary named myDict with three entries.
The indexing operator, [], can be used to retrieve
values from a dictionary with keys used as the index.
So, \py{myDict["Illinois"]} yields “Violet”.

7 Symbolic mathematics

While the preceding sections attempt to be a rela-
tively simple introduction to Python and PythonTEX,
the remaining sections are more complex. The goal is
to demonstrate some of the cases where PythonTEX
can provide useful capabilities that would be difficult
using only LATEX.

Aside from the built-in functionality, Python
has many powerful modules for mathematics. For
instance, SciPy [11] is a rich collection of open source
Python-based software for science, engineering, and
mathematics. SciPy includes SymPy [13], a Python
module for symbolic mathematics with features sim-
ilar to other computer algebra systems like Mathe-
matica [15] and Maple [6]. Using SymPy with LATEX

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 307

allows mathematics not only to be beautifully type-
set, but also to be manipulated and evaluated.

While a full exploration of SymPy is beyond the
scope of this paper, an introduction to its features
will be provided to highlight how well it can integrate
with TEX through PythonTEX. For more information
see the SymPy tutorial [14].

Like other modules, SymPy must be imported
before use. For example:

\begin{pythontexcustomcode}{py}

from sympy import *

\end{pythontexcustomcode}

imports all of the functions and objects defined in the
sympy module. SymPy defines numerous functions,
many with common names such as sin, cos, and
var. This can interfere with other modules, such as
the plotting module pylab, which will be discussed
in the next section. Thus, it can be safer to import
the module with an import sympy statement:

\begin{pythontexcustomcode}{py}

import sympy

\end{pythontexcustomcode}

or to import inside of a session that will be used only
for SymPy:

\begin{pycode}[sympy-session]

from sympy import *

\end{pycode}

PythonTEX also defines macros (sympy, sympyc) and
related environments (such as sympycode) which sim-
plifies this process.

The var function can be used to declare sym-
bolic variables. For example, \pyc{var("x, y")}

declares two symbolic variables x and y. Such vari-
ables can be used to form symbolic expressions that
can be manipulated by SymPy. The examples in this
section assume this variable declaration has been
performed and that a

from sympy import

statement was used.
The latex function returns the LATEX code rep-

resenting a given SymPy expression. For example,

$\py{latex((x + y)**5)}$

yields (x + y)
5
. Without the latex function,

$\py{(x + y)**5}$

simply becomes (x + y) ∗ ∗5, since the Python expo-
nentiation operator is not converted into its LATEX
equivalent. This difference is more pronounced as
the expressions become more complex. Also, LATEX
code is just text to SymPy and cannot be manipu-
lated as symbolic expressions can. It is important
to remember to use the latex function only when
typesetting SymPy expressions.

Symbolic expressions can be saved in ordinary
Python variables. For example,

\pyc{z = (x + y)**5}

stores an expression in the variable z. SymPy has
many functions for manipulating symbolic expres-
sions, including: simplify, factor, collect, and
expand. These functions are applied to symbolic
expressions like any other function call. For instance,
z can be expanded with

\[\py{latex(expand(z)) + "."} \]

which becomes

x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

Figure 8 shows a more complex example that
forms a table of binomials and their expansions. This
example also shows how to build a list of expressions
and iterate over them.

SymPy exports many trigonometric and calcu-
lus related functions, some of which are illustrated
in Figure 9. Several SymPy objects, such as limits,
integrals, sums and products are not evaluated auto-
matically. To evaluate such objects the doit method
may be used.

SymPy also includes combinatorial functions,
for such things as Bernoulli, Catalan, Fibonacci, and
Stirling numbers. Figure 10 details the creation and
use of a function for formatting tables of Stirling
numbers of the second kind, denoted

{
n
k

}
, which

counts the number of ways to partition a set of n
elements into k nonempty subsets. This function
relies on a macro to format Stirling numbers, for
example:

\usepackage{amsmath}

\newcommand{\Stirling}[2]{

\begin{Bmatrix}#1\\#2\end{Bmatrix}}

A gentle introduction to PythonTEX

308 TUGboat, Volume 34 (2013), No. 3

\begin{pycode}

Start with an empty list

binomials = []

Add a few symbolic expressions to the list

for m in range(2, 6):

binomials.append((x + y)**m)

Start an align environment to hold the

results

print(r"\begin{align*}")

Add the original expressions and their

expansions to the table

for expr in binomials:

print(r"%s &= %s\\" % (latex(expr),

latex(expand(expr))))

End the align environment

print(r"\end{align*}")

\end{pycode}

(x + y)
2

= x2 + 2xy + y2

(x + y)
3

= x3 + 3x2y + 3xy2 + y3

(x + y)
4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x + y)
5

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

Figure 8: Binomial expansions

\begin{pycode}

Define a list of functions

functions = [sin(x), cos(x), tan(x)]

print(r"\begin{align*}")

For each function build a symbolic expression of its derivative and integral

for f in functions:

d = Derivative(f, x)

i = Integral(f, x)

Print a row in the table displaying the derivative and integral. Note the

use of the "doit" method to evaluate the derivative and integral. Also

string concatenation, +, is used to join strings in this example.

print(latex(d) + "&=" + latex(d.doit()) + "&" +

latex(i) + "&=" + latex(i.doit()) + r"\\")

print(r"\end{align*}")

\end{pycode}

d

dx
sin (x) = cos (x)

∫
sin (x) dx = − cos (x)

d

dx
cos (x) = − sin (x)

∫
cos (x) dx = sin (x)

d

dx
tan (x) = tan2 (x) + 1

∫
tan (x) dx = −1

2
log
(
sin2 (x) − 1

)
Figure 9: Building a table of derivatives and integrals

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 309

\begin{pycode}

Import a function for computing Stirling numbers

from sympy.functions.combinatorial.numbers import stirling

Define a function to print a table of all of the Stirling numbers for sets

of size 1 to maxN.

def stirlingTable(maxN):

Print the start of the table using a triple quoted string. Triple quoted

strings can span lines and are useful when including long strings.

print(r"""\begin{displaymath}

\begin{array}{c|*{%d}{c}} \hline

\multicolumn{%d}{c}{\textbf{Stirling's Triangle for Subsets}} \\ \hline

n""" % (maxN, maxN + 1))

Print each of the column headings using the previously defined Stirling

macro.

for k in range(1, maxN + 1):

print(r" & \Stirling{n}{%d} " % k)

Add some phantom space so the braces are not touching the hlines.

print(r"\vphantom{\parbox[c][7ex]{0in}{}} \\ \hline")

Start each row with the current n value

for n in range(1, maxN + 1):

print("%d" % n)

Add each of the Stirling numbers to the row

for k in range(1, n + 1):

print("& %d" % stirling(n, k))

End the row

print(r"\\")

End the table

print(r"\hline \end{array}\end{displaymath}")

stirlingTable(8)

\end{pycode}

Stirling’s Triangle for Subsets

n

{
n
1

} {
n
2

} {
n
3

} {
n
4

} {
n
5

} {
n
6

} {
n
7

} {
n
8

}
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1

Figure 10: Building a table of Stirling numbers

A gentle introduction to PythonTEX

310 TUGboat, Volume 34 (2013), No. 3

\begin{pycode}

from pylab import *

Define f(t), the desired function to plot

def f(t):

return cos(2 * pi * t) * exp(-t)

Generate the points (t_i, y_i) to plot

t = linspace(0, 5, 500)

y = f(t)

Begin with an empty plot, 5 x 3 inches

clf()

figure(figsize=(5, 3))

Use TeX fonts

rc("text", usetex=True)

rc("font", family="serif")

Generate the plot with annotations

plot(t, y)

title("Damped exponential decay")

text(3, 0.15, r"$y = \cos(2 \pi t) e^{-t}$")

xlabel("time (s)")

ylabel("voltage (mV)")

Save the plot as a PDF file

savefig("myplot.pdf", bbox_inches="tight")

Insert LaTeX code to include the plot.

print(r"\begin{center}"

+ r"\includegraphics[width=\textwidth]{myplot.pdf}"

+ r"\end{center}")

\end{pycode}

0 1 2 3 4 5

time (s)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

vo
lt

ag
e

(m
V

)

y = cos(2πt)e−t

Damped exponential decay

Figure 11: Plotting a function with Matplotlib

8 Plotting with Matplotlib

Matplotlib is a two-dimensional Python plotting li-
brary with an object-oriented interface and a set
of functions similar to MATLAB [7]. To use it, the
pylab module must be imported. Figure 11 shows
an example of plotting a function with annotations.
This example is inspired by a plot from the Mat-
plotlib gallery [4] which contains many examples and
tutorials. Such plots are desirable since they can use
fonts which blend with the rest of the document.

Matplotlib’s plots are saved in an external file
such as a PDF, which can then be included in the
current document. However, this can be problematic
as the file may not exist the first time the document
is processed. To avoid this problem, the Python code
generates the required \includegraphics statement.
In this way, the \includegraphics is not present
the first time TEX processes the document, but is on
subsequent processing.

9 Web services

There are many powerful and freely available web
services which return JSON (Java Script Object No-
tation) or another easily parsed format. Python’s
excellent parsing and networking libraries make using
such services relatively simple. Furthermore, some
web services have Python modules made specifically
for them.

Accessing such a web service typically requires
some authorization. This may involve requesting an
account with the service provider and agreeing to
their terms of service. Often a key is provided to
identify a client to the service and this key must be
presented each time the service is used. Using the
service can normally be broken into following tasks.

• Encoding the request as a URL

• Fetching the URL

• Parsing the response
• Using the result

Andrew Mertz and William Slough

TUGboat, Volume 34 (2013), No. 3 311

\begin{pycode}

Import functions to save the contents of a URL to a file and

encode a dictionary as a string suitable for URL requests

from urllib import urlretrieve, urlencode

See Google's documentation for service usage information and examples

https://developers.google.com/maps/documentation/staticmaps/

def showGoogleMap(address, filename, zoom=10, width=640, height=680):

Build a dictionary with the key-value pairs required by the service

query = {"key":googleKey, "center": address, "zoom": zoom,

"size": "%dx%d" % (width, height), "sensor": "false"}

Convert the query into a url

url = "https://maps.googleapis.com/maps/api/staticmap?" + urlencode(query)

Save the image to a file and include it in the document

urlretrieve(url, filename + ".png")

print(r"\begin{center}\includegraphics[width=0.45\textwidth]{%s}\end{center}"

% filename)

\end{pycode}

Figure 12: Displaying a map of Tokyo using Google’s Static Maps web service

The code of Figure 12 illustrates how the Google
Static Maps API [3] can be used. This web service
returns a PNG image of a map centered at a given
address. The showGoogleMap function defined in
this example has default values for the zoom, width,
and height arguments. As a result, when invoking
this function these arguments do not need to be
specified. The results of invoking

showGoogleMap("Tokyo", "tokyoMap")

are shown in Figure 13.
To use the Google Static Maps service, an API

key is needed. Such keys can be created with the
Google APIs console (https://code.google.com/
apis/console). The examples assume such a key
has been stored in a global variable googleKey. For
instance:

\begin{pycode}

googleKey = "Put API Key Here"

\end{pycode}

As a second example, Google’s “URL Short-
ener” [2] web service takes long URLs and converts
them into URLs with fewer characters, yielding links
that can be easier to share. This service sends and
receives data as JSON (a simple plain text format for
transmitting information as key-value pairs). This
format has dictionaries, lists, numbers, and strings
for data types. Figure 14 shows an example of what
JSON looks like, while Figure 15 shows a sample
response from the URL Shortener. Note the similar-
ity to the declaration of a Python dictionary. See
Figure 16 for the details of using this service.

Figure 13: Map output from Static Maps service

10 Conclusions

The ability to include arbitrary computations within
a LATEX document holds much appeal. As a program-
ming language, Python has relative simplicity with
broad expressive power. The examples presented in
this paper provide a glimpse of what is possible with
this software combination.

A gentle introduction to PythonTEX

312 TUGboat, Volume 34 (2013), No. 3

{

"debug": "on",

"window": {

"title": "Main View",

"width": 640,

"height": 480

},

"image": {

"src": "Images/Icon.png",

"hOffset": 10,

"vOffset": 10

}

}

Figure 14: JSON sample

{

"kind": "urlshortener#url",

"id": "http://goo.gl/fbsS",

"longUrl": "http://www.google.com/"

}

Figure 15: Response for a successful use of the URL

Shortener API

\begin{pycode}

A function and object for fetching URLs and

customizing requests

from urllib2 import urlopen, Request

JSON/Python conversion functions

from json import load, dumps

def shortenURL(longURL):

The base URL for shortening requests

url = ("https://www.googleapis.com/" +

"urlshortener/v1/url")

For this service the query is sent as JSON.

So the query is converted to JSON and the

content type is set in the request's header.

query = dumps({"longUrl": longURL,

"key": googleKey})

request = Request(url, query,

{"Content-Type": "application/json"})

Fetch the request and parse the returned JSON

result = load(urlopen(request))

Retrieve the shortened URL from the result

shortURL = result["id"]

Add the shortened URL to the document

print(r"\url{%s}%%" % shortURL)

shortenURL("http://mirror.ctan.org/macros/latex/" +

"contrib/pythontex/pythontex.pdf")

\end{pycode}

Figure 16: Shortening a long URL to http://goo.gl/sfT8S5

References

[1] Continuum Analytics. Anaconda. http:

//store.continuum.io/cshop/anaconda/.

[2] Google. The URL Shortener API. https:

//developers.google.com/url-shortener/.

[3] Google. The Google Static Maps API.
https://developers.google.com/maps/

documentation/staticmaps/.

[4] John Hunter. Matplotlib gallery.
http://matplotlib.org/gallery.html.

[5] Donald E. Knuth. The TEXbook.
Addison-Wesley Professional, 1984.

[6] Maplesoft. Maple. http://www.maplesoft.

com/products/maple/.

[7] MathWorks. Matlab. http://www.mathworks.
com/products/matlab/.

[8] Geoffrey Poore. PythonTEX.
http://www.ctan.org/pkg/pythontex.

[9] Python Software Foundation. Python.
http://python.org.

[10] Denis Roegel. Anatomy of a macro. TUGboat,
22:78–82, 2001. http://tug.org/TUGboat/

tb22-1-2/tb70roeg.pdf.

[11] SciPy Developers. SciPy. http://scipy.org.

[12] TEX Stack Exchange. How to produce a list of
prime numbers in LATEX.
http://goo.gl/903u75.

[13] SymPy Development Team. SymPy.
http://sympy.org.

[14] SymPy Development Team. Sympy tutorial.
http://docs.sympy.org/latest/tutorial/.

[15] Wolfram Research. Mathematica.
http://www.wolfram.com/mathematica/.

� Andrew Mertz and William Slough
Department of Mathematics and

Computer Science
Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu,

waslough (at) eiu dot edu

Andrew Mertz and William Slough

