
TUGboat, Volume 35 (2014), No. 2 205

xml2tex: An easy way to define
XML-to-LATEX converters

Keiichiro Shikano

Abstract

xml2tex is a framework to give XML a presentation
layer using LATEX. In other words, xml2tex lets you
use an XML-based format as a source of LATEX. It
may sound awful at first, but an XML-based format
has some advantages, especially for creating books.
This paper describes why XML does matter, and
introduces xml2tex’s intuitive way of relating XML
to LATEX, based on a Scheme dialect and SXML.

1 LATEX as presentation for XML

Creating documents can be seen from two opposite
aspects: structure versus presentation. In some doc-
ument systems, they are divided into completely
separate layers. For example, XSL [10] is the way to
define a presentation of XML, which corresponds to
the tree structure of a document. Håkon Wium Lie,
the father of CSS [11], explains this separation in
terms of a ladder of abstraction [6]. The structural
tree of the document is at the highest abstraction
level. Moving downwards on the ladder, the doc-
ument becomes less and less abstract towards the
rendered data. It’s hard to climb the ladder without
any manual aid. That means that reusing the docu-
ment in other media requires much manual work.

Oddly enough, this separation is rather loose
in LATEX, despite the fact that LATEX originally is
the structured layer over the lower-level typesetting
mechanism provided by the TEX engine. This weak
separation can sometimes make reusability of LATEX
documents problematic. E.g., if you want to dis-
tribute a LATEX document through the Web, chances
are that it will be as a PDF.

Figure 1 shows the abstraction ladder for pur-
poses of creating books, our main concern. Arrows
in Figure 1 indicate that the translation or map-
ping between the formats is achieved by following
some restrictions. In other words, the expressiveness
of your document would be limited in accordance
with the formats in higher abstraction levels. The
left-down arrow from XML to LATEX, for example,
refers to a system that can transform XML files writ-
ten in some given DTDs or XML Schemas, such as
DB2LATEX [2] (a converter from DocBook to LATEX)
or TEXML [7] (a feasible XML syntax for TEX). In
those systems, you can hardly create a book requir-
ing more structural elements than the specifications
offer. Similarly, the easy-to-read-and-write input
formats like markdown and Wiki syntaxes narrow

XML(HTML)

markdowns, Wiki markups
reStructuredText, ...

XSL-FO

LaTeX

Books
(PDF, EPUB)

rendered pages

presentation

structure

input

？？
XSLTXSLT

CSSCSS
TeX

macromacro

Figure 1: Ladder of abstraction in creating books

the possible expression of documents down to their
intended use. This can be very good for writing and
editing the texts, but not for supporting a variety of
page layouts.

On the other hand, the plumbing pipes connect-
ing different formats indicate that there’s practically
no restriction to a downward direction. Needless to
say, LATEX is able to produce almost any possible
page designs; as we’ll see, this is one of the most
important reasons we’d like to use LATEX in creating
books. The same is true for XSL (including XSLT
and XSL-FO), regarded as the best path to render a
variety of page layouts from a tree structure of XML.
XML also has CSS as the mechanism to apply an
arbitrary style to the tree.

What is missing here is a feasible mechanism
for producing LATEX from non-restrictive XML. The
most common approach for now is to use XSLT. How-
ever, XSLT is meant to convert an XML into another
XML, so it lacks support for writing XML-to-LATEX
converters. Another approach to providing a mech-
anism suitable for LATEX is XMLTEX [1]: an XML
parser written in TEX. This is a great accomplish-
ment in terms of TEX macro programming, but we
did not find it easy to write our required converter
using XMLTEX. A more practical approach is to use
ConTEXt’s XML support [3]; this supports a declara-
tive interface to select an XML element and define
the corresponding ConTEXt syntax. When we are
able to use ConTEXt in typesetting Japanese books,
it will be a good alternative to our own attempt,
called xml2tex [9], described in the following.

2 Defining maps from XML element tags
to LATEX syntax, the xml2tex way

Let’s start with a silly HTML example.
<html>
Lorem % ipsum \ ... $10,000
</html>

xml2tex: An easy way to define XML-to-LATEX converters

206 TUGboat, Volume 35 (2014), No. 2

Leaving aside the escaping of special characters
(‘%’, ‘\’ and ‘$’), we have to decide how to express
this HTML in LATEX. One feasible representation is
achieved by mapping its only element (<html>) to
\begin{document} ... \end{document}. Here is
the xml2tex way to do this:
(define-tag html (make-latex-env ’document))

That’s it!1 Put this line down and save it as the
file silly.rule, then run xml2tex like this:
$ xml2tex --rule="silly.rule" sample.html
\documentclass{book}
\usepackage[T1]{fontenc}
\begin{document}
Lorem {\symbol{37}} ipsum {\symbol{92}} ...
{\symbol{36}}10,000
\end{document}

Special characters are automatically escaped
using the \symbol command under the T1 encoding.
The argument to \documentclass defaults to book;
of course this can be easily modified. Before that,
however, let’s give a slightly more practical example:
<html>

<head>
<title>a quite nice document</title>

</head>
<body>

<p>Lorem % ipsum \ ... $10,000</p>
<p>dolor % sit \ amet ... $42</p>

</body>
</html>

In this HTML data, the main part of the doc-
ument is wrapped with a <body> tag. That is,
this time the <body> is the appropriate source for
the LATEX’s document environment, instead of the
<html> as in the previous example. So we change
the previous rule like this:
(define-tag body (make-latex-env ’document))

We also need to handle the other tags in the
<body>, namely <p> and . Each <p> should
be a paragraph in LATEX. On the other hand, the
LATEX counterpart of is \emph{}. These two
types of mappings seem to be quite different. Never-
theless, when viewed as a recursive tree conversion,
both mappings, and what is more almost all such
mappings, can be regarded as a common routine:
1. Start a LATEX piece with \begin{foo}, \foo{,

or other strings.
2. Recursively process the node’s children. If the

only child is a simple string, then output the
string with any necessary conversions.

1 The single quotation mark in ’document is not a typo. It
tells xml2tex that this is not a variable name, but a data item;
specifically, a symbol in the Scheme programming language.

3. End the LATEX with the required \end{foo}, },
etc.
In fact, the second argument to define-tag is a

rule which encodes this routine, and make-latex-env
is the function that yields a common rule for gen-
erating a LATEX environment. The rule is: “Put
\begin{...} at the head; convert the children re-
cursively with necessary escaping; put \end{...} at
the tail.”

To explicitly define such a rule, we can use the
define-rule declarative. define-rule takes three
arguments, each corresponding to the above actions,
in order: what to do at the beginning, what to do
with the text nodes of the content, and what to do
at the end.

For example, here is a possible rule for <p>:
(define-tag p ; if the node is this name ...

(define-rule
"\n" ; put this at the beginning ...
trim ; its text nodes should be ...
"\\par\n")) ; put this at the ending.

where trim is a utility for trimming a string for use
in LATEX. Although we put the rule line by line in
the above example, line breaks and other white space
are generally immaterial. Text after a semicolon (;)
is a comment.

A rule for could be defined like
(define-tag em (define-rule "\\emph{" trim "}"))

or, equivalently,
(define-tag em (make-latex-cmd ’emph))

where make-latex-cmd is a utility to define a rule
outputting the given LATEX command.

The last rules we have to define are for <head>
and <title>. Although we could use this meta-
information to generate LATEX content, here we will
just ignore them. To make the converter discard an
XML element, we can use a predefined rule ignore.
(define-tag head (ignore))

Consequently, we don’t need to define a rule
for the <title> tag, because the converter already
knows that its parent tag is going to be discarded.

In short, to get a decent result from the above
HTML data all we need are these four lines:
(define-tag head (ignore))
(define-tag body (make-latex-env ’document))
(define-tag p (define-rule "\n" trim "\\par\n")
(define-tag em (make-latex-cmd ’emph))

If we run xml2tex with those rules, we get
valid LATEX source for a book, because the default
\documentclass is book. This is defined in a file
default.rule in a way similar to the other rules be-
low, and can be overridden with your own definition.

Keiichiro Shikano

TUGboat, Volume 35 (2014), No. 2 207

3 Details and tricks

As we have seen through the examples, xml2tex
works as a domain-specific language (DSL) for defin-
ing maps between each XML tag and corresponding
LATEX syntax. When it comes to DSL, a program-
ming language in the Lisp family fits well. xml2tex
is written in Gauche [4], a dialect of the Scheme pro-
gramming language. In addition to being a member
of the Lisp family, Gauche has many text process-
ing features and libraries, useful in defining more
complex conversion rules.

To take advantage of a profound feature of the
general programming language: the first and third
arguments of define-rule need not be literal strings
but can be Lisp functions without arguments. For
example, a rule for the <title> tag could be defined
like this:
(define-tag title (define-rule

(lambda ()
(cond
((eq? ($parent) ’chapter) "\\chapter{")
((eq? ($parent) ’sect1) "\\section{")
((eq? ($parent) ’sect2) "\\subsection{")
(else (error "title" $parent)))))

trim
"}"))

In this definition, the first argument to define-rule
is a function to select the appropriate LATEX repre-
sentation for the <title> tag based on its parent
node. If the <title> tag belongs to <chapter>, the
function returns the Scheme string "\\chapter{".
If <sect2>, then "\\subsection{".

The other new feature used here is the keyword
$parent. It expands to the name of the direct par-
ent of that node. This is one of many “shortcuts”
provided by xml2tex that can be used to retrieve the
information from the XML tree. Table 1 lists these
predefined convenience keywords.

Below is a naive example of using $@, which
works as a function to retrieve the value of the spec-
ified attribute. We will also use the Gauche syn-
tax #‘"..." for string interpolation. For example,
we want #‘"[width=,($@ ’width)]" to expand to
[width=100mm] if the tag has the attribute
width="100mm".
(define-tag img (define-rule

(list "\\begin{figure}\n"
"\\includegraphics"
#‘"[width=,($@ ’width)]"
#‘"{,($@ ’src)}")))

trim
"\\end{figure}"))

Using these $ keywords, we are able to define
most rules declaratively and intuitively. In this re-

Table 1: List of keywords defined by xml2tex
keyword description
$body Body of the element.
$root Whole document tree.
$parent Direct parent of the element.
$parent? [name] If the element has parent

with [name].
$childs List of all children of the

element.
$child [name] List of children with [name].
$following-siblings List of following-siblings.
$siblings List of both following- and

preceding-siblings.
$@ [name] String value of the attribute

[name].
$under? [list] If the element is a descendant

of one of [list].
$ancestor-of? [list] If the element has any

descendant in [list]?

gard, we can think of xml2tex more like a DOM
(tree model) rather than SAX (event model). Indeed,
xml2tex parses the entire XML tree in advance. This
parsed tree has a form of SXML [5], a representa-
tion of the XML Infoset in the form of S-expressions.
Even this bare SXML tree is available when defining
a rule. It is sometimes necessary for elements which
require transforming the original structure to define
a reasonable mapping to LATEX syntax. Tables are
one such formidable challenge, as we’ll see next.

4 Tables

To convert XML’s logical structure of tables into
LATEX is a substantial problem. We think the root
cause is probably the lack of a general model for
tables in LATEX.2

Let us consider the conversion rule for typical
HTML tables. If we use tabular environment as the
basic LATEX construct for HTML tables, then the first
attempt might be:

;; this doesn’t work!
(define-tag table (define-rule

"\\begin{tabular}\n"
trim
"\\end{tabular}"))

; put "\\" after each lines of table.
(define-tag tr (define-rule "" trim " \\\\"))

; put "&" after each cells in line.
(define-tag td (define-rule "" trim " &"))

2 In contrast, ConTEXt has a standard model for tables
and thus it’s easier to define mappings from XML tables [8].

xml2tex: An easy way to define XML-to-LATEX converters

208 TUGboat, Volume 35 (2014), No. 2

Unfortunately, this does not work. First, the
tabular environment requires an argument explic-
itly specifying the appearance of each column. To
determine this information from the given HTML ta-
ble, we have to look through the entire table contents
in advance. Second, we don’t want the following ‘&’
for the last cell of each line. Third, we should be
able to change the width and color of each cell, as
well as to span columns or rows. This information
could be found in the attributes of <td>.

What we need is a way to transform the raw
SXML tree before applying the corresponding con-
version rules. To do that, we pass a procedure to
define-rule using the :pre keyword. Below is a
(relatively) simple example to decide the column
specs for the tabular without any additional infor-
mation except the table itself.
(use xmltex.latextable)
(define-tag table (define-rule

#‘"\\begin{tabular}{|,($@ ’colspec)|}\n"
trim
"\\end{tabular}\n"
:pre calc-colspec))

(define (calc-colspec body root)
(sxml:set-attr
body
(list
’colspec
(make-colspec
(map
(node-closure
(ntype-names?? ’(td th)))

((node-closure
(ntype-names?? ’(tr)))

body))))))

The make-colspec function used in calc-colspec
is one of the helper functions provided through an
xml2tex package called xmltex.latextable, loaded
at the beginning. With these helper functions and
some understanding of Scheme and SXML, we have
defined a conversion rule for a reasonable subset of
HTML tables with colspan and rowspan. You can
find the complete code in xml2tex’s repository [9].

5 Conclusion

Like it or not, more and more documents are created
and stored in XML. Books which one can buy are no
exception. Considering the changing circumstances
regarding e-books and the Web, nearly any book may
well be created in one of the XML-based formats. If
you were to use a desktop publishing applications,
you could go with some very nice WYSIWYG envi-
ronments and not be bothered with the ill-reputed
syntax of XML. However, of course, we must prefer

using TEX to such GUI software. This means, ulti-
mately, writing a converter from XML-based formats
to a TEX-flavored document.

We hope that xml2tex can help in this scenario.
It works as a framework for using XML as a source
for LATEX. All that’s required is giving xml2tex a
set of declarative mappings from each XML tag to
an appropriate LATEX style. Aided by Scheme and
SXML, you can even write a converter for a fairly
complex XML document as needed.

To date, we have created dozens of commercial
books using xml2tex while maintaining the manu-
scripts in a variety of XML-based formats.

References

[1] David Carlisle, “xmltex: A non-validating
(and not 100% conforming) namespace aware
XML parser implemented in TEX”. http:
//tug.org/TUGboat/tb21-3/tb68carl.pdf

[2] Ramon Casellas and James Devenish,
“Welcome to the DB2LATEX XSL Stylesheets”.
http://db2latex.sourceforge.net/

[3] ConTEXt Garden, “XML—ConTEXt wiki”.
http://wiki.contextgarden.net/XML

[4] Shiro Kawai, “Gauche—A Scheme
Implementation”.
http://practical-scheme.net/gauche/

[5] Oleg Kiselyov, “SXML”.
http://okmij.org/ftp/Scheme/SXML.html

[6] Håkon Wium Lie, “PhD Thesis: Cascading
Style Sheets”. http://people.opera.com/
howcome/2006/phd/

[7] Douglas Lovell, “TEXML: Typesetting XML
with TEX”. http://tug.org/TUGboat/
tb20-3/tb64love.pdf

[8] Thomas A. Schmitz, “Getting Web
Content and pdf-Output from One Source”,
http://dl.contextgarden.net/myway/tas/
xhtml.pdf

[9] Keiichiro Shikano, “k16shikano/xml2tex”.
https://github.com/k16shikano/xml2tex

[10] World Wide Web Consortium, “Extensible
Stylesheet Language (XSL) Version 1.1”.
http://www.w3.org/TR/xsl11/

[11] World Wide Web Consortium, “Cascading
Style Sheets (CSS) Snapshot 2010”.
http://www.w3.org/TR/css-2010/

� Keiichiro Shikano
Tokyo, Japan
k16.shikano (at) gmail dot com
https://github.com/k16shikano/

xml2tex

Keiichiro Shikano

http://tug.org/TUGboat/tb21-3/tb68carl.pdf
http://tug.org/TUGboat/tb21-3/tb68carl.pdf
http://db2latex.sourceforge.net/
http://wiki.contextgarden.net/XML
http://practical-scheme.net/gauche/
http://okmij.org/ftp/Scheme/SXML.html
http://people.opera.com/howcome/2006/phd/
http://people.opera.com/howcome/2006/phd/
http://tug.org/TUGboat/tb20-3/tb64love.pdf
http://tug.org/TUGboat/tb20-3/tb64love.pdf
http://dl.contextgarden.net/myway/tas/xhtml.pdf
http://dl.contextgarden.net/myway/tas/xhtml.pdf
https://github.com/k16shikano/xml2tex
http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/css-2010/

	LaTeX as presentation for XML
	Defining maps from XML element tags to LaTeX syntax, the xml2tex way
	Details and tricks
	Tables
	Conclusion

