
20 TUGboat, Volume 36 (2015), No. 1

Glisterings: Here or there; Parallel texts;
Abort the compilation

Peter Wilson

A stately rocke beset with Diamonds faire,
And pouldred round about with Rubles red,
Where Emeralds greene doo glister in the air,
With Mantill blew of Saphyres ouer spred.

The Ship of safegarde, Barnabe Googe

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

In a civil war, a general must know—and
I’m afraid it’s a thing rather of instinct
than of practice—he must know exactly
when to move over to the other side.

Not a Drum was Heard: The War
Memoirs of General Gland, (unpublished

radio play, 1959) Henry Reed

1 Here or there
Paul Kaletta asked on ctt [slightly edited]:

I am writing a twoside document which means
that even and odd pages have different margins. Un-
fortunately all images I include are aligned with the
left side of the text on every page. Some of them
are broader than the line width and protrude into the
right margin, which is nice for odd pages, but looks
weird for even ones.

I would love to align the images to the inner
margin, so that they always protrude to the outer
one. Is this possible?

Heiko Oberdiek gave a solution so that an image
would not exceed the width of the text plus the
marginpar area [3].

This has been a problem that has cropped up
from time to time on ctt. More generally the prob-
lem is how to decide into which margin something
should be put, and then put it there. The code
below for the first problem is based on code that I
wrote for my memoir class. This version requires the
changepage package [8] for correctly deciding whether
an odd or even page is being typeset.1

The \pikmargin workhorse macro, used for spec-
ifying a margin, takes one argument which must be
one of: left, right, outer, or inner. The result is
\pkmarg which is in the range 0–3 for the allowed

1 Because of the asynchronous nature of TEX’s page break-
ing algorithm simply checking the page number does not
always lead to the correct result. The changepage macros are
an integral part of memoir.

arguments, otherwise it is −1. The code is rather
tedious.
\usepackage{changepage}
\newcommand*{\pikmargin}[1]{\bgroup

\def\targ{#1}\def\parg{left}%
\ifx\targ\parg

\gdef\pkmarg{0}%
\else

\def\parg{right}%
\ifx\targ\parg

\gdef\pkmarg{1}%
\else

\def\parg{outer}%
\ifx\targ\parg

\gdef\pkmarg{2}%
\else

\def\parg{inner}%
\ifx\targ\parg

\gdef\pkmarg{3}%
\else

\gdef\pkmarg{-1}%
\fi

\fi
\fi

\fi
\egroup}

The \settheside workhorse macro takes one
argument, the value of \pkmarg from \pikmargin,
and sets \ifputatright true or false according
to whether material should be put into the right or
left margin. The basic algorithm is:
1. A negative argument is converted to 2 (outer).
2. For two columns always the nearest margin.
3. For one sided documents:

0 (left) false
not 0 (all else) true

4. For two sided documents:
0 (left) false
1 (right) true
2 (outer) true on an odd page and false on

an even page
3 (inner) false on an odd page and true on

an even page
The code is tedious, even more so than for the previ-
ous macro.
\newif\ifputatright
\makeatletter
\newcommand*{\settheside}[1]{%

\def\m@rgcode{#1}%
\ifnum #1<0\relax

%% error! write message and set to ‘outer’
\typeout{Error! arg is ‘#1’. Set to ‘outer’}

\def\m@rgcode{2}%
\fi

Peter Wilson

TUGboat, Volume 36 (2015), No. 1 21

\if@twocolumn
\if@firstcolumn

\putatrightfalse
\else

\putatrighttrue
\fi

\else
\checkoddpage% from the changepage package
\if@twoside

\ifcase\m@rgcode\relax
\putatrightfalse

\or% 1 = left
\putatrighttrue

\or% 2 = outer
\ifoddpage

\putatrighttrue
\else

\putatrightfalse
\fi

\or% 3 = inner
\ifoddpage

\putatrightfalse
\else

\putatrighttrue
\fi

\fi
\else% 1-sided

\ifnum\m@rgcode=0\relax
\putatrightfalse

\else
\putatrighttrue

\fi
\fi

\fi}
\makeatother

You can use the \pikmargin and \settheside
macros directly but in case there might be more than
one kind of material to be put into the margins it is
better to be conservative and use them indirectly.

With the two workhorse macros in hand, here is
code for letting overwide images extend a particular
distance, \ximwidth, into the margin.

\pikimagemargin is for selecting the margin for
a wide image. The margin code is stored as \pkimg.
% \usepackage{graphicx} need this package
\newcommand*{\pikimagemargin}[1]{%

\pikmargin{#1}%
\ifnum \pkmarg<0\relax

%% error! write message and set to ‘outer’
%% or perhaps to something more appropriate

\typeout{Error! arg is ‘#1’. Set to ‘outer’}
\def\pkimg{2}%

\else
\let\pkimg\pkmarg

\fi}

The next bit of code sets the maximum width
for an image.

\newdimen\ximwidth% extra width
\newdimen\maximwidth% max total width
\makeatletter
\newcommand*{\maxiw}{% MAX Image Width

\ifdim\Gin@nat@width>\maximwidth
\maximwidth

\else
\Gin@nat@width

\fi}
\makeatother

An external image is included by calling \MaxImage
which is a wrapper around the regular graphicx pack-
age \includegraphics macro and takes the same
arguments, except for the optional width argument
which is supplied internally.
\newcommand*{\MaxImage}[2][]{%

\par\noindent
\settheside{\pkimg}%
\ifputatright
\else

\hspace{0pt minus \ximwidth}% move left
\fi
\includegraphics[{#1,width=\maxiw}]{#2}%
\ifputatright

\hspace{0pt minus \ximwidth}%
\fi
\par}

The general user scheme is:
%% set the dimensions
\setlength{\maximwidth}{\textwidth}
\setlength{\ximwidth}{\marginparwidth}
\addtolength{\maximwidth}{\ximwidth}
%% specify the margin (say the outer)
\pikimagemargin{outer}
...
%% image may be in a figure, but need not be
\begin{figure}
\centering
\MaxImage[height=\textheight,

keepaspectratio]{myimage}
\caption{...}
\end{figure}

To do just the opposite is also a form of
imitation.

Aphorismen, Georg
Christoph Lichtenberg

2 Parallel texts
2.1 Opposites
On occasion somebody wants to set two documents
in parallel on facing pages. This is typically in the
form of an original in one language on even numbered
pages and a translation in another language on the
facing odd numbered pages. The ledpar package [10]

Glisterings: Here or there; Parallel texts; Abort the compilation

22 TUGboat, Volume 36 (2015), No. 1

is designed for this purpose, enabling individual line
numbering and multiple footnotes on the parallel
pages. But sometimes this may be overkill. Stephen
Hicks [2] presented a method in response to a query
on texhax, where it didn’t matter if one of the texts
was much longer than the other (if necessary the
shorter text being ‘completed’ with blank pages). He
explained his basic algorithm as:
1. Load both documents into separate boxes (i.e.,

galleys)
\setbox\left@box\vbox\bgroup

\input left\egroup
\setbox\right@box\vbox\bgroup

\input right\egroup
This might lead to difficulties if anything in the
documents have, say, \eject or anything else
weird re: page handling, or it might just work if
the whatsits behave well inside boxes.

2. Alternately \vsplit off \textheight from each
box and \unvbox it into the current page, fol-
lowed by a \clearpage.
Stephen’s code for implementing this was as

follows, except that I have made a minor change de-
scribed later, and exercised some editorial privilege.
\documentclass{report}% or other class
...
\makeatletter
\newbox\left@box \newbox\right@box
\newenvironment{leftpage}{%

\global\setbox\left@box\vbox\bgroup}%
{\egroup}

\newenvironment{rightpage}{%
\global\setbox\right@box\vbox\bgroup}%
{\egroup}

\def\alternate{%\cleardoublepage
\cleartostart
\let\@next\@alternate
\ifdim\ht\left@box=\z@\ifdim\ht\right@box=\z@

\let\@next\relax\fi\fi
\@next}

\def\@unvsplit#1{\ifdim\ht#1=\z@\vbox{}\else
\setbox\z@\vsplit#1 to\textheight\unvbox\z@
\fi}

\def\@alternate{\@unvsplit\left@box\eject
\@unvsplit\right@box\eject\alternate}

\makeatother
...
\begin{document} ...
\begin{leftpage}
\input{lefttext}
\end{leftpage}
\begin{rightpage}
\input{righttext}
\end{rightpage}
\alternate
... \end{document}

As Stephen said, there are limits to what can
be successfully included in the parallel texts. For
example, footnotes may throw things out of kilter
and page headings can get out of synch if they are
changed inside either of the texts by, say, including
some \sections.

The technical change I made was replacing the
macro \cleardoublepage with the new one named
\cleartostart. This is called just before the left–
right printing starts. With \cleardoublepage the
left text starts on an odd page and continues on
odd pages while the right text then starts on the
following even page. It seems more logical to me
that the left text should start on an even numbered
page, this being the left of a two page spread. The
standard \clearpage moves to the next page, which
may be odd or even, while the \cleardoublepage
moves to the next odd page. The \cleartostart
macro, which is based on \cleartoevenpage from
the memoir class [9], moves to the next even page.

\newcommand*{\cleartostart}{\clearpage
\ifodd\c@page\hbox{}\newpage\fi}

2.2 Equals
Thomas Thurman, who described himself as a poet
and programmer, posted to ctt saying [6]:

I have a particular typesetting task, described
below. Can you tell me whether it’s possible in TeX
without major upheaval? (Pointers as to how it’s
possible are welcomed, but at the moment I want to
check that it’s possible at all.)

I have two source documents P and Q. P con-
sists (as you might expect) of a series of words sep-
arated by spaces and punctuation. Q consists of
exactly the same number of entirely different words,
but separated by the same punctuation. The words
may not necessarily be the same length, but there will
be the same number of them.

So P might run “I am (of course) shocked! and
appalled!" and Q might run “We drink (in summer)
lemonade! and Pimms!"

What I want to do is to turn P and Q into a
TeX document that either:

- consists of two columns per page, the left from
P and the right from Q, but on each line the number
of words in each column is the same. (So if there are
five words from the P column on the first line, there
are five words from the Q column on the first line.)

or
- consists of pages alternately from P and Q,

but for each line the number of words on that line is
equal to the number of words on the same line on the
facing page.

Peter Wilson

TUGboat, Volume 36 (2015), No. 1 23

Either is a good solution. (Both would be won-
derful.)

Of course if P has a run of long words then
the matching Q line will contain a lot of whitespace.
This is quite all right.

This resulted in a conversation between Bruno
Le Floch and Jean-François Burnol ending with es-
sentially the following code from Jean-François [1]
(I have edited it slightly to better fit the two-column
format). I can’t explain how it works any better
than what you see.

\makeatletter
% ======== Some helper macros
\let\xpf\expandafter
\def\addtobuff#1#2{\xpf\def\xpf#1%

\xpf{#1 #2}}
\long\def\ifneitherempty#1#2{%

\xpf\ifx\xpf a\detokenize{#1}a%
\xpf\@gobble

\else
\xpf\ifx\xpf a\detokenize{#2}a%

\xpf\xpf\xpf\@gobble
\else

\xpf\xpf\xpf\@firstofone
\fi

\fi}

% ======== Splitting into paragraphs

\long\def\longsbs #1#2{%
\longsbs@aux #1\par\Q #2\par\Q}

\long\def%
\longsbs@aux #1\par#2\Q #3\par#4\Q{%

\sidebyside{#1}{#3}% do one paragraph
\bigskip % space between paragraphs
% If either is empty, we’re done
% else do "\sidebyside"
\ifneitherempty{#2}{#4}%
{\longsbs@aux #2\Q #4\Q
}}

% ======== Splitting at each space

\def\sbs@parse #1 #2 \Q #3 #4 \Q{%
\sbs@step{#1}{#3}%
% if either text is empty,
% we are (almost) done
% else continue
\ifneitherempty{#2}{#4}%
{\sbs@parse #2 \Q #4 \Q}}

% ======= Checking the size of each line
% ======= and printing it when it’s ready

\newif\ifsbs@break
\def\sbs@step#1#2{%

\setbox1=\hbox{\sbs@buffi{} #1}%
\setbox2=\hbox{\sbs@buffii{} #2}%
\ifdim\wd1>.4\hsize\sbs@breaktrue\else
\ifdim\wd2>.4\hsize\sbs@breaktrue\else
\sbs@breakfalse\fi\fi
\ifsbs@break\sbs@writeline%

\def\sbs@buffi{#1}%
\def\sbs@buffii{#2}%

\else
\addtobuff\sbs@buffi{#1}%
\addtobuff\sbs@buffii{#2}%

\fi}

\def\sbs@writeline{%
\hbox to \hsize{\hss%

\hbox to .4\hsize{\pr@buffi}%
\hskip.1\hsize%
\hbox to .4\hsize{\pr@buffii}%

\hss}}

% ========= Master function

\def\sidebyside#1#2{%
\def\sbs@buffi{\noindent}%
\def\sbs@buffii{\noindent}%
\sbs@parse #1 \Q #2 \Q
\sbs@writeline% flush the last line

}

I have added the following code so that the user can
specify if the left and right texts are to be set flush
left ([l]), centered (the default) or flush right ([r]).
\newcommand*{\setsbsleft}[1][c]{%

\def\pr@buffi{\hfill\sbs@buffi\hfill}%
\def\@tempa{#1}\def\@tempb{l}

\ifx\@tempb\@tempa
\def\pr@buffi{\sbs@buffi\hfill}%

\else
\def\@tempb{r}%
\ifx\@tempb\@tempa

\def\pr@buffi{\hfill\sbs@buffi}%
\fi

\fi}
\newcommand*{\setsbsright}[1][c]{%

\def\pr@buffii{\hfill\sbs@buffii\hfill}%
\def\@tempa{#1}\def\@tempb{l}

\ifx\@tempb\@tempa
\def\pr@buffii{\sbs@buffii\hfill}%

\else
\def\@tempb{r}%
\ifx\@tempb\@tempa

\def\pr@buffii{\hfill\sbs@buffii}%
\fi

\fi}

%% center the texts
\setsbsleft
\setsbsright
\makeatother

Glisterings: Here or there; Parallel texts; Abort the compilation

24 TUGboat, Volume 36 (2015), No. 1

The following is a short example of using the
\longsbs macro which, unfortunately, may have dif-
ficulties if either of its arguments includes any macros.
In this case the texts are set flush right and flush
left.
\setsbsleft[r]
\setsbsright[l]
\longsbs {%

I am (of course) ...

Can you tell ...
}{%

We drink (in summer) ...

P consists ...
}

I am (of We drink (in
course) shocked! summer) lemonade!
and appalled! I and Pimms! I

have a particular have two source
typesetting task, documents P
described herein. and Q.

Can you tell me P consists (as you
whether it’s possible might expect) of

in TeX . . . at a series . . . same
all. punctuation.

Eternity’s a terrible thought. I mean,
where’s it all going to end?

Rosencrantz and Guildenstern
are Dead, Tom Stoppard

3 Abort the compilation
Rasmus Villemoes wrote to ctt [7]:

I have a document which is only meant to be
typeset using pdflatex. It is rather large, and the
first pdf-only stuff doesn’t occur until quite late. So
if one accidentally compiles with latex it takes a
couple of minutes before the error is discovered. I
would therefore like to insert some code shortly after
\documentclass which aborts the compilation with
an error message unless running under pdflatex.

Both Lars Madsen and Heiko Oberdiek replied
and the following code is a merge and extension of
their responses. The definition of \abort is from
Heiko and following a comment by Lars I included
using the ifxetex package [5] in addition to the origi-
nally suggested ifpdf package [4] as both pdflatex
and xelatex generate pdf output.
\documentclass[...]{...}
\usepackage{ifpdf}

\usepackage{ifxetex}
\newcommand*{\abort}{}
\ifpdf\else

\ifxetex\else
\typeout{You must be in PDF mode.

Use pdflatex (or xelatex) instead.}
\def\abort{\csname @@end\endcsname}

% or \def\abort{\stop}
\fi

\fi
\abort
...
\begin{document}
...

If desired, it would be simple to recast this as a
package (a .sty file), which is what Lars exemplified
in his response.

References
[1] Jean-François Burnol. Re: Arranging parallel texts.

Post to comp.text.tex newsgroup, 24 February
2011.

[2] Stephen Hicks. Re: [texhax] multiple documents
within a document. Post to texhax mailing list,
30 March 2010.

[3] Heiko Oberdiek. Re: How to make all images
protrude into the outer border. Post to
comp.text.tex newsgroup, 3 January 2010.

[4] Heiko Oberdiek. The ifpdf package, April 2012.
http://mirror.ctan.org/macros/latex/
contrib/oberdiek.

[5] Will Robertson. The ifxetex package, 2009.
http://mirror.ctan.org/macros/generic/
ifxetex.

[6] Thomas Thurman. Arranging parallel texts.
Post to comp.text.tex newsgroup, 22 February
2011.

[7] Rasmus Villemoes. Aborting unless running
pdflatex. Post to comp.text.tex newsgroup,
2 August 2010.

[8] Peter Wilson. The changepage package, 2009.
http://mirror.ctan.org/macros/latex/
contrib/changepage/.

[9] Peter Wilson. The memoir class for configurable
typesetting, 2013. http://mirror.ctan.org/
macros/latex/contrib/memoir.

[10] Peter Wilson. Parallel typesetting for
critical editions: The ledpar package, 2014.
http://mirror.ctan.org/macros/latex/
contrib/ledmac.

� Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Peter Wilson

