
TUGboat, Volume 36 (2015), No. 1 37

The bird and the lion: arara

Paulo Roberto Massa Cereda

1 Prologue

There I was, back in 2011, with a huge project in
my hands: a songbook. But it was far from any
ordinary book due to the involved complexity: each
song had several tags and at least 25 indexes, with
different styles! Of course, TEX and friends were
able to tackle this beast on their own, but I was not
prepared. The lion was definitely hungry and I was
the typographic meat provider.

My compilation workflow was striking: at least
30 to 40 steps in order to achieve the final result.
As a first experiment, I wrote a nice Makefile and
the problem had appeared to be solved once and for
all. Suddenly, however, I found myself in need of a
portable solution: I had to share my projects with
at least three different operating systems (Windows,
GNU/Linux and MacOSX) and I should ensure that
all the needed tools were in place for my workflow
to work. Worse: I had to rely on system-dependent
commands and other nuisances.

My first idea was to stand on the shoulders of
giants and rely on the brilliant latexmk by John
Collins; sadly, the workflow was too complicated for
me to grasp at once, and my .latexmkrc shortly
became a beast on its own. The second idea was
to use rubber but, as my worst nightmares became
true, at some point, I was writing ugly hacks and
injecting Python code into the tool itself. Alas, no
success, the songbook remained intractable.

When all else had failed, I decided to come up
with a solution on my own. I sat in front of my
computer with an open terminal and started to code
while listening to Pink Floyd. In a couple of hours,
a new tool was tackling my songbook.

I mentioned this journey in the chat room of
the TEX community at StackExchange and Enrico
Gregorio encouraged me to release this tool into the
wild. Later on, Marco Daniel, Brent Longborough,
Nicola Talbot and many, many others jumped in and
a new project— arara—was born. The name was
chosen as an homage to a Brazilian bird of the same
name, which is a macaw. The word arara comes
from the Tupian word a’rara, which means big bird
(much to my chagrin, Sesame Street’s iconic char-
acter Big Bird is not a macaw; according to some
sources, he claims to be a golden condor). As I men-

tion in the user manual, araras are colorful, noisy,
naughty and very funny. Everybody loves araras.
The name seemed catchy for a tool and, in the blink
of an eye, arara was quickly spread to the whole TEX
world. It is an interesting story of a bird and a lion
living together.

2 The basics

I think the best way to explain how arara works is to
provide a quick comparison with similar tools, like
the ones I’ve mentioned in the prologue. Let us use
the following file hello.tex as an example:
\documentclass{article}
\begin{document}
Hello world!
\end{document}

How would one successfully compile hello.tex
with latexmk and rubber, for instance? It’s quite
straightforward: it is just a matter of providing the
file to the tool and letting it do the hard work; a sim-
ple latexmk hello or rubber –pdf hello would
do the trick. Now, if one tries arara hello, I’m
afraid nothing will be generated; the truth is, arara
doesn’t know what to do with your file (and the tool
will raise an error message complaining about this
issue). You need to tell arara what to do.

That is the major difference of arara when com-
pared to other tools: it is not an automatic process
and the tool does not employ any guesswork on its
own. You are in control of your documents; arara
won’t do anything unless you teach it how to do a
task and explicitly tell it to execute the task.

How does one teach arara how to do a task?
The answer is quite simple: we have to define rules.
A rule is a formal description of how arara should
handle a certain task. For example, if we want to
use pdflatex with arara, we need a rule for that.
Once a rule is defined, arara automatically provides
an access layer to the user. The package provides
dozens of predefined rules, so you already have sev-
eral options out of the box to set up your workflow.

Once we know how to execute a task, we need
to explicitly tell arara when to do it. This is done
through a directive. A directive is a special comment
inserted in the source file in which you indicate how
arara should behave. You can insert as many direc-
tives as you want, and in any position of the file;
arara will read the whole file and extract the direc-
tives. A directive should be placed in a line of its
own, in the form
% arara: 〈directive〉

It is important to observe that a directive is not
the command to be executed, but the name of the

The bird and the lion: arara

38 TUGboat, Volume 36 (2015), No. 1

rule associated with that directive (once arara finds
a directive, it will look for the associated rule). That
is basically how arara works: we teach the tool to do
a task by providing a rule, and tell it to execute it
via directives in the source code.

Sometimes, we need to provide additional in-
formation to the rule from the source code. That’s
why arara offers two types of directives:
empty directive An empty directive, as the name

indicates, has only the rule identifier. The syn-
tax for an empty directive is

% arara: 〈directive〉
parameterized directive A parameterized direc-

tive has the rule identifier followed by its argu-
ments. It’s very important to mention that the
arguments are mapped by their identifiers and
not by their positions. The syntax for such a
directive is

% arara: 〈directive〉: { 〈arglist〉 }

An individual argument has the form

〈key〉: 〈value〉
and an 〈arglist〉 has keys with their respective
values separated by commas. The arguments
are defined according to the rule mapped by
the directive (you cannot give an argument foo
to a directive bar if it does not offer support for
this named parameter).

If you want to disable a directive, there’s no need to
remove it from the source file. Simply replace
% arara:

by, for example,
% !arara:

or insert some other symbol before arara: and this
directive will be ignored. The tool always looks for
a line that, after removing the leading and trailing
spaces, starts with a comment and contains ‘arara:’
as a word of its own. The user manual shows how
to override this search pattern, but the arara: key-
word is always required.

Now that we know how to tell arara what to
do with hello.tex, we need to modify it a little by
including the proper pdflatex directive:
% arara: pdflatex
\documentclass{article}
\begin{document}
Hello world!
\end{document}

And that’s it. Now, calling arara hello (or
arara hello.tex—both will work), the document
will be successfully compiled. Then, let’s say we

would like to enable shell escape for this particu-
lar compilation; we can achieve that by providing a
parameterized directive, like this:
% arara: pdflatex: { shell: yes }
\documentclass{article}
\begin{document}
Hello world!
\end{document}

Of course, shell is defined in the rule scope,
otherwise arara would raise an error about an invalid
key. The user manual has a list of all available keys
for each predefined rule.

As we’ve noted, arara relies on the provided
source file as the main document. The pdflatex
rule above thus passes the provided filename to the
pdflatex command. Let us see how to override such
information in order to run programs on other files.

There’s a reserved argument key named files,
whose value is a list. If you want to override the
default value of the main document for a specific
rule, use this key in the directive, in the form
% arara: 〈directive〉: { files: [〈list〉] }

For example, if you need to run makeindex on
files a and b instead of the default hello, you can
use
% arara: makeindex: { files: [a, b] }

That is the trick I used when working with
25 indexes in my songbook: it was just a matter
of providing their names and which styles to the
makeindex directive.

There is much more to arara than what I’ve de-
scribed in this section. For more complete coverage
of available tools, please refer to the user manual.
arara is already available in TEX Live and also as a
standalone tool. Source code is available at
https://github.com/cereda/arara

It is also important to observe that a new ver-
sion is in the works and this hopefully will fix a cou-
ple of nuisances found with the current official ver-
sion (namely, version 3.0 of the tool). The new ver-
sion also includes several improvements which will
be unveiled as soon as the tool reaches its official
release (as a bonus, a new article will be provided
for readers).

3 Examples

Now that we know how arara works, let us see some
examples. The first document, ex1.tex, requires
two runs in order to set the labels correctly, so we
write two directives.
% arara: pdflatex
% arara: pdflatex

Paulo Roberto Massa Cereda

TUGboat, Volume 36 (2015), No. 1 39

\documentclass{article}
\begin{document}
\section{Introduction}
\label{sec:intro}
As seen in Section~\ref{sec:intro}\ldots
\end{document}

The second document, ex2.tex, has a citation
(courtesy of xampl.bib, available in the TEX Live
tree), so we need to specify a call to bibtex as well:
% arara: pdflatex
% arara: bibtex
% arara: pdflatex
% arara: pdflatex
\documentclass{article}
\begin{document}
As seen in \cite{book-full}\ldots
\bibliographystyle{plain}
\bibliography{xampl}
\end{document}

The third document, ex3.tex, has the same
LATEX source as the previous example, but we want
to use biber instead of bibtex; it’s just a matter of
replacing the directive:
% arara: pdflatex
% arara: biber
% arara: pdflatex
% arara: pdflatex
\documentclass{article}
\usepackage{biblatex}
\addbibresource{xampl.bib}
\begin{document}
As seen in \cite{book-full}\ldots
\printbibliography
\end{document}

The fourth document, ex4.tex, shows an ex-
ample of a simple index, so we include a makeindex
directive:
% arara: pdflatex
% arara: makeindex
% arara: pdflatex
\documentclass{article}
\usepackage{makeidx}
\makeindex
\begin{document}
Some text.\index{Apple}
\printindex
\end{document}

The fifth document, ex5.tex, shows a glossary,
courtesy of the great glossaries package. We need
to add a makeglossaries directive for this:
% arara: pdflatex
% arara: makeglossaries

% arara: pdflatex
\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{equation}{name=equation,
description={an equation usually involves
at least one variable, and has two sides;
typically we will try to solve an
equation for one of the unknown
variables}}
\makeglossaries
\begin{document}
\glsaddall
\printglossary
\end{document}

The sixth document, ex6.tex, shows a good old
plain TEX source, compiled with the tex directive.
As expected, we will get ex6.dvi as output.
% arara: tex
Hello world.
\bye

The seventh document, ex7.tex, enhances the
previous example by adding a conversion chain in
order to obtain a PDF file; this is done by convert-
ing ex7.dvi to ex7.ps and then to ex7.pdf (the
directive names are self-explanatory).
% arara: tex
% arara: dvips
% arara: ps2pdf
Hello world.
\bye

The eighth document, ex8.tex, uses a package
(namely minted) which requires shell escapes to be
enabled. We give the (parameterized) directive for
that in order to achieve a proper compilation:
% arara: pdflatex: { shell: yes }
\documentclass{article}
\usepackage{minted}
\begin{document}
\begin{minted}{c}
int main() {
printf("hello, world");
return 0;

}
\end{minted}
\end{document}

The ninth document, ex9.tex, uses multibib
in order to provide two separate bibliographies; we
must run bibtex on the second auxiliary file A.aux
as well, so we give the special files key to bibtex:
% arara: pdflatex
% arara: bibtex
% arara: bibtex: { files: [A] }

The bird and the lion: arara

40 TUGboat, Volume 36 (2015), No. 1

% arara: pdflatex
% arara: pdflatex
\documentclass{article}
\usepackage{multibib}
\newcites{A}{References 2}

\begin{document}
\cite{book-full}
\citeA{inproceedings-full}

\bibliographystyle{plain}
\begingroup
\bibliography{xampl}
\endgroup

\bibliographystyleA{plain}
\begingroup
\bibliographyA{xampl}
\endgroup
\end{document}

Observe the \begingroup and \endgroup around
the \bibliography commands: this is because the
sample bibliography file xampl.bib has a preamble
field in which a couple of commands are defined
which would otherwise cause some ugly definition
errors (as both .bbl files contain \newcommand).

Alternatively, we could have used one bibtex
directive with two files:
% arara: bibtex: { files: [ex9, A] }

instead of writing two bibtex directives. However, I
would choose to write a separate line for each bibtex
run, both to better organize my workflow, and to
provide only the second auxiliary filename; other-
wise, the main document filename would also have
to be explicitly specified.

The tenth and last document, ex10.tex, has a
clean directive to remove ex10.log after correctly
generating the PDF file:
% arara: pdftex
% arara: clean: { files: [ex10.log] }
Hello world.
\bye

And that is it: arara is quite straightforward to
use, provided that you know the available rules and
keys, and also the compilation workflow needed.

4 Final remarks

As shown in this article, arara can be used in com-
plex workflows, such as theses and books. You can
tell the tool to compile a document, generate indexes
and apply styles, remove temporary files, compile
other documents, run METAFONT or METAPOST,
create glossaries, call pdfcrop, gnuplot, move files,
and much more. Furthermore, arara is platform-
independent. It’s all up to you.

That said, I believe that the warning featured
in the user manual still applies: Hic Sunt Dra-
cones. Hopefully the new version will exterminate
a couple of nuisances and bugs found in the cur-
rent official release; however, as with any non-trivial
software, the tool is far from being bug-free. And
you will learn that arara gives you plenty of rope. In
other words, you will be responsible for how the tool
behaves and all the consequences from your actions.
Sorry to sound scary, but I really needed to tell you
this. After all, one of arara’s greatest features is the
freedom it offers. But as you know, freedom always
comes at a cost.

Feedback is surely welcome for me to improve
this humble tool— just write an e-mail to me or any
other member of the team and we will reply as soon
as possible. The source code is fully available at
https://github.com/cereda/arara

Feel free to contribute to the project by forking
it, submitting bugs, sending pull requests or even
translating it to your language. If you want to sup-
port the LATEX development with a donation, the
best way to do this is by donating to the TEX Users
Group.

Happy TEXing with arara!

� Paulo Roberto Massa Cereda
Analândia, São Paulo, Brazil
cereda (at) users dot sf dot net

Paulo Roberto Massa Cereda

