
TUGboat, Volume 34 (2013), No. 3 269

Tsukurimashou:
A Japanese-language font meta-family

Matthew Skala

Abstract

METAFONT-based font projects for the Chinese, Ja-
panese, and Korean (CJK) languages have been an-
nounced every few years since the early 1980s, even
predating the current form of the METAFONT lan-
guage. Except for a few non-parameterized conver-
sions of fonts that originated in other formats, in
30 years every METAFONT CJK font has been aban-
doned at or before the 8-bit barrier of 256 kanji,
nowhere near the thousands required for practical
typesetting. In this presentation I describe the first
project to break that barrier: Tsukurimashou (http:
//tsukurimashou.sourceforge.jp/), currently at
over 1500 kanji (as well as kana, Latin, and Korean
hangul) and steadily growing. I discuss technical and
human challenges facing this kind of project, how
to solve them, and spin-off technologies such as the
IDSgrep kanji structural query system.

1 Introduction

The Han script, used by the Chinese, Japanese, and
Korean (CJK) languages among others, includes very
many characters. Just counting them is tricky, but
a human being might typically need to know a few
thousand for basic literacy in a Han-script language.
The list of 2136 characters taught in the Japanese
school system (the jouyou kanji) is one benchmark,
near the low end. Chinese requires more, and a type-
setting system may require more still, because of rare
characters found in names, historical contexts, and
so on. A human being can get away with failing to
read the occasional character; typesetting systems
need to be able to print nearly all of them. Computer
fonts considered usable for Japanese typically cover
between six and twelve thousand characters. Data-
bases of rare characters used in linguistic research
cover tens or hundreds of thousands.

The sheer number of characters that go into a
CJK font, and the amount of work implied by that
number, is daunting. Considering the difficulty of
building even a simple Latin font with METAFONT, it
may be no surprise that there are no complete META-
FONT-native CJK typefaces. But on the other hand,
examination of Han-script text (even, or especially,
by someone who cannot read it) quickly reveals that
characters can be decomposed into smaller parts, as
shown in Figure 1. Computer scientists who examine
Figure 1 are likely to believe they understand it. “Of
course,” one supposes, “the tens of thousands of Han

..語.

⿰

.
U+8A9E

go
“language”

.

言

.

U+8A00
i

“speak”

.

吾

.

⿱

.

U+543E
ware

“myself”

.

五

.

U+4E94
go
“five”

.

口

.

U+53E3
kuchi
“mouth”

Figure 1: Breaking a character into its parts.

characters are just a small vocabulary of primitive
shapes, perhaps only a few dozen, which combine in
straightforward ways according to a spatial grammar
to form tree structures!”

Computer scientists know how to deal with such
things. It should be only the work of a week or two
for a good programmer to lash together a prototype
CJK font generator. Each primitive shape can be a
subroutine; there can be other subroutines expressing
the combining operations such as “place this one
above that one”; a few parameters applied to the
low-level shapes can allow for creating a wide range
of styles; and the only real challenge is looking in the
dictionary that lists the tree decompositions of all the
characters. That book must exist in China, so we’ll
get it by interlibrary loan. This project might even
be easier than building a Latin font meta-family.

The earliest METAFONT CJK project I know
of was LCCD, the Language for Chinese Character
Design, described in a 1980 Stanford technical report
by Tung Yun Mei [11]. Mei collaborated with Knuth
and based LCCD on the METAFONT79 language de-
veloped to that point. Even in 1980, many of the
ideas were already in place that a present-day com-
puter scientist would naturally think of on viewing
Figure 1. Mei’s report includes images of 346 “basic
strokes and radicals”, and 112 completed characters.

Subsequent work on METAFONT-native CJK

fonts includes that of Hobby and Guoan in 1984, who
created 128 characters [5]; Hosek in 1989, character
count unknown but two are displayed in the TUG-
boat article [6]; Yiu and Wong in 2003, in a project
that targeted on-demand creation of rare characters
rather than a font as such [16]; and Laguna circa
2005, with 130 characters in the last available ver-
sion [10]. All these used a relatively small number of
basic components, combining according to a spatial
grammar to form more complicated characters.

Tsukurimashou: A Japanese-language font meta-family

http://tsukurimashou.sourceforge.jp/
http://tsukurimashou.sourceforge.jp/


270 TUGboat, Volume 34 (2013), No. 3

I listed published METAFONT-related projects.
Similar ideas have also been used behind closed doors
in commercial font foundries (CDL from Wenlin In-
stitute seems to be an example [15]), and non-META-
FONT research projects like the LISP-based Wadalab
toolkit [13]. The Wadalab font project ran during the
1990s; much of the work was lost or withdrawn, but
some of its fonts survived to become widely used in
the free software world. These kinds of projects use
grammars of character parts, but lack the full param-
eterization that METAFONT users expect. There has
also been work on using CJK fonts from other sources
in TEX documents, sometimes including METAFONT

incidentally in the workflow, but again without pa-
rameterization. For instance, the Poor Man’s Chi-
nese and Japanese package [12] converts bitmap fonts
into METAFONT code that renders scaled versions
(without smoothing!) at arbitrary resolution.

It may be difficult to create fonts in METAFONT

in general, regardless of the script; but human beings
have done it. Several, though not many, METAFONT-
native Latin fonts exist, and we can typeset a wide
range of documents in Latin-script languages with
parameterized METAFONT-native fonts. So after
more than three decades of work, why are there no
usable, parameterized, METAFONT-native CJK fonts
at all?

2 Scaling issues

It is no coincidence that the past attempts to build
CJK fonts in METAFONT have been abandoned at
the same stage in development, around 120 charac-
ters. That is the roughly the size of a Latin font.
METAFONT was designed to build fonts with sizes
on that order, and thus METAFONT users have built
expertise and developed tools for building fonts the
size of Latin fonts. When fonts get larger, unforeseen
difficulties show up like nurikabe — the plaster wall
monsters of Japanese folklore blamed for delaying
travellers by night.

2.1 Technical limitations

Many font file formats are limited to 256 glyphs
by their use of 8-bit character codes. People who
attempt to typeset CJK documents in classical TEX
use elaborate workarounds involving slicing their
fonts into 256-glyph sub-fonts. Handling the input
encoding for documents written in large character
sets with these slicing schemes is a tough problem
too, but fortunately not one we as font designers
must solve. There are extended versions of the TEX
interpreter designed to use longer character codes
directly (X ETEX is one), and those may also be able to
work with font formats that store tens of thousands

of glyphs per file and don’t need to be sliced; but
there is no similarly extended METAFONT to produce
fonts in such formats.

Thousands of glyphs in a font does not just
mean a bigger file. It also means more time spent
compiling, and more memory consumption. One
run of METAFONT may run out of memory or other
resources trying to process an entire multi-thousand-
glyph CJK font, and the user may run out of patience
recompiling the whole thing after changing one glyph.
To succeed at the thousand-glyph level, a project
must have build tools allowing separate compilation
of parts of the project. There should be tracking
of dependencies among the different parts. Just
being able to find pieces of code in a project this
size — answering questions like “what was the name
of the subroutine for such and such a shape?” — is
an issue. These are elementary problems in software
engineering, but there is little or no previous work
on them in the METAFONT context because nobody
has built systems this size in METAFONT before.

Classical METAFONT is designed to produce bit-
map fonts, but bitmap fonts are no longer such a
desired commodity. A present-day CJK font project
will presumably target a vector format, but making
METAFONT or some variation of it produce vector
fonts requires additional layers of software, all of
which are to some extent experimental. Bugs in the
beyond-METAFONT software, previously undetected
because previous fonts were smaller, will show up
and need to be fixed. Keeping a handle on the bugs
requires a test suite. The need for multiple steps in
font compilation underscores the need for a capable
build system. Human designers cannot be expected
to issue five or six different commands in the right
order to recompile every font, every time.

Earlier work on METAFONT CJK fonts has con-
centrated on writing code in METAFONT to draw the
shapes of Han characters, as if that were the only
problem to solve. Infrastructure that can scale to the
size of the finished product is at least as significant.

2.2 Human factors

It is easy to underestimate how much work is involved
in building a CJK font. We know how much work it
is to design a Latin font. We know a CJK font has
about 30 times as many glyphs. But it is easy to
think, looking at Figure 1, that the CJK font should
only be something like two or three times as much
work as the Latin font (perhaps less), because so
much code can be reused. In fact, less work is saved
by code reuse than one might hope: every glyph
requires some human attention. In computer science
terms, font design is not much less than Ω(n).

Matthew Skala



TUGboat, Volume 34 (2013), No. 3 271

Once it becomes clear that a human must spend
time on every single glyph — it gets easier as more
code exists to reuse, but there is no break point after
which hundreds of characters will suddenly come for
free — it is natural to hope that that human not be
oneself. If we can just build a sufficiently good, easy
to use set of tools, we can put them on the Web,
maybe use a Wiki, and have many people in the
community build a few glyphs each. Many hands
make light work, once the infrastructure exists.

But to hope for someone else to build the ac-
tual glyphs after the tools are designed is to ignore
a principal reason why people participate in free
software projects in the first place. Designing tools
for glyph construction is fun. Going through a list
of 6000 glyphs one by one, doing simple repetitive
tasks on each of them, is work. It is not easy to get
volunteers for that sort of thing at the best of times,
let alone when the volunteers must also have profi-
ciency in an obscure programming language. The
most successful large-scale collaboration is probably
GlyphWiki [9], which sacrifices parameterization for
a more purely graphical approach that demands less
from the participants.

Finally, many of the potential rewards of a
METAFONT CJK project, such as academic publi-
cations, can be had at the start, before the boring
part; and then there are no more rewards until the
end, and few then. You can publish one paper about
your innovative techniques for building fonts; and
you can publish one paper saying you have finished,
years later. There is little in between. Knowing that
this is the reward structure makes it tempting to
write only the first paper and then start work on
something else.

2.3 The script itself

The Han script itself may be the most ferocious
nurikabe. Figure 1 with its clean decomposition
of “language” into “speak”, “five”, and “mouth”,
is deceptive. Many characters can be described as
simply as that, but many others cannot. Consider
Figures 2, 3, 4, and I could draw many more.

In Figure 2, “forest” is two copies of “tree”
placed side by side. But the “tree” on the left is
different from the “tree” on the right. If you make
the two sides of “forest” look identical, readers will
still know that you meant to write “forest”, but it
will not look right. For a high-quality font, it has got
to look right. This entails either creating two differ-
ent primitives for the two trees, or having a smarter
tree that knows how to change itself when it is on
the left. Many character components change when
they appear on the left. The modifications made

..林.

⿰

.
U+6797
hayashi
“forest”

.

木

.

U+6728
ki

“tree”

.

木

.

U+6728
ki

“tree”

.

林

.

林

.

林
Figure 2: A forest is not two identical trees.

..観.

⿰

.
U+893B
kan

“outlook”
.

観

.

⿻

.

[unknown]

.

矢

.

U+77E2
ya

“arrow”

.

隹

.

U+96B9
furutori
“old bird”

.

見

.

U+898B
mi
“see”

Figure 3: Combining operations can be complex.

when a component appears on the left are partially
systematic, so we might hope to write code that
can derive the left side shape automatically from
the other shape, but it will not be simple, it will
require manual supervision, and some projects have
not gotten as far as noticing that it was an issue in
the first place.

In Figure 3, the left side of “outlook”, in addition
to not being a character in its own right, is some
kind of hard to describe combination of “arrow” and
“old bird”. It is not good enough to just print a scaled
copy of “arrow” on top of “old bird” and hope for the
best; getting it right requires modifying and deleting
strokes in both parts. A generic overlap operation is
unlikely to be flexible enough to do the right thing
here. Every character that contains this sort of thing
requires specific human attention to adjust it beyond

Tsukurimashou: A Japanese-language font meta-family



272 TUGboat, Volume 34 (2013), No. 3

..及.

Kaku

.及.
Mincho

Figure 4: Two styles of U+53CA (oyo, “reach”).

just saying “overlap”. If the components change
parametrically, then making sure they look right for
all parameter values becomes even more complicated.

In Figure 4, two different styles of the same char-
acter are topologically different: the one on the left
contains a single zigzag stroke that in the right-hand
version is made up of two separate pieces. It is not
easy to parameterize that in a way that will look
good at every step in between, and if we make it a
binary choice, giving up on the idea of interpolation,
this difference will require some sort of “if” state-
ment in the character description. A straightforward
implementation of the grammar of shapes and com-
bining operations suggested by Figure 1 would not
provide for “if” statements.

These issues in the Han writing system point
to an important conclusion: a simple grammar of
parts and combining operations is not enough for
building parametric fonts, even though it may be
a useful starting point. Many characters can be
decomposed into parts in the clean way implied by
Figure 1, and such decompositions may be enough
to support dictionary searches. It is easy to find
enough well-behaved characters to put together a
slide show or grant application, and to fool others
or even oneself into thinking the whole character set
will be easy.

But in order to produce high-quality fonts with
full parameterization, with all the characters needed
to typeset real documents, we must be able to over-
ride the simple descriptions and combinations of
parts in arbitrarily complicated ways — per charac-
ter and depending non-linearly on the parameters.
To work at full scale, the font description language
must have the power of a general-purpose program-
ming language.

3 Tsukurimashou

My own attempt at building a METAFONT CJK font
family is called the Tsukurimashou Project. The
name means “Let’s make something!”; it is an anime

reference. As of version 0.8, released 26 August
2013, Tsukurimashou covers 1502 Japanese kanji
(Han script) characters including all those taught
in Japanese schools through Grade Four, as well
as essentially complete coverage of kana (Japanese
phonetic script), Latin, hangul (Korean alphabetic
script), punctuation, and some miscellaneous orna-
ments and graphical characters. This is the work
of one person, on a hobby basis while doing other
things full-time for pay, since late 2010. It remains
far from being a complete font family usable for
typesetting general documents in Japanese, but it is
already far past the point reached by any previous
parameterized METAFONT-native CJK font project,
and I believe my project is the first with a credible
prospect of eventually reaching complete coverage.

Here are some points of reference distinguish-
ing Tsukurimashou from other projects already dis-
cussed:

• Tsukurimashou is a parameterized meta-family,
not a single font or a collection of independent
fonts.

• Tsukurimashou is a font project, not primarily
a dictionary of characters.

• Tsukurimashou is code, not data.
• Tsukurimashou is intended to achieve full cover-

age, at least of the characters needed for basic
literacy in Japanese; it is not a proof of concept.

• Tsukurimashou is one person’s non-commercial
project; not a for-profit corporate or large-scale
collaborative effort.

Tsukurimashou is hosted as a free software project on
SourceForge Japan, with the bilingual project home
page at http://tsukurimashou.sourceforge.jp/

featuring downloadable packages, a Subversion repos-
itory for the source code, a bug tracker, mailing list,
and so on. The package as a whole is distributed un-
der the GNU General Public License, version 3, with
a clarifying paragraph added to explicitly permit
embedding the fonts in documents.

3.1 Motivation

The issues of human labour described in the previ-
ous section make it difficult for a CJK METAFONT

project to reach complete coverage. Tsukurimashou’s
solution to the amount of work involved in font design
is to redefine that large amount of work as the main
goal of the project instead of an unfortunate cost of
the project. This point alone seems to be largely
responsible for Tsukurimashou’s success to date.

I want to learn to read Japanese. Learning to
read entails spending some time practicing and study-
ing every character. But just studying a book and
tracing copies on paper, as well as being boring, is

Matthew Skala

http://tsukurimashou.sourceforge.jp/


TUGboat, Volume 34 (2013), No. 3 273

not a particularly effective way to learn. I would
also like to become skilled at using METAFONT and
related font technologies. I believe I acquire skills
best by completing tasks that require the skills. De-
signing a font family for Japanese, as a project that
requires knowledge of the kanji and of METAFONT,
including concentration on every character in turn,
is a good way to acquire that knowledge. And from
that point of view, the actual finished fonts are not
even important. The fonts are my excuse for spend-
ing time thinking about every character, which is the
real goal. With that goal in mind, avoiding human
attention to every character stops being necessary or
even desirable.

Of course, the project may have desirable side
effects. Work on Tsukurimashou has required me to
invent new technology that may be useful in other
projects. Some of it is publishable research in com-
puter science, certainly welcome for someone hoping
to establish an academic career. And because it
places heavy (in some cases unprecedented) demands
on other free software systems, Tsukurimashou has
proven useful in the development of those systems.
Given that I am already committing to spend some
time per character on learning the language, the
hope is to make that time pay off in as many ways
as possible.

3.2 A brief tour of the fonts

Tsukurimashou as a software package generates Open-
Type font files as its main output. Those are intended
for use in general typesetting and word processing,
not only within the TEX world. I most often use them
with X ETEX. The OpenType fonts are divided up
into families, of which the main supported ones are
named Tsukurimashou, TsuIta, and Jieubsida; then
there is parameterization within each family for over-
all style, boldness, and monospace or proportional
spacing. The main supported styles for the Tsukuri-
mashou family are “Kaku” (a traditional sans-serif
style), “Maru” (sans-serif with rounded stroke ends),
“Mincho” (a less traditional version of the common
Mincho serif style), and “Bokukko” (which somewhat
resembles handwriting with a felt-tipped pen). Finer-
grained parameters are used internally and could be
made visible by modifying the code, much in the way
that Computer Modern has internal parameters like
“stem_corr” as well as preset styles like “Roman”.
Figure 5 shows a sample of the font styles; Figure 6
shows more of the Japanese characters in the Mincho
style. Version 0.8 with all options enabled will build
a total of 120 OpenType files, including some that
are experimental and not intended for actual use.

These are outline fonts intended for printing at

Tsukurimashou Font Meta-Family
さてさて、何が出来るかな？

Kaku 角 Extra Light 白字
Mincho 明朝 Light 軽字
Maru 丸 Normal 本
Bokukko 僕女 Demibold 半太字
Monospace Bold 太字
Proportional Extra Bold 黒字
TsuIta Atama PS ツイタ頭 ＰＳ

TsuIta Soku PS ツイタ足 ＰＳ
Jieubsida 지읍시다 Dodum 돋움
Batang 바탕 Sun-Moon 선문
Figure 5: A sample of the Tsukurimashou
meta-family of fonts.

わらやまはなたさかあ ワラヤマハナタサカア
ゐり みひにちしきい ヰリ ミヒニチシキイ
　るゆむふぬつすくうん ルユムフヌツスクウン
ゑれ めへねてせけえ ヱレ メヘネテセケエ
をろよもほのとそこお ヲロヨモホノトソコオ
　一七三上下中九二五人休先入八六円出力十千
　口右名四土夕大天女子字学小山川左年手文日
　早月木本村林校森正気水火犬玉王生田男町白
　百目石空立竹糸耳花草虫見貝赤足車金雨青音
Figure 6: Kana and Grade One kanji in
Tsukurimashou Mincho.

high resolution. They contain hinting for bitmap con-
version, but it is done automatically and not expected
to be extremely high quality. Japanese-language
typesetting has traditionally used monospace met-
rics, simple scaling (i.e., no corrections for optical
weight), and no slanting or italicization; Tsukuri-
mashou currently offers a choice between monospace
or proportional, no optical weight features, and ital-
ics for the Latin script only.

Although the largest use of Tsukurimashou fonts
to date has been for typesetting the project’s own
documentation in English, the design of the Tsukuri-
mashou Latin glyphs, especially in the Mincho style,
is intended primarily for setting the short fragments
of English that sometimes occur in Japanese text.
Tsukurimashou Mincho used for pure English text
ends up looking like a display face and might not

Tsukurimashou: A Japanese-language font meta-family



274 TUGboat, Volume 34 (2013), No. 3

be appropriate for entire sentences and paragraphs.
Tsukurimashou Kaku is more suitable for extended
settings in English.

The Jieubsida1 family is intended to support
the Korean hangul (alphabetic) script. Hanja (the
Korean equivalent of kanji) are not included. This
character set is relatively orthogonal: the main se-
quence of 11172 glyphs is algorithmically generated
from a few tens of basic parts, though many less
common letters had to be defined with more human
intervention. Work on these fonts has proven useful
in debugging the infrastructure at full scale, given
that the Tsukurimashou series of fonts will eventu-
ally grow to a significant fraction of the size already
reached by the Jieubsida series.

Beyond the main Tsukurimashou package, there
are several smaller software packages called “para-
sites”, which appear in subdirectories of the distri-
bution or may be detached. Some of these are font
packages that share some of the Tsukurimashou infra-
structure without really being part of the same meta-
family; others are related software of other kinds.
The only one discussed here will be the IDSgrep
structural query system.

3.3 The infrastructure

Tsukurimashou’s infrastructure is designed like a
typical free software project. It has source code
that compiles into binary files, it has build scripts to
accomplish that, and a would-be user can download a
tarball, unpack it, and type ./configure and make.

The build system is based on GNU Autotools.
Choosing which source code files are needed for which
font styles involves doing some logical inference that
would not be convenient to do in a Makefile, so the
Makefiles invoke additional code written in a subset
of Prolog to evaluate the style selections, then run
Perl scripts that scan the METAFONT sources to look
for dependencies. The results of that computation
are written into additional Makefiles, which guide
the actual compilation process.

Knuth’s METAFONT creates bitmap fonts, while
Tsukurimashou’s target is OpenType outline fonts.
There are several METAFONT variants that can pro-
duce outline output from METAFONT source. I chose
MetaType 1 [7] for Tsukurimashou. This package
originates with the Polish TEX users group GUST

and may be most famous for its use in the Latin
Modern project [8]. It consists primarily of a macro
package for MetaPost and a postprocessing script for
GNU awk. One run of MetaPost generates the glyphs

1 Intended as a translation to Korean of the name “Tsukuri-
mashou”, but I am informed that “Mandeubsida” would be a
better translation, and am considering changing it.

of a font as EPS files; another generates metrics; then
the gawk script merges those and does some rewrit-
ing of the PostScript code to turn them into a single
PostScript Type 1 font.

In recent versions, Tsukurimashou’s version of
MetaType 1 has diverged somewhat from the one
distributed by GUST. I started with the (very old)
mtype13 distribution, tried to upgrade it to use the
latest MetaType 1 scripts, and ended up rewriting
large sections of code. Many features of MetaType 1
are not used in Tsukurimashou (for instance, hint-
ing; the “metrics” pass; and the entire processing
chain in the reverse direction from PostScript back to
METAFONT), and it proved useful to remove them,
streamlining the code considerably. The core flow
of information through Tsukurimashou’s version of
MetaType 1 remains similar to that of the original,
however: the MetaPost interpreter executes code in
the METAFONT language, writing one EPS file for
each glyph, and then those are postprocessed into
PostScript Type 1 fonts.

Each PostScript font contains up to 256 glyphs
(but usually far fewer than that), corresponding to a
256-character block of the Unicode character space.
Many of these PostScript fonts are needed for each
full-coverage OpenType font. The build system runs
each individually through a FontForge script that
removes overlapping sections of splines, this being
an easier operation in FontForge than METAFONT.
Once all PostScript fonts for an OpenType font have
had their overlaps removed, it runs another Font-
Forge script to combine them into the final Open-
Type font. Doing the overlap removal as a separate
step is an optimization for the common case during
development where only some of the PostScript fonts
have changed: it reduces the amount of work needed
to reassemble the updated OpenType font.

There are additional stages of processing in Font-
Forge after the PostScript fonts are merged. The raw
outlines generated by METAFONT may contain exces-
sive or poorly-located spline control points; scripts
in FontForge attempt to remove those. Similarly,
some technical rules of the font formats (such as
having points at the x and y extrema of each curve)
need to be enforced. There is another processing
chain for automated horizontal spacing and kerning
of the proportionally-spaced styles. In that chain,
the build system generates bitmap fonts in BDF for-
mat and a C program calculates spacing corrections,
which are then applied back to the merged OpenType
fonts. Other scripts are run on the side to do things
like constructing OpenType glyph-substitution ta-
bles for Korean hangul support, and collecting data
for proof generation. According to recent statistics

Matthew Skala



TUGboat, Volume 34 (2013), No. 3 275

..

語
.五.

Kaku Extra Light

.

語
. 五.

Mincho

.

語
. 五.

Bokukko Bold

Figure 7: Three styles of “language” and “five”.

from Ohloh [2], 63% of the project’s code is written
in MetaPost (the font descriptions proper), 8% is in
LATEX (documentation), and the remaining 29% is
spread among 11 other programming languages: the
infrastructure and some small spin-off packages.

3.4 The METAFONT code

Below is Tsukurimashou’s code defining the “lan-
guage” glyph of Figure 1; three styles of it are shown
at the top of Figure 7. This glyph is of about average
complexity; some are even simpler, and a few involve
much more complicated operations, such as calculat-
ing positions of strokes based on the intersections of
other strokes, or doing interpolation and conditional
processing on style parameters.

vardef kanji.grtwo.language =

push_pbox_toexpand(

"kanji.grtwo.language");

build_kanji.level(build_kanji.lr(450,0)

(kanji.grtwo.word)

(tsu_xform(identity yscaled 0.95)

(kanji.grnine.my)));

expand_pbox;

enddef;

This code is in a file named tsuku-8a.mp, which
covers the Unicode code points U+8A00 to U+8AFF.
A character like this one, which happens not to be
used as part of any other character, is defined right
there in the Unicode-range MetaPost file. Parts that
are shared among more than one such file are moved
to other files that can be included in multiple places;
for instance, kanji.grtwo.word is in gradetwo.mp.
Splitting macro definitions across many files like
this makes it easier to avoid recompiling the whole
system when something changes, but it also requires
the build system to keep track of all the inter-file
dependencies.

Tsukurimashou frequently uses a sort of func-
tional programming via METAFONT’s concept of text
arguments to macros. A global stack data structure
contains several kinds of objects to eventually be ren-
dered into the glyph. A macro receives one or more

arguments that are themselves fragments of code; it
runs them, then examines the objects they added to
the stack and possibly makes modifications. Macros
that create kanji or parts of kanji normally put them
into a square of arbitrary two-dimensional space de-
fined by the coordinates from (50,−50) to (950, 850);
the outer-level macros can then shift and scale that
square into its final location in the finished glyph.

The macro build_kanji.lr, which combines
things left-to-right, allows its two arguments to run,
then scales and shifts their results to cover two
smaller rectangles. The numeric arguments (450, 0)
specify that in this case, the dividing line is at x
coordinate 450, and the two rectangles overlap by
an amount of 0. So the left side runs from (50,−50)
to (450, 850) and the right side is from (450,−50) to
(950, 850).

Many of the visual adjustments needed when
parts are combined, can be had just by choosing
the right values for the dividing line and overlap
amount. But other macros seen in this sample in-
clude build_kanji.level, which adjusts the stroke
widths in its argument to all be the same (which
often, but not always, looks better) and tsu_xform,
which applies an additional METAFONT transfor-
mation matrix to make kanji.grnine.my a little
smaller. Even in this relatively simple glyph, some
tweaking was necessary beyond just putting together
existing pieces in a standardized way.

Now, let’s look at the code for the kanji numeral
“five”, which is invoked indirectly by kanji.grtwo.

language when it calls kanji.grnine.my. This
glyph is shown at the bottom of Figure 7. It is
a typical example of the basic shapes that are not
made up of smaller components.

vardef kanji.grone.five =

push_pbox_toexpand("kanji.grone.five");

push_stroke((170,740)--(830,740),

(1.6,1.6)--(1.6,1.6));

set_boserif(0,1,9);

push_stroke((500,740)--(350,20),

(1.6,1.6)--(1.6,1.6));

push_stroke(

(220,410)--(730,410)--(720,20),

(1.5,1.5)--(1.5,1.5)--(1.4,1.4));

set_boserif(0,1,4);

set_botip(0,1,1);

push_stroke((120,20)--(880,20),

(1.6,1.6)--(1.6,1.6));

set_boserif(0,1,9);

expand_pbox;

enddef;

The push_stroke macros save paths on the
stack, with each stroke defined by one path for the
spine of the stroke, and a second path describing how

Tsukurimashou: A Japanese-language font meta-family



276 TUGboat, Volume 34 (2013), No. 3

the stroke weight (eventually translated to “width”
through a style-dependent matrix) changes along
the length of the stroke. Other macros, such as
set_boserif, push other objects on the stack to in-
dicate where serifs (uroko) should be added in styles
that use them.

The whole thing, like kanji.grtwo.language

before it, is bracketed by push_pbox_toexpand and
expand_pbox, which respectively save, and adjust
the size of, an object called a “proof box”.

After all the macros that specify a glyph have
run, rendering code unwinds the stack and generates
outlines for all the objects, writing them to the Post-
Script output. This code is where most aspects of
the font style are applied. Styles define the pens used
for stroking, transformations for calculating pen size,
the shape of serifs and whether to use them, and can
potentially override parts of the rendering code by
defining hook macros to apply further effects.

I have never fully understood METAFONT’s tra-
ditional proof system based on greyscale fonts and
“literate” programming, and in any case its reliance on
the standard coordinate array z[] would not mix well
with Tsukurimashou’s object stack concept. Tsukuri-
mashou generates proofs in a completely different
way. When unwinding the stack the rendering code
writes a “proof file”, essentially a machine-readable
log of all the things it is rendering. The build sys-
tem collects the proof files and runs them through
Perl scripts which generate TikZ/LATEX files for an
illustrated and cross-referenced edition of the source
code. The proof boxes from push_pbox_toexpand

result in annotations on the pictures, showing which
part of each glyph came from which macro. Some
information from the proof files also feeds into the
kerning program, and is used for purposes like ad-
vising FontForge of white-on-black reversed glyphs,
which represent exceptions to the overlap-removal
rules otherwise applied.

4 Character databases and IDSgrep

Adding characters to Tsukurimashou requires know-
ing what is already in the system and what is in the
language. For example, when looking at something
like the left side of “outlook”, I need to know whether
such a thing already exists as a macro somewhere in
the code base; whether many other characters in the
language also include it (which would support the
decision to create a new macro for future use); and
which of its parts may be related to common shapes
that could be used as guides for the new code. There
are also simple coding questions to be answered, like
“What was the name of that macro?” and “Which
source code file is it in?”

More generally, anyone working with Han char-
acters who does not read them fluently may wish to
search a dictionary on partial descriptions: “What
is this character I don’t recognize that has ‘speak’
on the left and ‘five’ at the upper right?” Existing
dictionaries sometimes offer what is called “multi-
radical” search, whereby the user can specify one
or more components and then see a list of all kanji
that contain all those components. But multi-radical
search features seldom if ever capture structural in-
formation like “on the left”; such a system would
just show all the characters that contain “speak” in
one pile for the user to dig through. In the initial
stages of laying out Tsukurimashou’s kanji support,
I frequently found myself wishing I could use the
power of Unix regular expressions, or something like
them, to make more precise queries: why not run
grep on the writing system itself?

The IDSgrep package attempts to serve that
need. With some irony intended, IDSgrep’s stated
goal is to bring the user-friendliness of grep to Han
character dictionaries. IDSgrep is one of the Tsukuri-
mashou parasites: it comes included with the full
distribution in a separate directory, or can be dis-
tributed on its own.

Recall the tree decomposition of Figure 1. That
tree might be rendered into a simple ASCII-based pre-
fix notation as “[lr](speak)[tb](five)(mouth)”:
it is a left-right combination of two things, the first
of which is “speak” and the second is a top-bottom
combination of “five” and “mouth”. As argued ear-
lier in this paper, such descriptions are not enough
to render high-quality glyphs; but maybe if we in-
clude a few general catch-all categories like “overlap”,
and accept that not all descriptions will be detailed
enough for rendering graphics, we can come up with
a description for every character sufficient to offer
useful dictionary searches.

The Unicode standard specifies syntax for Ideo-
graphic Description Sequences (IDSes), intended to
support exactly this kind of pursuit [14]. There are
special characters defined in the range U+2FF0 to
U+2FFB to represent the prefix operators. Figure 8
shows some examples of the notation. Note the way
the IDS notation conceals some details: for instance,
the two sides of “forest” are both denoted by the
same character, even though they look different when
rendered. This looks promising: maybe we could get
away with “just running grep” on a database of such
decompositions.

In practice there are some additional challenges.
For theoretical reasons, namely the difference be-
tween regular and context-free languages, a true
regular expression search on these descriptions may

Matthew Skala



TUGboat, Volume 34 (2013), No. 3 277

【林】⿰木木
【語】⿰言⿱五口
【観】⿰⿻矢隹⿱目儿
【涼】⿰水⿱亠⿱口小
【葉】⿱艹⿱世木

Figure 8: Unicode Ideographic Description Sequences.

be less than satisfactory. IDSgrep implements a
tree-matching query language in which the user can
specify character components to search for explic-
itly, or use matching operators like wildcard, match-
anywhere, Boolean operations, and so on. The IDS

syntax is not quite sufficiently flexible and well-
defined to encompass all the tasks IDSgrep demands
of it, and the special Unicode combining operation
characters are difficult to type (and to typeset in
Computer Modern!); so IDSgrep defines extensions to
the syntax and ASCII synonyms for the special char-
acters, forming a language of Extended Ideographic
Description Sequences (EIDSes) that subsumes the
Unicode IDS syntax.

IDSgrep’s user interface is a Unix command-line
utility similar to grep. It reads a database of trees in
EIDS syntax, from files or standard input, and writes
out any that match the matching pattern specified
on the command line: just like grep. The syntax
for matching patterns is complicated because it is
powerful, but no worse for skilled users than standard
regular expressions. After learning the syntax, a user
can easily and quickly compose queries like “What
characters have this component in that location, but
not that other component anywhere?”

The latest version, IDSgrep 0.4, uses Bloom
filters and binary decision diagrams to speed up
searches. Although the full tree-matching algorithm
is not slow, a complete search of hundreds of thou-
sands of kanji dictionary entries may take a few sec-
onds. So during installation, IDSgrep precomputes
bit vector indices for the databases being installed;
when searching those databases, it can do quick tests
on the bit vectors to reject the large majority of
possible matches, running the more expensive tree
match on the candidates that make it past the bit
vector check. The amount of speed-up is variable,

but typically around a factor of 15.
But a critical question remains: where does the

data come from? Databases of kanji marked up with
structural data are not easy to find, let alone in
IDSgrep’s native format. The Tsukurimashou fonts
generate (using information extracted from the proof
files) a dictionary of character decompositions as
the characters appear in the fonts. Querying how
Tsukurimashou decomposes a character is often use-
ful, but Tsukurimashou by definition does not cover
the characters I have yet to add, and its decomposi-
tions may not reflect traditional etymology and other
concerns. IDSgrep also ships with code to extract
EIDS character decompositions from the KanjiVG

Project’s XML files [1] and from the CHISE IDS data-
base [4]. It can do a “join” of any of the kanji
databases with EDICT2 [3] to create an experimental
dictionary of words and meanings with character
decompositions. None of these databases is perfect;
but especially by searching several at once, users can
usually succeed in finding what they are looking for.

5 Conclusions and future work

There has been much past CJK METAFONT work,
with few results and no finished fonts. I have de-
scribed my own project, the Tsukurimashou paramet-
ric font meta-family, which is unfinished too. How-
ever, Tsukurimashou has made more progress than
any similar system to date. I have described issues
facing this kind of project, Tsukurimashou’s solu-
tions for some of them, and associated technology
including the IDSgrep kanji structural query system.

The obvious direction for future work is to com-
plete Tsukurimashou’s kanji coverage. My hope,
however, is that some of the code and ideas from this
project will also be applicable in other languages and
other projects.

References

[1] Ulrich Apel. KanjiVG. http://kanjivg.

tagaini.net/.

[2] Black Duck Software. The Tsukurimashou
open source project on Ohloh: Languages
page. https://www.ohloh.net/p/

tsukurimashou/analyses/latest/

languages_summary.

[3] Jim Breen. The EDICT dictionary file.
http://www.csse.monash.edu.au/~jwb/

edict.html.

[4] CHISE Project. http://www.chise.org/.

[5] John D. Hobby and Gu Guoan. A Chinese
meta-font. TUGboat, 5(2):119–136, November

Tsukurimashou: A Japanese-language font meta-family

http://kanjivg.tagaini.net/
http://kanjivg.tagaini.net/
https://www.ohloh.net/p/tsukurimashou/analyses/latest/languages_summary
https://www.ohloh.net/p/tsukurimashou/analyses/latest/languages_summary
https://www.ohloh.net/p/tsukurimashou/analyses/latest/languages_summary
http://www.csse.monash.edu.au/~jwb/edict.html
http://www.csse.monash.edu.au/~jwb/edict.html
http://www.chise.org/


278 TUGboat, Volume 34 (2013), No. 3

1984. http://tug.org/TUGboat/05-2/

tb10hobby.pdf.

[6] Don Hosek. Design of Oriental characters
with METAFONT. TUGboat, 10(4):499–502,
December 1989. http://tug.org/TUGboat/

10-4/tb26hosek.pdf.

[7] Bogus law Jackowski, Janusz Nowacki, and
Piotr Strzelczyk. Programming PostScript
Type 1 fonts using MetaType1: Auditing,
enhancing, creating. TUGboat, 24(3):575–581,
2003. http://tug.org/TUGboat/24-3/

jackowski.pdf.

[8] Bogus law Jackowski and Janusz M.
Nowacki. Latin Modern: Enhancing
Computer Modern with accents, accents,
accents. TUGboat, 24(1):64–74, 2003. http:

//tug.org/TUGboat/24-1/jackowski.pdf.

[9] Koichi Kamichi. GlyphWiki. http://en.

glyphwiki.org/wiki/GlyphWiki:MainPage.

[10] Javier Rodŕıguez Laguna. Hóng-Zı̀: A Chinese
METAFONT. TUGboat, 26(2):125–128, 2005.
http://tug.org/TUGboat/26-2/laguna.pdf.

[11] Tung Yun Mei. LCCD, a language
for Chinese character design. Report
STAN-CS-80-824, Stanford University,
Department of Computer Science, 1980.
ftp://reports.stanford.edu/pub/cstr/

reports/cs/tr/80/824/CS-TR-80-824.pdf.

[12] Tom Ridgeway. Poor Man’s Chinese and
Japanese, 1990. http://www.ctan.org/

tex-archive/fonts/poorman.

[13] Tetsuro Tanaka. Wadalab-Toolkit. Web
page in Japanese. http://gps.tanaka.ecc.
u-tokyo.ac.jp/wadalabfont/.

[14] Unicode Consortium. Ideographic description
characters. In The Unicode Standard,
Version 6.2.0, section 12.2. The Unicode
Consortium, Mountain View, USA, 2012.
http://www.unicode.org/versions/

Unicode6.2.0/ch12.pdf.

[15] Wenlin Institute. Character description
language. http://www.wenlin.com/cdl/.

[16] Candy L. K. Yiu and Wai Wong.
Chinese character synthesis using
MetaPost. TUGboat, 24(1):85–93, 2003.
http://tug.org/TUGboat/24-1/yiu.pdf.

� Matthew Skala
Department of Computer Science
E2–445 EITC
University of Manitoba
Winnipeg MB R3T 2N2
Canada
mskala (at) ansuz dot sooke dot

bc dot ca

http://ansuz.sooke.bc.ca/

Matthew Skala

http://tug.org/TUGboat/05-2/tb10hobby.pdf
http://tug.org/TUGboat/05-2/tb10hobby.pdf
http://tug.org/TUGboat/10-4/tb26hosek.pdf
http://tug.org/TUGboat/10-4/tb26hosek.pdf
http://tug.org/TUGboat/24-3/jackowski.pdf
http://tug.org/TUGboat/24-3/jackowski.pdf
http://tug.org/TUGboat/24-1/jackowski.pdf
http://tug.org/TUGboat/24-1/jackowski.pdf
http://en.glyphwiki.org/wiki/GlyphWiki:MainPage
http://en.glyphwiki.org/wiki/GlyphWiki:MainPage
http://tug.org/TUGboat/26-2/laguna.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/80/824/CS-TR-80-824.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/80/824/CS-TR-80-824.pdf
http://www.ctan.org/tex-archive/fonts/poorman
http://www.ctan.org/tex-archive/fonts/poorman
http://gps.tanaka.ecc.u-tokyo.ac.jp/wadalabfont/
http://gps.tanaka.ecc.u-tokyo.ac.jp/wadalabfont/
http://www.unicode.org/versions/Unicode6.2.0/ch12.pdf
http://www.unicode.org/versions/Unicode6.2.0/ch12.pdf
http://www.wenlin.com/cdl/
http://tug.org/TUGboat/24-1/yiu.pdf

	Introduction
	Scaling issues
	Technical limitations
	Human factors
	The script itself

	Tsukurimashou
	Motivation
	A brief tour of the fonts
	The infrastructure
	The Metafont code

	Character databases and IDSgrep
	Conclusions and future work

