
128 TUGboat, Volume 36 (2015), No. 2

Preparing LATEX classes for journal articles
and university theses

Tom Hejda

Abstract

There is a substantial difference between the require-
ments on a LATEX class for a scientific journal and for
university theses. The main point is that a journal
class is by definition restrictive — the journal has to
be very keen on the precise look and structure of
the articles, whereas the thesis class is by definition
modular — different theses ask for a slightly differ-
ent layout and structure, some have appendices and
some do not, etc. We discuss the differences and
their implications on the class design.

1 Introduction

It is natural that different types of documents ask
for different LATEX classes. We will discuss the differ-
ences for journal articles and university theses. This
is partly a response to a recent boom in LATEX classes
for theses issued and enforced by universities, where
it is commonly seen that the classes do not meet
good standards, students have difficulties using them
and the result is in many cases far from satisfactory.
Even though this is the case, we refrain from giving
bad examples, and we rather focus on the core ideas
that should be behind the design of such a class.

This paper is organized very simply. In the next
two sections, we discuss the demands on classes with
different purposes. In Section 4, we describe the
solution to the demands that were used to design
and code the ctuthesis class that is being developed
at the Czech Technical University (CTU) in Prague.
We believe that our proposed solution serves as a
good example of how things can be done.

It should be noted that while graphical design
plays an important role in the publication process,
we will omit the discussion about graphics as this is
mostly irrelevant to our points. We merely note that
the class ctuthesis that will be used as an example
is based on a plain TEX class called ctustyle [3],
to which the next article in this TUGboat issue is
devoted.

2 Different documents are made differently

The typical workflow for publishing articles in scien-
tific journals involves several steps:

1. Primary submission by the authors — it
need not be in the journal’s style and need not
strictly follow the typographical policies of the
journal.

2. A referee process leading to an accepted
version (or rejection, but that is not interesting
for us) — at the end of this process, the authors
provide a version of the article that should com-
ply with all the in-house policies.

3. In-house typesetting and editorial copy
preparation — The staff of the publisher take
the sources (code, figures, etc.) and prepare the
article to their liking.

4. Proofreading — the authors point out any mis-
takes made during the typesetting and possibly
other things they do not like.

If we look into how theses are usually typeset,
we see that most often the last two steps are missing:
There is no one to typeset the thesis in a professional
way nor to control the way that the thesis is typeset.
This means that the thesis author is in some sense
much more responsible for his work than the author
of an article, at least from the typographical point
of view.

3 Variety of documents

A second big difference between the two class types
is in the variety of documents. In general, most
articles in a single journal follow a similar scheme
for sectioning, floating objects, references etc.; also,
they are usually from a rather narrow field.

On the other hand, a single university has many
faculties with many branches of study, and it is
clear that a programming thesis looks significantly
different from a theological text or an architectural
study. It is quite natural that the first one will
contain a lot of code samples and probably a reference
manual, the second one will be basically a long text
with a lot of direct quotes of paragraphs from other
sources, and the third will contain a long graphical
appendix. Also, the thesis is the student’s child and
he should be able to make it look as he likes, within
the requirements.

To allow a single LATEX class to accommodate
all these needs, the class has to be highly modular;
the presence of appendices has to be optional, for
instance, and in general, more or less everything
has to be configurable. The class should have only
minimal fixed design in order to comply with the
requirements of the university.

4 Our solution

The solution for article classes used by actapoly (the
journal of the CTU) [1] does not involve any special
tools — article authors set up the metadata of the
article and these are then used by \maketitle to
print the article title block. All the standard LATEX

Tom Hejda



TUGboat, Volume 36 (2015), No. 2 129

environments and commands such as sectioning com-
mands, lists, floats, tables etc. are then given a fixed
graphical design that forms the graphical identity
of the journal. This is what nearly every journal
publisher does in their class files.

By comparison, in designing our class — called
ctuthesis [2] — for university theses, we needed a
high level of modularity, as discussed. This is allowed
mostly by two important ingredients:

1. Good key-value interface. Most modifiers of
the class behaviour are implemented using this
interface. The interface itself is coded using the
very usable and highly versatile l3keys package.
In general, the whole class is written in expl3

as much as possible.

2. Two-phase class and package loading. The
idea can be seen in Figure 1 — we load the class,
then set everything up using the key-value in-
terface, and then the command \ctuprocess

inputs another file of the class. This additional
file contains a lot of conditional package loading
and package setup.

There are several types of keys for the key-value
interface:

• appearance keys — languages, colours, a switch
for the inclusion of the list of figures, etc.;

• metadata keys — title, subtitle, author, supervi-
sor, name of the department, and a lot of other
information;

• package options — customizable loading of cer-
tain packages for which it makes sense, including
for instance: amsthm (since someone may prefer
ntheorem or another package and there is no
reason to forbid it), listings (we set up the
listings design in a particular way that someone
may not like), or hyperref (since it is sensitive
to the order in which the packages are loaded
and making it conditional can help in resolving
the issue).

Also, in the internal design, we borrow the idea
that is seen in beamer — namely what we call tem-
plates and fields. Examples are worth complicated
explanations, so as an example, the titlepage, or
the list of figures in the two-column frontmatter
make up typical templates, whereas fields are things
such as the title and the abstract (these are actually
language-dependent, so we have a field for the title
in all languages in which it is needed, and similarly
for the abstract, the university name, etc.), the name
of the author, the address of the supervisor, etc.

Also, there is an interface for themes — it could
happen that a faculty of the university had a spe-
cial requirement that “supervisor” should be called

\documentclass{ctuthesis}

\ctusetup{

key1 = value1,

key2 = value2,

...

}

\ctuprocess

% ... user stuff goes here ...

\begin{document}

\maketitle

...

Figure 1: Structure of the preamble of a document in
ctuthesis.

“project manager”, and this is possible using a theme
for this faculty that changes \supervisorname in
the english language. It is of course possible to
implement this without the themes interface, but it
would mean adding strange conditionals at strange
places in the class files for one-off issues like this one.
We do, however, store all templates and themes in
a single file with a clear structure.

5 Concluding remarks

To conclude, let us mention the most important
points of the paper:

1. Different document types need different class
designs.

2. Class authors should think of how the class will
be used and who the users will be.

3. The more the users will interact with the class,
the cleaner the class interface should be.

References

[1] Czech Technical University in Prague.
Acta Polytechnica — submissions. https:
//ojs.cvut.cz/ojs/index.php/ap/about/

submissions#authorGuidelines [2015-08-01].

[2] Tom Hejda. LATEX template for theses at CTU
in Prague. https://github.com/tohecz/
ctuthesis [2015-08-01].

[3] Petr Oľsák. CTUstyle — Plain TEX template
for theses at CTU in Prague. http://petr.
olsak.net/ctustyle-e.html [2015-08-01].

� Tom Hejda
Dept. Math. FNSPE, Czech

Technical University in Prague
Trojanova 13
Prague 12000
Czechia
tohecz (at) gmail dot com

http://github.com/tohecz/

Preparing LATEX classes for journal articles and university theses

https://ojs.cvut.cz/ojs/index.php/ap/about/submissions#authorGuidelines
https://ojs.cvut.cz/ojs/index.php/ap/about/submissions#authorGuidelines
https://ojs.cvut.cz/ojs/index.php/ap/about/submissions#authorGuidelines
https://github.com/tohecz/ctuthesis
https://github.com/tohecz/ctuthesis
http://petr.olsak.net/ctustyle-e.html
http://petr.olsak.net/ctustyle-e.html

	Introduction
	Different documents are made differently
	Variety of documents
	Our solution
	Concluding remarks

