
TUGboat, Volume 35 (2014), No. 3 235

Twenty Questions for Donald Knuth,
to celebrate the ePublication of TAOCP

To celebrate the publication of the eBooks of The
Art of Computer Programming (TAOCP), Pearson
asked several computer scientists, contemporaries,
colleagues, and well-wishers to pose one question
each to author Donald E. Knuth. Here are his an-
swers. (Reprinted in TUGboat by kind permission
of Pearson, from www.informit.com/promotions/

impact-of-the-art-of-computer-programming

-139881.)

1. Jon Bentley, researcher: What a treat! The
last time I had an opportunity like this was at the
end of your data structures class at Stanford in June,
1974. On the final day, you opened the floor so that
we could ask any question on any topic, barring only
politics and religion. I still vividly remember one
question that was asked on that day: “Among all
the programs you’ve written, of which one are you
most proud?”

Your answer (as I approximately recall it, four
decades later) described a compiler that you wrote
for a minicomputer with 1024 available bytes of mem-
ory. Your first draft was 1029 bytes long, but you
eventually had it up and running and debugged at
1023 bytes. You said that you were particularly
proud of cramming so much functionality into so
little memory.

My query today is a slight variant on that ven-
erable question. Of all the programs that you’ve
written, what are some of which you are most proud,
and why?

Don Knuth: I’d like to ask you the same! But
that’s something like asking parents to name their
favorite children.

Of course I’m proud of TEX and METAFONT, be-
cause they seem to have helped to change the world,
and because they led to many friendships. Further-
more they’ve made these eBooks possible: I’m enor-
mously happy that the work I did more than 30 years
ago has miraculously survived many changes of tech-
nology, and that the 3,000 pages of TAOCP now look
so great on a little tablet — even after zooming.

While I was preparing for Volume 4 of TAOCP

in the 90s, I wrote several dozen short routines us-
ing what you and I know as “literate programming.”
Those little essays have been packaged into The Stan-
ford GraphBase (1994), and I still enjoy using and
modifying them. My favorite is the implementation
of Tarjan’s beautiful algorithm for strong compo-
nents, which appears on pages 512–519 of that book.

I have to admit some pride also in the implemen-
tation of IEEE floating-point arithmetic that appears

in my book MMIXware (1999), as well as that book’s
metasimulator for MMIX, in which I explain many
principles of advanced pipelined computers from the
ground up.

Literate programming continues to be one of the
greatest joys of my life. In fact, I find myself writing
roughly two programs per week, on average, both
large and small, as I draft new material for the next
volumes of TAOCP.

2. Dave Walden, TEX Users Group: Might you
publish the original 3,000-page version of TAOCP

(before the decision to change it into seven volumes),
as a historical artifact of your view of the state of
the art of algorithms and their analysis circa 1965? I
think lots of people would like to see this.

Don Knuth: Scholars can look at the handwrit-
ten pages that led to Volumes 1–3 by going to the
Stanford Archives, and all of the remaining pages
will be deposited there eventually. I see little value
in making those drafts more generally available —
although some of the material about baseball that I
decided not to use is pretty cool. Archives from the
real pioneers of computer science, who wrote in the
40s and 50s, should be published first.

I do try to retain the youthful style of the origi-
nal, in the pages that I write today, except where my
first draft was embarrassingly naive or corny. I’ve
also learned when to say “that” instead of “which,”
thanks in part to Guy Steele’s tutelage.

3. Charles Leiserson, MIT: TAOCP shows a great
love for computer science, and in particular, for al-
gorithms and discrete mathematics. But love is not
always easy. When writing this series, when did
you find yourself reaching deepest into your emo-
tional reservoir to overcome a difficult challenge to
your vision?

Don Knuth: Again, Charles, I’d like to ask you
exactly the same question!

For me, I guess, the hardest thing has always
been to figure out what to cut. And I obviously
haven’t been very successful at that, in spite of much
rewriting.

The most difficult technical challenge was to
write the metasimulator for MMIX. I needed to
do that behind the scenes, in order to shape what
actually appears in the books, and it was surely
the toughest programming task that I’ve ever faced.
Without the methodology of literate programming, I
don’t think I could have finished that job successfully.

Many of the “starred” mathematical sections
also stretched me pretty far. Overall, however, after
working on TAOCP for more than fifty years, I can’t
think of any aspect of the activity where the effort

Twenty Questions for Donald Knuth



236 TUGboat, Volume 35 (2014), No. 3

of writing wasn’t amply repaid by what I learned
while doing it.

4. Dennis Shasha, NYU: How does a beauti-
ful algorithm compare to a beautiful theorem? In
other words, what would be your criteria of beauty
for each?

Don Knuth: Beauty has many aspects, of course,
and is in the eye of the beholder. Some theorems and
algorithms are beautiful to me because they have
many different applications; some because they do
powerful things with severely limited resources; some
because they involve aesthetically pleasing patterns;
some because they have a poetic purity of concept.

For example, I mentioned Tarjan’s algorithm
for strong components. The data structures that he
devised for this problem fit together in an amazingly
beautiful way, so that the quantities you need to
look at while exploring a directed graph are always
magically at your fingertips. And his algorithm also
does topological sorting as a byproduct.

It’s even possible sometimes to prove a beau-
tiful theorem by exhibiting a beautiful algorithm.
Look, for instance, at Theorem 5.1.4D and/or Corol-
lary 7H in TAOCP.

5. Mark Taub, Pearson: Does the emergence
of “apps” (small, single-function, networked pro-
grams) as the dominant programming paradigm to-
day impact your plans in any way for future material
in TAOCP?

Don Knuth: People who write apps use the ideas
and paradigms that are already present in the first
volumes. And apps make use of ever-growing pro-
gram libraries, which are intimately related to TAOCP.
Users of those libraries ought to know something
about what goes on inside.

Future volumes will probably be even more
“app-likable,” because I’ve been collecting tons of
fascinating games and puzzles that illustrate pro-
gramming techniques in especially instructive and
appealing ways.

6. Radia Perlman, Intel: (1) What is not in the
books that you wish you’d included? (2) If you’d
been born 200 years ago, what kind of career might
you imagine you’d have had?

Don Knuth: (1) Essentially everything that I want
to include is either already in the existing volumes
or planned for the future ones. Volume 4B will be-
gin with a few dozen pages that introduce certain
newfangled mathematical techniques, which I didn’t
know about when I wrote the corresponding parts of
Volume 1. (Those pages are now viewable from my
website in beta-test form, under the name “mathe-
matical preliminaries redux.”) I plan to issue similar

gap-filling “fascicles” when future volumes need to
refer to recently invented material that ultimately
belongs in Volume 3, say.

(2) Hey, what a fascinating question — I don’t
think anybody else has ever asked me that before!

If I’d been born in 1814, the truth is that I would
almost certainly have had a very limited education,
coupled with hardly any access to knowledge. My
own male ancestors from that era were all employed
as laborers, on farms that they didn’t own, in what
is now called northern Germany.

But I suppose you have a different question in
mind. What if I had been one of the few people with
a chance to get an advanced education, and who also
had some flexibility to choose a career?

All my life I’ve wanted to be a teacher. In fact,
when I was in first grade, I wanted to teach first
grade; in second grade, I wanted to teach second;
and so on. I ended up as a college teacher. Thus I
suppose that I’d have been a teacher, if possible.

To continue this speculation, I have to explain
about being a geek. Fred Gruenberger told me long
ago that about 2% of all college students, in his ex-
perience, really resonated with computers in the way
that he and I did. That number stuck in my mind,
and over the years I was repeatedly able to confirm
his empirical observations. For instance, I learned in
1977 that the University of Illinois had 11,000 grad
students, of whom 220 were CS majors!

Thus I came to believe that a small percentage
of the world’s population has somehow acquired a pe-
culiar way of thinking, which I happen to share, and
that such people happened to discover each other’s ex-
istence after computer science had acquired its name.

For simplicity, let me say that people like me
are “geeks,” and that geeks comprise about 2% of
the world’s population. I know of no explanation for
the rapid rise of academic computer science depart-
ments — which went from zero to one at virtually
every college and university between 1965 and 1975 —
except that they provided a long-needed home where
geeks could work together. Similarly, I know of no
good explanation for the failure of many unsuccess-
ful software projects that I’ve witnessed over the
years, except for the hypothesis that they were not
entrusted to geeks.

So who were the geeks of the early 19th cen-
tury? Beginning a little earlier than 1814, I’d maybe
like to start with Abel (1802); but he’s been pretty
much claimed by the mathematicians. Jacobi (1804),
Hamilton (1805), Kirkman (1806), De Morgan (1806),
Liouville (1809), Kummer (1810), and China’s Li
Shanlan (1811) are next; I’m listing “mathemati-
cians” whose writings speak rather directly to the

Twenty Questions for Donald Knuth



TUGboat, Volume 35 (2014), No. 3 237

geek in me. Then we get precisely to your time pe-
riod, with Catalan (1814) and Sylvester (1814), Boole
(1815), Weierstrass (1815), and Borchardt (1817). I
would have enjoyed the company of all these people,
and with luck I might have done similar things.

By the way, the first person in history whom I’d
classify as “100% geek” was Alan Turing. Many of
his predecessors had strong symptoms of our disease,
but he was totally infected.

7. Tony Gaddis, author: Do you remember a
specific moment when you discovered the joy of pro-
gramming, and decided to make it your life’s work?

Don Knuth: During the summer of 1957, between
my freshman and sophomore years at Case Tech in
Cleveland, I was allowed to spend all night with an
IBM 650, and I was totally hooked.

But there was no question of viewing that as a
“life’s work,” because I knew of nobody with such a ca-
reer. Indeed, as mentioned above, my life’s work was
to be a teacher. I did write a compiler manual in 1958,
which by chance was actually used as the textbook
for one of my classes in 1959(!). Still, programming
was for me primarily a hobby at first, after which it
became a way to support myself while in grad school.

I saw no connection between computer program-
ming and my intended career as a math professor
until I met Bob Floyd late in 1962. I didn’t foresee
that computer science would ever be an academic
discipline until I met George Forsythe in 1964.

8. Robert Sedgewick, Princeton: Don, I re-
member some years ago that you took the position
that you weren’t trying to reach everyone with your
books — knowing that they would be particularly
beneficial to people with a certain interest and ap-
titude who enjoy programming and exploring its
relationship to mathematics. But lately I’ve been
wondering about your current thoughts on this issue.
It took a long time for society to realize the benefits
of teaching everyone to read; now the question be-
fore us is whether everyone should learn to program.
What do you think?

Don Knuth: I suppose all college professors think
that their subject ought to be taught to everybody
in the world. In this regard I can’t help quoting
from a wonderful paper that John Hammersley wrote
in 1968:

Just for the fun of getting his reactions, I asked an em-
inent scholar of English Literature what educational
benefits might lie in the study of goliardic verse, Erse
curses, and runic erotica. ‘A working background of
goliardic verse would be more than helpful to anyone
hoping to have some modest facility in his own mother
tongue’, he declared; and with that he warmed to his
subject and to the poverties of unlettered science, so

that it was some minutes before I could steer him
back to the Erse curses, about which he seemed a
good deal less enthusiastic. ‘Really’, he said, ‘that
sort of thing isn’t my subject at all. Of course, I
applaud breadth of vocabulary; and you never know
when some seemingly useless piece of knowledge may
not turn out to be of cardinal practical importance.
I could certainly envisage a situation in which they
might come in very handy indeed’. ‘And runic erot-
ica?’ ‘Not extant’. (Was it only my fancy that heard a
note of faint regret in his reply?) Certainly the higher
flights of scholarship can add savour; but does the
man-in-the-street have the time and the pertinacity
and the intellectual digestion for them?

Programming, of course, is not just an ordinary
subject. It is intrinsically empowering, and applica-
ble to many different kinds of knowledge. And I also
know that you’ve been having enormous successes, at
Princeton and online, teaching advanced concepts of
programming to students from every discipline.

But your question asks about everybody. I still
think many years will have to go by before I would
recommend that my own highly intelligent wife, son,
and daughter should learn to program, much less that
everybody else I know should do so.

Nick Trefethen told me a few years back that
he had just visited his son’s high school in Oxford,
which is one of the best anywhere, and learned that
not a single student knew how to program! Britain is
now beginning to change that, indeed at a more rapid
pace than in America. Yet such a revolution almost
surely needs to take place over a generation or more.
Where are the teachers going to come from?

My own experience is with the subset of college
students who are sufficiently interested in program-
ming that they expect it to become an integral part
of their life. TAOCP is essentially for specialists. I’ve
primarily been writing it for geeks, not for a general
audience, because somebody has to write books that
aren’t for dummies. (By a “dummy” I mean a smart
non-geek. That’s a much larger market, and very im-
portant; but it’s not my target audience, and general
education is not my forte.)

On the other hand, believe it or not, I try
to explain everything in my books by imagining a
non-specialist reader. My goal is to be jargon-free
whenever possible; I especially try to avoid terms
from higher mathematics that tend to frighten the
programmer-on-the-street. Whenever possible I try
to translate results from the theoretical literature
into a language that high-school students could un-
derstand.

I know that my books still aren’t terribly easy
to fathom, even for geeks. But I could have made
them much, much harder.

Twenty Questions for Donald Knuth



238 TUGboat, Volume 35 (2014), No. 3

9. Barbara Steele: What was the conversion pro-
cess, and what tools did you use, to convert your
print books to eBooks?

Don Knuth: I knew that these volumes would not
work especially well as eBooks unless they were con-
verted by experts. Fortunately I received some prize
money in 2011, which could be used to pay for pro-
fessional help. Therefore I was able to achieve the
kind of quality that I envisioned, without delaying
my work on future volumes, by letting the staff at
Mathematical Sciences Publishers in Berkeley (MSP)
handle all of the difficult stuff.

My principal goal was to make the books eas-
ily searchable — and that’s a much more challenging
problem than it seems, if you want to do it right.
Secondarily, I wanted to let readers easily click on
the number of any exercise or equation or illustra-
tion or table or algorithm, etc., and to jump to that
exercise; also to jump readily between an exercise
and its answer.

The people at MSP wrote special software that
converts my source text into suitable input to other
software that creates PDF files. I don’t know the
details, except that they use “change files” analo-
gous to those used in WEB and CWEB. I’ve checked
the results pretty carefully, and I couldn’t be more
pleased. Moreover, they’ve designed things so that it
won’t be hard for me to make changes next year, as
readers discover bugs in the present editions.

(My style of writing tends to maximize the num-
ber of opportunities to make mistakes, hence I would
be fooling myself if I thought that the books were
now perfect. Therefore it has always been important
to keep future errata in mind. The production staff
at Addison-Wesley has been consistently wonderful
in the way they allow me to correct about fifty pages
every year in each volume.)

10. Silvio Levy, MSP: Could you comment on
the differences between the print, PDF, EPUB, etc.,
editions of TAOCP? What would you say is gained
or lost with each?

Don Knuth: The printed versions weigh a lot more,
but they don’t need battery power or a tether to elec-
tricity. They are always there; I don’t have to turn
them on, and I can have them all open at once.

I can scribble in the margins (and elsewhere) of
the print versions, and I can highlight text in differ-
ent colors. Ten years from now I expect analogous
features will be commonly available for eBooks.

I’m used to flipping pages and finding my way
around a regular book, much more so than in an
eBook; but my grandchildren might have the oppo-
site reaction.

The great advantage of an eBook is the reader’s
ability to search exhaustively. What fun it is to look
for all occurrences of a random word like ‘game’, or
for a random word fragment like ‘gam’ or ‘ame’, and
find lots of cool material that I don’t recall having
written. The search feature on these books works
even better than I had a right to hope for.

The index in a printed book has the advantage
of being more focused. But that index also appears
in the eBook, and in the eBook you can even click in
the index to get to the cited pages.

Today’s eBook readers are often inconvenient
for setting bookmarks and going back to where you
were a couple of minutes ago, especially after you
click on an Internet link and then want to go back to
reading. But that software will surely improve, and
so will today’s electronic devices.

In the future I look forward to curated eBooks
that have additional notes by experts — and possi-
bly even graffiti in the style of Concrete Mathemat-
ics — somewhat analogous to the “director’s com-
ments” and other extras found on the DVDs for films.
One could select different subsets of these comments
when reading.

11. Peter Gordon, Addison-Wesley (retired):
If the full range of today’s eBook features and func-
tionalities had been available when TAOCP was first
published, would you have written those volumes
very differently?

Don Knuth: Well, I don’t think I would have got-
ten very far at all. I would have had to think about
doing everything in color, and with interactive fig-
ures, tables, equations, and exercises. A single person
cannot use the “full range” of features that eBooks
potentially have.

But by limiting myself to what can be presented
well in black-and-white type, on printed pages of a
fixed size, I was fortunately able to complete 3,000
pages over a period of 50 years.

12. Udi Manber, Google: The early volumes of
TAOCP established computer programming as com-
puter science. They introduced the necessary rigor.
This was at the time when computers were used
mostly for numerical applications. Today, most ap-
plications are related to people — social interaction,
search, entertainment, and so on. Rigor is rarely used
in the development of these applications. Speed is
not always the most important factor, and “correct-
ness” is rarely even defined. Do you have any advice
on how to develop a new computer science that can
introduce rigor to these new applications?

Don Knuth: The numerical computations that
were somewhat central when computer science was

Twenty Questions for Donald Knuth



TUGboat, Volume 35 (2014), No. 3 239

born are by no means gone; they continue to grow,
year by year. Of course, they now represent a much
smaller piece of the pie, but I don’t believe in concen-
trating too much on the big pieces.

My work on METAFONT introduced me to ap-
plications where “correctness” cannot be defined.
How do I know, for example, that my program for
the letter A produces a correct image? I never will;
and I’ve learned to live with that uncertainty. On
the other hand, when I implemented the routines
that interpret specifications and draw the associated
bitmaps, there was plenty of room for rigor. The
algorithms that go into font rendering are among the
most interesting I’ve ever seen.

As a user of products from Google and Adobe
and other corporations, I know that a tremendous
amount of rigor goes into the manipulation of map
data, transportation data, pixel data, linguistic data,
metadata, and so on. Furthermore, much of that
processing is done with distributed and decentralized
algorithms that require more rigor than anybody
ever thought of in the 60s.

So I can’t say that rigor has disappeared from
the computer science scene. I do wish, however,
that Google’s and Adobe’s and Apple’s program-
mers would learn rigorously how to keep their sys-
tems from crashing my home computers, when I’m
not using Linux.

In general I agree with you that there’s no de-
crease in the need for rigor, rather an increase in the
number of kinds of rigor that are important. The fact
that correctness can’t be defined on the “bottom line”
should not lull people into thinking that there aren’t
intermediate levels within every nontrivial system
where correctness is crucial. Robustness and quality
are compromised by every weak link.

On the other hand, I certainly don’t think that
everything should be mathematized, nor that every-
thing that involves computers is properly a subdisci-
pline of computer science. Many parts of important
software systems do not require the special talents of
geeks; quite the contrary. Ideally, many disciplines
collaborate, because a wide variety of orthogonal
skill sets is a principal reason why life is such a joy.
Vive la difference.

Indeed, I myself follow the path of rigor only
partway: Rarely do I ever give a formal proof that
any of my programs are correct, once I’ve constructed
an informal proof that convinces me. I have no real
interest, for example, in defining exactly what it
would mean for TEX to be correct, or for verifying
formally that my implementation of that 550-page
program is free of bugs. I know that anomalous
results are possible when users try to specify pages

that are a mile wide, or constants that involve a tril-
lion zeros, etc. I’ve taken care to avoid catastrophic
crashes, but I don’t check every addition operation
for possible overflow.

There’s even a fundamental gap in the founda-
tions of my main mathematical specialty, the analysis
of algorithms. Consider, for example, a computer pro-
gram that sorts a list of numbers into order. Thanks
to the work of Floyd, Hoare, and others, we have
formal definitions of semantics, and tools by which
we can verify that sorting is indeed always achieved.
My job is to go beyond correctness, to an analysis of
such things as the program’s running time: I write
down a recurrence, say, which is supposed to rep-
resent the average number of comparisons made by
that program on random input data. I’m 100% sure
that my recurrence correctly describes the program’s
performance, and all of my colleagues agree with me
that the recurrence is “obviously” valid. Yet I have
no formal tools by which I can prove that my recur-
rence is right. I don’t really understand my reasoning
processes at all! My student Lyle Ramshaw began to
create suitable foundations in his thesis (1979), but
the problem seems inherently difficult. Nevertheless,
I don’t lose any sleep over this situation.

13. Al Aho, Columbia: We all know that the
Turing Machine is a universal model for sequential
computation.

But let’s consider reactive distributed systems
that maintain an ongoing interaction with their envi-
ronment — systems like the Internet, cloud comput-
ing, or even the human brain. Is there a universal
model of computation for these kinds of systems?

Don Knuth: I’m not strong on logic, so TAOCP

treads lightly on this sort of thing. The TAOCP

model of computation, discussed on pages 4–8 of Vol-
ume 1, considers “reactive processes,” a.k.a. “compu-
tational methods,” which correspond to single proces-
sors. I’ve long planned to discuss recursive coroutines
and other cooperative processes in Chapter 8, after I
finish Chapter 7. The beautiful model of context-free
parsing via semiautonomous agents, in Floyd’s great
survey paper of 1964, has strongly influenced my
thinking in this regard.

I’d like to see extensions of the set-theoretic
model of computation at the beginning of Volume 1
to the things you mention. They might well shed
light on the subject.

But fully distributed processes are well beyond
the scope of my books and my own ability to com-
prehend them. For a long time I’ve thought that an
understanding of the way ant colonies are able to
perform incredibly organized tasks might well be the

Twenty Questions for Donald Knuth



240 TUGboat, Volume 35 (2014), No. 3

key to an understanding of human cognition. Yet the
ants that invade my house continually baffle me.

14. Guy Steele, Oracle Labs: Don, you and I are
both interested in program analysis: What can one
know about an algorithm without actually executing
it? Type theory and Hoare logic are two formalisms
for that sort of reasoning, and you have made great
contributions to using mathematical tools to ana-
lyze the execution time of algorithms. What do
you think are interesting currently open problems in
program analysis?

Don Knuth: Guy, I’m sure you aren’t really against
the idea of program execution. You and I both
like to know things about programs and to execute
them. Often the execution contradicts our supposed
knowledge.

The quest for better ways to verify programs is
one of the famous grand challenges of computer sci-
ence. And as I said to Udi, I’m particularly rooting
for better techniques that will avoid crashes.

Just now I’m writing the part of Volume 4B
that discusses algorithms for satisfiability, a problem
of great industrial importance. Almost nothing is
known about why the heuristics in modern solvers
work as well as they do, or why they fail when they
do. Most of the techniques that have turned out
to be important were originally introduced for the
wrong reasons!

If I had my druthers, I wish people like you
would put a lot of effort into a problem of which
I’ve only recently become aware: The programmers
of today’s multithreaded machines need new kinds
of tools that will make linked data structures much
more cache-friendly. One can in many cases start
up auxiliary parallel threads whose sole purpose is
to anticipate the memory accesses that the main
computational threads will soon be needing, and to
preload such data into the cache. However, the task
of setting this up is much too daunting, at present,
for an ordinary programmer like me.

15. Robert Tarjan, Princeton: What do you see
as the most promising directions for future work in
algorithm design and analysis? What interesting and
important open problems do you see?

Don Knuth: My current draft about satisfiabil-
ity already mentions 25 research problems, most of
which are not yet well known to the theory commu-
nity. Hence many of them might well be answered
before Volume 4B is ready. Open problems pop up
everywhere and often. But your question is, of course,
really intended to be much more general.

In general I’m looking for more focus on algo-
rithms that work fast with respect to problems whose

size, n, is feasible. Most of today’s literature is de-
voted to algorithms that are asymptotically great,
but they are helpful only when n exceeds the size of
the universe.

In one sense such literature makes my life easier,
because I don’t have to discuss those methods in
TAOCP. I’m emphatically not against pure research,
which significantly sharpens our abilities to deal with
practical problems and which is interesting in its own
right. So I sometimes play asymptotic games. But
I sure wouldn’t mind seeing a lot more algorithms
that I could also use.

For instance, I’ve been reading about algorithms
that decide whether or not a given graph G belongs
to a certain class. Is G, say, chordal? You and others
discovered some great algorithms for the chordal-
ity and minimum fillin problems, early on, and an
enormous number of extremely ingenious procedures
have subsequently been developed for characterizing
the graphs of other classes. But I’ve been surprised
to discover that very few of these newer algorithms
have actually been implemented. They exist only on
paper, and often with details only sketched.

Two years ago I needed an algorithm to decide
whether G is a so-called comparability graph, and
was disappointed by what had been published. I
believe that all of the supposedly “most efficient”
algorithms for that problem are too complicated to
be trustworthy, even if I had a year to implement
one of them.

Thus I think the present state of research in al-
gorithm design misunderstands the true nature of ef-
ficiency. The literature exhibits a dangerous trend in
contemporary views of what deserves to be published.

Another issue, when we come down to earth,
is the efficiency of algorithms on real computers.
As part of the Stanford GraphBase project I imple-
mented four algorithms to compute minimum span-
ning trees of graphs, one of which was the very pretty
method that you developed with Cheriton and Karp.
Although I was expecting your method to be the win-
ner, because it examines much of the data only half
as often as the others, it actually came out two to
three times worse than Kruskal’s venerable method.
Part of the reason was poor cache interaction, but
the main cause was a large constant factor hidden
by O notation.

16. Frank Ruskey, University of Victoria:
Could you comment on the importance of working
on unimportant problems? My sense is that com-
puter science research, funding, and academic hiring
is becoming more and more focused on short-term
problems that have at their heart an economic moti-
vation. Do you agree with this assessment, is it a bad

Twenty Questions for Donald Knuth



TUGboat, Volume 35 (2014), No. 3 241

trend, and do you see a way to mitigate it?
Similarly, could you comment on the demise of

the individual researcher? So many papers that I see
published these days have multiple authors. Five-
author papers are routine. But when I dig into the
details it seems that often only one or two have con-
tributed the fresh ideas; the others are there because
they are supervisors, or financial contributors, or
whatever. I’m pretty sure that Euler didn’t publish
any papers with five co-authors. What is the reason
for this trend, how does it interfere with trying to
establish a history of ideas, and what can be done
to reverse it?

Don Knuth: I was afraid somebody was going to
ask a question related to economics. I’ve never un-
derstood anything about that subject. I don’t know
why people spend money to buy things. I’m willing
to believe that some economists have enough wisdom
to keep the world running some of the time, but their
reasons are beyond me.

I just write books. I try to tell stories that seem
to be important, at least for geeks. I’ve never both-
ered to think about marketing, or about what might
sell, except when my publishers ask me to answer
questions as I’m doing now!

Three years ago I published Selected Papers on
Fun and Games, a 750-page book that is entirely
devoted to unimportant problems. In many ways the
fact that I was able to live during a time in the his-
tory of the world when such a book could be written
has given me even more satisfaction than I get when
seeing the currently healthy state of TAOCP.

I’ve reached an age where I can fairly be de-
scribed as a “grumpy old man,” and perhaps that is
why I strongly share your concern for the alarming
trends that you bring up. I’m profoundly upset when
people rate the quality of my work by measuring the
extent to which it affects Wall Street.

Everybody seems to understand that astrono-
mers do astronomy because astronomy is interesting.
Why don’t they understand that I do computer sci-
ence because computer science is interesting? And
that I’d do it regardless of whether or not it made
money for anybody? The reason is probably that
not everybody is a geek.

Regarding joint authorship, you are surely right
about Euler in the 18th century. In fact I can’t
think of any two-author papers in mathematics, un-
til Hardy and Littlewood began working together at
the beginning of the 20th century.

In my own case, two of my earliest papers were
joint because the other authors did the theory and I
wrote computer programs to validate it. Two other
papers were related to the ALGOL language, and

done together with ACM committees. In a number
of others, written while I was at Caltech, I did the
theory and my student co-authors wrote computer
programs to validate it. There was one paper with
Mike Garey, Ron Graham, and David Johnson, in
which they did the theory and my role was to ex-
plain what they did. You and I wrote a joint paper
in 2004, related to recursive coroutines, in which we
shared equally.

The phenomenon of hyperauthorship still hasn’t
infected computer science as much as it has hit
physics and biology, where I’ve read that Thomson-
Reuters indexed more than 200 papers having 1,000
authors or more, in a single recent year! When I
cite a paper in TAOCP, I like to mention all of the
authors, and to give their full names in the index.
That policy will become impossible if CS publication
practices follow in the footsteps of those fields.

Collaborative work is exhilarating, and it’s won-
derful when new results are obtained that wouldn’t
have been discovered by individuals working alone.
But as you say, authors should be authors, not
hangers-on.

You mention the history of ideas. To me the
method of discovery tends to be more important
than the identification of the discoverers. Still, credit
should be given where credit is due; conversely, credit
shouldn’t be given where credit isn’t due.

I suppose the multiple-author anomalies are
largely due to poor policies related to financial re-
wards. Unenlightened administrators seem to base
salaries and promotions on publication counts.

What can we do? As I say, I’m incompetent to
deal with economics. I’ve gone through life refusing
to go along with a crowd, and bucking trends with
which I disagree. I’ve often declined to have my
name added to a paper. But I suppose I’ve had a
sheltered existence; young people may be forced to
bow to peer pressure.

17. Andrew Binstock, Dr. Dobb’s: At the ACM

Turing Centennial in 2012, you stated that you were
becoming convinced that P = NP . Would you be
kind enough to explain your current thinking on
this question, how you came to it, and whether this
growing conviction came as a surprise to you?

Don Knuth: As you say, I’ve come to believe that
P = NP , namely that there does exist an integer M
and an algorithm that will solve every n-bit problem
belonging to the class NP in nM elementary steps.

Some of my reasoning is admittedly naive: It’s
hard to believe that P 6= NP and that so many
brilliant people have failed to discover why. On the
other hand if you imagine a number M that’s finite

Twenty Questions for Donald Knuth



242 TUGboat, Volume 35 (2014), No. 3

but incredibly large — like say the number 10 ↑↑↑↑ 3
discussed in my paper on “coping with finiteness” —
then there’s a humongous number of possible al-
gorithms that do nM bitwise or addition or shift
operations on n given bits, and it’s really hard to
believe that all of those algorithms fail.

My main point, however, is that I don’t believe
that the equality P = NP will turn out to be help-
ful even if it is proved, because such a proof will
almost surely be nonconstructive. Although I think
M probably exists, I also think human beings will
never know such a value. I even suspect that nobody
will even know an upper bound on M .

Mathematics is full of examples where something
is proved to exist, yet the proof tells us nothing about
how to find it. Knowledge of the mere existence of an
algorithm is completely different from the knowledge
of an actual algorithm.

For example, RSA cryptography relies on the
fact that one party knows the factors of a number,
but the other party knows only that factors exist.
Another example is that the game of N×N Hex has
a winning strategy for the first player, for all N .
John Nash found a beautiful and extremely simple
proof of this theorem in 1952. But Wikipedia tells
me that such a strategy is still unknown when N = 9,
despite many attempts. I can’t believe anyone will
ever know it when N is 100.

More to the point, Robertson and Seymour have
proved a famous theorem in graph theory: Any class
c of graphs that is closed under taking minors has
a finite number of minor-minimal graphs. (A minor
of a graph is any graph obtainable by deleting ver-
tices, deleting edges, or shrinking edges to a point. A
minor-minimal graph H for c is a graph whose smaller
minors all belong to c although H itself doesn’t.)
Therefore there exists a polynomial-time algorithm
to decide whether or not a given graph belongs to c:
The algorithm checks that G doesn’t contain any of
c’s minor-minimal graphs as a minor.

But we don’t know what that algorithm is, ex-
cept for a few special classes c, because the set of
minor-minimal graphs is often unknown. The algo-
rithm exists, but it’s not known to be discoverable
in finite time.

This consequence of Robertson and Seymour’s
theorem definitely surprised me, when I learned
about it while reading a paper by Lovasz. And
it tipped the balance, in my mind, toward the hy-
pothesis that P = NP .

The moral is that people should distinguish be-
tween known (or knowable) polynomial-time algo-
rithms and arbitrary polynomial-time algorithms.
People might never be able to implement a poly-

nomial-time-worst-case algorithm for satisfiability,
even though P happens to equal NP .

18. Jeffrey O. Shallit, University of Waterloo:
Decision methods, automated theorem-proving, and
proof assistants have been successful in a number
of different areas: the Wilf-Zeilberger method for
combinatorial identities and the Robbins conjecture,
to name two. What do you think theorem discovery
and proof will look like in 100 years? Rather like
today, or much more automated?

Don Knuth: Besides economics, I was also afraid
that somebody would ask me about the future, be-
cause I’m a notoriously bad prophet. I’ll take a shot
at your question anyway.

Assuming 100 years of sustainable civilization,
I’m fairly sure that a large percentage of theorems
(maybe even 38.1966%) will be discovered with com-
puter aid, and that a nontrivial percentage (maybe
0.7297%) will have computer-verified proofs that can-
not be understood by mortals.

In my Ph.D. thesis (1963), I looked at computer-
generated examples of small finite projective planes,
and used that data to construct infinitely many
planes of a kind never before known. Ten years
later, I discovered the so-called Knuth-Morris-Pratt
algorithm by studying the way one of Steve Cook’s
automata was able to recognize concatenated palin-
dromes in linear time. Such investigations are fun.

A few months ago, however, I tried unsuccess-
fully to do a similar thing. I had a 5,000-step mechan-
ically discovered proof that the edges of a smallish
flower snark graph cannot be 3-colored, and I wanted
to psych out how the machine had come up with
it. Although I gave up after a couple of days, I do
think it would be possible to devise new tools for
the study of computer proofs in order to identify the
“aha moments” therein.

In February of this year I noticed that the cal-
culation of an Erdős-discrepancy constant — made
famous by Tim Gowers’ Polymath project, in which
many mathematicians collaborated via the Internet —
makes an instructive benchmark for satisfiability-
testing algorithms. My first attempt to compute it
needed 49 hours of computer time. Two weeks later
I’d cut that down to less than 2 hours, but there still
were 20 million steps in the proof. I see no way at
present for human beings to understand more than
the first few thousand of those steps.

19. Scott Aaronson, MIT: Would you recommend
to other scientists to abandon the use of email, as
you have done?

Don Knuth: My own situation is unusual, because
I do my best work when I’m not interrupted. I eat,

Twenty Questions for Donald Knuth



TUGboat, Volume 35 (2014), No. 3 243

sleep, and write content, more-or-less as a recluse who
spends considerable time reading archives and other
people’s code. As I say on my home page (http://
www-cs-faculty.stanford.edu/~uno), most peo-
ple need to keep on top of things, but my role is
to get to the bottom of things.

So I don’t recommend a no-email policy to peo-
ple who thrive on communication. And I actually
take advantage of others in this respect (either shame-
lessly or shamefully, I’m not sure which), by pestering
them with random questions, even though I don’t
want anybody to pester me — except about the one
topic that I happen to be zooming in on at any
particular time.

I do welcome email that reports bugs in TAOCP,
because I always try to correct them as soon as
possible.

Other unsolicited messages go to the bit bucket
in the sky, otherwise known as /dev/null.

20. J. H. Quick, blogger: Why is this multi-
interview called “twenty questions,” when only 19
questions were asked?

Don Knuth: I’m stumped. No, wait — Radia
asked two.

Incidentally, the eVolumes of TAOCP contain
some 4,500 questions, and almost as many answers.

−− ∗ −−

The panel

1. Jon Bentley, author of “Programming Pearls” in
Communications of the ACM.

2. Dave Walden, TUG board member and coordina-
tor of the TUG Interview Corner.

3. Charles Leiserson, MIT; theory of parallel com-
puting and distributed computing, and the prac-
tical applications thereof.

4. Dennis Shasha, NYU; biological computing, pat-
tern recognition, and machine learning.

5. Mark Taub, Pearson.

6. Radia Perlman, Intel; software designer and
network engineer.

7. Tony Gaddis, author of computer science books.

8. Robert Sedgwick, Princeton; analysis of algo-
rithms; one of Don Knuth’s Ph.D. students.

9. Barbara Steele, contributor to Common Lisp:
The Language.

10. Silvio Levy, co-author with Don Knuth of The
CWEB System of Literate Programming, and
with Raymond Seroul of A Beginner’s Book of
TEX ; professional goal: to further the communi-
cation of mathematics.

11. Peter Gordon, Don Knuth’s editor at Addison-
Wesley from the early 1980s until his retirement
in 2014; see his TUG interview at http://tug.

org/interviews/gordon.html.

12. Udi Manber, a vice president of engineering at
Google, responsible for search products.

13. Al Aho, Columbia University; programming lan-
guages, compilers and related algorithms, and
prolific author of textbooks on the art and science
of computer programming; co-author of the AWK

programming language.

14. Guy Steele, designer and writer of numerous
programming language specifications, including
the original command set of Emacs; the first
person to port TEX (from WAITS to ITS).

15. Robert Tarjan, Princeton; known for his pioneer-
ing work on graph theory algorithms and data
structures; his dissertation was supervised by
Don Knuth.

16. Frank Ruskey, University of Victoria; research in-
cludes algorithms for exhaustively listing discrete
structures, and various combinatorial topics.

17. Andrew Binstock, Editor-in-Chief, Dr. Dobb’s
Journal.

18. Jeffrey Outlaw Shallit, University of Waterloo;
combinatorics on words, formal languages, au-
tomata theory, and algorithmic number theory;
also Vice President of Electronic Frontier Canada.

19. Scott Aaronson, MIT; theory of computational
complexity and quantum computing.

20. J. H. Quick, blogger.

−− ∗ −−

We conclude with another quote from
Radia Perlman, regarding how TAOCP affected
her, which also nicely expresses how many of us TEX
users feel about Computers & Typesetting :

Having the books on my bookshelf gave me a sense
of security . . . that pretty much anything I’d wonder
about would be explained there. Today Wikipedia
serves some of that purpose. It would have been
nice 20 years ago to have had a (more) portable
version of Knuth so that I could know, wherever I
was, that I could quickly look something up. But
20 years ago there was nothing else, so I’d have to
wait until I was back at home to consult the copy
in my bedroom bookshelves, or wander the halls at
work to find someone who had a copy in their office.
I did actually have a 2nd copy that was supposed
to be at work, but it was always being “borrowed,”
so I could never find my own copy at work when I
needed it.

Twenty Questions for Donald Knuth


