
TUGBOAT

Volume 36, Number 3 / 2015

General Delivery 179 From the Board of Directors / TEX Users Group Board

180 Editorial comments / Barbara Beeton

Help wanted—The UK TEX FAQ;

B&H and the Wingdings font;

Choice of font does make a difference; Safe TEX;

More help wanted: Unicode symbol names in languages other than English;

What is a template?;

Still more help wanted: The LATEX Wikibook

182 Adrian Frutiger, 1928–2015 / Norbert Preining

184 Thomas Koch, 1964–2014 / Joachim Schrod

185 DANTE e.V. 2015 meeting reports / Stefan Kottwitz

Education 188 TEX in schools: Just Say Yes! / Simon Laube

Fonts 190 Smoky letters / Linus Romer

191 About the DK versions of Lucida / Charles Bigelow

Publishing 200 History of cookbooks / Taco Hoekwater

Typography 208 Typographers’ Inn / Peter Flynn

LATEX 210 LATEX news, issue 22, January 2015 / LATEX Project Team

212 LATEX news, issue 23, October 2015 / LATEX Project Team

214 Introduction to list structures in LATEX / Thomas Thurnherr

217 gradstudentresume: A document class for graduate student CVs / Anagha Kumar

220 Glisterings: Longest string; Marching along; A blank argument;

A centered table of contents / Peter Wilson

227 Chemistry in LATEX2ε—an overview of existing packages and possibilities /

Clemens Niederberger

Software & Tools 234 Automating LATEX(3) testing / Joseph Wright

237 Two applications of SWIGLIB: GraphicsMagick and Ghostscript / Luigi Scarso

Macros 243 Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX / Udo Wermuth

257 GMOA, the ‘General Manipulation Of Arguments’: An extension to the l3expan

package of the expl3 bundle and language / Grzegorz Murzynowski

Hints & Tricks 268 Production notes / Karl Berry

269 The treasure chest / Karl Berry

Reviews 271 An online glossary of typographic terms by Janie Kliever /

Boris Veytsman

Abstracts 272 GUST: EuroBachoTEX 2015 proceedings

273 Die TEXnische Komödie: Contents of issue 4/2015

Cartoon 274 Jim Benton / A summons

TUG Business 274 TUG institutional members

Advertisements 275 TEX consulting and production services

News 276 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: http://tug.org/TUGboat.

Memberships and subscriptions

2015 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Rates will be the same in 2016. Anyone joining
or renewing before March 31 receives a $20 “early
bird” discount:

Regular members (early bird): $85.
Special rate (early bird): $55.
Also, (non-voting) TUGboat subscriptions are

available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an indi-
vidual. The subscription rate for 2016 will be $110.

Institutional membership

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: November 2015]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Kaveh Bazargan, President∗ (suspended)
Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Pavneet Arora
Barbara Beeton
Kaja Christiansen
Michael Doob
Steve Grathwohl
Klaus Höppner
Steve Peter
Cheryl Ponchin
Norbert Preining
Arthur Reutenauer
Boris Veytsman
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2015 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

[The Belgian typographer Fernand Baudin] claims
that literacy involves not only a knowledge of how
to form letters and assemble them into strings, but
also an understanding of how to organize the elements
of the text into a coherent visual structure.

Charles Bigelow, in the Foreword to
How Typography Works (and why it is
important), by Fernand Baudin (1989)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 36, NUMBER 3 • 2015
PORTLAND • OREGON • U.S.A.

TUGboat editorial information

This regular issue (Vol. 36, No. 3) is the last issue
of the 2015 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after print publication, to give members
the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are assumed to be the
experts. Questions regarding content or accuracy
should therefore be directed to the authors, with an
information copy to the Editor.

Submitting items for publication

Proposals and requests for TUGboat articles are
gratefully received. Please submit contributions by
electronic mail to TUGboat@tug.org.

The first issue for 2016 will be a regular issue,
with a deadline of March 11, 2016. The second 2016
issue will be the proceedings of the TUG’16 confer-
ence (http://tug.org/tug2016); the deadline for
receipt of final papers is August 8. The third issue
deadline is September 29.

The TUGboat style files, for use with plain

TEX and LATEX, are available from CTAN and the
TUGboat web site, and are included in common
TEX distributions. We also accept submissions us-
ing ConTEXt. Deadlines, templates, tips for authors,
and other information is available at:
http://tug.org/TUGboat/location.html

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site, as
well as in print. Thus, the physical address you pro-
vide in the manuscript will also be available online.
If you have any reservations about posting online,
please notify the editors at the time of submission
and we will be happy to make special arrangements.

178 TUGboat, Volume 36 (2015), No. 3

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns,
Robin Laakso, Steve Peter, Michael Sofka,
Christina Thiele

Other TUG publications

TUG is interested in considering additional manu-
scripts for publication, such as manuals, instruc-
tional materials, documentation, or works on any
other topic that might be useful to the TEX commu-
nity in general.

If you have such items or know of any that you
would like considered for publication, send the in-
formation to the attention of the Publications Com-
mittee at tug-pub@tug.org.

TUGboat advertising

For advertising rates and information, including con-
sultant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html

http://tug.org/consultants.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUG 2016 [Toronto, Canada

July 25–27, 2016,

excursions before and after

http://tug.org/tug2016

TUGboat, Volume 36 (2015), No. 3 179

From the Board of Directors

TUG Board of Directors

(This letter was sent to all TUG members on October
13, 2015, and posted at http://tug.org/election
shortly thereafter. We are reprinting it, as sent, here
in TUGboat since it potentially affects the entire
TEX community. Questions or comments can be sent
to board@tug.org .)

−− ∗ − −

We, as directors of the TEX Users Group, write
to you about a difficult decision we have had to make.
With regret, we announce that we have voted to
suspend Kaveh Bazargan as TUG President, effective
immediately. We need to explain this, and give the
reasons for our actions.

As you know, Kaveh Bazargan was elected Pres-
ident of TUG this last spring. We directors were
looking forward to working with Kaveh on widening
TUG’s audience and reach.

The TUG President, like the TUG directors, has
the privilege and obligation of representing the in-
terests of all TUG members to the best of his or her
abilities.

Unfortunately, at the time of the election, unbe-
knownst to the directors, Kaveh was involved in a
lawsuit against another member of TUG. The law-
suit remains ongoing today, and involves TEX-related
business activities by the parties. The existence of
the lawsuit was not disclosed at the time of the
election. (Of course, the TUG organization has no
standing, and takes no position whatsoever, on the
merits of either party’s case.)

In our opinion, legal entanglement with another
TUG member is a clear conflict of interest, preventing
proper fulfillment of the President’s duties. Any
decision made or initiative undertook by the TUG

President while pursuing a lawsuit against another
TUG member would, at the very least, appear to be
tainted.

In addition, the directors were informed that
the fact of Kaveh’s election as TUG President was
included in documents submitted to the court. We
believe that TUG should not take sides, or even
appear to take sides, in a lawsuit to which it is not
a party. Such an implication appears inevitable to
us when the TUG presidency is used as a material
fact in a court case.

Thus, we asked Kaveh to voluntarily suspend
his presidency for the duration of the lawsuit and
any related legal matters. We were not successful
in convincing him that this would be best for TUG.
Further, he neither made an explanation as to why

he did not reveal the existence of the lawsuit at the
time of the election, nor made any offer to mitigate
its effects now.

Therefore, we concluded that the actions of the
President were not in the interests of TUG. To fulfill
our responsibilities as TUG directors, we felt we
needed to act according to Article IV, Section 5, of
the TUG bylaws (http://tug.org/bylaws):

A Board member who by action or inaction

shall be deemed to be no longer working in the

interests of TUG may be suspended as Director

by a vote of the entire Board, provided that

at least 75% of the Board votes in favor of

suspension.

As 14 members of the Board, out of a total of
16, voted for his suspension (one director abstained
for health reasons, and the 16th board member is
the President), hence 87.5% which is greater than
the 75% required, Kaveh Bazargan is now suspended
from the office of TUG President. He has the right to
appeal his suspension according to the TUG bylaws.

A final note: this decision to suspend the sitting
President was perhaps the most difficult made by
any of us in the course of our involvement with
TUG. We carefully reviewed the bylaws and the
entire record of correspondence with Kaveh, and
intensely deliberated over a period of weeks, ever
since becoming aware of the issue. We communicated
our concerns to Kaveh several times, and we took
into consideration that Kaveh received the majority
of votes in an independent election and was thus
entitled to substantial regard. We would like the
TUG membership, and the wider TEX community,
to know that we made our best efforts to arrive at a
solution that was respectful of the election results,
while also recognizing the expectations of conduct
from all of its officers.

Ultimately, as the duly-chosen directors of the
TEX Users Group, we made the decision for suspen-
sion in the belief that it is the course of action that
is best for TUG.

Sincerely,
Pavneet Arora Barbara Beeton Karl Berry
Kaja Christiansen Sue DeMeritt Michael Doob
Steve Grathwohl Jim Hefferon Klaus Höppner
Steve Peter Cheryl Ponchin Norbert Preining
Arthur Reutenauer Boris Veytsman

−− ∗ − −

(Addendum: per the TUG bylaws, while the suspen-
sion of the president is effective, the vice-president
assumes the duties of the office of president.)

⋄ TUG Board of Directors

board@tug.org

From the Board of Directors

180 TUGboat, Volume 36 (2015), No. 3

Editorial comments

Barbara Beeton

Help wanted — The UK TEX FAQ

An era has come to an end. Robin Fairbairns, long-
time keeper of the CTAN node at the University
of Cambridge (UK) has retired, and with this, the
Cambridge CTAN node itself.

Hosting of CTAN has been consolidated on the
DANTE server, but a separate project hosted at Cam-
bridge, the UK TEX FAQ, which Robin has lovingly
curated for many years, has been relocated. The
node name tex.ac.uk has been retained, and is now
resident on a new server. The announcement of the
move can be read at uk.tug.org/2015/07/07/tex-
ac-uk-server-on-the-move/.

Joseph Wright reported to TUG 2015 on the
“State of the (UK-)TEX FAQ” (river-valley.zeeba.
tv/state-of-the-uk-tex-faq/). Going into his-
well deserved retirement, Robin left behind a long
list of FAQ topics that deserve updating. Even if
everything on the list is taken care of, the list will
continue to grow. In order to ensure its continued
validity and usefulness, assistance is solicited for
its maintenance. Volunteers can make themselves
known by sending a message to the site managers at
faq-devel@tex.ac.uk.

Many thanks to Robin for his devoted and care-
ful work on the FAQ (and for many other things as
well), and the best of wishes for a long and happy
retirement.

Bigelow& Holmes and the Wingdings font

Dingbats have been in the repertoire of printers since
the creation of movable type, and even before that in
manuscripts (although they weren’t called dingbats
then). Also known as fleurons, they are used to
indicate breaks in continuity, highlight important
points in a text, occupy otherwise empty space in an
attractive manner, form borders (see Peter Wilson’s
“Glisterings” column in TUGboat 32:2, pages 202–
205), and plenty more.

The best known font of dingbats is probably the
one by Hermann Zapf, one of the “base 35” PostScript
fonts; others exist as well. When a font of dingbats
was wanted for Windows, Microsoft bought the rights
to Bigelow & Holmes’ Lucida Icons, Lucida Arrows,
and Lucida Stars, then combined its favorites into
a single font. The name “Wingdings” was coined,
combining the two words, “Windows” and “Dingbats”.
The font became an unexpected success.

Read the story here: www.vox.com/2015/8/25/
9200801/wingdings-font-history.

Choice of font does make a difference

The Nature website, on 29 October 2015, reported a
“Grant application rejected over choice of font” (www.
nature.com/news/grant-application-rejected-

over-choice-of-font-1.18686).
Briefly, submission guidelines (which were up-

dated between the time the applicant started writing
her proposal and the time it was submitted, changing
the relevant requirement) specified a particular font.
A different font used on a fellowship application had
more compact letter widths, which could result in
more text fitting within the allowed page limits. The
application was summarily rejected on grounds that
had nothing to do with the technical merits of the
proposal.

Moral of story: Be very careful to follow instruc-
tions to the letter when submitting a proposal asking
for funding.

A sidebar on the page revisits the kerfuffle raised
by a review comparing Word and LATEX reported in
my column earlier this year (TUGboat 36:1, page 5).

Safe TEX

Pierre MacKay was always willing to support a good
cause. These t-shirts appeared at a TUG meeting
in the mid-1980s. Maybe some of you old-timers
remember the stir they caused.

Thanks to Diana Wright for providing the photo.

TUGboat, Volume 36 (2015), No. 3 181

More help wanted: Names of Unicode

symbols in languages other than English

In support of assistive technology and accessibility
for math, I’ve been asked whether there is any “offi-
cial”, or even organized effort to provide translations
of Unicode names into languages other than English.
The specific request was about German; for exam-
ple, for U+2A0C one would look for translations of
“quadruple integral operator” such as “Vierfachinte-
gral”.

The MathJax project is currently building in a
full accessibility feature, and since most screenreaders
do not voice things like codepoints from mathemati-
cal blocks (which are mostly humanly unintelligible
anyhow), the names generated by the current tool are
being used in the speech text strings. Localization
is a highly desirable goal.

If you know of a resource that already exists with
such information, or is being developed, please share
the information with Peter Krautzberger, <peter.
krautzberger@mathjax.org> with a copy to me.

What is a template?

A template (to me) is a receptacle just the right
shape and size into which to pour contents, suitable
for producing a desired result. A template for a
LATEX document is (or should be) an outline that a
user can fill in for a particular purpose.

One area in which (LA)TEX templates are par-
ticularly useful is for academic theses. A student
embarking on writing a thesis will need all the sup-
port s/he can get, since that exercise is the capstone
of years of effort, and the public demonstration that
the effort was worthwhile.

Many universities have very particular specifi-
cations for the format of a thesis. Templates for
that purpose are in plentiful supply,1 and steadily
increasing.2 Even more are posted somewhere on
the web, many on CTAN, but many not. Another
“productive” area for template creation is for CVs.
Whole sites are devoted to collecting such templates.

Unfortunately, the quality of posted templates is
uneven — many show evidence of accretion over “gen-
erations” of student thesis writers and lack of careful
initial design or subsequent maintenance. Old (plain
TEX) font commands, redundantly-loaded packages,
and conflicting packages are only some of the un-
advertised flaws. And there is no concerted effort
to “clean them up” or even evaluate them: a poten-

1 See Peter Flynn’s survey in TUGboat 33:2, pages 172–

177; tug.org/TUGboat/tb33-2/tb104flynn.pdf.
2 Two more were reported at TUG 2015; see TUGboat 35:2,

pages 128–132; tug.org/TUGboat/Contents/contents36-2.

html.

tial user has little guidance in selecting a reliable
offering.

Publishers are not immune from this practice.
Reports of problems with the templates provided for
various journals or books demonstrate such problems
every day. Although sometimes an author has a
special requirement that wasn’t predicted when a
template (or a document class) was created, lack of
maintenance is more frequently the culprit.

A discussion about this topic has been going on
for months on the TEX stackexchange chat (http://
chat.stackexchange.com/rooms/41/tex-latex-

and-friends), and some ideas have been proposed
to establish a working group to explore possibilities
for improvement. If you are interested, send mail
to tugboat@tug.org with your ideas; we will collect
information and keep potential participants in such
a discussion informed of plans.

Still more help wanted:

The LATEX Wikibook

A comprehensive online LATEX manual sounds like
a great idea, for finding quick information on how
to approach unfamiliar problems. And that’s what
the LATEX Wikibook tries to be. It is apparently the
resource that is most often high on the list from a
Google search.

Unfortunately, this resource is far from a com-
pendium of “best practices”, so I hesitate to recom-
mend it to new users — the individuals most in need
of such help. Wikibooks are intended to be “crowd
maintained”, and anyone with knowledge and time
is encouraged to step up and contribute.

A question on this topic has been posted to
TEX stackexchange: “How can we, as a community,
improve the LaTeX WikiBook?” http://meta.tex.

stackexchange.com/q/6393. So far, no one con-
tributing to the discussion has said that this Wiki-
book is fine as is. One contributor has gone so far
as to say that a Wiki is unsuitable for beginners and
intermediate users of LATEX because is is “essentially
a reference source”, and that indeed a Wiki format

is inherently unsuitable for a pedagogic purpose.
The fact remains, the LATEX Wikibook is not

going to go away. Like the template confusion, what
is there now will simply lead to more and more
questions, with many repeats. Join the discussion,
and help to organize the available resources in a
way that will both improve the quality of what is
there, and make undertaking LATEX less forbidding
for newbies.

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

182 TUGboat, Volume 36 (2015), No. 3

Adrian Frutiger, 1928–2015

Norbert Preining

The textural quality of a typeface is like the

timbre of a musical instrument, and the indi-

vidual letters are like musical notes. A text

composed in one typeface can look very dif-

ferent when composed in another because a

complex visual sensation emerges from the

repetition and interaction of nearly subliminal

design features of the type. Frutiger’s explo-

ration of manifold type forms delights the eye

with textural variations and deepens the under-

standing with abstract forms that express their

distinctive meanings. (Charles Bigelow [1])

On September 10, 2015, Adrian Frutiger passed away
after a long and productive life. He has left us a rich
heritage of fonts he designed, as well as important
works on communication and visual language.

Life

Born in Unterseen, a small
village in the mountain-
ous regions of the Berner
Oberland, in 1928, Adrian
Frutiger moved to Inter-
laken and later to Zürich to
learn the craft of the type-
setter. In 1949 he enrolled
in the School of Applied Arts, from which he grad-
uated in 1951 with distinction. His final project, a
woodcut series about the development of Western
type, inspired the interest of Charles Peignot of the
Paris foundry Deberny & Peignot, where Frutiger
worked until 1961, when he established a freelance
studio. In 1972, his first design for Linotype was re-
leased, Iridium, followed by many others for Linotype
over the next 35 years [7].

However successful his professional life, his pri-
vate life was struck by a series of calamities: His
first wife Paulette died after giving birth to their
son, and both children with his second wife Simone
experienced mental health problems and committed
suicide, leading the Frutigers to establish the Fonda-

tion Adrian et Simone Frutiger to improve mental
health support.

After having spent most of his life in France,
particularly Paris, he returned to Switzerland and
passed away in Bremgarten near Bern at age 87.

Fonts

Adrian Frutiger designed about 40 type families, in-
cluding masterpieces Frutiger and Univers, and no-
tably also OCR-B for optical character recognition.

With Univers, he
created one of the first
super-families, one de-
sign with, initially, 21
sets (or styles). Origi-
nally targeting the Lu-
mitype phototypeset-
ting machine where
manufacturing costs
were much lower per set, its enthusiastic acceptance
led Peignot to publish Univers also in lead type.

Besides widespread adoption in advertising and
industry, such as by Apple, Deutsche Bank, and Gen-
eral Electric, Univers was used for the 1972 Olympic
Games in Munich, as well as at the Paris Orly Air-
port [4]. For Univers he also created a numerical
coding system to overcome international discrepan-
cies in naming. Despite the renown of this famous
creation, which continues to thrive throughout all
changes in the typographic world, Frutiger always
remained modest about his achievements:

I don’t want to claim the glory. It was simply

the time, the surroundings, the country, the

invention, the postwar period and my studies

during the war. Everything led towards it.

It could not have happened any other way.

(Adrian Frutiger [2])

Based on an original design from 1970 for the
Charles de Gaulle Airport, which was named after
the suburb of the airport’s location, Roissy, Frutiger
released an improved design for print, giving it his
own name, Frutiger. This became another inter-
nationally famous widespread typeface, due to its
mixture of ideas from Univers with organic influences
from Gill Sans, creating an extremely legible font of
generally humanist design.

Frutiger is basically the best signage type in

the world because there’s not too much ‘noise’

in it, so it doesn’t call attention to itself. It

makes itself invisible, but physically it’s actu-

ally incredibly legible. (Erik Spiekermann [6])

The design has seen many re-interpretations,
including Frutiger Next and Frutiger Neue, as well
as the serifed versions such as Frutiger Serif.

Other designs to be especially noted are Avenir,
a more humanist version of the geometric sans-serif
types faces of the early 20th century, and OCR-B,
which in 1973 became the world standard for optical
character recognition.

While Frutiger’s most famous typefaces are sans-
serif, he also designed excellent serif typefaces, such
as Egyptienne, Centennial, Méridien (recently re-
vised and re-released as Frutiger Serif), and Iridium.

TUGboat, Volume 36 (2015), No. 3 183

In all his designs, he focused on readability and fonts
as tools.

The whole point with type is for you not to be

aware it is there. If you remember the shape

of a spoon with which you just ate some soup,

then the spoon had a poor shape. Spoons and

letters are tools. The first we need to ingest

bodily nourishment from a bowl, the latter

we need to ingest mental nourishment from a

piece of paper. (Adrian Frutiger [5])

Avenir

Centennial

Didot

Egypt

Frutiger

Frutiger Serif
OCR-B

Univers

Visual communication —signs and symbols

Besides being a prolific font designer, Frutiger was
interested in the visual language of symbols, their
development and interaction. His book Der Men-

sch und seine Zeichen (Signs and Symbols) [3] is
a profound study on the development, history, and
use of all kinds of symbols. In this book, translated
into many languages, Frutiger explores the depth
and breadth of symbols, but the most important
aspect for him, easily seen from the German title,
is the human (“Der Mensch”). Symbols are created,
changed, and used by and for humans. His studies
exhibit connections between various cultures when
it comes to sign usage and design.

He also explores such signs as a modern lan-
guage, and their importance for visual communica-
tion and identity building, along with the develop-
ment of the Roman alphabet. He concludes this book
with a very wise statement:

Alphabetic signs alone have long been insuf-

ficient to record and convey human thoughts

and statements. Orientation and communi-

cation would be impossible today without dia-

grams, signs and signals. Written or printed

expression is necessarily complemented by pic-

torial communication. (Adrian Frutiger [3])

With the loss of Adrian Frutiger, one of the
great minds of typography is gone. He and Hermann
Zapf [8] together formed the ground of font design
and typography like no others in the twentieth cen-
tury. Frutiger’s knowledge and insights into the craft
will be guidance for many generations of typeface
designers to come:

On my career path I learned to understand

that beauty and readability—and up to a cer-

tain point, banality—are close bedfellows: the

best typeface is the one that impinges least

on the reader’s consciousness, becoming the

sole tool that communicates the meaning of

the writer to the understanding of the reader.

(Adrian Frutiger [7])

References

[1] Charles Bigelow. Philosophies of Form
in Seriffed Typefaces of Adrian Frutiger.
http://goo.gl/1aekRD.

[2] Eye Magazine. Reputations: Adrian Frutiger.
http://goo.gl/BwjAow.

[3] Adrian Frutiger. Signs and Symbols: Their Design

and Meaning. Watson-Guptill Publications, 1998.
[4] Linotype. Nachruf auf Adrian Frutiger.

http://goo.gl/J4CQ3X.
[5] Linotype. Typography as the highest form of visual

communication—a talk with Adrian Frutiger.
http://goo.gl/4AKvDv.

[6] New York Times. Adrian Frutiger dies at 87.
http://goo.gl/5IdcBp.

[7] Swiss Foundation Type and Typography, editors.
Adrian Frutiger Typefaces: The Complete Works.
Birkhäuser Verlag, 2008.

[8] TUGboat, 36(2):92–99, 2015. Remembrances
of Hermann Zapf. http://tug.org/TUGboat/
Contents/contents36-2.html.

⋄ Norbert Preining
Japan Advanced Institute of

Science and Technology
Nomi, Ishikawa, Japan
norbert (at) preining dot info

http://www.preining.info

184 TUGboat, Volume 36 (2015), No. 3

Thomas Koch, 1964–2014

Joachim Schrod

A little more than a year has passed since Thomas
Koch, former president of DANTE e.V. from 1998–
2002, died suddenly and unexpectedly on July 24,
2014.

I don’t remember exactly when we first met. I
think it was at the Karlsruhe TUG conference in 1989,
but it may also have happened at DANTE’s autumn
conference in Eichstätt, in the same year. What
I do remember very vividly, as if it had happened
yesterday, is this first evening we spent together.

Thomas was a very unusual person. He had
already finished a full master’s degree study in the-
ology, went to the seminary to get his ordination to
(Catholic) priesthood, and abandoned that goal to
start studying computer science instead. He consis-
tently evinced two main traits: he was interested in
all kinds of people, and he was interested in talking
about all kinds of topics, without limits. This first
evening, we talked about books and typography—of
course, it was a TEX conference— jumped from there
to critical editions, meandered through medieval li-
brary attitudes, sprang to baroque music, compared
that to contemporary modern music and free jazz,
went on about electronics’ usage in music and ended
up discussing the future of IT data centers. There
may have been even more topics, but these I still
remember after 26 years.

You could throw any and all topics at him; he
was always interested and willing to talk. Curiosity,
like a child, always willing to be taken by surprise,
was one of his main traits. Thomas was new to
the TEX community at this time. Nevertheless, he
immediately started to engage himself. Eventually,
he became the DANTE coordinator for OS/2 in 1995—
these were the times when TEX communities existed
mostly to help folks get a TEX system up and running
at all. In that capacity, he helped many people in
the German TEX community and made himself a
name as a sturdy guy whom you can rely upon.

His special background, having studied both a
humanist and a scientific subject at a master’s degree
level, together with his broad interest in topics and
people, made him well known and fully accepted
by all parts of the German TEX community. When
differences about the future course of DANTE led
to internal frictions, he stood up, was voted in as

president in 1998, and took our organization’s helm
to steer us back to calmer waters. He succeeded in
scaling back animosities, calmed down controversies,
and brought quarreling factions back to the same
table. Sometimes having been a priest-in-training
seems to help, after all. In his presidential term,
he was instrumental in guiding DANTE to focus on
delivering better services to both its user group mem-
bers and the larger TEX community as a whole. His
term as president resulted in major investments by
DANTE into the TEX Live CD, CTAN CD, ProText
CD, and other developments that were not on the
front burner before. Investments that are very visi-
ble until this day—I just received this year’s TEX
Collection disc from TUG this week.

His career at T-Systems, where he was responsi-
ble for the enterprise and cloud architecture of this
major German IT outfit, didn’t leave him much time,
though, so he stepped down from his president’s job
in 2002 and passed that to Volker RW Schaa. Of
course, he was still involved in the German TEX com-
munity, and sought after for his experience as former
president—and besides, all his work also didn’t pre-
vent him being our best man at Christine’s and my
wedding in 2007. In 2014, we saw each other quite
often; the last time, we discussed his plans for his
50th birthday, soon to come.

That phone call on a Friday, a year ago, when
his partner Dorothea called us to say that he died un-
expectedly and without any known cause, destroyed
an important part of my life. It needed a year before
I was able to write this commemoration . . . please
bear with me if it got too personal. RIP, Thomas,
we miss you. I miss you.

TUGboat, Volume 36 (2015), No. 3 185

DANTE e.V. 2015 meeting reports

Stefan Kottwitz

Editor’s note: DANTE e.V. (www.dante.de), the
German-speaking TEX user group, holds regular
meetings, both large and small. Stefan offered to re-
port on two major ones this year, and we were pleased
to accept, following his report on TUG’15. These
were originally posted on latex-community.org by
the author; edited for TUGboat, with permission.

DANTE spring meeting 2015

From April 16th to April 19th, 2015, the spring meet-
ing of the DANTE e.V. took place at the University
of Applied Sciences in Stralsund, Germany.

The director of the economic research institute
opened the meeting with a few words, Herbert Voß
then spoke for DANTE. We were sitting in a big
lecture room, with WiFi and power sockets provided.
There was another room for coffee breaks, where we
could find delicious cake and nice talks at bar tables.

Dominik Wagenführ gave the first talk. He spoke
about producing e-books in EPUB format from ex-
isting LATEX documents. He showed several tools
for conversion, such as latex2rtf and tex4ht. His
conclusion was that existing conversion methods are
not perfect, but it’s doable with some manual effort.

Walter Entenmann followed with a presentation
about TEX and Perl working together. Perl is a very
capable scripting language with particular strengths
in string processing. He demonstrated a workflow
where Perl works on a data set and generated a TEX
file, which is then processed by pdfLATEX to produce
a PDF file.

Martin Schröder spoke about TEX in the third
millennium. His presentation is nearly a tradition,
as he has made similar talks during other meetings,
and they develop as TEX and friends develop.

Dominik Wagenführ ended the first day’s session
with a talk on his own template for job applications.

The evening meeting was in the Spanish restau-
rant Bodega at the new market place. I came a bit
late and it was harder to find a place than in the
lecture room. But I was lucky and arrived at a nice
table with interesting talks. I bet the other tables
would tell the same.

Shortly before 9 pm we challenged the restaurant
by all paying at the same time, and went on a tour
at 9 with a “nightwatchman” through the old town.

At the second day, we started at 9:15 with the
formal meeting. It was opened by Herbert Voß.
He went first to association internals such as rev-
enues and expenses, elections, and a change in the
rules of the user group. Then it presented DANTE’s

participation in events such as open source meet-
ings and in project funding. When we talked about
projects, I briefly mentioned the TEX projects I cur-
rently maintain, such as the TEX Internet forums
latex-community.org, texwelt.de and golatex.

de, and we talked about possible support by DANTE

for the server operation.
Martin Kraetke of the company le-tex started

the afternoon program. He presented the program
docx2tex, software to convert Word documents to
LATEX. It is a command-line tool that generates XML

as an intermediate format and at the end also outputs
a LATEX document. Using a sample document, he
demonstrated the functionality and came to a pretty
good result.

Joachim Schrod discussed the state of CTAN

and explained the services it provides. He also gave
this presentation at this year’s TUG meeting, and I
wrote about it in the proceedings issue of TUGboat.

After a coffee break, Till Tantau presented his
graphics package TikZ. This is the front-end for the
graphics language PGF, which he developed over
more than a decade. PGF stands for Portable Graph-
ics Format. Impressively, it works with all TEX
engines (pdfTEX, X ETEX, LuaTEX, ConTEXt, TEX
in DVI mode), which allows for flexible usage. This
is one reason for its success. The (also excellent)
PSTricks package, on the other hand, has had a
harder time since PDF output has become dominant
and working via PostScript has been, for some users,
still a hurdle. The other advantage, in my opinion,
is the comfort of the graphics description languages
at the front end. For the development of TikZ, Till
Tantau received this year’s honorary prize of DANTE

e.V., together with the co-developers Vedran Miletić,
Mark Wibrow and Joseph Wright.

Returning to Till’s lecture, at first he showed
that even the huge TikZ package with (today) 4080
files and an 1165-page manual started small: it origi-
nally came with 22 files and 27 pages of documenta-
tion. This was version 0.62. He wrote it to use for
ten images in his doctoral thesis.

Then he showed some special points of his pack-
age. First, he demonstrated his passion for detail
with arrowheads. With TikZ, they are adjustable in
many ways, and can even automatically bend when
an edge is bent. Then, he demonstrated the auto-
matic generation of graphs: one defines some nodes
and certain edges relationships, plus certain desired
characteristics, then PGF/TikZ constructs a tree or
a graph. It does this meeting requirements such as
avoiding overlaps, having the fewest intersections,
maximum symmetry, minimal variations of the edge
lengths from a preset length, and minimal variance of

DANTE e.V. 2015 meeting reports

186 TUGboat, Volume 36 (2015), No. 3

the angles. The result should have a pleasing appear-
ance to the eye. And that’s usually what we want:
graphics for best visual understanding by humans.

The resulting graph can be determined in even
more detail: it can take format specifications, be
power-based by edges which work like springs and
react to pressure and pull, nodes having charges that
can repel, having important nodes with gravity, or
magnetism with alignment tendency at certain lines.
At the end, we would release those nodes and edges,
wait and see what we may get as an equilibrium state
according to our definitions. Sounds complicated,
but it is a smart thing: we start with certain node
relationships plus some meaningful internal proper-
ties, and TikZ delivers to us a useful graph which
matches our logical specification.

Here, we combine three languages: LATEX for
the document, TikZ for the graphics, and a DOT-like
language for describing the graphics with an concise
and powerful syntax. In addition, there’s Lua for
programming the underlying algorithms, as TEX does
not suit the job here. That’s worth knowing, because
we need to compile such graphs with Lua(LA)TEX.

In the following discussion, Dominik wanted to
know why the graph algorithms have been imple-
mented in Lua, instead of using existing GraphViz
libraries. They could be called externally. Till ex-
plained: the graph generation happens in the middle
of the TEX run, with sizes and node contents devel-
oping at runtime. It is quite difficult to generate
C++ class objects for such external libraries, to pass
them and then to process the results. Therefore, a
direct implementation is a natural decision, and it
avoids dependencies. LuaTEX is sufficient and al-
ready comes with TEX. We don’t have to get C++

libraries running on different systems.
One more interesting point: Till used a PDF

shading function to generate a scalable Mandelbrot
set image. It’s unusual for PDF as a fairly rigid
page description language to be able to calculate
iteratively or recursively like PostScript. It’s espe-
cially notable because by using a shading function
he exploited a leak in PDF.

I was interested in what news we can expect in
the near future for TikZ. Of course nobody can know
for sure, as everything depends on time and interests,
but Till Tantau showed clear interest in the use of
SVG format as an additional output format. This
format allows, for example, animations, and it is very
portable. Modern web browsers can handle SVG.

The last presentation for the day was by Uwe
Ziegenhagen. It was about the Org mode of emacs.
This turns Emacs into a tool for outlining texts, for
collecting notes, for creating todo lists and project

planning. It can output in various formats: LATEX,
ODT, HTML and DocBook, for example. Uwe ex-
plained the installation and demonstrated the usage
with a sample document. Finally, he explained how
you can configure the export, for example, which
LATEX packages should be used and which macros
would be assigned.

After so much time in the lecture room, many
of us chose not to take the bus but rather walked
back from the university into the old town. That
was a nice walk along the waterfront, taking almost
an hour, with pleasantly sunny but cold weather.
Again, it was a good opportunity to chat.

For the evening, there were tables booked in the
Golden Lion restaurant in the Old Market. That
was a short walk through the old town area, near
our hotel. A soup was served at the table, then we
could select from a very rich and very good buffet.
We had good discussions, so the evening passed by
quickly. After midnight, our remaining small group
walked back to the hotel.

On the third day, Günther Partosch presented
two talks. One was about making PDF documents
following archival standards, and the additional work
required. Such documents should survive changes
in operating systems and technologies and should
be reproducible in the same way on different sys-
tems. So, a basic requirement is embedding all
fonts, images and color information in the file it-
self. He used the hyperxmp package for embedding
metadata, and hyperref with the pdfa option to
generate a (mostly) PDF/A compliant document.
glyphtounicode.tex was used to map glyphs to
Unicode characters, as required by PDF/A. Com-
pression needs to be switched off.

In the second talk, he demonstrated how to
generate a glossary, a list of acronyms and a list of
symbols, all using the glossaries package. He did
it using real code examples.

Doris Behrend showed us examples of school-
work and exams of the last fifty years. We could see
how aesthetics and aspirations developed over time.

Then there was barbecue at the campus. One
more tourist highlight followed: a visit of the Ozean-
eum Stralsund, a huge aquarium and sea museum.

With the interesting talks, the many chats in
the breaks, and the outside program, the meeting
was a great experience. Many thanks to DANTE and
the organizers, especially to Christina Möller, Silke
Krumrey, and the university of Stralsund.

DANTE autumn meeting 2015

DANTE’s autumn meeting took place on Saturday,
September 5th, 2015, at the Graz University of

Stefan Kottwitz

TUGboat, Volume 36 (2015), No. 3 187

Technology in Austria. Coming from Hamburg in
northern Germany, I likely had the farthest journey,
though it was pretty easy, as I could take a flight via
Frankfurt to Graz. I must admit that it was not too
difficult as I work for an airline.

At 9 am on Saturday morning, our president,
Martin Sievers, started the meeting with introduc-
tory words. The local organizer Andreas Läßer gave
the initial welcome, and provided information about
things beside the official program. We had the usual
functional meeting time with talk about ongoing
projects and all the things DANTE is involved with.
As often happens, we had a short discussion about
the usefulness nowadays of the TEX Collection DVD.
I understood that the consensus is to keep it. One
factual reason is that the production is quite cheap.
Furthermore, sending them to all members is easier
than organizing who likes to get it and who does not.
I suggested to add a simple suggestion to the cover
letter: if you don’t plan to use the DVD, give it as
a present to friends or persons who would like to
test TEX. So it’s also good for spreading the word,
which probably would not be the case if it came on
a USB drive. Besides that, there’s an enormous cost
difference in several thousand factory-made DVDs
compared to USB drives. Personally, I appreciate
having the DVD in the hand. I remember times trav-
elling around without a good Internet connection,
desperately searching in newsstands for computer
magazines which might have a TEX distribution in-
cluded. I never found one at that time. There are
many Linux versions on DVD in computer magazines,
but I never saw a TEX DVD or CD with a magazine.

Herbert Voß made the first presentation. He
showed how to proceed from the commonly used
pdfLATEX to X ELATEX and LuaLATEX. Besides show-
ing the few necessary steps, he demonstrated how
to use the system fonts in Linux and Windows with
LATEX. A skeptical user asked, why change the en-
gine, as there are already many high quality fonts
available? Herbert’s answer was clear: switching
the engine and changing some lines in the preamble,
which is well-documented, is much easier than inte-
grating a new font into LATEX. If a font lacks direct
TEX support, it can become difficult with pdfLATEX.
And there are occasions when you don’t have a choice,
such as when a university or company requires the
use of a particular corporate typeface.

Martin Sievers followed with a talk about mak-
ing historical-critical editions with LATEX. He showed
how to use the package (r)eledmac for this purpose.

Then we had lunch in a tavern nearby. The
lunch and soft drinks were without charge; thanks

to DANTE, the budget allowed lunch and dinner free
of charge for meeting attendees.

After lunch, I gave a short talk about discus-
sion and support for LATEX on Internet forums. We
took a tour through some forums which I main-
tain, such as latex-community.org, TeXwelt.de,
goLaTeX.de, and TeXnique.fr, the last of which
was recently started with French TEX friends. I
demonstrated our fully automated method of adding
LATEX examples with output image and thumbnails,
including compiling and Ghostscript conversions, to
TEX galleries, such as provided on TeXample.net

and LaTeX-Cookbook.net. Following this, we had a
talk about functionality and possible improvements
and future plans. People were interested, as DANTE

supports the server hardware which runs the forums.
We spoke about data dumps of publicly accessible
data, NNTP interfaces for the forum software. Fur-
thermore, there were some interesting thoughts which
could be programmed, such as a central dashboard
serving several forums and sites with aggregated
RSS feeds and a central panel for interested users,
consolidated cross-site search, and further small im-
provements for convenience.

Herbert Voß then made a second presentation,
this time about automated document generation. He
discussed a shell script which collects weather data
over time from a web site, inserts it into a LATEX
document, processes it with pdfLATEX and copies it
to a server for worldwide access.

The final talk was made by Doris Behrend. She
provided an experience report about using LATEX
in a seminar at a secondary school. There, writing
with LATEX was compulsory. She talked about the
challenges and results with LATEX beginners at this
level. There were interesting and good results shown.
Of course, we cannot expect a high typographic
aspiration of LATEX beginners. I guess, for those
people who mastered that seminar, using LATEX at a
university would be natural from the start.

In the evening, we met for dinner in the Glöckl-
bräu tavern. Besides excellent spare ribs, they served
an excellent local beer.

On Sunday, there was a bus excursion in the
southern Styrian wine country. I did not attend since
I had to return home, but I heard only good things.

Thanks to DANTE and to the sponsoring insti-
tutes of the TU Graz, especially to Andreas Läßer,
for organizing this great meeting.

⋄ Stefan Kottwitz
stefan (at) texblog dot net
http://www.latex-community.org

DANTE e.V. 2015 meeting reports

188 TUGboat, Volume 36 (2015), No. 3

TEX in schools: Just Say Yes!

Simon Michael Laube

Abstract

This article not only describes why using LATEX as
an application program for typesetting in schools is
a good idea, but also lists several benefits.

1 Introduction

The modern student has to write reports and ar-
ticles often—especially if one studies any kind of
engineering. When it comes to scientific publishing,
(LA)TEX is definitely the right choice for typesetting,
so introducing LATEX into schools could obviously be
useful. However, due to the commonly used word
processors young people do not even know about real
typesetting systems, and that is a shame. This paper
is intended to point out the benefits of using LATEX
as an application program for students. Further,
it is more or less an answer to the article “TEX in
Schools: Just Say No”, written by Konrad Neuwirth
in 1990 [1], who claimed that TEX should not be
used as a programming language in schools.

As I am still a student in Austria, the expressed
opinions are related to the Austrian school system,
but could be adjusted to other countries too. More-
over, this paper is meant to be valid for upper-
secondary schools or higher educational institutions.

2 The benefits of LATEX

as an application program

Konrad Neuwirth’s article was written at a time
when computers were still rare in Austrian schools.
Since that time, much has changed—students are
using computers every day, either at school or at
home. Engineering schools have also started to teach
programming languages like C or Java to every stu-
dent, as they are an important skill in the modern
world. Konrad Neuwirth considered using TEX as
a programming language in schools, which is not
the aim of this paper—although students are more
confident with programming nowadays, so it would
not be a big problem.

Nevertheless, LATEX should be used by students
as an application program only and should definitely
not be more than that. Thus, it is important to
guide beginners through the first steps, because they
have to be aware that writing a document in LATEX
is not a fancy point-and-click adventure (the mouse
is not used that often) they are used to. Once they
have learned the basics, students are prepared to use
LATEX for their daily work.

There are many benefits of using LATEX in schools,
but most of them are also valid and essential for
LATEX itself. One of the most important points—
especially for young people— is that LATEX forces
its users to structure a document. Students often
find it very hard to structure things like their daily
timetable, the priorities of tasks and—of course—
documents. Normal word processors do not require
a strict structure within a document while LATEX
obviously does. Structuring can help people to save
considerable time, either at work, school or in their
free time and therefore it is an important skill.

Second, students will learn to concentrate on
the content of a document, not on its layout when
using LATEX. I personally do not completely agree on
this point—although I am emphasizing it—as many
people often find themselves searching for the best
design for their LATEX document, but for schools
a completely different approach has to be taken.
Teachers often use their own requirements for the
student’s documents, such as homework and project
reports. How about coding these requirements in
LATEX and passing the macros to the students instead
of telling them how to format their document? When
doing so, the students will definitely produce better
content as they are able to concentrate on their
topic, while the formatting stays the same for every
document.

Another important fact is that LATEX makes
group projects more productive due to two features:

• file format
• subfiles

LATEX’s text-based file format is not an advantage
an average student would primarily think of, but it
could save plenty of time when different people are
working on the report of a group project or some-
thing similar. Text-based means that the file is pure,
human-readable text with a specific encoding, noth-
ing more. This feature ensures compatibility across
systems and engine versions and could be even more
important in larger groups. The commonly-used
word processors do not always ensure this compati-
bility as they often have commercial and open-source
versions as well as different versions of one product.
Most of the word processors are somehow text-based
too, as they use a zipped file tree with XML files to
save a document, but this structure does not ensure
compatibility in any way.

A second advantage of LATEX for group projects
is the use of several text parts located in subfiles,
which can easily be included into a main document.
Thus, each group member can work on one or more

Simon Michael Laube

TUGboat, Volume 36 (2015), No. 3 189

text files, which are then included into the group’s
master file—LATEX does the rest and keeps references
correct.

2.1 LATEX in non-engineering schools

All the points mentioned above have one thing in
common: they are all about structure. As previously
mentioned, students often find it hard to structure
something. Things get even harder when people are
not confronted with structuring every day, because
their profession or education does not require it.
Students of engineering schools have a bit of an
advantage here, because their strict mathematical
and logical education forces structuring more than
the education of students at non-engineering schools.
Both of them are experts in their profession, but
cannot get used to LATEX in the same way.

Nevertheless, LATEX could also help people at
non-engineering schools that do not need formulas
and equations. It could help them producing more
readable pieces of text, which is very important—
especially when texts get very long. They are able to
learn which fonts to choose to ensure the maximum
reading convenience. Long and theory-laden texts
could be reproduced using LATEX to make learning
them more efficient and less tedious.

2.2 LATEX for teachers

LATEX could not only be a good tool for the students
at a school, but also for the teachers. One main ad-
vantage of LATEX for teachers is the abovementioned
possibility of creating and distributing formatting
templates (classes and packages) which the students
can then use to create documents with the desired
look and appearance. In a scaled-down approach,
teachers do not always need to write whole packages
to get what they want. Simple macros could also
be written and distributed to fulfill special tasks,

for example special-looking lists or anything similar.
The key point of that all is again, compatibility.
Formatting templates in LATEX are compatible with
different systems and installations, whereas word
processors often have their problems with that.

Another notable advantage of LATEX—when it is
used by teachers— is that they can use the program
to typeset their scripts in a better way. For example
large scripts can be maintained more efficiently if a
version control system is used. Further, the scripts
can be typeset in an easily readable form, as men-
tioned in the previous section, to make them better
understandable for the students. Some teachers only
use their scripts in a digital form. In this case even
animations within the script are possible and useful
as they show technical drawings and processes in
more detail.

3 Conclusion

All in all LATEX does a great job in schools. I have
experienced the great possibilities of LATEX at my
own school and I would definitely recommend the
program to every student. Sure, at the beginning
it is hard to get used to LATEX, but it is worth the
effort as it greatly improves the working process of
writing a document and therefore:

Just say yes!

References

[1] Konrad Neuwirth. TEX in schools: Just
say no. TUGboat, 12(1):171–174, March
1990. http://tug.org/TUGboat/tb12-1/

tb31kneuwirth.pdf.

⋄ Simon Michael Laube

Wieselburg, Austria

simon dot laube (at) gmx dot at

TEX in schools: Just Say Yes!

190 TUGboat, Volume 36 (2015), No. 3

Smoky letters

Linus Romer

Abstract

The wish for an individually designed thank-you card
led to the idea of developing a “smoky” capital D
that would look a bit different with each compilation
but still elegant, such that it could be combined with
a copperplate font to form the word Danke (German
for thanks). This project was substantially facilitated
by METAPOST and its random number generator.

anke
From a single path to a bunch of paths

For a quick start, I read the coordinates of the most
important points (mainly extrema) of the letter D in
the Calligra font using the FontForge editor. These
points were connected in a path like this:

1

2

3

4

5

6

7

8

9
10

11

12

13

14

beginfig(0);

u:=1mm; % standard unit

pickup pencircle scaled .2pt; % pen size

z1=(21u,34u); z2=(48u,52u); z3=(60u,42u);

z4=(26u,20u); z5=(8u,36u); z6=(52u,65u);

z7=(82u,40u); z8=(39u,0); z9=(6u,7u);

z10=(0,4u); z11=(13u,0); z12=(50u,13u);

z13=(68u,36u); z14=(91u,53u);

draw z1..tension 1.5 and 1..z2{right}..

z3{down}..tension 1.5 and 1..

z4{left}..z5{up}..tension 1.4 and 1..

z6{right}..z7{down}..z8{left}..

z9{left}...z10{down}...z11{right}

..z12..z13..z14;

endfig;

Then, a replacement for the draw macro was needed,
namely smokydraw. This new macro shifts the main
points of the path and constructs a new path with
the same directions and tensions as the original path:

1

2

3

4

5

6

7

8

9
10

11

12

13

14

In the final version of smokydraw the stem widths
are additionally changed by using random numbers
(normaldeviate).

def smokydraw expr p =

save widths,k,n,smokypath;

numeric widths,k,n;

k=length p;

n=10; % number of curves on each side

for j=0 upto k: % set random widths

widths[j]=5u*abs(normaldeviate);

endfor

path smokypath;

for s=1,-1: % both sides of p

for i=1 upto n: % curve index

smokypath:=

for j=0 upto k-1: % point index

(point j of p shifted

(dir(angle(direction j of p)+90)

*i/n*widths[j]*s)){direction j of p}

..tension posttension j of p

and pretension j+1 of p..

endfor

(point k of p shifted

(dir(angle(direction k of p)+90)

*i/n*widths[k]*s)){direction k of p};

draw smokypath;

endfor

endfor

draw p % original path (in the middle)

enddef;

smokydraw needs a predefined standard unit u and
the macros posttension and pretension as de-
scribed in The METAFONTbook. Enjoy!

⋄ Linus Romer

Oberseestrasse 7, Schmerikon, 8716, Switzerland

linus.romer (at) gmx dot ch

Linus Romer

TUGboat, Volume 36 (2015), No. 3 191

About the DK versions of Lucida

Charles Bigelow

Donald Knuth’s informative and amusing letter, “A
footnote about ‘Oh, oh, zero!” [4], tells of his efforts
in the late 1960s to reduce confusion between capital
letter ‘O’ and zero in the typography of computing
journals and books, when he recommended to the
ACM (Association for Computing Machinery) and
his publisher Addison-Wesley a new, squarish shape
of capital ‘O’ to distinguish it from oval zero in
fonts that simulated typewriter (fixed-width) text.
After much correspondence, ACM did not follow his
suggestion but Addison-Wesley did, commissioning
a special squarish ‘O’ for the first volume of The Art

of Computer Programming.
A dozen years later, Don designed a squarish

capital ‘O’ for Computer Modern Typewriter, which
he made with his newly developed Metafont system.
His beloved squarish ‘O’ is now standard in his own
books and in publications of others who use his
Computer Modern typefaces.

He doesn’t explicitly state in his “Footnote”
(maybe it seemed too obvious to mention) that in ef-
fect he was proposing a new parameter of typographic
distinction: “squarishness” versus “roundishness” of
curves (my words) within a typeface.

Structure of a typeface design

The graphical structure of a typeface design is built
from a complex set of distinctive features, some of
which apply within a face, and others of which apply
between faces. Within a face, several features like
round, straight, and diagonal, ascender or descen-
der, dot or no dot distinguish individual letters from
each other. Groups of letters are distinguished by
a few features, including height, width, pointyness
(which distinguishes punctuation (hence the name)
from letters proper) and weirdness (for lack of a bet-
ter word) for characters like @ # $ % & that look
somehow weirder than letters, are usually logographs
symbolizing a word rather than a single sound, and
for which people can’t seem to agree on names or
purported historical derivations. For instance, com-
mercial “at” @ (plausibly derived from a contracted
ligature of Latin “ad” meaning “at, to, toward” but
poorly attested before the 16th century) is called “at”
by most English speakers, but its name varies won-
derfully from language to language, with meanings of
ear, strudel, elephant trunk, monkey tail, and so on;
number sign # (probably an abbreviation of Latin
“numerus” meaning “number”) is variously called
“hash”, “octothorpe”, “pound”, “sharp” and “number”
in English. I expect that readers will enjoy noting

other names and suggesting alternative derivations.
When we read, we recognize all these kinds of

distinctions almost unconsciously because they are
part of our passive “vocabulary” of typographical sig-
nifiers. They help us understand the structuring of
text. In type design, these distinctions are elements
of a designer’s active graphical vocabulary, the con-
ceptual toolkit used to shape the look of information.

Graphical distinctions within and between cap-
itals and lower-case, roman and italic typefaces have
been devised, refined, and standardized since the
early 15th century, when humanist scholar and scribe
Poggio Bracciolini developed the humanist handwrit-
ing that eventually became canonical roman type.
Thanks to Poggio, nearly all Latin text typefaces con-
tain two alphabets: upper-case (capitals) and lower-
case (small letters), and thanks to Poggio’s friend,
Niccolò Niccoli, who wrote a cursive variant of Pog-
gio’s hand, roman has been distinguished from italic.

Over time, the capitals gained semantic import;
marking a significant distinction. A “Bill” is a per-
son, but a “bill” is an invoice, a bird beak, or a cap
brim. I can attest that something similar applies to
“Chuck” and “chuck”. The distinction between upper-
and lower-case is therefore graphemic; the graphical
difference signifies a difference in meaning. Interest-
ingly, the patterns of capital usage differ between
orthographies. In German orthography, initial capi-
tals mark nouns and are correspondingly frequent,
whereas in modern French, capitals are rather rare
except at the beginnings of sentences and personal
names. In English orthography, capital usage was
fairly frequent in earlier centuries but has diminished
since the 19th century.

Size. Capital letters are comparatively bigger,
as denoted by their Latin-derived name “majuscule”
(biggish) and lower-case letters smaller, in Latin “mi-
nuscule” (smallish). The Latin majuscule/minuscule
distinction is rare among typographic writing sys-
tems, occurring first in Latin type, and later in Greek,
Cyrillic, and Armenian types influenced by the Latin
model but deriving their capital versus lower-case
forms from different roots and by different means.
The “case” distinction is not found in most other
writing systems, including Hebrew, Arabic, Chinese,
Korean, Japanese, or the several related systems used
in India, such as Devanagari for Hindi and Sanskrit.

Width. The width of characters is another dis-
tinction. In proportionally spaced typefaces, capital
‘O’ is wider than zero, which is usually adequate for
differentiation, but the width distinction is almost
neutralized in monospaced (fixed-width) fonts, and
that is where confusion between ‘O’ and zero most
commonly occurs.

About the DK versions of Lucida

192 TUGboat, Volume 36 (2015), No. 3

Marks. The dot over the minuscule letter ‘i’ ap-
peared in the late middle ages as a light stroke over
the letter ‘i’ in blackletter “textura” script, to mark
the letter as separate from other so-called “minim”
letters. The dot, along with later accents and dia-
critics, like those proposed in the 16th century by
French typographer Geoffrey Tory, has been contin-
ued in most Euro-Latin typography, and there are
occasional extensions when adapting Latin letters to
other languages or clarifying distinctions, as in fonts
for linguistics. Hence it seemed natural to add marks
to distinguish capital letter ‘O’ from zero when con-
fusion between the two cropped up in the early days
of computing.

In my article “Oh, oh, zero!” [2], which Don
Knuth “Footnoted”, I gave examples of various pro-
posals from computer journals and typography jour-
nals for distinguishing ‘O’ and zero. These included
the addition (or rarely, subtraction) of slashes, dots,
loops, bars, and other twiddles to ‘O’ or to zero.
Proposals from scientists, technologists, engineers, or
mathematicians usually added distinguishing marks
to the ‘O’, keeping their zero pristine in its symbolic
mathematical emptiness. Proposals from humanists,
artists, scholars and designers added distinguishing
marks to the zero, keeping their capital letter ‘O’ by
historical precedent and charismatic authority, citing
the classical Roman inscriptions, or the famous story
of the early Renaissance painter Giotto, as told by
Giorgio Vasari. When an emissary from the Pope
asked Giotto for a drawing to show his skill:

Giotto . . . took a sheet of paper, and with a brush
dipped in red, fixing his arm firmly against his side
to make a compass of it, with a turn of his hand he
made an ‘O’ [tondo] so perfect in curve and contour
that it was a marvel to see it.

Giorgio Vasari, Lives of the most excellent

painters, sculptors, and architects

(Here I translate Vasari’s Italian word “tondo” as
‘O’ in English, but it can also be translated with
justification as ‘circle’. Modern Italians do both when
referring to Vasari’s story, sometimes saying ‘cerchio’
(circle) or ‘O’ instead of “tondo”, which incidentally
also means “roman” when referring to a typeface.)

The skill of drawing a marvelous ‘O’ was not
lost with Giotto. The late Fr. Edward Catich, who
revived the painting and carving of Imperial Ro-
man Inscriptional capitals, could paint a wonderfully
round capital ‘O’ with two strokes of the brush, in
keeping with his analysis of how the Trajan capitals
were painted and carved back in 113 A.D. When
Catich would demonstrate this to the admiring gasps
of onlookers, he would grin and say, “Perfetto come
la ‘O’ di Giotto.” Kris Holmes, who studied with

Catich briefly and with Catich’s pupil, Fr. Bob Pal-
ladino, can recount his other feats of brush-writing
mastery, including writing a perfect Roman capital
‘R’ behind his back and upside down.

Contrast. A distinction called “contrast”, or
modulation of thick and thin strokes, was used in
“old-style” types from the 15th to the late 18th cen-
tury, and in modern revivals, in which the figure zero
was cut approximately at lower-case height but as
an annulus, an unmodulated ring without thick-thin
variation, distinguishing it from the lower-case ‘o’,
which retained the varying line thickness of the hu-
manist pen written letter. Contrast is also a major
feature of the typeface genre called “modern”.

In his 1960s suggestion to Addison-Wesley, Don
proposed a new way to distinguish the curve of the
‘O’ from that of the zero: “squarishness” versus
“roundishness” (my words). Although, as he relates,
Addison-Wesley followed his suggestion, it wasn’t a
generally practical or enduring solution. In Metafont
some ten years later, Don implemented his solution as
a parameter he called “superness” (from Piet Hein’s
term “superellipse”) [5]. Superness “controls the
amount by which the curve differs from a true ellipse.”
Thus, Don gave squarishness versus roundishness in
typeface design a precise algebraic expression: the ex-
ponent of the general equation describing the ellipse.

The classic ellipse of the conic curves analyzed
by Greek mathematicians is algebraically described
by an equation of degree 2. In the early 19th century,
the French mathematician Gabriel Lamé generalized
the ellipse by varying the exponent. In particular,
an exponent above 2.0 makes the corners of the
ellipse smoothly bulge or inflate beyond the classical
elliptical oval. In 1959, Danish polymath Piet Hein
empirically determined that an ellipse of degree 2.5
was, for him, the most agreeable compromise between
the ellipse and the rectangle, and he used the shape
to design a traffic oval. Hein called the ellipse of
degree 2.5 a “superellipse”. I believe that, to date,
Metafont is the only type design tool that provides
control over this parameter.

In “Oh, oh, zero!” [2], I also showed samples of
recent digital fonts that distinguish zero and ‘O’ by
various means, but I neglected to show a sample of
Computer Modern Typewriter (shown here in fig. 1),
although Karl Berry used CMTT in his “Production
Notes” on the article [1], which shows instances of the
squarish ‘O’. Knuth refers to this in his “Footnote”.

In this note, I wish to correct my oversight and
also to relate my subsequent efforts to respond to
Don’s appeal for a squarish ‘O’ for Lucida Console,
a typeface that Kris Holmes and I designed in 1993,
based on our Lucida Sans Typewriter of 1986.

Charles Bigelow

TUGboat, Volume 36 (2015), No. 3 193

Squarish ‘O’s in Lucida

At the end of his TUGboat “Footnote”, Don wrote:

Alas, however, Chuck’s essay demonstrates that
I’m still standing alone in this respect: None of
the nine monospaced typefaces in his Fig. 9 have
anything like an Oh that I would want to use.
(Nowhere did I see a really satisfactory Oh in
Chuck’s discussion until I came to Karl Berry’s
production notes at the end, and Karl’s reference
to ZeroFontOT.otf.) I herewith submit a humble
request to have squarish O and Q available as
alternates in the next edition of Lucida Console.

I could not ignore Don’s appeal, nor the chal-
lenge inherent in it, so I set about crafting a squarish
‘O’ for Lucida Console, but I began with Lucida
Grande Mono, the most general case of three nearly
identical designs: Lucida Sans Typewriter, which was
designed to look like Lucida Sans but monospaced,
Lucida Console, a version of Lucida Sans Typewriter
with shortened capitals for the console/terminal win-
dow(s) of an operating system, and Lucida Grande
Mono, which has the taller capitals of the original de-
sign, the larger character set of Lucida Console, and
various small adjustments based on three decades of
experience with the original design.

Of course, the task of making a simple squarish
‘O’ turned out to take much longer than I estimated.
I figured it would take a few weeks, with interrup-
tions and hiatuses, but it took several months. The
practical difference between estimate and reality con-
formed to a Knuthian heuristic for estimating the
length of time a project will take: make your best
estimate in some time unit, add one, and jump to
the next higher level of time measure.

Now that the fonts are at last done, Karl has
asked me to write some words about the design pro-
cess. I wish I could describe it as a clear, precise, and
logical process but I must confess that, to borrow
and invert a phrase used by Leslie Valiant for evolu-
tionary “ecorithms” (contrasted with “algorithms”),
I used a “probably approximately incorrect” method.

I started with the capital ‘O’ character from
Lucida Grande Mono as the most general case, as de-
scribed above. This is the same glyph as the original
‘O’ from Lucida Sans Typewriter (fig. 2 shows the
outline of the ‘O’ and zero glyphs). It had been hand-
drawn in 1986, digitized with Peter Karow’s Ikarus
software as contour points on cubic Hermite splines.
Those were converted to conic splines at the Imagen
Corporation, using a contour representation devel-
oped by Vaughan Pratt at Stanford, and first con-
verted to bitmap fonts and released in 1986 as Lucida
Sans Typewriter. The Ikarus splines were later con-

O 0
Figure 1: Computer Modern Typewriter (10pt design
size, enlarged): capital Oh (left) and zero (right).

Figure 2: Hand-drawn capital Oh (left) and zero
(right) in Lucida Grande Mono (originally Lucida Sans
Typewriter).

verted to Sun Microsystems’ F3 general conic format
developed by Jacobo Valdes and Eduardo Martinez
(also based on Pratt’s conics). In 1990, we converted
the Ikarus font to TrueType format for Microsoft,
and some years later, to Bézier format for Adobe.

The original Lucida Sans Typewriter capital ‘O’
is elliptical-ish, somewhat more squarish than a true
ellipse. The shape was drawn visually; its slightly
greater width and squarishness helped distinguish
it from the zero and gave it a little more interior
area within the Procrustean confinement of the fixed-
width typewriter cell. The zero is closer to a true
ellipse (fig. 3).

At the time of the original design, we debated
whether to put a slash in the zero to make a clear
distinction between zero and ‘O’. We eventually did
not add the slash because of various conflicts, the
foremost of which was possible confusion with the
Norwegian ‘Ø’ letter (which may have inspired the
null set symbol with slash, according to mathemati-
cian André Weil). Also, some computer scientists
and engineers— supposedly the main users of such a
font—disdained an altered zero. Moreover, one of
our goals for Lucida Sans Typewriter was to closely
resemble proportionally spaced Lucida Sans, which
of course did not have slashed zero. And, traditional
“typewriter” fonts also did not have slashed zero.

About the DK versions of Lucida

194 TUGboat, Volume 36 (2015), No. 3

Figure 3: Outer contours of above hand-drawn
capital Oh (left) and zero (right), compared to true
ellipses (inner contours) with the same major and
minor axes.

To gain a sense of what Don wanted in a squar-
ish ‘O’ shape, I examined the ‘O’ in his Computer
Modern Typewriter. My task would have been much
simpler if I had just imported his ‘O’s Bézier con-
tours from a PostScript font (originally made by
collective effort of Y&Y, Blue Sky Research, and
Projective Solutions), scaled it to the proportions
of Lucida Grande Mono, plunked it (along with ac-
cented variants) into the proper Unicode slots, and
been done with it. But, some four decades ago, when
Kris Holmes and I began working on type designs
together, she said it is a mistake to look at other type-
faces when designing a new one, because inevitably
you can’t get the other designs out of your head, and
that prevents you from creating something new from
your own concepts. Also, it’s more interesting, and
you learn more by starting afresh than by copying.

So, having looked at the squarish ‘O’ in Com-
puter Modern Typefaces, I closed the book and put
it back on the shelf. I then proceeded to craft a
shape that looked squarish to my eye by starting
from scratch. Designing a squarish ‘O’ for Lucida
wasn’t simply a problem of making a squarish ‘O’ but
of making a squarish ‘O’ that visually harmonized
with everything else in the typeface, although there
wouldn’t be any other letters like it except ‘Q’, or,
in an extended character set, Greek Omicron and
Theta, Cyrillic ‘O’, and the various accented ‘O’s.

In 1992 with Y&Y, developers of a PC-based
version of TEX, we developed Lucida fonts in Post-
Script Type 1 format for use with TEX. For character
contours, we tried to minimize the number of Bézier
points, to keep font file sizes small, and the conver-
sion from Ikarus format to PostScript Bézier put
on-curve spline points at the x- and y- extremes of
curves, in accordance with how we hand-digitized the

outlines. Having spline points at extremes facilitated
the later hinting of the PostScript outlines by Y&Y.
The capital ‘O’, then, comprised four Bézier curve
segments with four on-curve spline knots where seg-
ments joined, and eight associated off-curve control
points, or handles.

As using Bézier curve-based software for design-
ing fonts directly on computers became available,
another reason to minimize curve segments became
evident— it was difficult for designers to smooth
contours composed of many Bézier segments with
spline knots and handles that had to be controlled
by the unintuitive process of moving curve “handles”
(control points) around in the plane and sometimes
adding on-curve points. Cubic Bézier curves are
tremendously flexible; in addition to seemingly well-
behaved curves that look like (but are not exactly)
classical conic sections, Bézier curves can make a
vast number of loops, cusps, inflections, and other
surprising shapes that are never needed in type de-
sign but which can confound the visual artist trying
to control them. So, to get a handle on the curves
(sorry), designers tend to be minimalists, using as
few Bézier curves as possible if the curves must be
manipulated by hand and eye.

A problem with the minimalist approach is that
Bézier curves cannot exactly match true circles and
ellipses. Arbitrarily closer approximations can be
achieved by splitting Bézier arcs into shorter seg-
ments, but more segments involve more curve joins
and handles, which thus increase the probability of
making awkward joins, cusps, bulges, or dips, thereby
complicating the task of the designer working with
the curves. The minimization of Bézier segments
may be a reason that many of the typefaces devel-
oped directly on computer screens seem to me to
have subliminal similarity of curves. When I look at
the shapes of many recent fonts, I have a sense of
déja vu all over again, as the late philosopher Yogi
Berra is said to have said.

At any rate, because we had already reduced
the contours of Lucida Sans Typewriter to a near-
minimal number of Bézier curves when working with
Y&Y, I could start with that version and manipulate
the Bézier handles until the ‘O’ shape looked visi-
bly squarish. This went through several iterations
because I had to test the new ‘O’ shape in sample
settings with the rest of the typeface. When the ‘O’
looked outstandingly squarish, it didn’t jibe with the
rest of the characters in the font, but when it was
rather roundish, it didn’t quite look different enough
from the oval zero. As usual in type design, it wasn’t
enough to achieve a “just noticeable difference” be-
tween the two characters. What was needed was a

Charles Bigelow

TUGboat, Volume 36 (2015), No. 3 195

“definitely noticeable difference”.
I then experimented with making the interior

counter somewhat more squarish than the exterior
contour. This gave the shape an illusory shoulder-
padded look reminiscent of TV soap opera actress
costumes of the 1980s.

When I had an ‘O’ that seemed adequately
squarish, that wasn’t the end, because getting the
isolated shape to look right was not enough; it also
had to play well with others. Because the squarish
‘O’ was no longer in keeping with the ovality of most
of the other letters, I had to re-fit its sidebearings—
the spaces on each side. In a fixed-width font, side
spacing usually involves compromises because letters
like capital ‘I’ have lots of air around them, while
‘M’ and ‘W’ are packed in tight. The oval bowls of
the original ‘O’ had been adjusted to seem roughly
equal in spacing next to letters with straight sides
like ‘H’ or with round sides, like ‘C’ or ‘D’.

Compared to the oval bowls of the original ‘O’,
the sides of the squarish ‘O’ were almost upright, just
slightly bowed, so they seemed closer to other charac-
ters, and hence their side spacing had to be increased
to restore approximately equal letter spacing, but
in the fixed-width cell, the letter also had to be nar-
rowed to make room for the increased spacing. The
squarish form also necessitated adjusting the weight
of the character, because the straighter sides carried
more weight, since they didn’t as rapidly thin down
to the thinner horizontal arches. To make the squar-
ish ‘O’ seem the same weight as the original ‘O’ and
to match the visual gray tone as the other capitals,
I had to re-weight it, slightly shaving down the sides
and arches. In a fixed-width font with a fairly strong
stem weight like Lucida, this is another challenge.

If a fixed-width font is light in overall weight, it is
easier to adjust visual spacing and weight, but Lucida
Sans Typewriter (and hence Lucida Grande Mono
and Lucida Console) has a relatively sturdy weight
that makes it work well on back-lighted screens
(which tend to erode the visual weight of a font),
and also to work well in programming environments
that use color to denote aspects of code. But, darker
weight is harder to equalize because there is less
white space available.

To get quantitative correlation of visual intu-
ition, I rasterized the original ‘O’ and used photo soft-
ware to count the percentage of black pixels within
the cell, and did the same with the new squarish ‘O’.
I then adjusted the outlines of the squarish ‘O’ sides
and arches until the percentage of black pixels to
total pixels was approximately the same as that of
the original ‘O’, while keeping the visual look of the
verticals in keeping with other capitals.

Figure 4: Hand-made (with Bézier splines)
squarish Oh from Lucida Grande Mono (abandoned).

All that having been done, I made sixteen vari-
ants of the new, squarish ‘O’ and its siblings for the
WGL character set of Lucida Grande Mono (which
includes Unicode blocks Basic Latin, Latin-1, Latin
Extended-A, part of Latin Extended-B, basic Greek,
and basic Cyrillic). The new characters included
‘O’ versions with diacritics, OE digraphs, ‘Q’, Greek
Omicron and Omicron-tonos, and Cyrillic ‘O’.

I didn’t make the Greek capital Theta squarish
because, although traditionally similar in shape to
Omicron, which is the ancestor of Latin ‘O’, Theta
isn’t directly related to ‘O’, is a consonant not a
vowel, isn’t confusable with an unadorned zero, and
Greek mathematicians like Apollonius of Perga devel-
oped mathematics for traditional conics, not super-
ellipses. Figuring I needed cultural advice on this,
I asked the opinion of a Greek mathematician who
uses Lucida math fonts, Antonis Tsolomitis, and he
said that he didn’t think the Theta needed to match
the squarish ‘O’.

After all those new ‘O’s and related characters
were installed in the regular weight font, I made
bold versions following the same process. The bolder
weight made harmonization and fitting of the squar-
ish ‘O’ with the rest of the capitals an even more
elaborate process of refinement, because as weight
increases in a fixed-width cell, the character has to
be narrowed more in order to have adequate side
spacing. Next, I obliqued both regular and bold
versions to the same angle (11.3 degrees) and added
them to the italic styles.

After the four Lucida Grande Mono faces were
done, I then scaled down the squarish ‘O’s in the y

dimension to make all those characters all over again
for the four Console versions. All in all, the two font
families, Lucida Grande Mono and Lucida Console,
had 128 new squarish ‘O’-like characters (fig. 4).

About the DK versions of Lucida

196 TUGboat, Volume 36 (2015), No. 3

(By this time, I wished Don had “thinked dif-
ferent” (to convert an advertising phrase from Ap-
ple from imperative to past tense) and opposed the
common mathematician-scientist preference for mod-
ifying the ‘O’, and had instead requested a modified
zero. My task would have required only 8 new char-
acters instead of 128, saving four binary orders of
magnitude. And, if other scientists later asked for
variant ‘O’s instead of zero, I could have resisted by
citing Knuth’s great authority.)

After testing the final fonts for any last-minute
problems, I generated OpenType fonts and sent them
to Karl Berry at TUG, who enlisted Michael Sharpe
to add OpenType tables to allow switching between
the default Lucida Grande Mono and Lucida Console
versions, with slashed zero and oval ‘O’, and the new
“DK” version with open zero and squarish ‘O’.

I wish I could say that was the end of the process.
But, it was not. It was only the end of the first, and
ultimately discarded, phase.

Superelliptical-pi ‘O’s

in Lucida Grande Mono

After Karl and Michael received the fonts and made
a test OpenType version, I began to have second
thoughts. I should say, “2nd order” thoughts.

I began to think that making a squarish ‘O’ by
visual intuition wasn’t the optimal way to make a
squarish ‘O’, at least not for Don Knuth. I figured I
needed a more mathematical approach, although I
am not a mathematician.

Hence, I investigated the superellipse numeri-
cally as well as visually. In Lamé’s algebraic gener-
alization of the ellipse, the exponent of Don’s Com-
puter Modern Typewriter squarish ‘O’ is 4, which
Don presumably found clearly distinguishable from
more or less elliptical zero, but by visual inspection,
it was too squarish to harmonize with the fitting,
weight, and look of the rest of Lucida Grande Mono.

Piet Hein’s superellipse has an exponent of 2.5,
instead of the classical 2.0, and has been popular.
Hein empirically settled on 2.5 as the exponent that
gave the most satisfying compromise between the
rectangle and the ellipse. That may be, but he was
assessing the aesthetics of the shape in isolation, for
instance, in his famous traffic round-about. From a
long-ago infatuation with the superellipse, I have a
small metal “super egg”, a superellipsoid of revolu-
tion of a superellipse. It has the charming ability to
stand stably on one end, unlike a hen’s egg (barring
Columbus’s demonstration). Also, I have a porcelain
superellipse dish, suitable for baking a pie. So, I
was personally acquainted with the superellipse in
household objects.

Figure 5: Lucida Grande Mono DK Oh
superelliptical-pi, outer and inner contours.

For a typeface design, the squarish ‘O’ can’t be
a mere compromise between ellipse and rectangle.
It has to distinguish ‘O’ from zero unambiguously.
Not by a mere “just-noticeable” difference, nor a
“just-preferable” difference, but an “obviously visible”
difference.

So, I figured I needed to find a superellipse
with an exponent somewhere between Hein’s 2.5
(not squarish enough) and Knuth’s 4 (too squarish
for Lucida). So next I tried the so-called “natural
superellipse” with an exponent of the natural log-
arithm base e (approximately 2.718). It was more
squarish but still pleasing, and mathematically, e is
transcendental and irrational, which, based on such
cool names, I thought should be important qualities,
although I can’t explain exactly why. Alas, e was
still not squarish enough to be unambiguous.

Nevertheless, I didn’t give up, taking heart from
Mark Twain’s observation in A Tramp Abroad : “A
round man cannot be expected to fit in a square hole
right away. He must have time to modify his shape.”

So I tried degree 3.0. Better, but still not quite
squarish enough. So then I tried an exponent of 3.5,
but that made the superelliptical ‘O’ look slightly too
squarish, because the near-vertical sides and near-
horizontal top and bottom didn’t rasterize at low
resolutions with enough curvature to please me. At
low-res, nearly but not quite straight curves often
rasterize with infelicitous bit patterns. But, I was
converging on something between 3.0 and 3.5. Per-
haps 3.25 should have been next, but having tried e,
I thought another transcendental irrational number
might offer mathematical elegance, even if I couldn’t
explain it. So I chose π (see fig. 5), the best-known
transcendental number, which had been discovered
by the Greeks in ancient times, and which is inti-
mately linked to the circle.

With an OpenType font em only 1000 units in

Charles Bigelow

TUGboat, Volume 36 (2015), No. 3 197

Figure 6: Left: Lucida Grande Mono DK Oh
superelliptical-pi outer contour, compared to true
ellipse with same major and minor axes.

Right: Lucida Grande Mono DK superelliptical-pi
capital Oh outer contour, with standard Lucida
Grande Mono hand-drawn Oh outer contour
intersecting. The superelliptical-pi contour is narrower,
for more harmonious letter spacing and weighting.

Figure 7: Left: outer contour of superelliptical-pi
capital Oh from Lucida Grande Mono DK (outer),
with outer contour of zero (inner) for comparison.

Right: hand-drawn capital Oh contour with zero inside.
Zero is narrower and has lesser shoulders.

height, in which the actual ‘O’ height was 759 units,
and a fixed width cell only 603 units in width per
character, in which the ‘O’ was only 519 units wide,
a long decimal expansion of π was not needed, so I
settled for an approximate exponent of 3.142. And
even that was more precise than I was able to achieve
in practice.

I used a superellipse calculator to plot a bitmap
approximation, brought that into a font development
tool as a background image, and hand-fit Bézier
splines along the curves. As I worked on adjusting
the shape, I found that, with the minimum number
of four Bézier segments, I could not exactly model
the plotted superellipse of exponent π. I wondered if

Bézier approximations to superellipses had the same
sort of slight error as approximations to classic circles
and ellipses, so I asked Berthold Horn, with whom
we had worked so well on the original PostScript
Type 1 versions of Lucida. He affirmed the error
problem and sent me helpful plots showing the small
differences. He suggested dividing the Bézier curves
into smaller segments for greater accuracy, but, as I
explain above, I resisted that suggestion because of
the user-interface problem of messing around with
the off-curve handles on on-curve spline joins of mul-
tiple curves. This is why I describe my process as
“probably approximately incorrect” (fig. 6, left).

Nevertheless, considering the usual resolutions
at which the letter would be rendered in text sizes on
computer screens and printout, and the limitations
of human visual acuity, the approximation seemed
essentially as good as precision. For Lucida Grande
Mono in 10 point text at 300 dots per inch on a laser
printer, the ‘O’ height would be roughly 30 bilevel
pixels tall, around 34 grayscale pixels on an iPhone
Retina screen, around 42 grayscale pixels on the
iPhone 6s Plus, and around 60 pixels on a 600 dpi
printer. At those sizes and resolutions, tiny errors in
approximating π seem negligible.

Figure 6 (right) compares the outer contour of
the superelliptical-pi capital Oh for the DK font to
the outer contour of the standard Lucida Grande
Mono Oh. Figure 7 compares, on the left, the outer
contours of the superelliptical-pi Oh with the zero
from the same font, and, on the right, the hand-
drawn original Oh with the zero.

Superelliptical-pi ‘O’s in Lucida Console

The superelliptical ‘O’ may prove to be only a quaint
curiosity in Lucida Grande Mono, but in Lucida
Console, it resolves an important problem.

Lucida Console has shortened capitals to adapt
it to the graphical shortcomings of a terminal win-
dow in Windows NT. It has functioned well for that
purpose for more than 20 years, and has a distinc-
tive look that people have adopted for general pur-
poses, not just terminal windows. However, current
programming styles like CamelCase and PascalCase
(also called BumpyCaps, mixedCase, etc.) use com-
pounded words or phrases in which the separate
parts are signified by capitals. When the capital
letters are shortened, as in Lucida Console, some
pairs are harder to distinguish, especially capital ‘O’
and lower-case ‘o’. The π superellipse in the DK

version of Lucida Console (fig. 8) solves the particu-
lar problem of distinguishing capital ‘O’ from zero,
taller and more oval than the shortened ‘O’, and also
distinguishes capital ‘O’ from lower-case ‘o’, which

About the DK versions of Lucida

198 TUGboat, Volume 36 (2015), No. 3

Figure 8: Lucida Console DK Oh, superelliptical-pi
contours (derived from the Grande Mono DK Oh).

is shorter and more circular.
After choosing π for the new exponent of the

superelliptical ‘O’, I threw away the previous “shoul-
der pad” version and rebuilt all 128 characters but
also added Theta, feeling that I should not deprive
our Greek friends of the innovation (after all, they
invented the forms of our capital alphabet), so there
were 144 new characters to make. A gross of ‘O’s!

In summary, this is an extension to monospaced
font families, beyond Computer Modern Typewriter,
of Don Knuth’s innovation of superellipticality as a
distinctive feature within a typeface design. A new
way to solve the venerable and perennial ‘O’ versus
zero problem.

I feel it would have been more accurate to have
rendered the letters with the greater precision of
Metafont than with the font tools I used, which in-
volved hand-fitting Bézier splines. Contemporary
WYSIWYG font design tools offer more user-semi-
friendly interfaces (although far from truly congenial)
but less precision than Metafont, although there is
no real need for such a trade-off. If desire for super-
elliptical figures gained currency, we might hope that
in the future, font tool developers would integrate a
superellipse function into their software, such as Font-
Lab, Glyphs or Robofont, some of which already offer
an ellipse-drawing function. Knuth’s source code is
publicly available, and published in Metafont: The

Program. Probably, most font designers will not need
a precise superellipse to solve the special problem
of ‘O’ versus zero, but adjustable superellipticality
could be useful in creating typefaces within the genre
of superelliptical styles, as described further below.

Knuth’s innovative parameterization of elliptical
versus superelliptical within a typeface to distinguish
‘O’ and zero is not, however, the first instance of
squarish shapes in text typefaces. Type designers
have shown a feeling for such forms, even without
the aid of algebra.

Historical designs with squarish shapes

The late Hermann Zapf designed Melior, released in
1952 as a news text face, with superelliptical forms.
Zapf employed several techniques to craft Melior [6]—
his elegant calligraphic shaping of letters with a slight
superelliptical trait (harder to achieve by hand than
in traditional calligraphy), his preternatural skill in
drawing letters precisely at small sizes, and his inge-
nuity in combining traits of transitional and modern
designs. Although initially intended for newspaper
text, Melior achieved wider usage in magazines as
well as in advertising typography and display, where
its distinctive look was at once both modern and
classical, appealing to typographers in search of a
new look.

Aldo Novarese and Alessandro Butti’s Micro-
gramma titling face of 1952 (some sources say 1951)
also has a distinctive “squarish” look, although some
letter shapes appear to owe more to the modernist
concept that informed Marcel Breuer’s bent tubing
furniture than to the superellipse per se. As a display
face, Microgramma lacked lower-case, but Novarese’s
Eurostile of 1962 extended the design concept to
include lower-case, and provided a lower-case for Mi-
crogramma in its later releases. Microgramma and
Eurostile were, and still are, popular in titling and
logos supposed to evoke the future. This has often
puzzled me because in nearly every movie I have ever
seen about the future, nobody is reading, whether
classical or superelliptical fonts. Everyone is too busy
blasting with ray-guns or vaulting into hyper-space
to relax and read a good book.

Of all designers, Zapf has explored superellip-
tical forms most extensively (fig. 9). After Melior,
he created Hunt Roman, a private press face for the
Hunt Botanical Library at Carnegie Mellon Univer-
sity. Developed in association with Jack Stauffacher,
then the book designer for the library, Hunt shows
subtle traces of Melior-like superelliptical forms. As
a private press face, it was produced only in metal.
Comenius is a later, commercial phototype relative
of Hunt, which also shows hints of superelliptical-
ity. Two of Zapf’s type families for ITC are further
explorations of the concept. Zapf Book has formal,
Walbaum-like “Modern” high-contrast seriffed forms,
while Zapf International gives a flowing, informal,
hand-lettered look to active but slightly superellipti-
cal shapes.

Zapf’s experiments with superelliptical designs
continued with three of the earliest original digital
typefaces that he designed for Dr.-Ing. Rudolf Hell’s
“Digiset” digital typesetters in the 1970s and early
1980s. Marconi, intended for newspaper headlines

Charles Bigelow

TUGboat, Volume 36 (2015), No. 3 199

Melior

OHamburgefonstiv
Zapf Book

OHamburgefonstiv
Marconi

OHamburgefonstiv
Edison

OHamburgefonstiv
Figure 9: Some of Hermann Zapf’s “squarish”
designs, all typeset at design size 36 pt.

and subheads, is a severely formal display family that
combines Bodoni-like contrast, traditionally popular
in newspaper headings, with superelliptical shapes.
Its text companion, Edison [3], designed to save on
newsprint costs while maintaining open contours that
won’t clog or fill with news ink on high-speed presses,
has a stunningly big x-height for a seriffed design,
nearly 53% of the body. At 8 point, Edison looks as
big as Times Roman at 12 point. Although nearly
40 years old, it looks surprisingly new even today.

Zapf’s last typeface for Hell was Aurelia, re-
leased in 1983. Aurelia is a fascinating application
of subtle superellipticality to the Venetian Humanist
genre, essentially the first successful typographic ro-
man type. Thus, Zapf combined some of the newest
concepts in digital type design with some of the oldest
in metal type. Inspired by the admirable human-
ist typeface in books printed by Nicolas Jenson in
Venice in the 1470s, Zapf rendered Jenson’s definitive
roman with a distinctively calligraphic touch first
seen in Palatino, and with a hint of the superellipse
first seen in Melior.

Availability

The Lucida DK fonts are included in the complete
Lucida OpenType font set, available through the TEX
Users Group: http://tug.org/lucida. They are
also available on their own to TUG members. If there
is demand, they could be made available through
B&H’s web site as well: http://lucidafonts.com
(which provides many Lucida variants of all kinds
not available elsewhere).

To conclude, here is one last example, showing
the four variants each of the original Lucida Sans

Typewriter with the new Lucida Grande Mono DK

and Lucida Console DK, all typeset uniformly at a
nominal size of (approximately) 8 pt.

ABOQ xyz 012 LucidaSansTypewriterOT

ABOQ xyz 012 LucidaSansTypewriterOT-Oblique

ABOQ xyz 012 LucidaSansTypewriterOT-Bold

ABOQ xyz 012 LucidaSansTypewriterOT-BoldOblique

ABOQ xyz 012 LucidaGrandeMonoDK

ABOQ xyz 012 LucidaGrandeMonoDK-Italic

ABOQ xyz 012 LucidaGrandeMonoDK-Bold

ABOQ xyz 012 LucidaGrandeMonoDK-BoldItalic

ABOQ xyz 012 LucidaConsoleDK

ABOQ xyz 012 LucidaConsoleDK-Italic

ABOQ xyz 012 LucidaConsoleDK-Bold

ABOQ xyz 012 LucidaConsoleDK-BoldItalic

References

[1] Berry, Karl. Production notes. TUGboat 34:2,
pp. 181–181, 2013. http://tug.org/TUGboat/

tb34-2/tb107prod.pdf.

[2] Bigelow, Charles. Oh, oh, zero! TUGboat 34:2,
pp. 168–181, 2013. http://tug.org/TUGboat/

tb34-2/tb107bigelow-zero.pdf.

[3] FontShop. Edison (LT). https://www.fontshop.

com/families/edison-lt#info.

[4] Knuth, Donald E. A footnote about ‘Oh, oh,
zero!’, TUGboat 35:3, pp. 232–234, 2014. http:

//tug.org/TUGboat/tb34-2/tb111knut-zero.pdf.

[5] Knuth, Donald E. The METAFONTbook,
volume C of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.
(Notes on superellipticallity on pp. 126ff.)

[6] Zapf, Hermann. Alphabet Stories: A Chronicle of

Technical Developments. RIT Cary Graphic Arts
Press, Rochester, 2007. ISBN 978-1-933360-29-4.
(Notes on superellipticallity on pp. 30–31, 114–115.)
http://ritpress.rit.edu/publications/books/

alphabet-stories.html.

⋄ Charles Bigelow
http://lucidafonts.com

Superelliptical Apple pie, baked and photographed by
Kris Holmes (co-designer of Lucida). Superellipse baking
dish and super egg designed by Piet Hein. (In addition
to apples, the pie filling contains a bit of quince and a
hint of poncirus.)

About the DK versions of Lucida

200 TUGboat, Volume 36 (2015), No. 3

History of cookbooks

Taco Hoekwater

Introduction

Cookbooks as we know them, with detailed instruc-
tions, ingredient list, and illustrations, are a fairly
modern invention. This paper presents some famous
cookbooks from history, starting in ancient Greece
and ending with Internet-based modern approaches.

The Life of Luxury

Archestratus was a Greek writer and traveller who
lived in the 4th century BCE. Coming from Sicily
(then a Greek colony) he travelled throughout the
Mediterranean. He wrote a poem called ‘Hedy-
patheia’ (meaning ‘Pleasant Living’ or ‘Life of Lux-
ury’). The original of the poem is lost, but luckily
parts of it were quoted in another ancient work, and
so some 60 verses are still known.

Here is a small sample:

But I say to hell with saperde, a Pontic dish,
And those who praise it. For few people
Know which food is wretched and which is
excellent.
But get a mackerel on the third day, before it
goes into salt water
Within a transport jar as a piece of recently
cured, half-salted fish.
And if you come to the holy city of famous
Byzantion,
I urge you again to eat a steak of peak-season
tuna; for it is very good and soft.

Archestratus, fragment 39
Olson and Sens translation

Apicius, a.k.a. ‘De re coquinaria’

Whereas ‘Life of Luxury’ seems to have been more
of a travel guide, the Roman recipe collection known
as ‘Apicius’ was intended to be used while cooking.

Compiled around the start of the 5th century, it is
a collection of ten books on various topics related
to food and cooking. It has actual recipes, although
not quite the way we are used to them. An example:

ANOTHER LAMB STEW —put kid or lamb
in the stew pot with chopped onion and co-
riander. crush pepper, lovage, cumin, and
cook with broth oil and wine. put in a dish
and tie with roux.

Apicius, translation from Project Gutenberg

This recipe is concise almost to the point of useless-
ness, but that is a common problem with historical
cookbooks: for most of their history, cookbooks were
written by professional cooks for professional cooks
(working for royalty and popes). Helpful information
for amateur cooks like cooking times and ingredient
amounts is omitted.

Book of Dishes —al-Warrāq

After the disintegration of the Roman empire, Euro-
pean interest in cookbooks became nearly nonexis-
tent for centuries. As the cookbooks of the time were
very much a ‘haute cuisine’ affair, a certain level of
cultural prosperity was a prerequisite to new books
being written. This was the case in the Arabic world,
and two famous books come from that background.

First there is Kitab al-Tabikh (‘The Book of
Dishes’), composed in the 10th century by Ibn Sayyār
al-Warrāq. Some of the recipes in this collection are

Taco Hoekwater

TUGboat, Volume 36 (2015), No. 3 201

as terse as the earlier example, but most are fairly
elaborate, e.g., mentioning amounts for ingredient
spices. In 2007, Brill published an English translation
by Nawal Nasrallah under the title ‘Annals of the
Caliphs’ Kitchens— Ibn Sayyār al-Warrāq’s Tenth-
Century Baghdadi Cookbook’.

Book of Dishes —al-Baghdadi

The second Arabic ‘Book of Dishes’ was compiled by
Muh.ammad bin H. asan al-Baghdadi, in 1226. Besides
that information and the cover image below, I could
not find much information about this book. I suspect
that is mostly because the 2007 edition of the other

Book of Dishes pops up in every Internet search using
English language text . . . and I do not understand
enough Arabic to get around that problem.

Liber de Coquina

At the end of the ‘middle ages’, European culture
once again reached a high enough level that there
was interest in cookbooks. One of the first was a
collection from the early 14th century named ‘Liber
de Coquina’. It has two parts: ‘Tractatus’ (part 1)
and ‘Liber de Coquina’ (part 2). Both parts are
written in (medieval) latin.

It is interesting that while the text in the Ara-
bic collections was often quite detailed, this is not
the case in the European manuscripts. While much
attention was given to the look of the manuscripts,
the recipes themselves are very terse.

Le Viandier

This book is generally considered to be the start of
‘French cuisine’. It was compiled in the early 14th
century by a French author with chef Guillaume Tirel.
Note the use of ‘compiled’ in the previous sentence:
plagiarization was quite normal in these times. In
fact the first known (but incomplete) manuscript
containing this collection is older than Tirel.

Das Buoch von guoter Spise

Much like ‘Le Viandier’ is considered the first ‘French’
cookbook, ‘Das Buoch von guoter Spise’ is the first
‘German’ cookbook.

A sample recipe (for apple sauce):

69. Ein apfelmus
Wilt du machen ein apfelmus. so nim

schöne epfele und schele sie. und snide sie in

History of cookbooks

202 TUGboat, Volume 36 (2015), No. 3

ein kalt wazzer. und süde sie in einem haufen.
und menge sie mit wine und mit smaltze und
ze slahe eyer mit wiz und mit al. und tu daz
dor zu. und daz ist gar ein gut fülle. und
versaltz niht.

Forme of Cury

With French and German progenitors, there should
be an English one as well! The ‘Forme of Cury’ in
a compilation by ‘the chief Master Cooks of King
Richard II’. The text is in Middle English and it
dates to the end of the 14th century.

For to Make Blank Maunger

Put rys in water al a nyzt and at morowe
waisshe hem clene, afterward put
hem to þe fyre fort berst & not to
myche. ssithen take brawn of Ca
pouns, or of hennes. soden & drawe
it smale. after take mylke of
Almandes. and put in to þe Ryys &
boile it. and whan it is yboi
led put in þe brawn & alye it
þerwith. þat it be wel chargeaunt

Wel ende edelijke spijse

This is a Dutch cookbook from the second half of
the 15th century.

Reygers cranen gantes wilde velt
hoendere faysante lemmoegen soo
sal men braden ende laerderen ende eten
met eenen pepere wel ghewijnt ende
wel ghecruut wel heet van haren
smoute

English translation:

Herons, cranes, geese, wild partridges, pheasants,
pheasants (a variety)

Roast them and lard them, and eat them with
a pepper [sauce] with enough wine and spices, very
hot from their fat.

De honesta voluptate et valetudine

This Italian book (‘On honourable pleasure and
health’) from 1474 has the honour of being the first
‘printed’ cookbook. The publisher/composer is Bar-
tolomeo Sacchi (a.k.a. Platina), but it is mostly based
on earlier work by Maestro Martino of Como. It be-
came widely popular and had a large influence on
the Italian cooking tradition.

Een notabel boecxken van cokeryen

A book called ‘A notable little cookery book’ was the
first printed Dutch cookbook (not a very important
book in the great scheme of things, but hey, I am
Dutch). Printed in 1514 in Brussels by Thomas
vander Noot, who may or may not also be the author.

Taco Hoekwater

TUGboat, Volume 36 (2015), No. 3 203

Opera dell’arte del cucinare

Bartolomeo Scappi was the Italian Renaissance chef
for popes Pius IV and V. The ‘Works of Art of Cook-
ing’ is a masterpiece of six books containing more
than a thousand recipes as well as explanations of
techniques and giving helpful hints about all aspects
of cooking. A notable and popular feature of his
books were the beautiful illustrations.

Le Cuisinier roïal et bourgeois

After the advent of printing (and generally, the end
of the Middle Ages), there was a growing market for
cookbooks. An important example from this period
is ‘The royal and bourgeois cook’ by François Mas-
sialot. Published in 1691, it was the first cookbook to
contain an alphabetic recipe list. Until this, recipes
were typically only grouped in categories, without
any means of quickly finding a particular recipe.

The Art of Cookery Made Plain and Easy

All the cookbooks listed so far were aimed at pro-
fessional chefs. One of the most famous English
cookbooks from the 18th century changed that. Han-
nah Glasse wrote recipes specifically for the servant
cooks of her well-to-do buyers (the servants them-
selves could probably not afford her book). First pub-
lished in 1747, ‘The Art of Cookery Made Plain and
Easy’ was a big success. Besides the simple language,
she also worked to be practical (read: economical) in
the choice of ingredients. All in all, the book became
very popular in the North American colonies.

History of cookbooks

204 TUGboat, Volume 36 (2015), No. 3

Taco Hoekwater

TUGboat, Volume 36 (2015), No. 3 205

Modern Cookery for Private Families

Hannah Glasse may have been more accessible than
previous cookbook authors, but she was still a chef
writing for other chefs — less-educated chefs, but still
cooking professionals. Eliza Acton’s book steps away
from that. ‘Modern Cookery for Private Families’
was published in 1845, well after the industrial rev-
olution, and was aimed specifically at housewives.
This audience change necessitated the inclusion of ex-
act quantities and cooking times, and it thus became
one of the first ‘modern’ cookbooks.
(picture on previous page, bottom)

Mrs Beeton’s Book of Household

Management

While Eliza Acton’s book contained true innovations,
its publishing house seems to have missed out on the
marketing side of things . . . Because Isabella Bee-
ton’s ‘Mrs Beeton’s Book of Household Management’
was to become known as the Victorian cookbook.
Published in 1861, it is essentially a collection of pla-
giarized recipes (including many recipes from Eliza
Acton’s book). What it did have: excellent illustra-
tions, and plenty of them.

Boston Cooking-School Cook Book

Fannie Farmer’s cookbook is the first American con-
tribution to this list. It was published in 1896, by the
school principal of the Boston Cooking School. The
keyword for this book: standardization. The modern
American measuring system of cups and spoonfuls
was introduced in this book.

History of cookbooks

206 TUGboat, Volume 36 (2015), No. 3

It was also the first widely-known book to use
a bullet list presentation for the ingredients, com-
pletely separate from the processing instructions that
followed below that list.

The Joy of Cooking

Entering the 20th century, Irma S. Rombauer’s ‘The
Joy of Cooking’ was published in 1931. This is the
first book of all those in this article which I was
familiar with even before I got interested in the
history of cookbooks. In particular, I remember
this cover (of a seventies edition) from the English
language section of book sales that I visited as a
small boy.

A Book of Mediterranean Food

This book is perhaps a bit of a surprise. It is by
Elizabeth David, published in 1950, after her return
from the Mediterranean to England a few years af-
ter WWII. Interesting points about this book: it
had ‘mood pictures’ (black and white engravings of
Mediterranean scenes) and targeted a specific ‘for-
eign’ food culture exclusively.

Mastering the Art of French Cooking

As the preface states, this book could also be called
‘French Cooking from the American Supermarket.’
First published in 1961, Simone Beck, Louisette
Bertholle, and Julia Child brought French cuisine
to the American audience. The recipes in this cook-
book are not the easiest, but nevertheless it became
very popular in the USA, not in the least thanks to
Julia Child’s television series ‘The French Chef’, first
aired in 1963. Recently, interest soared again after
the release of the movie ‘Julie & Julia’.

MASTERING

THE ART OF

French

Cooking
The only cookbook that explains how

to create authentic French dishes

in American kitchens with American foods

1
•

By SIMONE BECK

LOUISETTE BERTHOLLE

. '

• ..

•
. JULIA CHILD

Drawings by Sidonie Coryn

Taco Hoekwater

TUGboat, Volume 36 (2015), No. 3 207

The Naked Chef

The latter part of the 20th century had many nice
cookbooks, as cheaper printing costs allowed for
glossy books with full colour images at a reasonable
price. But nothing had as much impact as Jamie
Oliver’s ‘The Naked Chef’, which came out in 1999.
The BBC television programme of the same name
made Jamie Oliver a celebrity overnight, and he has
now written over a dozen well-selling cookbooks.

Allrecipes.com

Modern people do not use cookbooks any more. No,
they use the bookstand in the kitchen to hold an iPad
while looking at allrecipes.com for a recipe. Some-
times with a video to explain the process. Originally
just a web site, Allrecipes is now also a magazine, a
YouTube channel, a set of online helper apps (such
as a kitchen timer), and a set of mobile applications.

Recipe Fiddle

If you prefer to have a cookbook generated for you,
you can try ‘Recipe Fiddle’ by David Jarvis. This is
a web site (recipefiddle.com) that can generate a
personalized cookbook for you, using ConTEXt to do
the typesetting. Currently in beta.

⋄ Taco Hoekwater

taco (at) elvenkind dot com

History of cookbooks

208 TUGboat, Volume 36 (2015), No. 3

Typographers’ Inn

Peter Flynn

The usability of digital typography

I have been asked to contribute to some research
on this topic, so I have been trying to identify what
there is, if anything, in specifically digital typography
for which the usability factors are not already present
in non-digital typography (hand-set type, hot-metal,
analog film, etc.).

The traditional view of most typographic de-
sign is that it should keep out of the way and be
invisible; anything which comes between reader and
message should assist the passage of information, not
hinder it. The moment the reader starts admiring
the layout or the typeface instead of reading the
text is the moment you have failed to convey the au-
thor’s message. Present company excepted, of course.
Adrian Frutiger (whose recent death is remembered
on p. 182 f.) once said, ‘The whole point with type is
for you not to be aware it is there. If you remember
the shape of a spoon with which you just ate some
soup, then the spoon had a poor shape.’ [1]

I have summarized what appear to be five main
areas here, and I would be very interested to know if
they correspond with the feelings of other TEX users.

Design Digital typography (well, pretty much all ty-
pography nowadays, apart from the metal type
community) allows greater positional freedom
than is possible in metal, so any measure of
usability needs to consider the effects of this in
design and layout. We also need to remember
that Letraset (rub-down lettering) allowed much
of the same freedom, and that largely preceded
the switch to digital methods.

Typefaces The availability of typefaces has changed
as well, so the choices are expanding on two
fronts: faces that were no longer available are
being digitized for modern use; and easy access
to typeface design software by anyone with a
computer has led to an explosion of new fonts,
not all of them necessarily very usable. Within
fonts, previously inaccessible or hard-to-obtain
characters are now more widely available.

Users’ experiences of fonts The level of user ex-
perience (UX) of software that uses fonts is now
extensive. It started with word-processing, when
a ‘digital font’ was just a dot-pattern for a nine-
nozzle ink-jet printer or a removable typehead
on a daisy-wheel printer. Now, virtually every
application has configurable fonts, both for its
own interface and for the output it produces,

and users have become accustomed to this flexi-
bility and have come to expect it.

Workflow The production workflow has changed,
both at the editorial and the design and compo-
sition stages, with the digital file being re-used
between edit cycles instead of having to be re-
keyed, or the (metal) type having to be kept
standing. Changes are more easily made, both
to the copy and the layout.

Flexibility Finally, there has been a shift in the
degree to which additional features can be added.
A book can become a web site, and a web site
can be reformatted as a book (or ebook); and
an article can be reproduced in many different
guises, with the text staying unaltered, but the
design and layout changing dramatically. Links
can be revealed or hidden, although we still can’t
yet click on paper.

This may all sound like pie in the sky, as we still labor
under the burden of evil file formats, incompatible
equipment, or heavy-handed corporate or personal
predilections. But I would hope that what we do,
especially with TEX, and the way that we do it,
makes the documents we produce usable for our
readers. There are regulatory issues, too, such as
the font requirements for pharmaceutical labelling
information, and signage of various kinds.

There has been a recent discussion, on a pro-
fessional usability mailing list, about research into
performance increases related to ‘information hier-
archies’. I initially assumed this meant document
structuring (chapter/section/subsection), but the
term actually referred to font changes which imply
degrees of importance (headings, emphasis, etc.).
The discussion turned on studies which have found
that certain typographical treatments may actually
confuse readers and lead to lower comprehension.
More on this another time.

If you have experienced usability changes as a
result of typography, please let me know.

Hierarchy and balance

On a similar note, I have been implementing several
document classes for technical documentation. These
are mostly for clients’ internal use, but some are for
white papers, the articles published by R&D depart-
ments highlighting such findings as they can safely
release without damaging their competitive edge.

They need to reflect the corporate identity, of
course, which can be anything from non-existent to
extremely complex, but they also need to be slightly
different from the rest of the organization’s docu-
ments, as they will get exposure to a different set of
people from most other documents. In most cases

Peter Flynn

TUGboat, Volume 36 (2015), No. 3 209

the layout is specified by a designer, and it has been
interesting to compare the styles.

There are usually three layers to an information
hierarchy when instantiated typographically: major,
minor, and body. The major level is usually for the
titling, the minor for labelling the components which
make up the body, and the body for the normal text.
The boundaries sometimes blur: the face used for
the minor level might also be used at subtitle level,
but in general they are kept apart.

Figure 1 shows an example of this kind of design
(adapted and anonymized from the originals).

ACME Inc m
World leaders in gadgets

President: Wile E Coyote Jr

WHITE PAPER

Lorem ipsum dolor sit amet:
consectetuer adipiscing elit September 27, 2015

SUMMARY

Nulla malesuada porttitor diam. Donec felis erat, congue non,

volutpat at, tincidunt tristique, libero. Vivamus viverra fermen-

tum felis. Donec nonummy pellentesque ante. Phasellus adip-

iscing semper elit. Proin fermentum massa ac quam. Sed diam

turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas

lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit

a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend

consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tin-

cidunt purus vel magna. Integer non enim. Praesent euismod

nunc eu purus. Donec bibendum quam in tellus. Nullam cursus

pulvinar lectus. Donec et mi. Nam vulputate metus eu enim.

Vestibulum pellentesque felis eu massa.

Suspendisse vitae elit

Pellentesque habitant morbi tristique senectus et netus et malesuada fames

ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas

sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam

vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer

sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu me-

tus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus.

Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tris-

tique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipisc-

ing quis, ultrices a, dui.

Nulla malesuada porttitor

diam. Donec felis erat,

conguenon,volutpatat, tin-

cidunt tristique, libero. Vi-

vamus viverra fermentum

felis. Donec nonummypel-

lentesque ante. Phasel-

lus adipiscing semper elit.

Proin fermentum massa ac

quam. Sed diam turpis,

molestie vitae, placerat a,

molestie nec, leo. Mae-

cenas lacinia. Nam ipsum

ligula, eleifend at, accum-

san nec, suscipit a, ipsum.

Morbi blandit ligula feugiat

magna. Nunceleifendcon-

sequat lorem. Sed lacinia

nulla vitae enim. Pellen-

tesque tincidunt purus vel

magna. Integer non enim.

Praesent euismod nunc eu

purus. Donec bibendum

quam in tellus. Nullamcur-

sus pulvinar lectus. Donec

etmi. Namvulputatemetus

eu enim. Vestibulum pel-

lentesquefeliseumassa.

1

Figure 1: Example of typographic hierarchy

The major and minor level (unusually) both use
Raleway, which happens to be the corporate name-
style, with the oddity that they always put the ‘Inc’
italicized in the body serif face. The title, subtitle,
and date are in Raleway Bold.

The minor level headings (all the sectioning) are
in Raleway Regular, as is the identity block at top
right, except the corporate tagline is bold.

The body is in Warnock, spaced widely, with
a larger size spaced even more widely for the sum-
mary. The side-notes, however, are in Raleway, to
distinguish them more clearly from the body copy,
as there is no rule between the columns.

The strong vertical stress given by the separation
of the page into two unequal columns (text and wide
margin), is balanced between the banner (the identity
block), the title (for the date), and the body. Keeping
the sans face for this right-hand material helps make
it clear that it is distinct from the body.

I think they get away with it here, as the sans is
the same face as the corporate name-style, and their
globe logo is non-typographic. The two oddities (the
italicized Inc and the page number centered in the
right-hand column) are ‘features’ taken from the cor-
porate style of the same company used in other areas.

Implementing this kind of layout in LATEX re-
quires a wide right-hand margin specified with the
geometry package, and a \maketitle able to use
it. The remainder of the document largely follows
standard article conventions.

Afterthought

Lots of people seem to want to use TEX on their
Android devices, which I mentioned in an earlier
column; and lots of people also use Emacs for TEX.
A version of Emacs for Android put out some years
ago failed on a broken terminal application, and
no longer works because of Android’s new position-
independent executable requirements.

David Megginson, whom some of you may know
from his XML activities, has fixed this, recompiled
the binary, and made it available on GitHub with
instructions at http://quoderat.megginson.com/

2015/05/26/update-running-emacs-in-android-

l-lollipop.
I installed this on my Galaxy Note 4 during the

XML Summer School recently, much to the amuse-
ment of my non-Emacs-using colleagues, and it seems
to work just fine. I haven’t managed to bind it to a
TEX executable yet, as I don’t know if the one that
comes with the LATEX Editor app is accessible, but
watch this space.

References

[1] Monotype GmbH. Typography as the highest
form of visual communication: A talk with
Adrian Frutiger. Linotype Font Feature, July
2014. http://www.linotype.com/de/2316/

portrait.html.

⋄ Peter Flynn

Textual Therapy Division, Silmaril

Consultants

Cork, Ireland

Phone: +353 86 824 5333

peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

Typographers’ Inn

210 TUGboat, Volume 36 (2015), No. 3

LATEX News
Issue 22, January 2015

New LATEX 2ε bug-fix policy

Introduction

For some years we have supplied bug fixes to the
LATEX 2ε kernel via the fixltx2e package. This kept the
kernel stable, but at the expense of meaning that most
users did not benefit from bug fixes, and that some
compromises which were made to save space in the
machines of the time are still affecting most users today.

In this release we have started a new update policy.
All the fixes previously available via fixltx2e are now
enabled by default in the format, as are some further
extensions for extended TEX engines, ε-TEX, X ETEX and
LuaTEX. Compatibility and stability are still important
considerations, and while most users will not notice
these improvements, or will want to benefit from them,
a new latexrelease package is provided that will revert
all the changes and re-instate the definitions from
earlier releases. The package can also be used with
older releases to effectively update the kernel to be
equivalent to this 2015 release.

A new document, latexchanges, is distributed with the
release that documents all the changes to documented
commands since the 2014 LATEX release, and will be
updated in future releases if further changes have been
made.

The latexrelease package

As noted above a new package is available to manage
differences between LATEX releases. If you wish to revert
all changes back to the definitions as they were in
previous releases you may start your document
requesting the LATEX release from May 2014:

\RequirePackage[2014/05/01]{latexrelease}

\documentclass{article}

Conversely if you start a large project now and want to
protect yourself against possible future changes, you
may start your document

\RequirePackage[2015/01/01]{latexrelease}

\documentclass{article}

Then the version of latexrelease distributed with any
future LATEX release will revert any changes made in
that format, and revert to the definitions as they where
at the beginning of 2015.

If you wish to share a document using the latest
features with a user restricted to using an older format,
you may use the form above and make the latexrelease

package available on the older installation. The package
will then update the format definitions as needed to
enable the older format to work as if dated on the date
specified in the package option.

The \IncludeInRelease command

The mechanism used in the latexrelease package is
available for use in package code. If in your zzz package
you have

\RequirePackage{latexrelease}

\IncludeInRelease{2015/06/01}

{\zzz}{\zzz definition}

\def\zzz......new code

\EndIncludeInRelease

\IncludeInRelease{0000/00/00}

{\zzz}{\zzz definition}

\def\zzz....original

\EndIncludeInRelease

then in a document using a format dated 2015/06/01 or
later, the “new code” will be used, and for documents
being processed with an older format, the “original”
code will be used. Note the format date here may be
the original format date as shown at the start of every
LATEX run, or a format date specified as a package
option to the latexrelease package.

So if the document has

\RequirePackage[2014/05/01]{latexrelease}

\documentclass{article}

\usepackage{zzz}

then it will use the original definition of \zzz even if
processed with the current format, as the format acts as
if dated 2014/05/01.

Limitations of the approach

The new concept provides full backward and forward
compatibility for the LATEX format, i.e., with the help of
a current latexrelease package the kernel can emulate all
released formats (starting with 2014/06/011).

However, this is not necessarily true for all packages.
Only if a package makes use of the \IncludeInRelease

functionality will it adjust to the requested LATEX
release date. Initially this will only be true for a few
selected packages and in general it may not even be

1Patching an older format most likely works too, given that the

changes in the past have been minimal, though this isn’t guaranteed

and hasn’t been tested.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2015, all rights reserved.

LATEX News #22

TUGboat, Volume 36 (2015), No. 3 211

advisable for packages that have their own
well-established release cycles and methods.

Thus, to regenerate a document with 100 %
compatible behavior it will still be necessary to archive
it together with all its inputs, for example, by archiving
the base distribution trees (and any modifications
made). However, the fact that a document requests a
specific LATEX release date should help identifying what
release tree to use to achieve perfect accuracy.

Updates to the kernel

Updates incorporated from fixltx2e

The detailed list of changes incorporated from fixltx2e is
available in the new latexchanges document that is
distributed with this release. The main changes are that
2-column floats are kept in sequence with one column
floats, corrections are made to the \mark system to
ensure correct page headings in 2-column documents,
several additional commands are made robust.

ε-TEX register allocation

LATEX has traditionally used allocation routines
inherited from plain TEX that allocated registers in the
range 0–255. Almost all distributions have for some
years used ε-TEX based formats (or X ETEX or LuaTEX)
which have 215 registers of each type (216 in the case of
LuaTEX). The etex package has been available to
provided an allocation mechanism for these extended
registers but now the format will by default allocate in
a range suitable for the engine being used. The new
allocation mechanism is different than the etex package
mechanism, and supports LuaTEX’s full range and an
allocation mechanism for LATEX floats as described
below.

On ε-TEX based engines, an additional command,
\newmarks is available (as with the etex package) that
allocates extended ε-TEX marks, and similarly if X ETEX
is detected a new command \newXeTeXintercharclass

is available, this is similar to the command previously
defined in the xelatex.ini file used to build the
xelatex format.

Additional LATEX float storage

LATEX’s float placement algorithm needs to store floats
(figures and tables) until it finds a suitable page to
output them. It allocates 18 registers for this storage,
but this can often be insufficient. The contributed
morefloats package has been available to extend this list;
however, it also only allocates from the standard range
0–255 so cannot take advantage of the extended
registers. The new allocation mechanism in this release

incorporates a new command \extrafloats. If you get
the error: Too many unprocessed floats. then you
can add (say) \extrafloats{500} to the document
preamble to make many more boxes available to hold
floats.

Built-in support for Unicode engines

The kernel sources now detect the engine being used
and adjust definitions accordingly, this reduces the need
for the “.ini” files used to make the formats to patch
definitions defined in latex.ltx.

As noted above the format now includes extended
allocation routines.

The distribution includes a file
unicode-letters.def derived from the Unicode
Consortium’s Unicode Character Data files that details
the upper and lower case transformation data for the
full Unicode range. This is used to set the lccode and
uccode values if a Unicode engine is being used, rather
than the values derived from the T1 font encoding
which are used with 8-bit engines.

Finally \typein is modified if LuaTEX is detected
such that it works with this engine.

l3build

This release has been tested and built using a new build
system implemented in Lua, intended to be run on the
texlua interpreter distributed with modern TEX
distributions. It is already separately available from
CTAN. This replaces earlier build systems (based at
various times on make, cons, and Windows bat files). It
allows the sources to be tested and packaged on a range
of platforms (within the team, OS X, Windows, Linux
and Cygwin platforms are used). It also allows the
format to be tested on X ETEX and LuaTEX as well as
the standard pdfTEX/ε-TEX engines.

Hyperlinked documentation and TDS zip files

As well as updating the build system, the team have
looked again at exactly what gets released to ctan.
Taking inspiration from Heiko Oberdiek’s latex-tds

bundle, the PDF documentation provided now includes
hyperlinks where appropriate. This has been done
without modifying the sources such that users without
hyperref available can still typeset the documentation
using only the core distribution. At the same time, the
release now includes ready-to-install TDS-style zip files.
This will be of principal interest to TEX system
maintainers, but end users with older machines who
wish to manually update LATEX will also benefit.

LATEX News #22

212 TUGboat, Volume 36 (2015), No. 3

LATEX News
Issue 23, October 2015

Contents

Enhanced support for LuaTEX 1

Names of LuaTEX primitive commands 1
TEX commands for allocation in LuaTEX 2
Predefined Lua functions 2
Support for older releases and plain TEX 2
Additional LuaTEX support packages 2

More floats and inserts 2

Updated Unicode data 2

Support for comma accent 2

Extended inputenc 2

Pre-release releases 2

Updates in tools 2

Enhanced support for LuaTEX

As noted in LATEX News 22, the 2015/01/01 release of
LATEX introduced built-in support for extended TEX
systems.

The range of allocated register numbers (for example,
for count registers) is now set according to the
underlying engine capabilities to 256, 32768 or 65536.
Additional allocators were also added for the facilities
added by ε-TEX (\newmark) and X ETEX
(\newXeTeXintercharclass). At that time, however,
the work to incorporate additional allocators for
LuaTEX was not ready for distribution.

The main feature of this release is that by default it
includes allocators for LuaTEX-provided features, such
as Lua functions, bytecode registers, catcode tables and
Lua callbacks. Previously these features have been
provided by the contributed luatex (Heiko Oberdiek)
and luatexbase (Élie Roux, Manuel Pégourié-Gonnard
and Philipp Gesang) packages. However, just as noted
with the etex package in the previous release, it is
better if allocation is handled by the format to avoid
problems with conflicts between different allocation
schemes, or definitions made before a package-defined
allocation scheme is enabled.

The facilities incorporated into the format with this
release, and described below, are closely modelled on
the luatexbase package and we thank the authors, and

especially Élie Roux, for help in arranging this
transition.

The implementation of these LuaTEX features has
been redesigned to match the allocation system
introduced in the 2015/01/01 LATEX release, and there
are some other differences from the previous luatexbase

package. However, as noted below, luatexbase is being
updated in line with this LATEX release to provide the
previous interface as a wrapper around the new
implementation, so we expect the majority of
documents using luatexbase to work without change.

Names of LuaTEX primitive commands

The 2015/01/01 LATEX release for the first time
initialised LuaTEX in latex.ltx if LuaTEX is being used.
Following the convention used in the contributed
lualatex.ini file used to set up the format for earlier
releases, most LuaTEX-specific primitives were defined
with names prefixed by luatex. This was designed to
minimize name clashes but had the disadvantage that
names did not match the LuaTEX manual, or the names
used in other formats, and produced some awkward
command names such as \luatexluafunction. From
this release the names are enabled without the luatex

prefix.
In practice this change should not affect many

documents; relatively few packages access the primitive
commands, and many of those are already set up to
work with prefixed or unprefixed names, so that they
work with multiple formats.

For package writers, if you want to ensure that your
code works with this and earlier releases, use unprefixed
names in the package and ensure that they are defined
by using code such as:

\directlua{tex.enableprimitives("",

tex.extraprimitives(

"omega", "aleph", "luatex"))}

Conversely if your document uses a package relying on
prefixed names then you can add:

\directlua{tex.enableprimitives("luatex",

tex.extraprimitives(

"omega", "aleph", "luatex"))}

to your document.
Note the compatibility layer offered by the luatexbase

package described below makes several commands
available under both names.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2015, all rights reserved.

LATEX News #23

TUGboat, Volume 36 (2015), No. 3 213

As always, this change can be reverted using:
\RequirePackage[2015/01/01]{latexrelease}

at the start of the document.

TEX commands for allocation in LuaTEX

For detailed descriptions of the new allocation
commands see the documented sources in ltluatex.dtx or
chapter N of source2e; however, the following new
allocation commands are defined by default in LuaTEX:
\newattribute, \newcatcodetable, \newluafunction

and \newwhatsit. In addition, the commands
\setattribute and \unsetattribute are defined to
set and unset Lua attributes (integer values similar to
counters, but attached to nodes). Finally several
catcode tables are predefined: \catcodetable@initex,
\catcodetable@string, \catcodetable@latex,
\catcodetable@atletter.

Predefined Lua functions

If used with LuaTEX, LATEX will initialise a Lua table,
luatexbase, with functions supporting allocation and
also the registering of Lua callback functions.

Support for older releases and plain TEX

The LuaTEX allocation functionality made available in
this release is also available in plain TEX and older
LATEX releases in the files ltluatex.tex and ltluatex.lua

which may be used simply by including the TEX file:
\input{ltluatex}. An alternative for old LATEX
releases is to use:
\RequirePackage[2015/10/01]{latexrelease}

which will update the kernel to the current release,
including LuaTEX support.

Additional LuaTEX support packages

In addition to the base LATEX release two packages have
been contributed to the contrib area on CTAN. The
ctablestack package offers some commands to help
package writers control the LuaTEX catcodetable

functionality, and the luatexbase package replaces the
previously available package of the same name,
providing a compatible interface but implemented over
the ltluatex code.

More floats and inserts

If ε-TEX is available, the number of registers allocated
in the format to hold floats such as figures is increased
from 18 to 52.

The extended allocation system introduced in
2015/01/01 means that in most cases it is no longer
necessary to load the etex package. Many classes and
packages that previously loaded this package no longer
do so. Unfortunately in some circumstances where a
package or class previously used the etex

\reserveinserts command, it is possible for a
document that previously worked to generate an error

“no room for a new insert”. In practice this error can
always be avoided by declaring inserts earlier, before
the registers below 256 are all allocated. However, it is
better not to require packages to be re-ordered and in
some cases the re-ordering is complicated due to
delayed allocations in \AtBeginDocument.

In this release, a new implementation of \newinsert

is used which allocates inserts from the previously
allocated float lists once the classical register allocation
has run out. This allows an extra 52 (or in LuaTEX,
64 thousand) insert allocations which is more than
enough for practical documents (by default, LATEX only
uses two insert allocations).

Updated Unicode data

The file unicode-letters.def recording catcodes, upper
and lower case mappings and other properties for
Unicode characters has been regenerated using the data
files from Unicode 8.0.0.

Support for comma accent

The command \textcommabelow has been added to the
format. This is mainly used for the Romanian letters
S
,
s
,
T
,
t
,
. This was requested in latex/4414 in the LATEX

bug tracker.

Extended inputenc

The utf8 option for inputenc has been extended to
support the letters s and t with comma accent,
U+0218 – U+021b. Similarly circumflex w and y
U+0174 – U+0177 are defined. Also U+00a0 and
U+00ad are declared by default, and defined to be
\nobreakspace and \- respectively.

The error message given on undefined UTF-8 input
characters now displays the Unicode number in U+hex

format in addition to showing the character.

Pre-release releases

The patch level mechanism has been used previously to
identify LATEX releases that have small patches applied
to the main release, without changing the main format
date.

The mechanism has now been extended to allow
identification of pre-release versions of the software
(which may or may not be released via CTAN) but can
be identified with a banner such as
LaTeX2e <2015/10/01> pre-release-1

Internally this is identified as a patch release with a
negative patch level.

Updates in tools

The multicol package has been updated to fix the
interaction with “here” floats that land on the same
page as the start or end of a multicols environment.

LATEX News #23

214 TUGboat, Volume 36 (2015), No. 3

Introduction to list structures in LATEX

Thomas Thurnherr

Abstract

Lists are frequently used structures in documents as
well as presentations. LATEX distinguishes three types
of lists: bulleted list, ordered list, and descriptive
list. In this article, I introduce these three types
of lists, describe basic manipulations, and provide
information about packages that expand on standard
list structures by adding extra flexibility.

1 Introduction

LATEX distinguishes between three types of lists: bul-
leted list, ordered list, and descriptive list. The
bulleted list, where the order of elements is not im-
portant, is called itemize. On the other hand, or-
dered lists are termed enumerate, as their elements
are numbered. Lastly, description is a descrip-
tive list, which generally describes words or phrases.
Usage of the three list types is similar; they are im-
plemented as environments and elements are added
via the \item command.

\begin{list-type}

\item text

\item text

\end{list-type}

2 Bulleted/unordered list

A bulleted list is a list where the ordering of elements
does not matter. The itemize environment creates
an unordered list and elements are added with item.
Here is an example:

\begin{itemize}

\item A bulleted item

\item Another bulleted item

\item And another bulleted item

\end{itemize}

⇓

• A bulleted item

• Another bulleted item

• And another bulleted item

The default label for unordered lists is a bullet
(•). I will show later (section 6) how to replace the
label with another symbol.

3 Numbered/ordered list

The behavior of an ordered list is similar to the
unordered list. The only difference is that the label
is a number or letter from the alphabet, which is

incremented for every element. By default, the label
is an arabic number followed by a dot. Again, I will
show later how to make changes to the way the label
is typeset.

\begin{enumerate}

\item An ordered item

\item Another ordered item

\item And another ordered item

\end{enumerate}

⇓

1. An ordered item

2. Another ordered item

3. And another ordered item

LATEX uses a counter (called enumi) to keep
track of the number of elements in an ordered list.
Therefore, list items can be referenced within as well
as outside the list. An example is given below to
illustrate how to cross-reference a list element.

\begin{enumerate}

\item An ordered item\label{itm:myList}

\item A reference to item \ref{itm:myList}

\end{enumerate}

⇓

1. An ordered item

2. A reference to item 1

4 Descriptive lists

Unlike itemize and enumerate, a descriptive list,
or description, does not have a label. Instead, a
word or phrase is used, which is passed to item as an
optional argument. This is shown in the following:

\begin{description}

\item[First] A descriptive item

\item[Second] Another descriptive item

\item[Third] And another descriptive item

\end{description}

⇓

First A descriptive item

Second Another descriptive item

Third And another descriptive item

5 Nested lists

Lists can be nested by placing a list environment
inside another list environment. Different list types
may be combined, as illustrated in the example below.
When the same list types are nested, LATEX uses
different, predefined labels for each level of nesting.
The default maximum level of nesting for each type

Thomas Thurnherr

TUGboat, Volume 36 (2015), No. 3 215

of list is four. If more than four lists of the same
type are nested, LATEX throws the error: “Too deeply
nested”.

\begin{enumerate}

\item An ordered list item

\begin{enumerate}

\item A nested ordered list item

\begin{itemize}

\item A nested unordered list item

\end{itemize}

\item Another nested ordered list item

\end{enumerate}

\item Another ordered list item

\end{enumerate}

⇓

1. An ordered list item

(a) A nested ordered list item

• A nested unordered list item

(b) Another nested ordered list item

2. Another ordered list item

6 List manipulations

The appearance of a list is alterable. For example,
one might want a different label from the default, or
to add/remove space between items. There are sev-
eral packages which implement macros for list manip-
ulations. Some of the most commonly used packages
are: enumerate [1], enumitem [2], and mdwlist [4].

Here, I will focus on enumitem as it provides the
most comprehensive set of macros to manipulate list
structures and comes with extensive documentation.
The commands here assume that this package is
loaded in the preamble:

\usepackage{enumitem}

6.1 Changing the label

The label can be changed using the optional envi-
ronment parameter label. In the example below
I change the label of an unordered list, which is a
bullet by default, to a diamond. Some symbols fre-
quently used as labels for unordered lists are given
in table 1 (left column).

\begin{itemize}[label=\diamond]

\item A diamond-labelled item

\item Another diamond-labelled item

\end{itemize}

⇓

⋄ A diamond-labelled item

⋄ Another diamond-labelled item

Table 1: Label options for itemize and enumerate.

itemize enumerate

label code label code

• \bullet 1,2,. . . \arabic*

− $-$ i,ii,. . . \roman*

· \cdot I,II,. . . \Roman*

∗, ⋆ $*$, \star a,b,. . . \alph*

⋄ \diamond A,B,. . . \Alph*

Analogous to an unordered list, the label may be
changed in a numbered list. Again, available options
are listed in table 1 (right column). In the example
below, I change the default label (arabic) to roman

labelling. Moreover, the number may be combined
with parentheses or any punctuation symbol.

\begin{enumerate}[label=(\roman*)]

\item A roman-numeralled item

\item Another roman-numeralled item

\end{enumerate}

⇓

(i) A roman-numeralled item

(ii) Another roman-numeralled item

6.2 Resume numbering from previous
ordered list

The enumitem package provides the option resume,
which resumes numbering from the preceding ordered
list in a new ordered list.

Ordered list:

\begin{enumerate}

\item Ordered list item

\end{enumerate}

Resume previous ordered list:

\begin{enumerate}[resume]

\item Resumed list item

\end{enumerate}

⇓

Ordered list:

1. Ordered list item

Resume previous ordered list:

2. Resumed list item

6.3 Vertical space

enumitem implements several parameters to control
vertical spacing outside and inside list structures.
The parameters are summarized below:

topsep Whitespace above and below list

Introduction to list structures in LATEX

216 TUGboat, Volume 36 (2015), No. 3

partopsep Extra whitespace when list starts new
paragraph

itemsep Spacing between elements in list

parsep Spacing between paragraphs in list

noitemsep Sets itemsep and parsep to 0pt

nosep Removes vertical space completely

Except for the last two options, these parameters
are used as key–value pairs, where the value specifies
the amount of whitespace.

\begin{enumerate}[topsep=10pt]

\item A numbered item

\item Another numbered item

\end{enumerate}

⇓

1. A numbered item

2. Another numbered item

6.4 Horizontal space

The following parameters control horizontal spacing
outside and inside list structures:

leftmargin Limits the list to the left

rightmargin Limits the list to the right

listparindent Paragraph indent within a list

labelsep Separation between label and body

itemindent Item indent (first line)

Both vertical and horizontal spacing may be
controlled globally using the \setlist command.
Changes can be applied to all list types simulta-
neously or restricted to a specific list type via an
optional list type parameter. In the example be-
low, the first command is limited to numbered lists,
whereas the second command changes all three list
types simultaneously.

\setlist[enumerate]{nosep}

\setlist{topsep=0pt, itemsep=0pt}

7 Inline list

The paralist package [5] provides macros for inline
lists, where all elements of a list are displayed within
the same paragraph. The package implements three
alternative list environments called: inparaitem,
inparaenum, and inparadesc. Their usage is similar
to the standard list environments.

The paralist package implements environments

for inline lists. These are:

\begin{inparaenum}

\item inparaitem,

\item inparaenum, and

\item inparadesc.

\end{inparaenum}

⇓

The paralist package implements environments
for inline lists. These are: 1. inparaitem, 2. in-
paraenum, and 3. inparadesc.

8 Reverse numbered list

The etaremune package [3] implements an environ-
ment with the same name as the package to reverse
the numbers of elements in an ordered list. Here is
an example:

The three most popular movies in IMDB are,

starting from the third:

\begin{etaremune}

\item The Godfather: Part II (1974)

\item The Godfather (1972)

\item The Shawshank Redemption (1994)

\end{etaremune}

⇓

The three most popular movies in IMDB are,
starting from the third:

3. The Godfather: Part II (1974)

2. The Godfather (1972)

1. The Shawshank Redemption (1994)

References

[1] enumerate—enumerate with redefinable labels.
http://ctan.org/pkg/enumerate. Accessed:
2015-09-14.

[2] enumitem—control layout of itemize,
enumerate, description. http://ctan.org/pkg/
enumitem. Accessed: 2015-09-14.

[3] etaremune—reverse-counting enumerate
environment. http://ctan.org/pkg/

etaremune. Accessed: 2015-09-14.

[4] mdwlist—miscellaneous list-related
commands. http://ctan.org/pkg/mdwlist.
Accessed: 2015-09-18.

[5] paralist—enumerate and itemize within
paragraphs. http://ctan.org/pkg/paralist.
Accessed: 2015-09-14.

⋄ Thomas Thurnherr

thomas.thurnherr (at) gmail dot com

http://texblog.org

Thomas Thurnherr

TUGboat, Volume 36 (2015), No. 3 217

gradstudentresume: A document class for

graduate student CVs

Anagha Kumar

Abstract

Despite casting a rather wide net for a template
for academic CVs, I was unable to find one that
caught my fancy. I therefore chose to write my own
document class. This paper aims to introduce this
document class as well as provide some practical tips
on writing a document class in LATEX.

1 Introduction

Despite the widespread usage of LATEX among math-
ematicians, statisticians, economists, computer sci-
entists, and others with a quantitative bent, the
community of LATEX contributors is relatively small.
This was borne out during my quest for a suitable
CV template. After being unable to find one to my
liking, I felt compelled to write a document class
of my own and upload it onto CTAN. Since I am a
ten-finger clinger to the notion that contributions
should be accompanied by appropriate documenta-
tion, I decided to submit a paper detailing both the
usage of the document class and offering hints on
how to write a document class of one’s own.

My document class is called gradstudentresume
and serves as a template for graduate students writ-
ing an academic CV. The package is available at
http://ctan.org/pkg/gradstudentresume.

2 Constructing the document class

Writing an academic CV can be cumbersome due
both to the length of such CVs and the repetitive
nature of the material. Graduate students often find
themselves struggling with constantly formatting line
after line. As such, this document class aimed to de-
fine environments and commands to make such tasks
less repetitive. While we do not need to go over every
line in the .cls file, some features warrant discussion.

First, despite the availability of the \smallskip,
\medskip, and \largeskip commands, I believe that
it is important to exercise precise control over the out-
put of these documents. So, the gradstudentresume
document class contains new commands (namely
\smallspace, \medspace, and \largespace) that
leave spaces of 1 mm, 3 mm, and 5 mm respectively.
Similarly, I defined a new environment wrapped

which decreases the separation between items in a
list. Ordinarily, one would simply use the itemize

environment but defining one’s own environment al-
lows one to exercise far more control over the layout
of the desired document.

Anagha Kumar
Address: 1711 35th Street NW, Apartment 23, Washington DC 20007

Telephone: 012-345-6789
Email : anaghakumar2405@gmail.com

Education

B.A., Mathematics (Honors) May 2011
Bryn Mawr College Bryn Mawr, PA
Graduation Honors: Magna Cum Laude

M.S., Biostatistics May 2013
The Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA
Thesis: Lymphedema Assessment of the Breast, Arm, and Torso
Advisor: Dr. Andrea Troxel

M.A., Statistics May 2015
The Wharton School of the University of Pennsylvania Philadelphia, PA
Thesis: Statistical Analyses Using Dynamic Documents
Advisor: Dr. Dylan Small

Work Experience

Statistician - MedStar Health Research Institute 2015–present
Joint appointment as Statistician at the Georgetown University Hospital

• Responsible for the design and analysis of statistically valid clinical trials and observational studies.

• Authored the statistical portions of manuscripts, grants, and IRB submissions.

Publications

• Brown J.C., Kumar, A., Cheville A.L., Tchou J.C., Troxel A.B., Harris S.R., and Schmitz K.H. (2015).
Association between lymphedema self-care adherence and lymphedema outcomes among women with breast
cancer-related lymphedema. Am J Phys Med Rehabil., 94 (4), 288–96.

Presentations

Contributed

Race or Resource?: Differences in Lymphedema Severity among Obese Breast Cancer Survivors

• Trans-disciplinary Research on Energetics & Cancer Scientific Meeting (Poster) September 2015
Fred Hutchinson Cancer Research Center Seattle, WA

Teaching

Teaching Assistant

Fundamentals of Biostatistics Spring 2013
Professor: Dr. Jason Roy (University of Pennsylvania Department of Biostatistics)

• Full semester course for 30 medical fellows and residents.

• Graded homework assignments, assisted students during office hours, and served as a Stata lab instructor.

1

Figure 1: The first page of my CV, as an example.

Next, the document class contains a new envi-
ronment called info for name, address, etc. Here is
its definition:

\newenvironment{info}[4]

{\begin{center}

{\Large \textsc{#1}} \\

\normalsize \textit{Address}: {#2} \\

\textit{Telephone}: {#3} \\

\textit{Email}: {#4}

\end{center}}

{\largespace}

This is an environment with four parameters and
centered text. The reader should take care to follow
the LATEX syntax of specifying the number of param-
eters in square brackets after the newenvironment

command and then preceding parameter numbers
with # in the body of the defined environment.

This document class also contains several new
commands such as \sectionrule (which draws a
horizontal line across the page), \undergrad, \grad,
\sectionheading, and \subsectionheading. These
commands all take a varying number of parameters as

gradstudentresume: A document class for graduate student CVs

218 TUGboat, Volume 36 (2015), No. 3

arguments. A short sample of the output for my own
CV is shown above; for a complete example, readers
are advised to read and compile the example.tex

file included in the package.
Other commands such as \reference, \paper,

and \presentation have been defined to help au-
thors avoid the cumbersome process of formatting
certain sections repeatedly. For instance, here is the
definition of the \reference command:

\newcommand{\reference}[7]

{\textbf{#1} \\

{#2}\hfill {Telephone: {#3}} \\

{#4}\hfill {Email: {#5}} \\

{#6} \\

{#7}}

Here, the parameters are name (#1), title (#2), tele-
phone number (#3), department (#4), email (#5),
school (#6), and address line 2 (#7). This is useful
since it eliminates the need for authors to repeatedly
format the references they provide. Again, see the
example.tex file for example usage.

In the same vein, this is the definition for the
\paper command:

\newcommand{\paper}[7]

{{#1} ({#2}). {#3}. \textit{#4, #5}

({#6}), {#7}.}

Here, parameter 1 is for authors, 2 is for year, 3 is
for title, 4 is for journal, 5 is for volume, 6 is for
number, and 7 is for pages. Students with many
publications will especially appreciate this feature
since it eliminates the repetitive task of formatting
each publication separately.

Finally, new environments pres (presentations)
and desc (descriptions of job positions, etc.) were
defined so that authors need not keep formatting
sections that require some elaboration. Here is the
definition for desc:

\newenvironment{desc}[3]

{\noindent\textbf{#1}\hfill {#2} \\

\textit{#3}

\begin{wrapped}}

{\end{wrapped}

\medspace}

We see that the wrapped environment is used within
the desc environment. This illustrates how nested
environments can be created.

3 Usage

This section shows some examples of the usage of
this document class. The goal is to illustrate how
several environments and commands can be used in
the construction of a resume. For instance, consider:

\sectionheading{Teaching}

\subsectionheading{Teaching Assistant}

\begin{desc}

{Fundamentals of Statistics}

{Spring 2013}

{Professor Jason Roy}

\item{Course for 30 medical residents.}

\item{Graded homework assignments.}

\end{desc}

First, we see that the section and subsection are titled
“Teaching” and “Teaching Assistant” respectively.
Next, we encounter the desc environment. The
appropriate syntax is \begin{desc} with the three
arguments Fundamentals of Statistics, Spring
2013, and Professor Jason Roy provided in paren-
theses immediately after. As noted in the previ-
ous section, the body of the desc environment con-
tains the nested wrapped environment. Here, the
items in the itemized list in the above example
are spaced more closely than they would have been
had they been a part of LATEX’s standard itemize

environment. Further, there is no need to type
\begin{wrapped} and \end{wrapped} since the desc
environment’s definition already includes them.

Next, we examine the pres environment, for
presentations. Below is its definition, preceded by
the definition for the presentation command:

\newcommand{\presentation}[4]

{{#1}\hfill {#2} \\

\textit{#3}\hfill {#4}}

\newenvironment{pres}[1]

{\textbf{#1}% name of the presentation

\begin{wrapped}}

{\end{wrapped}

\smallspace}

For the presentation command, the 4 parameters
are the section of the conference, date, conference
name and location respectively. Much like desc, the
wrapped environment is nested in the pres environ-
ment. Here’s an example of its usage:

\begin{pres}{Dynamic Documents}

\item{\presentation{STAT 701}

{December 2015}

{University of Pennsylvania}

{Philadelphia, PA}}

\end{pres}

Again, the user need not specify \begin{wrapped}

and \end{wrapped} when using the pres environ-
ment since the wrapped environment is already in-
cluded in the definition of pres. The reader should
also note that the presentation command is used
within the body of the environment. This is a useful
feature since users thereby bypass the need to format
each presentation individually and can instead use
the command within the body of the environment
instead.

Anagha Kumar

TUGboat, Volume 36 (2015), No. 3 219

The appendix provides definitions for all of the
commands and environments in this document class.
Again, for an example of a full CV written using
this document class, the reader is encouraged to
download and run the example.tex file available as
part the package, e.g., via http://ctan.org/pkg/

gradstudentresume.

4 Discussion

At the risk of preaching to the choir, LATEX is not a
tool to be used but a product to be developed. Any-
body can install a package somebody else has written
or use a document class someone else was ingenious
enough to come up with. Therein lies the distinction
between producers of knowledge and mere consumers.
In separating the chaff from the wheat, the inability
to create knowledge is perhaps the biggest tell-tale.
Thus, my biggest hope in writing this paper is to
encourage others to contribute to CTAN.

5 Appendix

\newcommand{\smallspace}{\vspace{1mm}}

\newcommand{\medspace}{\vspace{3mm}}

\newcommand{\largespace}{\vspace{5mm}}

\newenvironment{info}[4]

{\begin{center}

{\Large \textsc{#1}} \\

\normalsize \textit{Address}: {#2} \\

\textit{Telephone}: {#3} \\

\textit{Email}: {#4}

\end{center}}

{\largespace}

% The parameters are name, address,

% telephone number, and email.

\newenvironment{wrapped}

{\begin{itemize}\setlength{\itemsep}{0pt}}

{\end{itemize}}

\newcommand{\sectionrule}{%

\noindent\hfil\rule{\textwidth}{.6pt}\hfil

\vspace{2mm}}

\newcommand{\undergrad}[5]{%

\noindent

\textbf{#1}\hfill {#2} \\

\textit{#3}\hfill {#4} \\

{\def\honors{#5}\ifx\honors\empty\else

Graduation Honors: {#5}}\fi}

\newcommand{\grad}[6]{%

\noindent

\textbf{#1}\hfill {#2} \\

\textit{#3}\hfill {#4} \\

Thesis: {#5} \\

Advisor: {#6}}

\newcommand{\sectionheading}[1]{%

\noindent {\large \textsc{#1}} \\

\sectionrule}

\newcommand{\subsectionheading}[1]{%

\noindent {\textsc{#1}}\smallspace}

\newcommand{\reference}[7]{%

\textbf{#1} \\

{#2}\hfill {Telephone: {#3}} \\

{#4}\hfill {Email: {#5}} \\

{#6} \\

{#7}}

\newcommand{\paper}[7]{%

{#1} ({#2}). {#3}.

\textit{#4, #5} ({#6}), {#7}.}

\newcommand{\myname}{%

\textbf{Kumar, A.}}

% to be customized for each individual’s name

\newcommand{\presentation}[4]{%

{#1}\hfill{#2} \\

\textit{#3}\hfill{#4}}

\newenvironment{pres}[1]

{\textbf{#1}% name of the presentation

\begin{wrapped}}

{% use the presentation command as the argument

\end{wrapped}

\smallspace}

\newenvironment{desc}[3]

{\noindent \textbf{#1}\hfill {#2} \\

\textit{#3}

\begin{wrapped}}

{\end{wrapped}

\medspace}

⋄ Anagha Kumar

1711 35th Street NW Apt. 23

Washington DC 20007

anaghakumar2405 (at) gmail dot com

gradstudentresume: A document class for graduate student CVs

220 TUGboat, Volume 36 (2015), No. 3

Glisterings: Longest string;

Marching along; A blank argument;

A centered table of contents

Peter Wilson

Plain as the glistering planets shine

When winds have cleaned the skies,

Her love appeared, appealed for mine,

And wantoned in her eyes.

Songs of Travel, Robert Louis Stevenson

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

The chief defect of Henry King

Was chewing little bits of string.

Cautionary Tales, Hillaire Belloc

1 Longest string

Romildo wrote to comp.text.tex saying that he
tried to implement a macro for determining the long-
est string in a list but was having problems with
the code [18]. Romildo’s user view of the macro
(\Widest) was like this:

\newdimen\mydimen

\def\Format#1{{\itshape\tiny #1}}

\Widest{\mydimen}{\Format}{Good,morning,world}

\the\mydimen

There were several responses, including ones
from GL [8] and Heiko Oberdiek [16] who got into a
bit of a discussion about their suggested solutions,
partly because GL preferred the strings to look like
multiple arguments (e.g., {a}{bbb}{cc}) and Heiko
appeared to lean more towards a single argument
with the strings being separated by commas (e.g.,
(a,bbb,cc)) .

GL suggested (I have used \Widestg for GL’s
macro and \Widesth for Heiko’s to distinguish be-
tween them):

\makeatletter

\newskip\result

\def\Widestg#1#2#3\Widestg{% #1 = Format

\setbox\z@\hbox{#1{#2}}%

\ifdim\wd\z@>\result

\result\wd\z@

\edef\longest{#2}% % added by PW

\def\flong{{#1{\longest}}}% % added by PW

\fi

\ifx\relax#2\else

\Widestg{#1}#3\Widestg

\fi}

\makeatother

...

\result=0pt

\Widest{\textbf}{one}{two}{three}\relax\Widest

\the\result \\

\longest\ \the\result\\ % added by PW

\flong\ \the\result % added by PW

I added the code for \longest which contains the
longest string and \flong to typeset it using the
specified format. This code, applying the macro to
the list {one}{two}{three}, results in:

26.13898pt
three 26.13898pt
three 26.13898pt

Heiko came up with a version that uses the
kvsetkeys package [14] for parsing a comma-separated
list where spaces at the beginning and end of an entry
are ignored.

\usepackage{kvsetkeys}

\newcommand*{\Format}[1]{\textit{\tiny #1}}

\newlength\WidestResult

\makeatletter

\@ifdefinable{\Widesth}{%

\def\Widesth#1#2(#3){%

#1=\z@ % 0 pt

\comma@parse{#3}{%

\settowidth\dimen@{#2{\comma@entry}}%

\ifdim#1<\dimen@

#1=\dimen@

\edef\longest{\comma@entry}% PW added

\def\flong{#2{\longest}}% PW added

\fi

\@gobble % ignore list entry argument

}%

}%

}

\makeatother

...

\Widesth{\WidestResult}{\Format}(Good,morning,

world)

\the\WidestResult \\

\longest\ \the\WidestResult\\ % added by PW

\flong\ \the\WidestResult % added by PW

Just as with \Widestg I added the \longest and
\flong code. Note that the comma-separated list
of strings is enclosed in parentheses and not braces.
The result from Heiko’s example is:

21.64417pt
morning 21.64417pt
morning 21.64417pt

Applying GL’s macro to Romildo’s example as:

\result=0pt

\Widestg{\tiny\textit}{Good}{morning}

{world}\relax\Widestg

\longest\ \the\result \\

Peter Wilson

TUGboat, Volume 36 (2015), No. 3 221

\flong\ \the\result

results in:

morning 21.64417pt
morning 21.64417pt

which is the same as that from \Widesth.
Although both macros give the same result I

prefer Heiko’s user interface to GL’s, but then you
may think it should be the other way round.

Tear along the dotted line.

Instruction, Anonymous

2 Marching along

2.1 Oddment

On ctt Roger said that he was
. . . planning to take a string of the form mm.nn.pp
where mm, nn, and pp are all integers, and test if
pp is odd. So I’d like to write a macro that does that
and use that as the parameter to \ifodd.

Joseph Wright responded [22] that it sounded
as though he wanted something like:

\makeatletter

\newcommand*{\MyFunction}[1]{%

\My@function#1..\@nil\@stop}

\def\My@function#1.#2.#3#4\@stop{

\def\My@mm{#1}%

\def\My@nn{#2}%

\def\My@pp{}%

\ifx#3\@nil\else

\My@function@#3#4

\fi

% 0 below makes the test work when

% \My@pp is empty

\ifodd0\My@pp\relax

Odd

\else

Even

\fi}

\def\My@function@#1..\@nil{\def\My@pp{#1}}

\makeatother

...

\MyFunction{11.22.33}

\MyFunction{11.22.44}

\MyFunction{11.22.}

\MyFunction{11}

With Joseph’s code, running his suggested test ex-
amples results in:

Odd Even Even Even

Quite frankly, I do not understand just how his
code works. In order to get a better feel for it I
decided to write my own macros for dot-separated
lists of one, two, and three numbers and then try to

extend them to deal with a list of arbitrary extent.
Here are my efforts for the one, two, and three length
lists. I included some diagnostic output to help when
my code didn’t work as I thought that it should.

Firstly, here are the code shorthands that I have
used for the diagnostics — the \cs macro is defined
in the ltugboat class, as shown.

%\DeclareRobustCommand\cs[1]{%

% \texttt{\char‘\\#1}}

\newcommand*{\sarg}[1]{\texttt{\{#1\}}}

\newcommand*{\csparg}[2]{\cs{#1}\sarg{#2}}

\newcommand*{\LRA}{%

\ensuremath{\Longrightarrow} }

For a single number the command is:
\MyFunctionI{〈N 〉}

\newcommand*{\MyFunctionI}[1]{%

\csparg{MyFunctionI}{#1} \LRA

\ifodd0#1\relax

#1 Odd

\else

#1 Even

\fi}

Some example results are:

\MyFunctionI{11} ⇒ 11 Odd
\MyFunctionI{22} ⇒ 22 Even
\MyFunctionI{} ⇒ Even

For a list of two numbers the command is:
\MyFunctionII{〈N.N 〉}

\makeatletter

\newcommand*{\MyFunctionII}[1]{%

\csparg{MyFunctionII}{#1} \LRA

\My@FunctionII#1\@nil

\ifodd0\My@last\relax

\My@last\ Odd

\else

\My@last\ Even

\fi}

\def\My@FunctionII#1.#2\@nil{%

\def\My@last{#2}}

\makeatother

Example results are:

\MyFunctionII{11.22} ⇒ 22 Even
\MyFunctionII{11.33} ⇒ 33 Odd
\MyFunctionII{11.} ⇒ Even

For a list of three numbers the command is:
\MyFunctionIII{〈N.N.N 〉}

\makeatletter

\newcommand*{\MyFunctionIII}[1]{%

\csparg{MyFunctionIII}{#1} \LRA

\My@FunctionIII#1\@nil

\ifodd0\My@last\relax

\My@last\ Odd

\else

Glisterings: Longest string; Marching along; A blank argument; A centered table of contents

222 TUGboat, Volume 36 (2015), No. 3

\My@last\ Even

\fi}

\def\My@FunctionIII#1.#2.#3\@nil{%

\def\My@last{#3}}

\makeatother

Some results are:

\MyFunctionIII{11.22.33} ⇒ 33 Odd
\MyFunctionIII{11.22.44} ⇒ 44 Even
\MyFunctionIII{11.33.} ⇒ Even

Based on the underlying idea — delimited argu-
ments [1, 6, 9, 20] — of the above macros I then tried
to develop one that would take a dot-separated list
of any length and return whether the last number
was odd or even.

I failed.
Eventually I remembered that the LATEX ker-

nel includes an \@for macro for marching along a
comma-separated list of elements and decided to try
and create a version that would handle dot-separated
lists. It is effectively a copy of the \@for code replac-
ing every ‘,’ with a ‘.’. I can’t pretend to understand
how it works. I have named it \@ford as shorthand
for ‘\@fordot-separated-list’.

\makeatletter

% \@ford NAME := LIST \do {BODY}

\long\def\@ford#1:=#2\do#3{%

\expandafter\def\expandafter\@fortmp

\expandafter{#2}%

\ifx\@fortmp\@empty \else

\expandafter

\@forloopd#2.\@nil.\@nil\@@#1{#3}

\fi}

\long\def\@forloopd#1.#2.#3\@@#4#5{%

\def#4{#1}\ifx #4\@nnil \else

#5\def#4{#2}\ifx #4\@nnil

\else #5\@iforloopd #3\@@#4{#5}\fi\fi}

\long\def\@iforloopd#1.#2\@@#3#4{%

\def#3{#1}\ifx #3\@nnil

\expandafter\@fornoop \else

#4\relax

\expandafter\@iforloopd\fi#2\@@#3{#4}}

\makeatother

I did use this for a macro to handle unlimited
length lists of the kind that Roger was interested in.
Then there was a further posting from him [17] in
response to Joseph (which I have abbreviated):

Thank you. That works (and was quite educa-
tional). However, I failed to completely specify my
problem . . .

Here’s what I have:
{a.b.c, x.y.z} or
{x.y.z} or

{, x.y.z}

where a,b,c, x,y,z are integers.
What I would like to do is to be able to set a

switch in the file that if set then the ... would be
included only if z is odd, but if the switch is not set
then all ... will be included.

This requirement seemed to me to be a candidate
for a combination of \@for to handle the comma-
separated parts and \@ford for the portions that are
dot-separated.

Below is what I ended up with to handle an
unlimited comma-separated list of unlimited dot-
separated lists determining whether the last entry of
all is odd or even.

First the \DotFunction for a dot-separated list
of numbers. I have added some diagnostic print
out just in case together with a means (\ifop) for
enabling it. The macro is called like:
\DotFunction{〈N.N.N...N 〉}
and sets \gotoddtrue if the last number in the list
is odd.

\newif\ifgotodd

\newif\ifop

\optrue

\makeatletter

\def\DotFunction#1{%

\ifop \csparg{DotFunction}{#1} \LRA \fi

\def\My@last{0}% in case arg is empty

\@ford\scratch:=#1\do{%

\edef\My@last{\scratch}}%

\ifodd0\My@last\relax

\gotoddtrue

\ifop \My@last\ Odd \fi

\else

\gotoddfalse

\ifop \My@last\ Even \fi

\fi}

\makeatother

Some example results are:

\DotFunction{} ⇒ 0 Even
\DotFunction{11} ⇒ 11 Odd
\DotFunction{11.22} ⇒ 22 Even
\DotFunction{11.22.33} ⇒ 33 Odd
\DotFunction{11.22.33.44} ⇒ 44 Even
\DotFunction{11.nowt.33.44.55} ⇒ 55 Odd
\DotFunction{11..33.44.55} ⇒ 55 Odd
\newcommand*{\numM}{11.22.33.44.55.66.77}}

\DotFunction{\numM} ⇒
\DotFunction{11.22.33.44.55.66.77} ⇒ 77 Odd

Note that for \DotFunction, only the last ele-
ment in the list must be an integer (or blank), earlier

Peter Wilson

TUGboat, Volume 36 (2015), No. 3 223

elements can be, for example, text. Further, un-
like all the previous \MyFunction... macros, the
argument may be a macro.

Finally, here is the end of the exercise — a gen-
eralised solution to Roger’s requests, called as
\HisFuntion{〈N.N...N, N...N, ..., N...N 〉}

\makeatletter

\def\DotCommaFunction#1{%

\csparg{DotCommaFunction}{#1} \LRA

\opfalse% stop \DotFunction printing

\@for\first:=#1\do{%

\DotFunction{\first}}%

\ifgotodd

\My@last\ Odd

\else

\My@last\ Even

\fi}

\makeatother

Some results of using \DotCommaFunction:

\DotCommaFunction{1.2.3, 4.5.7} ⇒ 7 Odd
\DotCommaFunction{, 4.5.7} ⇒ 7 Odd
\DotCommaFunction{4.5.7} ⇒ 7 Odd
\DotCommaFunction{1, 2.3, , 4.5, 7.8} ⇒ 8
Even
\DotCommaFunction{1,2.3, ,4.5,7.8} ⇒ 8 Even

All that remains is for the user to make appro-
priate changes to the actions of the odd/even result
and to eliminate, or change, the diagnostic outputs
to suit the application at hand.

2.2 Indexing into a list

Alastair asked [2]:
I’ve got a question about comma separated lists. Is
there any way that you can index elements in a list.
Lists can be iterated over in the PGF/TikZ pack-
age’s \foreach loop. How can you access an element
whilst not in a loop?

Often responses to questions on ctt provide the
bare bones of a solution, leaving the questioner to
adapt or extend it to his own situation. There were
several responses and the one I found that would best
suit me was from Ulrike Fischer [7]. The following
is essentially Ulrike’s code, edited to better fit the
column:

\usepackage{tikz}

\def\values{i5, i4, i3, i2, i1}

\newcounter{loc}

\newcommand{\getitem}[1]{%

\setcounter{loc}{0}

\foreach \x in \values{%

\stepcounter{loc}%

\expandafter\xdef\csname

alsval\the\value{loc}\endcsname{\x}}%

\csname alsval#1\endcsname}

Ulrike’s \getitem{〈N 〉} macro returns the item that
is in the 〈N 〉th location in \values as \alsvalN.
With:

\getitem{1}, \getitem{4}, \getitem{8}.

the result is:

i5, i2, .

I wondered if there was a solution that did not
involve calling the tikz package and came up with
the following which does not require any packages,
being based on the LATEX kernel’s \@for construct.

\let\xpf\expandafter % just to save some space

\makeatletter

\newcount\vindex

\newcommand*{\getit}[2]{%

\xpf\xpf\xpf\@getit\xpf{#2}{#1}%

\theans}

\newcommand*{\@getit}[2]{%

\vindex=0

\def\theans{Index #2 is out of range.}%

\xdef\alist{#1}%

\@for\tmp := #1 \do{%

\advance\vindex 1

\ifnum\the\vindex=#2

\xdef\theans{\tmp}%

\fi}}

\makeatother

The macro \getit{〈N 〉}{〈list〉} returns \theans as
the value of the 〈N 〉th item in the 〈list〉 where 〈list〉
may be either a comma-separated list or a macro
defined as one. I have included a check on whether
〈N 〉 is valid for the given list (this would be better
in the form of an error report in the log file external
to the document instead of being typeset).

With these inputs

\getit{1}{\values},

\getit{4}{\values},

\getit{8}{\values}.

\getit{1}{i5, i4, i3, i2, i1},

\getit{4}{i5, i4, i3, i2, i1},

\getit{8}{i5, i4, i3, i2, i1}.

the results are:

i5, i2, Index 8 is out of range.
i5, i2, Index 8 is out of range.

The key problem that I had to solve in my
method is that the ‘list’ that \@for operates on must
be an actual sequence of comma-separated items and
not a macro defined as such a list. That is why I
have separated the code into two macros. The first
to grab the list, be it actual or as a macro, and then

Glisterings: Longest string; Marching along; A blank argument; A centered table of contents

224 TUGboat, Volume 36 (2015), No. 3

to hand that over to \@getit as an actual list by
utilising a series of \expandafters within \getit.1

The tumult and the shouting dies,

The captains and the kings depart,

And we are left with large supplies

Of cold blancmange and rhubarb tart.

After the Party, Ronald Knox

3 A blank argument

The title of a posting by Matthew to texhax was
Finding blank argument to a macro. There is a long
history behind this kind of macro, initially posed as a
challenge in Michael Downes’ Around the Bend [5] se-
ries in the early 90s, and without looking any further
I assumed that the solution would be the ifmtarg [3]
package which provides a test as to whether a macro
argument consists of zero or more blank spaces.

However, I was mistaken, as Matthew’s posting
continued [11]:

I am trying to solve a problem in LATEX that I
thought would be relatively straightforward. I would
like to make a macro that will evaluate its argument
and tell me whether the result is blank or not . . . I
managed to come up with a TEX macro that han-
dles different types of ‘blank’ pretty well. It properly
recognizes an empty argument, empty braces, spaces,
etc. It even works on another macro that evaluates
to a blank, so I thought I was home free. However,
as soon as I fed it a macro that takes an argument,
bad things happen. I’ve attached a simple document
below that shows the problem.

The ‘simple document’ contains many lines of
code implementing his \blankArgTest{〈arg〉}, to-
gether with examples of when it worked and when it
didn’t give the required result. With the macros:

\usepackage{ifthen}

\newcommand{\testA}{%

\ifnum10=10 \empty\else A\fi}

\newcommand{\testB}{%

\ifthenelse{10=10}{\empty}{B}}

\newcommand{\testC}[1]{%

\ifnum#1=10 \empty\else C\fi}

\blankArgTest worked when 〈arg〉 was \testA but
failed for \testB and \testC.

Michael Barr [4] came up with a remarkably
simple solution which I am presenting as:

\newcommand{\IfBlank}[1]{%

1 \expandafter and when it should be used is to me among
the more difficult aspects of TEX code. I usually come to a
solution by either following what others have done in similar
circumstances or by much experimentation — otherwise known
as errors and trials.

\setbox0\hbox{$#1$}%

\ifdim\wd0=0pt

Blank

\else

Not blank

\fi}

The basic idea is to put the argument into an
\hbox and check if the box’s width is zero. This
assumes that a ‘blank’ argument is one that results
in no typeset material (or rather, anything typeset
ends with zero width). With the following definitions:

\newcommand{\blank}{ }

\newcommand{\tout}{\typeout{Typeout}}

examples of the \IfBlank macro are:

\IfBlank{} Blank
\IfBlank{ } Blank
\IfBlank{Text} Not blank
\IfBlank{\blank} Blank
\IfBlank{\tout} Blank
\IfBlank{{ }} Blank
\testA Blank
\testB Blank
\testC{10} Blank

A somewhat different need for an empty/blank
argument was expressed by Timothy Murphy who
wrote [13]:

I have a macro \cmd#1#2 . Both arguments are
given in the form {...}. I’d like an empty second
argument {} to be added if none is given, i.e., if the
next character after \cmd{...} is not { .

What is the simplest way to do this?
There were three interesting proposed solutions

which I have given below.2

Heiko Oberdiek’s was the first positive response
and was essentially as follows [15]:

\newcommand*{\CmdH}[1]{%

\begingroup

% remember parameter

\toks0={#1}%

% look forward

\futurelet\NextToken\CmdI}

\newcommand*{\CmdI}{%

\ifx\NextToken\bgroup

\edef\next{\endgroup

\noexpand\CmdImpl{\the\toks0}}%

\else

\edef\next{\endgroup

\noexpand\CmdImpl{\the\toks0}{}}%

\fi

2 I have slightly edited the code, principally by using
distinguished macro names instead of the somewhat generic
\cmd, and using a common set of tests.

Peter Wilson

TUGboat, Volume 36 (2015), No. 3 225

\next}

\newcommand{\CmdImpl}[2]{%

\textbf{Heiko:}

this is (#1) and here’s (#2).}

\CmdH{abc}{def} \\

\CmdH{ghi}\relax \\

\CmdH{jkl} %

which results in:

Heiko: this is (abc) and here’s (def).
Heiko: this is (ghi) and here’s ().
Heiko: this is (jkl) and here’s ().

Dan Luecking [10], noting that there were prob-
ably better ways (see Heiko’s reply), responded with:

\makeatletter

\newcommand*{\CmdD}[1]{%

\@ifnextchar\bgroup

{\Cmd@i{#1}}{\Cmd@i{#1}{}}}

\newcommand*{\Cmd@i}[2]{%

\textbf{Dan:}

this is (#1) and here’s (#2).}

\makeatother

\CmdD{abc}{def} \\

\CmdD{ghi}\relax \\

\CmdD{jkl} %

which results in:

Dan: this is (abc) and here’s (def).
Dan: this is (ghi) and here’s ().
Dan: this is (jkl) and here’s ().

Dan pointed out that his code does not exam-
ine the actual next character, but rather the next
nonspace character. He also commented that Heiko’s
solution emulates a portion of \@ifnextchar with-
out the skipping of spaces.

Joseph Wright [21] proposed a solution based
on the xparse package [19] developed as part of the
LATEX3 project. From the user’s viewpoint it appears
to be the simplest of the three proposed solutions.

\usepackage{xparse}

\NewDocumentCommand\CmdJ{mG{}}{%

\textbf{Joseph:}

this is (#1) and here’s (#2).}

\CmdJ{abc}{def} \\

\CmdJ{ghi}\relax \\

\CmdJ{jkl} %

which results in:

Joseph: this is (abc) and here’s (def).
Joseph: this is (ghi) and here’s ().
Joseph: this is (jkl) and here’s ().

The three very different implementations each
handled all the test cases correctly.

America is a land whose center is nowhere;

England one whose center is everywhere.

Pick Up Pieces, John Updike

4 A centered table of contents

Bogdan Butnaru3 uses the memoir class and asked
me how to have a centered table of contents (ToC).
I came up with one solution and passed Bogdan’s
request on to Lars Madsen, who is now memoir’s
maintainer, and he came up with a better solution;
both of these were based on memoir’s tools for manip-
ulating the ToC. I then came up with a more basic
solution which is also applicable to the standard book

and report classes.
In these classes a chapter entry is set by the

\l@chapter macro, a section entry by \l@section,
and so on. These may be redefined to produce cen-
tered entries. These macros have the general calling
form of:
\l@chapter{〈number-and-title〉}{〈page〉}
where 〈number-and-title〉 has the form:
{{\numberline}{num} title}

where \numberline typesets the chapter number.
The \l@... macros also take into account whether
or not the entry should be printed and the surround-
ing vertical spacing. The LATEX Companion [12, §2.3]
provides further information about ToCs and related
packages.

The following redefinition of \l@chapter will
center the chapter entries, with the chapter number
above the title, and a middle-dot between the title
and page number.

\makeatletter

\renewcommand*{\l@chapter}[2]{%

\ifnum\c@tocdepth>\m@ne % print chapter entry

\addpenalty{-\@highpenalty}%

\vskip 1em plus 0pt

\begingroup

\def\numberline##1{##1\\\nobreak}% number

{\centering\bfseries

#1~\textperiodcentered~#2\par}%

\endgroup

\fi}

\makeatother

The \tableofcontents macro uses \chapter*

to set the title ragged right. A hack to that can
be used to center the title is to make \raggedright

into \centering.

\let\saverr\raggedright

3 Private email, 2010/07/21

Glisterings: Longest string; Marching along; A blank argument; A centered table of contents

226 TUGboat, Volume 36 (2015), No. 3

\newcommand*{\rrtocenter}{%

\let\raggedright\centering}

\newcommand*{\restorerr}{%

\let\raggedright\saverr}

\let\oldtoc\tableofcontents

\renewcommand*{\tableofcontents}{%

{\rrtocenter\oldtoc}}

To typeset the ToC with the heading and chapter
entries centered is now as easy as:
\tableofcontents

If you wanted the section entries to be centered
then \l@section can be redefined in a similar, but
not identical, manner to \l@chapter. However, cen-
tered section entries following a centered chapter
entry in my view looks rather confusing.

If you want chapter headings to be centered, you
can do:

{\rrtocenter

\chapter[...]{...}

}

or

\rrtocenter

\chapter[...]{...}

\restorerr

In each case the effect of \rrtocenter is limited to
\chapter; if it were not then surprises could be in
store later on.

References

[1] Paul W. Abrahams, Karl Berry, and
Kathryn A. Hargreaves. TEX for the
Impatient. Addison-Wesley, 1990. http:

//ctan.org/pkg/impatient.

[2] Alastair. Indexing individual elements in a
comma separated list. Post to comp.text.tex

newsgroup, 17 October 2010.

[3] Donald Arseneau and Peter Wilson. The
ifmtarg package, 2009. http://ctan.org/

pkg/ifmtarg.

[4] Michael Barr. Re: [texhax] Finding blank
argument to a macro. Post to texhax mailing
list, 27 May 2010.

[5] Michael Downes (ed. Peter Wilson). Around
the Bend. The Herries Press, July 2008.
http://ctan.org/pkg/around-the-bend.

[6] Victor Eijkhout. TEX by Topic, A TEXnician’s
Reference. Addison-Wesley, 1991. ISBN
0-201-56882-9. Available at http://www.

eijkhout.net/tbt/.

[7] Ulrike Fischer. Re: Indexing individual
elements in a comma separated list. Post to
comp.text.tex newsgroup, 18 October 2010.

[8] GL. Re: Finding the widest string. Post to
comp.text.tex newsgroup, 4 May 2010.

[9] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0-201-13448-9.

[10] Dan Luecking. Re: A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[11] Matthew. [texhax] finding blank argument to
a macro. Post to texhax mailing list, 25 May
2010.

[12] Frank Mittelbach and Michel Goossens.
The LATEX Companion. Addison Wesley,
second edition, 2004. ISBN 0-201-36299-6.

[13] Timothy Murphy. A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[14] Heiko Oberdiek. The kvsetkeys package, 2010.
http://ctan.org/pkg/kvsetkeys.

[15] Heiko Oberdiek. Re: A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[16] Heiko Oberdiek. Re: Finding the widest string.
Post to comp.text.tex newsgroup, 4 May
2010.

[17] Roger. Re: ifodd question. Post to
comp.text.tex newsgroup, 18 May 2010.

[18] Romildo. Finding the widest string. Post to
comp.text.tex newsgroup, 3 May 2010.

[19] The LaTeX3 Project. The xparse package,
2015. http://ctan.org/pkg/xparse.

[20] Peter Wilson. Glisterings: More on paragraphs
regular, LATEX’s defining triumvirate,
TEX’s dictator. TUGboat, 29(2):324–327,
2008. http://tug.org/TUGboat/tb29-2/

tb92glister.pdf.

[21] Joseph Wright. Re: A small LaTeX macro
question. Post to comp.text.tex newsgroup,
4 June 2010.

[22] Joseph Wright. Re: ifodd question. Post to
comp.text.tex newsgroup, 14 May 2010.

⋄ Peter Wilson

12 Sovereign Close

Kenilworth, CV8 1SQ

UK

herries dot press (at)

earthlink dot net

Peter Wilson

TUGboat, Volume 36 (2015), No. 3 227

Chemistry in LATEX2ε—an overview of

existing packages and possibilities

Clemens Niederberger

Abstract

This article provides an overview of the most useful
and popular packages for writing chemistry-related
material with LATEX2ε. It is based upon a series of
blog posts written by the author on the (German-
language) blog http://texwelt.de/blog.

1 Introduction

It was just about two years ago when I started a
series of blog posts on chemistry-related LATEX pack-
ages. Readers interested in the series and able to
understand German will find the whole series on
http://texwelt.de/blog/tag/chemie. This arti-
cle more or less is a translation of those blog articles
into English and follows the same structure:

• The basics using the chemmacros package, see
section 2.

• Molecular formulas and reaction equations, see
section 3.

• Structural formulas— the chemfig package, see
section 4.

• Safety Data and GHS—the packages ghsystem,
rsphrases, and hpstatement, see section 5.

• Numbering of compounds— the chemnum pack-
age, see section 6.

• Packages for special applications, see section 7.

I should add the disclaimer that I am the au-
thor of the majority of packages discussed. All
packages mentioned in this article are on CTAN

(http://ctan.org/pkg/〈pkgname〉), and they are
also all included in the two major TEX distributions,
MiKTEX and TEX Live. Anyone with an up-to-date
distribution can find their manuals by typing texdoc

〈pkgname〉 on the command line.

2 The basics using the chemmacros package

The chemmacros package (disclaimer: I am the au-
thor) offers a variety of macros for different applica-
tions in chemistry: writing IUPAC names, supporting
formal charges and oxidation numbers, displaying
spectroscopy data, and much more. Recently (late
August 2015), chemmacros was updated to v5.0 which
came with huge changes [4]. This article assumes
version 5.0 is available.

As of version 5.0, chemmacros is constructed in
a modular way. Some of the modules are loaded by
default, while others have to be loaded by the user.
This article loads one additional module:

\usechemmodule{redox}

2.1 IUPAC names

IUPAC (International Union of Pure and Applied
Chemistry) names can get rather long and hard to
read. Moreover, line breaking often becomes prob-
lematic. Treating them as normal text is unlikely to
have good results:

(4-(4,4’-Bis(dimethylaminophenyl)benz%

hydryliden)cyclohexa-2,5-dien-1-yliden)%

dimethylammoniumchlorid

(4-(4,4’-Bis(dimethylaminophenyl)benzhydryliden)cyclohexa-
2,5-dien-1-yliden)dimethylammoniumchlorid

chemmacros offers the macro \iupac for easing
both input and output. Inside of this command, ‘-’
outputs a dash which also allows for hyphenation in
the rest of the word, similar to \babelhyphen. ‘|’
inserts a breakpoint along with a tiny amount of
space, which can be customized.

\iupac{(4-(4,4’-Bis(di|methyl|amino|%

phenyl)benz|hydryliden)cyclo|hexa%

-2,5-dien-1-yliden)di|methyl|%

ammonium|chlorid}

(4-(4,4’-Bis(dimethylaminophenyl)benzhydryliden)cy-
clohexa-2,5-dien-1-yliden)dimethylammoniumchlorid

If it were only about the line breaks an easier
solution might be to use suitable babel shorthands.
But \iupac does more: inside many macros for com-
mon typesetting tasks, IUPAC names are defined:

\iupac{\nitrogen-methyl|benz|amide} \\

\iupac{\cip{2S,3S}-Wein|s\"aure} \\

\iupac{\zusammen-2-Butene}

N -methylbenzamide
(2S ,3S)-Weinsäure
(Z)-2-Butene

2.2 Phase descriptors

chemmacros tries hard to follow IUPAC’s recommen-
dations whenever possible. IUPAC’s demands con-
cerning phase descriptors are the following:

The [. . .] symbols are used to represent the states
of aggregation of chemical species. The letters
are appended to the formula in parentheses and
should be printed in Roman (upright) type with-
out a full stop (period). [2, p. 54]

chemmacros offers ready-to-use macros for the most
common phase descriptors which exactly follow this
recommendation:

\ch{

C\sld{} + 2 H2O\lqd{}

->

CO2\gas{} + 2 H2\gas

}

C(s) + 2H2O(l) CO2 (g) + 2H2 (g)

Chemistry in LATEX2ε—an overview of existing packages and possibilities

228 TUGboat, Volume 36 (2015), No. 3

Table 1: Basic use cases for mhchem and chemformula.

mhchem chemformula

\ce{H2O} H2O \ch{H2O} H2O

\ce{Sb2O3} Sb2O3 \ch{Sb2O3} Sb2O3

\ce{H+} H+ \ch{H+} H+

\ce{H2O} H2O \ch{H2O} H2O

\ce{[AgCl2]-} [AgCl2]
– \ch{[AgCl2]-} [AgCl2]

–

\ce{^{227}_{90}Th+} 227
90Th

+ \ch{^{227}_{90}Th+} 227
90Th

+

\ce{SO4^2-} SO4
2– \ch{SO4^2-} SO 2–

4

\ce{KCr(SO4)2 * 12H2O} KCr(SO4)2 · 12H2O \ch{KCr(SO4)2 * 12 H2O} KCr(SO4)2 ·12H2O

However, for almost every setting chemmacros

offers the possibility of customizing the output. The
same input with

\chemsetup{phases/pos=sub}

gives another very common way of denoting phases:

C(s) + 2H2O(l) CO2(g) + 2H2(g)

2.3 A lot more

Since describing all of chemmacros’ features would be
rather pointless (they’re all described in the manual)
and would also exceed the limits of this article, I’ll
just give one more example before continuing with
the next topic.

\ch{

2 "\OX{o1,Na}" + "\OX{r1,Cl}" {}2

->

2 "\OX{o2,Na}" {}+ + 2 "\OX{r2,Cl}" {}-

}

\redox(o1,o2)[->]{\small OX: \ch{- 2 e-}}

\redox(r1,r2)[->][-1]{\small RED: \ch{+ 2 e-}}

2Na + Cl2 2Na+ + 2Cl–

OX: − 2 e–

RED: + 2 e–

3 Molecular formulas and reaction

equations—the mhchem and

chemformula packages

Two packages need to be mentioned here: mhchem

by Martin Hensel and chemformula by me. mhchem

has been around for a longer time and thus is better
known and probably has a larger user base.

chemformula started as part of the chemmacros

package in January 2012 and was released as an
independent package in July 2013. It is still closely
connected with chemmacros in that chemmacros uses
it extensively. Thus, people using chemmacros should
use chemformula instead of mhchem in order to have
consistent input and output.

Both packages are similar in input and output,
but have important differences in both aspects.

Table 2: mhchem’s and chemformula’s arrows.

mhchem chemformula

\ce{->} −−→ \ch{->}

\ce{<-} ←−− \ch{<-}

\ce{<->} ←−→ \ch{<->}

\ch{<>}

\ce{<=>} −−⇀↽−− \ch{<=>}

\ce{<=>>} ↽−−−⇀ \ch{<=>>}

\ce{<<=>} −⇀↽−− \ch{<<=>}

\ch{-/>}

\ch{</-}

\ce{=} = \ch{==} =

\ch{<o>}

Martin Hensel, the author of mhchem, once de-
scribed the differences as follows [3]:

[chemformula’s] philosophy is control to the

user. [. . .] mhchem’s philosophy, on the other
hand, is ease of use.

Both packages mainly provide one macro for the
typesetting of chemical formulas and reactions:

• mhchem has \ce{〈input〉} and

• chemformula has \ch{〈input〉}.

Table 1 shows a brief comparison of basic use cases.
The differences are most visible when typeset-

ting reactions:

\ce{4 Na + 2 H2SO4 -> 2 Na2SO4 + 2 H2 ^} \\

\ch{4 Na + 2 H2SO4 -> 2 Na2SO4 + 2 H2 ^}

4Na + 2H2SO4 −−→ 2Na2SO4 + 2H2 ↑
4Na + 2H2SO4 2Na2SO4 + 2H2↑

You will notice differences in spacing (which is cus-
tomizable in chemformula) and of course the different
arrows. Table 2 shows the different kinds of arrows
both packages provide.

There is much more to be said about both pack-
ages but again I’ll leave it with this introduction and
refer to the respective manuals for details.

Clemens Niederberger

TUGboat, Volume 36 (2015), No. 3 229

4 Structural formulas— the chemfig

package

Both mhchem and chemformula lack support for show-
ing the complexities of organic compounds. For
typesetting structural (skeletal) formulas, the most
common way probably is to use an external program
like ChemDraw, export the results as images and
include those into the LATEX document. However,
there are ways to create such formulas and diagrams
from within LATEX. To my knowledge there are five
packages for doing this. People interested in details
can have a look at [6]. In this article I’ll cover only
one of them: chemfig by Christian Tellechea. Again
this will be a rather brief introduction—the manual
has more than 80 pages.

First of all: chemfig is a generic package (it’s
the only one such among the packages described in
this article); it can be used in LATEX, ConTEXt and
plain TEX.

\input chemfig.tex % plain TeX

\usepackage{chemfig} % LaTeX

\usemodule[chemfig] % ConTeXt

chemfig uses PGF (TikZ) for drawing the formu-
las. The most important command is

\chemfig{〈input〉}.

The basic rules are simple: letters are atoms and
bonds are input as -, =, etc. Atoms are typeset
in math mode (more precisely with \printatom

which expands to \ensuremath{\mathrm{#1}}) so
subscripts can be input as in math:

\chemfig{H-CH_3}

H CH3

There are a number of different bond types,
shown in table 3. The appearance can be customized
with a number of parameters. All bonds have an
optional argument taking a comma-separated list of
five parameters, in this order:

1. the angle of the bond,

2. a scale factor,

3. the “departure” atom number,

4. the “arrival” atom number, and

5. TikZ options for customization of the bond.

The angle can be input in three different ways:

• 〈integer〉—denotes an angle in multiples of 45◦.

• :〈real〉—denotes the angle of the bond counter-
clockwise (positive) or clockwise (negative) to
the horizontal.

• ::〈real〉—denotes the angle of the bond coun-
terclockwise (positive) or clockwise (negative)
relative to the bond before.

Thus, each of these input lines

Table 3: chemfig’s bond types.

Input Output

\chemfig{A-B} A B
\chemfig{A=B} A B
\chemfig{A~B} A B
\chemfig{A>B} A B
\chemfig{A<B} A B
\chemfig{A>:B} A B
\chemfig{A<:B} A B
\chemfig{A>|B} A B
\chemfig{A<|B} A B

\chemfig{H-C(-[2]H)(-[6]H)-H}

\chemfig{H-C(-[:90]H)(-[:-90]H)-H}

\chemfig{H-C(-[::90]H)(-[::-90]H)-H}

gives the same output:

H C

H

H

H

The last example also demonstrates how branch-
ing is done: surround the branch with parentheses.

\chemfig{-[:30]-[::-60]-[::60]}

\par\bigskip

\chemfig{-[:30]-[::-60](-[::-60])-[::60]}

Making rings is also quite easy:

\chemfig{*5(-----)}

\chemfig{*6(------)}

\chemfig{*5(--(-R)--(=O)-)}

R

O

Personally, I find this syntax very intuitive— indeed
much more intuitive than some of the other packages
mentioned in [6]—and it can be learned very fast.

I hope that the examples so far give a basic idea
of chemfig’s usage. To conclude this section, figure 1
shows an example of a more complicated scheme
created with chemfig, to give you a larger impression
of what is doable with the package. The code for the
example can be seen in [5].

Chemistry in LATEX2ε—an overview of existing packages and possibilities

230 TUGboat, Volume 36 (2015), No. 3

SH
N
H

N

R

C

O

OH

+ R−CO−NH−R′

− R−COOH

S−

N
H

NH+

R

C

O

NH

R′

−O C

S

R

NH

R′

N
H

NH+

R

CO

S

N
H

N

H2N

R′

−O C

S

R

O+

H

H

N
H

N

R

CO

S

N
H

N

H
O

H

+ H2O

− H2N−R′

Figure 1: An example of using chemfig to create more complicated diagrams.

5 Safety data—the rsphrase, hpstatement,

and ghsystem packages

Every student of chemistry knows the safety data
phrases coordinated in the Globally Harmonized Sys-

tem of Classification and Labelling of Chemicals, in
short, GHS. This system defines H (hazard) and
P (precaution) statements. Before this became the
standard there were R (risk) and S (safety) state-
ments.

The R and S statements are available through
the rsphrase package by Martin Hensel:

The statement \rsnumber{R34}

is ‘\rsphrase{R34}’

The statement R 34 is ‘Causes burns.’

Its usage is described in mhchem’s manual.

The usage of the hpstatement by the same author
also is described in mhchem’s manual. The package
provides support for the H and P statements of the
GHS. It is a bit unfortunate that the package has

\RequirePackage{babel}

which forces the user to use the babel package and
provide a language option.

The statement \hpnumber{H200}

is ‘‘\hpstatement{H200}’’

The statement H200 is “Unstable explosives.”

There is another package for GHS statements,
ghsystem by me, which is a little bit older than
hpstatement. It also provides an interface to get
the statements per number.

The statement \ghs[hide]{h}{200}

Clemens Niederberger

TUGboat, Volume 36 (2015), No. 3 231

is ‘‘\ghs*{h}{200}’’: \par

\ghs{h}{200}

The statement H200 is “Unstable explosives.”:
H200: Unstable explosives.

In addition it provides the possibility of inserting the
GHS pictograms.

\ghspic{skull}

\ghspic{flame}

\ghspic{aqpol}

Those pictograms are available as JPG, EPS, PNG,
and PDF. There are plans to eventually provide the
pictograms as TikZ pictures.

6 Numbering compounds—the chemnum

package

It is a common task for chemists to refer to com-
pounds with numbers. There are a number of pack-
ages for this task but the most flexible one is chem-

num (again by me).
The basic usage is simple: add \cmpd{〈id〉}

where you want the number:

This is about \ch{CH3-CH2-OH} (\cmpd{ethanol}).

\cmpd{ethanol} is used\ldots

This is about CH3 CH2 OH (1). 1 is used. . .

Upon the first usage of ID 〈id〉 the command will cre-
ate a new number for the compound. Later uses will
then refer to this number. For usage in section titles
or captions a version with optional + (\cmpd+{〈id〉})
can be used to refer to the compound without cre-
ating the number. There is also a starred version
which will create the number but prints nothing. In
this respect the syntax is the same as in the older
package chemcompounds by Stephan Schenk.

chemnum also natively supports “sub-labelling”:
\cmpd{〈id〉.〈sub id〉}.

Both 〈id〉 and 〈sub id〉may be comma-separated
lists. If 〈sub id〉 is a list it must be enclosed in braces.

\setatomsep{2em}

\chemname

{\chemfig{*6(=-=-(-R)=-)}}

{\cmpd{benzene.{H,Me,OH,NH2}}}

\begin{tabular}{lll}

& \ch{-R} & Name \\

\midrule

\cmpd[sub-only]{benzene.H} & \ch{-H}

& Benzene \\

\cmpd[sub-only]{benzene.Me} & \ch{-CH3}

& Toluene \\

\cmpd[sub-only]{benzene.OH} & \ch{-OH}

& Phenol \\

\cmpd[sub-only]{benzene.NH2} & \ch{-NH2}

& Phenylamine (Aniline)

\end{tabular}

R

2a–d

R Name

a H Benzene

b CH3 Toluene

c OH Phenol

d NH2 Phenylamine (Aniline)

This example shows that by default lists of sub-
labels are compressed. This can be turned off with
an option.

\cmpd{benzene.{H,Me,OH,NH2}}

\setchemnum{compress=false}

\cmpd{benzene.{H,Me,OH,NH2}}

2a–d 2a,b,c,d

When you have a list of labels which contains
an 〈id〉 more than once but with different sublabels,
each entry will be printed on its own:

\cmpd{a,b.{A},c,b.{B,C},a}

3, 4a, 5 and 4b,c

However, there is an option to merge those different
entries into one:

\setchemnum{merge=true}

\cmpd{a,b.{A},c,b.{B,C},a}

3, 4a–c and 5

What we have not seen yet in the above exam-
ples is that lists are sorted as well:

\cmpd{a,b,c,b,a,ethanol,benzene} vs.\@

\cmpd{a}, \cmpd{b}, \cmpd{c}, \cmpd{b},

\cmpd{a}, \cmpd{ethanol} and \cmpd{benzene}

1, 2, 3, 4 and 5 vs. 3, 4, 5, 4, 3, 1 and 2

7 Packages for special applications

The number of packages available for support of
chemistry-related topics is quite large. Both CTAN

(http://ctan.org/topic/chemistry) and I, on my
blog (http://mychemistry.eu/known-packages/),
maintain a list of packages related to chemistry. The
lists differ slightly, mostly because I also include
fringe cases, e.g., packages which may belong more
to biology than to chemistry. In this section I pick a
few of my packages and will present them extremely
briefly:

• bohr

• elements

• endiagram

• modiagram

• chemgreek

Chemistry in LATEX2ε—an overview of existing packages and possibilities

232 TUGboat, Volume 36 (2015), No. 3

7.1 The bohr package

The package bohr was created as an answer to a
question on http://tex.stackexchange.com [1]. It
provides a simple way of drawing atomic orbitals
according to the Bohr model:

\bohr{3}{Li}

Li

7.2 The elements package

The elements package is rather new (released in
June 2015). From its abstract:

This package provides means for retrieving
properties of chemical elements like atomic
number, element symbol, element name, elec-
tron distribution or isotope number. Prop-
erties are defined for the elements up to the
atomic number 112.

The following example gives a short impression of its
capabilities:

\elementname{Cu} \\

\elementname{11} \\

\atomicnumber{U} \\

\elconf{Cl} \\

\savemainelementisotope\foo{C}\foo

Copper
Sodium
92
1s22s22p63s23p5

12

7.3 The endiagram package

The endiagram package lets you create potential en-
ergy curve diagrams.

\begin{endiagram}

\ENcurve{1,4,0}

\end{endiagram}

E

ξ

A more advanced example:

% preamble:

% uses ‘siunitx’ (loaded by ‘endiagram’)

\DeclareSIUnit{\calory}{cal}

\sisetup{per-mode = fraction}

% document:

\ENsetup{

y-label = above ,

energy-step = 100 ,

energy-unit = \kilo\calory\per\mole ,

energy-unit-separator = { in } ,

calculate = false ,

AddAxisLabel/font = \footnotesize

}

\begin{endiagram}[scale=1.2]

\ENcurve{2.232,4.174,.308}

\AddAxisLabel*{0;1;2;3;4}

\ShowEa[label,connect={draw=none}]

\ShowGain[label]

\end{endiagram}

0

100

200

300

400

Ea

∆H < 0

E in kcal
mol

ξ

7.4 The modiagram package

Like the bohr package, the modiagram package was
created as an answer to a question on http://tex.

stackexchange.com [7]. It offers an interface for
drawing molecular orbital diagrams based on TikZ.

\begin{MOdiagram}[labels,names,style=square]

\atom[N]{left}{

2p = {0;up,up,up}

}

\atom[O]{right}{

2p = {2;pair,up,up}

}

\molecule[NO]{

2pMO = {1.8,.4;pair,pair,pair,up}

}

\end{MOdiagram}

Clemens Niederberger

TUGboat, Volume 36 (2015), No. 3 233

2pz2py2px

2pz2py2px

2σx

2σ∗

x

2πy

2π∗

y

2πz

2π∗

z

N NO O

7.5 The chemgreek package

The chemgreek package is a support package rather
than one to be used by users directly. At the time
of writing, the packages chemmacros, chemnum and
mhchem make use of its features. The purpose of
chemgreek is to provide a unified interface for upright
Greek letters regardless of which math or font pack-
age provides upright letters and regardless of how
those are accessed. This is important in chemistry
since upright Greek letters are used in a variety of
places:

\iupac{\a-\D-glucopyranose}

α-d-glucopyranose

The chemgreek package knows about a number
of packages providing upright Greek letters. It is
able to detect if one of those packages is loaded, and
if a unique choice is possible it defines macros for
each of the 24 lowercase and uppercase letters. If
no unique choice is possible it falls back to a default
mapping and users have to make a choice themselves.
The chemmacros package has a user interface for this:
\chemsetup{greek = 〈mapping〉}.

Other packages can now use those macros to
define macros of their own.

If a document needs a font package with up-
right Greek letters which chemgreek doesn’t know
about, users have the capability to define a new
〈mapping〉 themselves, and (for example) activate it
with chemmacros’ interface, and then use chemmacros

nomenclature commands using the new mapping.

8 Summary

This article briefly discussed the usage of the pack-
ages chemmacros, mhchem, chemformula, chemfig,
rsphrase, hpstatement, ghsystem, chemnum, bohr, el-
ements, endiagram, modiagram, and chemgreek. It
shows that today there is considerable support for
different typesetting tasks in chemistry and gives a
short overview of some the existing possibilities.

References

[1] Andreas. Draw Bohr atomic model with
electron shells in TEX? http://tex.

stackexchange.com/questions/73410/

[accessed 2015-08-29].

[2] E. Richard Cohan, Tomislav Cvitaš, Jeremy G.
Frey, Bertil Holmström, Kozo Kuchitsu,
Roberto Marquardt, Ian Mills, Franco Pavese,
Martin Quack, Jürgen Stohner, Herbert L.
Strauss, Michio Takami, and Anders J. Thor.
“Quantities, Symbols and Units in Physical

Chemistry”, IUPAC Green Book. IUPAC &
RSC Publishing, Cambridge, 3rd edition,
2nd printing, 2008.

[3] Martin Hensel. On mhchem vs. chemformula.
http://tex.stackexchange.com/q/237946#

comment565361_238214 [accessed 2015-08-29].

[4] Clemens Niederberger. a new chemmacros—
but how? http://www.mychemistry.eu/2015/

07/a-new-chemmacros-but-how/ [accessed
2015-08-29].

[5] Clemens Niederberger. A seemingly complex
example for the usage of chemfig. https:

//www.overleaf.com/read/nhbyvqvrqffj

[accessed 2015-08-29].

[6] rake. Can you make chemical structure
diagrams in LATEX? http://tex.

stackexchange.com/questions/52722

[accessed 2015-08-29].

[7] Richard Terrett. Molecular orbital diagrams
in LATEX? http://tex.stackexchange.com/

questions/13863 [accessed 2015-08-29].

⋄ Clemens Niederberger
Am Burgrain 3
71083 Herrenberg
Germany
contact (at) mychemistry dot eu

http://www.mychemistry.eu/

Chemistry in LATEX2ε—an overview of existing packages and possibilities

234 TUGboat, Volume 36 (2015), No. 3

Automating LATEX(3) testing

Joseph Wright and LATEX3 team

1 Introduction

Testing has always been an important part of the
work of the LATEX team. Over the last couple of years,
ideas first developed in the early 1990s have been used
to create a flexible testing tool, l3build (Mittelbach,
Robertson, and LATEX3 team, 2014; LATEX3 team,
2015). In an ideal world, every change would be
checked by a full run of the entire test suite. In
reality, that’s not always the case: mistakes happen.
What’s therefore needed is to automate testing every
time a change is made.

These concerns are not unique to the (LA)TEX
world, and thus it’s no surprise that a variety of auto-
mated code testing approaches are already available.
It can be done using a ‘real’ local machine, a private
virtual machine or, increasingly commonly, a hosted
solution. There are many companies now offering
automated remote testing on virtual machines, and
as this means a minimal amount of setup, it’s this
approach that the LATEX team have been exploring.

Automating testing is part of a wider concept
called ‘continuous integration’, often referred to as CI.
As with many ideas in code development, this tends
to attract a lot of acronyms and odd tool names: I’ll
try to keep those to a minimum here.

2 Setting up

For open source projects like LATEX3, many of the
providers of hosted services offer free accounts. LATEX
has chosen to use Travis-CI (http://travis-ci.
org), partly as it is well-known, partly as it is easy
to set up, and partly as it fits into other parts of our
setup (see below). Of course, there are many other
worthy choices.

The two key things any automated test sys-
tem has to know: where to find the code that is
changing and how to run the required tests. Travis-
CI integrates with GitHub (http://github.com),
one of the large number of websites offering host-
ing for version control using Git (Git team, 2015).
The team have had the GitHub site for some time
(http://github.com/latex3/latex3), so integrat-
ing with Travis-CI was easy.

Setting up the testing itself means telling Travis-
CI about the type of code being tested. This is done
using a plain text file, .travis.yml, which has to
be in the main directory of the code repository. For
common programming languages, such as C, Java or
Ruby, Travis-CI knows the normal testing setups and
likely only needs to be told the language involved.

For TEX, that’s not the case: we (I) need to give
the system more information. Moreover, the virtual
machine setup used by Travis-CI doesn’t have a TEX
system installed as standard. So there is a bit of
work to do, but luckily in a well-documented and
simple format.

Setting up the actual tests means pointing the
system at l3build, which can be done in two lines:

script:

- texlua build.lua check -H

This will run in the main directory of the code repos-
itory, and will run all of the current tests for LATEX3.
As the test is, ultimately, just pass/fail, I’ve told
l3build to halt immediately if any test fails (-H).

To get a TEX system installed, I need to run a
script, which will clearly depend on the nature of
the virtual machine. For Travis-CI, that’s currently
Ubuntu 12.10LTS, so I use a bash script. For the
test system, I need to make sure that script gets
run before our tests; this is what Travis-CI calls the
install step:

install:

- source ./support/texlive.sh

The script itself needs to run an automated
TEX (Live) installation. That has two parts: first
downloading and installing a minimal system, then
adding on extra packages that I need. (We’ll see
later why a small system is useful.) The script is
relatively straightforward:

Obtain TeX Live

wget http://mirror.ctan.org/systems/\

texlive/tlnet/install-tl-unx.tar.gz

tar -xzf install-tl-unx.tar.gz

cd install-tl-20*

Install a minimal system

./install-tl \

--profile=../support/texlive.profile

Add the TL system to the PATH

PATH=/tmp/texlive/bin/x86_64-linux:$PATH

export PATH

cd ..

Core requirements for the test system

tlmgr install babel babel-english \

latex latex-bin latex-fonts \

latexconfig xetex

tlmgr install --no-depends ptex uptex

The run of install-tl above uses a so-called
profile file to tell the TEX Live installer what to do.
That’s again quite short:

Joseph Wright and LATEX3 team

TUGboat, Volume 36 (2015), No. 3 235

Profile for minimal TeX Live installation

selected_scheme scheme-minimal

TEXDIR /tmp/texlive

TEXMFCONFIG ~/.texlive2015/texmf-config

TEXMFHOME ~/texmf

TEXMFLOCAL /tmp/texlive/texmf-local

TEXMFSYSCONFIG /tmp/texlive/texmf-config

TEXMFSYSVAR /tmp/texlive/texmf-var

TEXMFVAR ~/.texlive2015/texmf-var

option_doc 0

option_src 0

Here, we do not install the sources or documenta-
tion (clearly not needed for runtime testing) and the
installation location is non-standard: I don’t have
sudo on the virtual machine and the profile installa-
tion doesn’t (yet) support ~ (the home folder) in the
installation path.

You might wonder if I could have used apt-get

to add the Ubuntu managed TEX Live. That runs,
and means I wouldn’t need a script (.travis.yml
has an entry type for running apt-get). However,
it installs TEX Live 2009, which is too old to run
l3build. (There have been a lot of changes in LuaTEX
since then.) For the team tests, we always assume an
up-to-date and current TEX Live, so it makes sense
to have the same on the Travis-CI setup.

You might also wonder how I worked out exactly
what the minimal requirements were for the installa-
tion. That was a bit of work, but the idea was simple
enough: run the tests on a local virtual machine and
add packages one at a time until everything works!

3 Refining

Once the above was set up, Travis-CI started running
automated tests each time changes were made to the
GitHub version of the LATEX3 code. There were
of course a few teething issues: it turned out that
l3build was returning error level 0 (‘success’) even
when tests failed! That was soon fixed in our code: a
first demonstration of the use of automated testing.

With a virtual machine, each time tests are run
the machine is ‘reset’ to a known state. That meant
that each code change needed to do a fresh install of
TEX Live: one of the reasons for keeping the system
small. Ideally, I wanted to avoid the load on CTAN

if possible. To do that, we’ve added caching to our
.travis.yml file:

cache:

directories:

- /tmp/texlive

- $HOME/.texlive2015

This compresses the directories listed at the end of
each test run, then adds them to the ‘clean’ machine

at the start of the next run.
Caching gives us a way to make sure a TEX

system is available, but what about when the cache
has to be reset, when new packages are needed or
when updates are available? A bit of bash scripting
sorts all of that. First, the basic installation can be
wrapped up in a test looking for a TEX system:

See if there is a cached version of TL

PATH=/tmp/texlive/bin/x86_64-linux:$PATH

export PATH

if ! command -v texlua >/dev/null; then

Earlier script code

fi

We can then run the update process:

Keep no backups (makes cache smaller)

tlmgr option autobackup 0

Update the TL install

tlmgr update --self --all \

--no-auto-install

and finally add extra packages

tlmgr install \

adobemapping \

amsmath \

...

With this approach, the list of extra packages can
keep growing, and any new entries will get added
automatically. If the cache has to be cleared, an en-
tirely new TEX Live and all of the required packages
will be installed.

With the standard settings, Travis-CI emails the
person who made code changes that led to the tests
failing. For the LATEX3 source repository, we have a
mailing list for every commit, so it makes sense to
send those failure messages to the list too, which is
done like this:

notifications:

email:

recipients:

- latex3-commits@tug.org

on_success: change

on_failure: always

on_start: never

4 In use

Setting up all of the above took only a few days, and
much of that was working out how best to install
a TEX Live setup automatically and then to cache
it. The actual .travis.yml configuration took only
minutes to do.

Running the full test suite for LATEX3 currently
takes around 6 minutes on the virtual machine, de-
pending on whether the TEX Live system needs to be

Automating LATEX(3) testing

236 TUGboat, Volume 36 (2015), No. 3

Figure 1: Log output from Travis CI (abridged).

re-installed. That’s about the same time as it takes
on a MacBook Pro i7 (my own laptop). So checking
the code in almost real-time is certainly workable.

Most of the time the tests pass, and the web
page shows a simple report to this effect. When a

test fails, as well as the email sent, the web page
shows the failure. Notice that in both cases we get
the commit reference, which we can use to go straight
to the code changes on GitHub. There is also an
overview of changes over time, so you can quickly
get a feel for what broke and fix the system.

Sometimes of course you need more detail, and
for that the terminal log is visible (Figure 1). As you
can see, each phase of the process is separated out
so you can collapse parts that are not important: for
example, if the install phase is fine but there is a
problem with the tests. The log loads in real time
when a test is running, so you can monitor what’s
happening and if necessary kill a test, for example if
something seems to have hung.

That flexibility and speed means it’s been pos-
sible to add more tests, checking on how the core
LATEX code interacts with some contributed packages.

5 Conclusions

Setting up and running an automated test system
using a hosted virtual machine makes running tests
on every change easy. It shouldn’t be seen as an
alternative to running tests before changing code,
but it is another tool to exploit in keeping ahead of
the inevitable bugs.

References

Git team. http://git-scm.com, 2015.

LATEX3 team. “The l3build package”. Available on
CTAN: http://ctan.org/pkg/l3build, 2015.

Mittelbach, Frank, W. Robertson, and LATEX3
team. “l3build—A modern Lua test suite for
TEX programming”. TUGboat 35(3), 287–293,
2014. http://tug.org/TUGboat/tb35-3/
tb111mitt-l3build.pdf.

⋄ Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2.co.uk

⋄ LATEX3 team
www.latex-project.org

Joseph Wright and LATEX3 team

TUGboat, Volume 36 (2015), No. 3 237

Two applications of SWIGLIB:

GraphicsMagick and Ghostscript

Luigi Scarso

Abstract

We present two applications of SWIGLIB: a binding
to the GraphicsMagick library that under certain
conditions can speed up conversion of bitmaps by up
to 20% and a binding to the Ghostscript library that
simplifies the integration of PostScript programs in
ConTEXt with the LuaTEX engine. Examples of TIFF
conversion and barcodes in PostScript are shown.

1 Introduction

In a previous paper [3], we introduced the SWIGLIB

project as a way to add (or extend) functionality
in LuaTEX by means of an external binary mod-
ule. Among the several modules available from the
SWIGLIB project site (https://swiglib.foundry.
supelec.fr), two are directly related to the man-
agement of images: graphicsmagick for bitmaps,
and ghostscript for PostScript files. These are the
libraries underneath the gm convert and gs pro-
grams, respectively, and in ConTEXt they are used
to convert BMP, GIF, TIFF and EPS to PDF.

The conversion is quite simple: the file is saved
as PDF, which is subsequently used instead of the
original one. In a multi-pass run the conversion
happens only the first time, and ConTEXt takes care
of keeping the original file and the PDF in sync.

This happens for each file independently, and
therefore n TIFF (for example) files require n calls
to the external program gm convert, and we can
measure the time of each call as the sum of two times,
setup and close and conversion with mean ts and
tc . Assuming that n conversions with a module take
only one ts, the ratio s = n(ts + tc)/(ts + ntc) is the
“speedup” of the module: for n great enough such that
ts/n is negligible with respect to tc, the speedup is
with good approximation 1+ ts/tc . Situations where
ts ≥ tc means that at least half the time is “wasted”
in setup: the program is not very efficient, or more
likely it’s not the right fit for the current task. On
the other hand, ts/tc ≈ 0 means that the files take
so much time to convert that it’s more robust to use
the external program, e.g., to minimize the risk of
memory leaks and as protection against crashes.

So, it’s reasonable to expect that 0.1 ≤ ts/tc ≤
0.4, or 1.1 ≤ s ≤ 1.4. Let’s emphasize that these
figures are valid when each run has a number of
conversions n high enough to make ts/n negligible
(for example, n ≥ 100) and each file takes approx-
imately the same time to be converted, conditions

that are fairly likely to be satisfied in servers with
automatic workflows: in other cases, any speedup
could be irrelevant.

The format used is ConTEXt, which already
has a caching system for conversions (more on this
at the end of the next section); the measurements
were done on a laptop with an Intel Core i7-3610QM

CPU @ 2.30GHz quad-core using 8GB memory and
a Crucial CT512MX1 SSD disk of 512GB.

2 The gm module

The module for the GraphicsMagick library is prob-
ably the most interesting currently available, due to
its high number of formats available for conversion,
although many of them, for example the PS and
EPS formats, require an external program to work
and therefore there is no significant gain in speedup.
Apart from the PNG and JPEG formats, which are
already supported in LuaTEX, the most notable are
TIFF, due its use in the printing industry and GIF,
which still sees application on web pages. Also of
some interest are MIFF and MVG, the bitmap and
vector native format of GraphicsMagick, and the set
of “portable bitmap” formats such as PNM, PAM and
PPM; these can be used to build a portable bitmap
image programmatically.

A question arises immediately: why not use the
functions from the epdf library which is already em-
bedded in LuaTEX? The answer is that a converter
returns a complete PDF document as stream (i.e.,
a sequence of bytes and its length) which the epdf

library doesn’t know how to manage. Of course it is
possible to save the stream into an external file and
load it again into memory, and until recently this was
the only solution— that is, until the latest release of
the poppler library, which offers the new MemStream

function that is tailored exactly for this case, avoid-
ing the expensive task of saving and reloading from
a file. A binding to MemStream was therefore added
to the epdf library as openMemStream.

Unfortunately, this is only half of the story.
While openMemStream uses char * for the bytes and
long long for the length of the stream,1 it is not
known in advance how the converter returns the
stream. In GraphicsMagick, the conversion in mem-
ory is implemented by MagickWriteImageBlob:

unsigned char *MagickWriteImageBlob (

MagickWand *wand,

size_t *length);

while on the Lua side the unsigned char * (the
bytes) is seen as a generic userdata object and not
a string, as required by openMemStream, and the

1 Probably unsigned char* and size_t would be more

appropriate.

Two applications of SWIGLIB: GraphicsMagick and Ghostscript

238 TUGboat, Volume 36 (2015), No. 3

length (the length of the stream) is used as an
input parameter, not set as an output parameter (!).
It is therefore necessary to have an adapter, i.e.,
a software layer that translates from the converter
to openMemStream. This could be provided by a
third user module or, as in this case, by means of
the helper module, which can be seen as a kind
of “general adapter”—with the limitation that it
partially covers only primitive types.

The code, omitting checks for the sake of sim-
plicity, looks like this:

local l = -1

local _l = helpers.new_size_t_array(1)

gm.MagickSetImageFormat(wand, "PDF")

local s = gm.MagickWriteImageBlob(wand, _l)

l = helpers.size_t_array_getitem(_l, 0)

helpers.delete_size_t_array(_l)

local _s =

helpers.userdata_to_lightuserdata_uchar_p(s)

local doc, doc_id, doc_uri =

epdf.openMemStream(_s, l, stream_id)

On the Lua side, that final call,
epdf.openMemStream(_s, l, stream_id)

requires a userdata s that is a so-called “light” user-
data (i.e., intended to store a C pointer) and must
point to a valid memory region of size l bytes; the
parameter stream_id is given by the user to identify
the stream and during a given run this identifier
must be unique (else the behavior is undefined).

If, in some way, the user converts the stream
in a Lua string s (taking care of embedded zeroes)2

then it’s still possible to call
openMemStream(s,s:len(),stream_id)

which can be eventually wrapped as

function openStringStream(s,stream_id)

return openMemStream(s,s:len(),stream_id)

end

If there are no errors, openMemStream returns
the doc_id used to identify the stream at the TEX
level; this has the same role as the filename of the
PDF figures. Of course, the end user doesn’t need to
know these details. Usually, two macros are enough:
\gmloadimage to load a file, and \gmloadimage to
return the doc_id. In ConTEXt:

\gmloadimage{a.tiff}

\externalfigure[\gmgetimage{a.tiff}]

If the file contains multiple images:

\gmloadimage{a.tiff}

\externalfigure[\gmgetimage{a.tiff}][page=1]

2 A converter that returns a stream as char * is wrapped

by SWIG using lua pushstring, returning the stream until the

first ’\0’, which is excluded. Since a valid PDF document can

contain an arbitrary number of ’\0’s, this kind of converter

must be wrapped by the user in the correct way— for example,

using lua pushlstring.

\externalfigure[\gmgetimage{a.tiff}][page=2]

\externalfigure[\gmgetimage{a.tiff}][page=3]

TIFF is not the only possible format. For ex-
ample, if the library includes the support for calling
Gnuplot and Ghostscript as external programs, their
formats are valid too:

\usemodule[gm]

\starttext \startTEXpage

\gminit{}

%

\gmloadimage{prob-3.gplt}

\externalfigure[\gmgetimage{prob-3.gplt}]

%

\gmloadimage{tiger.eps}

\externalfigure[\gmgetimage{tiger.eps}]

\stopTEXpage \stoptext

With the MVG native format and a bit of Lua, it is
also possible to create a PDF at runtime:

\usemodule[gm]

\starttext \startTEXpage

\framed{%

\startluacode

local res

local blob = ""

local gm = moduledata.swiglib.graphicsmagick

gm.init(’.’)

Luigi Scarso

TUGboat, Volume 36 (2015), No. 3 239

local report_state = gm.report_state

blob =

[=[

push graphic-context

viewbox 0 0 140 130

stroke black

fill lightgray

path ’M 60,70 L 60,20 A 50,50 0 0,1 68.7,20.8 Z’

path ’M 60,70 L 68.7,20.8 A 50,50 0 0,1 77.1,23 Z’

path ’M 68,65 L 85.1,18.0 A 50,50 0 0,1 118,65 Z’

path ’M 60,70 L 110,70 A 50,50 0 1,1 60,20 Z’

stroke none fill black

font-size 10

text 57,19 ’10’ text 70,20 ’10’

text 90,19 ’70’ text 113,78 ’270’

path ’M700.0,600.0 L340.0,600.0 A360.0,360.0 0 0,1

408.1452123287954,389.2376150414973 z’

pop graphic-context

]=]

local name = ’myblob’

if not(gm.formats[’MVG’]) then

report_state("ERROR: MVG FORMAT UNKNOWN")

return false

end

res,name = gm.blobimage(blob,’MVG’,name)

if (res == 0) then

report_state("ERROR ON BLOB IMAGE")

return false

end

res = gm.register(name)

if (res == 0) then

report_state("ERROR ON REGISTERING BLOB IMAGE")

return false

end

context.externalfigure({gm.Images[name].doc_id},

{width=’10cm’})

\stopluacode}\stopTEXpage \stoptext

Let’s now consider this important point: Con-
TEXt is a multipass system, storing the results of one
pass for the next run in an external file. The same
happens for conversion to PDF (i.e., caching of the
PDF), so that in practice only the first run has the
hard task: if a job requires only one run, the cached
PDFs are useless and can be deleted saving space, but
the time to write them to disk and read them again
is lost. Caching is also possible in gm, but can be
avoided if it is known in advance that the job is one-
pass, thus saving both space on disk and the time to
write/read. A first measure of the times for a file that
loads 100 TIFF of size 500×500 at 300 dpi shows
that the standard one-pass conversion takes ti =

10.94 s, while for gm without caching of the PDF, tf =
8.52 s. The gain is therefore |tf − ti| /ti 100=22%
with speedup s = 1.28. Things change drastically
when we look at a standard multipass run: enabling
the caching in gm reduces the gain to a value between
6% and 7%.

3 The gs module

The module for the Ghostscript library poses a chal-
lenge similar to GraphicsMagick: one instance for
many conversions. Unfortunately, this library still
lacks a clear method to save the PDF in memory and
epdf.openMemStream is of no help here—each PDF

must be saved in an external file and then loaded
again. On the other hand, PostScript is not a binary
format, and a Lua string is adequate in most cases.

One of the most common uses is the conversion
from EPS or PS to PDF:

\usemodule[gs]

\starttext \gsinit

%

\gsrunfile{tiger.eps}\gsflush

\externalfigure[tiger.pdf]

%

\gsrunfile{colorcir.ps}\gsflush

\externalfigure[colorcir.pdf]

\stoptext

where \gsflush closes the output file. There is only
one instance and with \gsrunonce the instance is
also reinitialized after the conversion:

\usemodule[gs]

\starttext \gsinit

\gsrunonce[pstopdf,

-dNOPAUSE,

-dBATCH,

-dSAFER,

-sDEVICE=pdfwrite,

-sOutputFile=tiger1.pdf,

-c,.setpdfwrite,

-f,

tiger.eps]

\externalfigure[tiger1.pdf]

\stoptext

Converting a buffer is also immediate:

\usemodule[gs]

\starttext \startTEXpage

\gsinit

\startluacode

local psbuf = [==[%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 5 5 105 105

10 setlinewidth

10 10 moveto

0 90 rlineto 90 0 rlineto

0 -90 rlineto closepath

stroke

]==]

Two applications of SWIGLIB: GraphicsMagick and Ghostscript

240 TUGboat, Volume 36 (2015), No. 3

local gs = moduledata.swiglib.ghostscript

gs.Run_buffer(psbuf,’mybuf.pdf’)

\stopluacode

\gsflush

\externalfigure[mybuf.pdf]

\stopTEXpage \stoptext

3.1 barcode.ps

A nice application is barcode.ps, a widely used Post-
Script program that supports a huge number of bar-
codes (see [1]). The program in figures 1 and 2 takes
advantage of both the binding and the Lua language:

• it loads and executes barcode.ps only once, sav-
ing time in a multipass run;
(%% Load barcode.ps)

• it saves the barcode in PDF format, storing the
filename in a persistent database. This means
that only the first run calls the interpreter, while
the others load the PDF already produced;
(%% Make a barcode, save it as pdf and

store the name in the table

barcode/pdffile);

• the logic is in Lua—the macro \gmpsbarcode

calls directly a Lua function and returns the
name of the relative PDF.
(%% bridge TeX<-->Lua and %% User macro).

As mentioned above, caching a PDF for later
use is a common practice in ConTEXt but usually
the program that produces a barcode is called for
each single barcode (i.e., n barcodes take n(ts + tc)),
while in this case the program is called only one time
(n barcodes take ts + ntc). The time of setup ts
can be important, given that the size of barcode.ps
file is 723KB, which is loaded every time in the first
case. For this reason the distribution at [1] also pro-
vides a single file for each barcode. (Ghostscript also
currently suffers from suboptimal garbage collection.
In case of problems, the collector can be partially
disabled with an initial -dNOGC option.)

4 Conclusions

The module gm shows its full potential in a precise
context: a single run with many conversions. Typ-
ically this is an automatic workflow with minimal
typographical requirements and oriented to mass pro-
duction of documents; for example, a variable-data
printing workflow, probably also tuned to reduce the
times of reading/writing to file. In this situation
the gain could be a time reduction of 20% without
increasing the space on disk. On the other hand, for
the common single run situation, the gain is negligi-
ble and the standard conversion is the better choice.

The module gs is interesting not so much for the
performance (which in any case is no worse than the
standard conversion) but for the tight integration of
the TEX engine and the PostScript interpreter. The
barcode example fits well in a variable-data printing
workflow. It’s a pity that Ghostscript cannot save
a PDF in memory. If a user has a good knowledge
of the PostScript language, the module can also
be conveniently used as a replacement for the gs

program.
Currently the openMemStream is available only

in the experimental branch of LuaTEX at [4]; it’s
estimated that around the end of the year, it will
move to the trunk branch. Both modules gm and gs

are available at [2].

References

[1] Terry Burton. Barcode writer in pure
PostScript. http://bwipp.terryburton.co.uk.
Accessed: 2015-09-30.

[2] ConTEXt Group. ConTEXt modules.
http://modules.contextgarden.net.
Accessed: 2015-09-30.

[3] Luigi Scarso. The SWIGLIB project. TUGboat,
36(1):41–47, 2015. http://tug.org/TUGboat/
tb36-1/tb112scarso.pdf.

[4] LuaTEX Team. Experimental branch.
https://foundry.supelec.fr/scm/viewvc.

php/branches/?root=luatex. Accessed:
2015-09-30.

⋄ Luigi Scarso
luigi dot scarso (at) gmail dot com

http://swiglib.foundry.supelec.fr

Luigi Scarso

TUGboat, Volume 36 (2015), No. 3 241

\usemodule[gs]

\starttext

\gsinit

%% Load barcode.ps

\startluacode

moduledata.swiglib.ghostscript.User = moduledata.swiglib.ghostscript.User or {}

local _t = moduledata.swiglib.ghostscript.User

_t.make_barcode_global_count = 1

_t.make_barcode_pdf_prefix = ’gspsbrc_1.0’

_t.make_barcode_hash = {}

_t.make_barcode_hashname = ’gspsbrc_1.0.lua’

if lfs.isfile(_t.make_barcode_hashname) then

_t.make_barcode_hash = dofile(_t.make_barcode_hashname)

return

end

local barcode_ps_file = io.open(’barcode.ps’,’r’)

if barcode_ps_file == nil then

return -1000

end

local barcode_ps = barcode_ps_file:read(’*a’);

barcode_ps_file:close()

local function mydev(w,h,xoff,yoff,s,name)

return ’’

end

moduledata.swiglib.ghostscript.CalculateBBox = false

moduledata.swiglib.ghostscript.Run_buffer(barcode_ps,’’,mydev)

moduledata.swiglib.ghostscript.CalculateBBox = true

\stopluacode

%% Make a barcode, save it as pdf and store the name in the table barcode/pdffile

\startluacode

local function make_barcode(barcode_type,barcode_value,barcode_option,ps_option)

local frag1, frag2, psload, psload1

local arg1,arg2,arg3 = barcode_value,barcode_option,barcode_type

local newline = ’\string\n’

frag0 = (type(ps_option)=="string" and ps_option) or " 0 1 1 0 0 translate scale rotate 0 0 moveto "

frag1 = " (%s) "

frag2 = " (%s) /%s /uk.co.terryburton.bwipp findresource exec "

psload1 = string.format(table.concat({’gsave ’,frag0,frag1,frag2,’ grestore ’}),arg1,arg2,arg3)

psload = table.concat({psload1,’ showpage’,newline})

return psload

end

local _t = moduledata.swiglib.ghostscript.User

_t.make_barcode = make_barcode

--[==[update the db]==]

luatex.registerstopactions(function()

local _t = moduledata.swiglib.ghostscript.User

local f = io.open(_t.make_barcode_hashname,’w’)

f:write("return {\n")

for k,v in pairs(_t.make_barcode_hash) do

f:write(string.format("[’%s’] = ’%s’,\n",k,v))

end

f:write("}\n")

end)\stopluacode

Figure 1: Producing a barcode with barcode.ps in a single instance (first part).

Two applications of SWIGLIB: GraphicsMagick and Ghostscript

242 TUGboat, Volume 36 (2015), No. 3

%% bridge TeX<-->Lua

\startluacode

moduledata.swiglib.ghostscript.User.gspsbarcode = function (btype,bvalue,bopt)

local _t = moduledata.swiglib.ghostscript.User

local make_barcode = _t.make_barcode

local global_count = _t.make_barcode_global_count

local pdf_prefix = _t.make_barcode_pdf_prefix

local hash = _t.make_barcode_hash

local psbuf

local pdffile

local key = table.concat({btype,bvalue,bopt})

pdffile = hash[key]

if (pdffile ~= nil) then return pdffile end

pdffile = table.concat({pdf_prefix,’-’,global_count,’.pdf’})

global_count = global_count+1

_t.make_barcode_global_count = global_count

psbuf = make_barcode(btype,bvalue,bopt)

moduledata.swiglib.ghostscript.Run_buffer(psbuf,pdffile)

context.gsflush()

hash[key] = pdffile

return pdffile

end

\stopluacode

%% User macro

\def\gmpsbarcode#1#2#3{\cldcontext{% assume no clash of macro name

context(moduledata.swiglib.ghostscript.User.gspsbarcode("#1","#2","#3"))}}

%% Examples

\hbox{\externalfigure[%

\gmpsbarcode{ean13}{2412345678901}{textfont=Courier includetext guardwhitespace}]

\externalfigure[%

\gmpsbarcode{gs1qrcode}{(01)03453120000011(8200)http://www.example.com}{}]}

\blank\hbox{\externalfigure[%

\gmpsbarcode{leitcode}{21348075016401}{includetext}]

\externalfigure[%

\gmpsbarcode{pdf417}{Strong error correction}{columns=2 eclevel=5}]}

\stoptext

Figure 2: Producing a barcode with barcode.ps in a single instance (second part).

2 412345 678901 21348.075.016.40 1

Figure 3: The barcodes of figs. 1 and 2 (formatted for TUGboat).

Luigi Scarso

Typesetting the “Begriffsschrift”

by Gottlob Frege in plain TEX

Udo Wermuth

Abstract

A macro package, gfnotation, is described that
can be used to typeset the monograph “Begriffs-
schrift” published by Gottlob Frege in the year 1879.
The package contains two methods to input the un-
usual notation invented by Frege. The “symbolic
representation” allows complete control about the
elements and their positions and the “short form”
simplifies the complexity to enter the formulas. The
package includes macros to build chains of inferences
and avoid problems with page breaks. It has been
successfully applied to typeset the “Begriffsschrift”.

1 Introduction

A well-known strength of TEX is its capability to
typeset mathematics. In the long history of print-
ing mathematical formulas, some notations have ap-
peared which are no longer in use. To typeset such
notations TEX sometimes does not provide an easy
solution. A book with such an outdated notation,
which probably only its inventor ever used, is the
“Begriffsschrift” [4] published by Gottlob Frege in
1879. Figure 1 shows a page from the book.

I own a facsimile reprint of the “Begriffsschrift”,
and asked myself how it can be typeset with plain
TEX. Of course, I realized that this would require
much macro programming. My first goal was to
produce a layout that comes as close as possible to
the one used in the original printing of the “Begriffs-
schrift”. A second goal was to create a useful set
of macros to typeset the whole book without great
difficulty and not just a single formula. The output
of my macros [25] for Fig. 1 is shown in Fig. 2.

In this article the macros that I developed to
typeset the whole book are sketched, several exam-
ples of their output are given, and my approach to
the problem is discussed. But first, in the next
subsection, I briefly introduce the author. Then
I discuss the contents of the “Begriffsschrift” and
describe the importance of this monograph. The
focus of the next subsections is on the notation and
the challenge of typesetting it. In sections 2 and 3 I
explain the two macro packages (a symbolic repre-
sentation and a short form) that I wrote to allow a
practical handling of Frege’s notation in plain TEX.
Finally, in the last section I describe the changes to
the format of Frege’s notation that occurs in Frege’s
main work [7] of 1893.

TUGboat, Volume 36 (2015), No. 3 243

Figure 1: Page 66 of the Begriffsschrift [4]
(approx. 62% of original area)

The author Gottlob Frege. Friedrich Ludwig
Gottlob Frege (1848–1925) was a German mathe-
matician and according to his own words partly a
philosopher [3]: “Every good mathematician is at
least half a philosopher, and every good philoso-
pher at least half a mathematician.” Several of
his articles treat topics in the borderland between
mathematics and philosophy. He was interested in
an exact and rigorous foundation of mathematics
and is one of the founders of the mathematical school
called logicism, whose ultimate goal is to derive all
of mathematics from logic [26]. To reach his goal
Frege needed to capture imprecise linguistic phrases
by exact and unambiguous statements. And he had
to develop an automated system that can transform
such statements without using their meaning or ac-

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

77 F (y)
a

⌣ F (a)
f(x, a)

δ
|
α




F (α)

f(δ, α)
γ

β̃
f(xγ , yβ)

(12) :
a F (y) F (y)

b a

⌣ F (a)
δ
|
α




F (α)

f(δ, α)

f(x, a) a

⌣ F (a)

c
δ
|
α




F (α)

f(δ, α)
f(x, a)

d
γ

β̃
f(xγ , yβ)

γ

β̃
f(xγ , yβ) (85.

(19) :
F (z)

b F (y) f(y, z)

δ
|
α




F (α)

f(δ, α)

δ
|
α




F (α)

f(δ, α)

c a

⌣ F (a) a

⌣ F (a)
f(x, a) f(x, a)

d
γ

β̃
f(xγ , yβ)

γ

β̃
f(xγ , yβ)

a F (z) F (z)
f(y, z) f(y, z)

δ
|
α




F (α)

f(δ, α)

δ
|
α




F (α)

f(δ, α)

F (y)

δ
|
α




F (α)

f(δ, α) (86.
(73) : :

y z F (z)
x y f(y, z)

δ
|
α




F (α)

f(δ, α)
a

⌣ F (a)
f(x, a)
γ

β̃
f(xγ , yβ) (87.

Figure 2: Page of Fig. 1 in plain TEX
(approx. 58% of original area)

tual content. This is why he invented a new for-
mal syntax that is introduced in the book “Begriffs-
schrift”. More about Gottlob Frege and his work
can be found, for example, online in [27].

W. Quine wrote in 1955 (see [19, p. 158]) “All
of modern logic owes an incalculable debt to Frege.
If anyone can be singled out as the founder of math-
ematical logic, it is by all odds he.” But during
his lifetime the work of Frege was not appreciated
and mostly ignored. As a consequence of unfavor-
able reviews of his work, which show that the con-
temporary reviewers did not understand the impor-
tant points, Frege’s academic career was severely
hampered. He worked as an underpaid Honorary

244 TUGboat, Volume 36 (2015), No. 3

Professor in Jena until his retirement in 1918. In
[18] Bertrand Russell is cited with the words: “In
spite of the epoch-making nature of [Frege’s] discov-
eries, he remained wholly without recognition until
I drew attention to him in 1903.” This neglect of
his work by other researchers hit Frege hard and
filled him with bitterness (see [2]). Maybe even
harder was the setback for the scientist through the
discovery of a contradiction in his main work. A
year before Frege published the second volume of his
main work “Grundgesetze der Arithmetik” [7] (Ba-
sic Laws of Arithmetic [8]) Bertrand Russell wrote
him a letter and pointed out that a contradiction can
be constructed from his axioms in the first volume
(see Russell’s letter [23] and Frege’s response [6]).
Frege wrote an epilogue for the second volume of
the “Grundgesetze” [7, pp. 253–265], in which he
explained the problem Russell found. He tried—un-
successfully, as is known today (see [19])— to solve
it. Russell used for the contradiction an axiom of
Frege about which Frege wrote in the preface of the
first volume of the “Grundgesetze” that it might
cause controversy [7, p. vii].

It seems that Frege was, or more likely became,
a man with a difficult personality. In some of his
works he attacked other scientists, and he wrote
polemical texts (see [2, pp. 46–47] and [3]).

The book “Begriffsschrift”. Frege published his
first major work in 1879 under the title “Begriffs-
schrift, eine der arithmetischen nachgebildete For-
melsprache des reinen Denkens” (Begriffsschrift, a
formula language, modeled upon that of arithmetic,
for pure thought) [4]. This long title is always short-
ened to “Begriffsschrift” (Concept Notation; I use
the translation of the German terms as they appear
in [5]). In this monograph Frege presented his auto-
mated system in the framework of a formal syntax; it
was the preparation for his subsequent works where
he considered the topics “number” and “quantity”.
The Begriffsschrift consists of three parts. In the
first part the formal system is introduced. The sec-
ond part shows how to express in this system judg-
ments of pure thought (for example, syllogisms and
tautologies like “If a or b takes place, then b or a
takes place.”). In the last part Frege applied the
system to the mathematical theory of sequences.

The Begriffsschrift is a short book of less than
a hundred pages but great importance is attached
to it. The introduction to the translated text in [5,
p. 1] contains the words “. . . it is perhaps the most
important single work ever written in logic.” And
on page 53 of [2] one can find the statement: “It was
also the first example of a formal artificial language

Udo Wermuth

constructed with a precise syntax. From this point
of view, the Begriffsschrift was the ancestor of all
programming languages in common use today.”

From a typographic point of view the Begriffs-
schrift is special because of Frege’s notation for his
formal syntax. This notation did not become an
accepted standard and therefore the book is not easy
to read. The opposition to the notation included
the waste of space and the vertical writing. Frege
answered that mathematical formulas are written in
a sequence of lines to obtain the advantage of the
two dimensions that paper offers [9, p. 8].

Later in the first volume of the Grundgesetze [7]
Frege repeats the definitions of his formal system,
but with some small changes to the notation. He
wrote [8, p. 5]: “My Begriffsschrift (Halle a. S. 1879)
no longer corresponds entirely to my present stand-
point; it is therefore to be consulted as an elucida-
tion of what is presented here only with caution.”
(See [13] for a discussion of the notation and the
symbols of [7].)

Frege’s Notation. Let’s look at the notation of the
Begriffsschrift in more detail as this is the main topic
of the article. Greek letters are used for terminal
strings: A, B, . . . (uppercase Alpha, Beta, etc.).
Gothic type (i.e., Fraktur) is used for a construc-
tion called concavity—Frege called them German
letters. The following notation is used by Frege:

• Content stroke written as A; it generates
an idea of A; i.e., it is a statement. The truth
of A has not yet been judged.

• Judgment : A; it confirms the truth of A.
• Negation: A; it states the opposite of A.
• Affirmation written as double negation: A.
• Condition: B

A
; it represents a conclusion.

Frege used a truth table to define the meaning
of the condition: B

A
excludes the case in

which A is true but B is false, i.e., A ⇒ B.
• Generality : a

⌣ Φ(a); it formulates a state-
ment for all possible values of a, i.e., it is a “for
all” quantification.

• Identity of content : (A ≡ B); it establishes
the same content for A and B, i.e., A and B are
interchangeable.

Frege allowed as variables in the generality not
only elements like a but also functions, i.e. F. A
quantification with a function appears, for example,
in formula 76 of the Begriffsschrift (see Fig. 5(b)).

As Frege defined only one binary relation, the
condition, some well-known operations lack the sym-
metrical form in Frege’s syntax as they have in mod-

TUGboat, Volume 36 (2015), No. 3 245

ern notation. For example, Frege analyzed words
like “and” and “or” and described them in his no-
tation as B

A
for “and” and B

A
for “or”.

Besides the notation for formulas he introduced
a notation for rules, i.e., inferences. At first he used
only one inference and stated that later applications
of the system shall define more modes of inference
(see [4, p. vii]). Frege did this in [7]; his notation is
described in more detail in section 4.

An inference creates from two formulas a third:

A
B
B

A .

It means: If it is true that A is a conclusion of B
and the truth of B is known, then A must be true.

Although there is only one inference three dif-
ferent notations are used in the Begriffsschrift to
avoid the repetition of a formula. One of the two
input formulas might be referenced by its number
instead of being listed again. For example, if A

B
was established and if this formula is called X then
the above inference is abbreviated:

B
(X) :

A .
On the other hand, if B is known and called
XX then Frege put two colons after the reference
number:

A
B

(XX) : :
A .

And in some places more than two formulas are
involved in an inference. If the formula Γ is
called XXX then the chain of inferences

A
B
Γ

(XXX) : :
A
B

(XX) : :
A .

can be written:
A
B
Γ

(XX, XXX) : :
A .

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

58 f(b)
f(A) f(A) g(b)

g(A) a
⌣ f(a)

c b g(a)
(30) :
a f(b) a

⌣ f(a)
c g(b) g(a)
b a

⌣ f(a) f(b)
g(a) g(b) (59.

Figure 3: The inference for formula 59 of [4]

In Fig. 1, the second kind of abbreviation is used
in the last inference with formula 73. The first two
inferences with formulas 12 and 19 are examples of
the first kind of abbreviation.

Another important notation is used for substi-
tutions. In a previously derived formula substitu-
tions with other formulas are possible as long as
the substitution is done consistently. Frege used a
vertical line to the left of a formula and wrote to the
left of that line the statement that is replaced and
to the right, the replacement. The formula in which
the substitution shall be performed is referenced by
its number over the top of the line. Figure 3 shows
an example.

The first formula has the number 58 and reads
f(c)

a
⌣ f(a)

. The formula is printed above the

horizontal line with two changes: f(A) is replaced
by f(A)

g(A)
and c is replaced by b. Formula 30 is

used in the inference but it is not shown. And in this
formula substitutions are performed too: The three
substitutions are listed below the number 30. To al-
low the reader to perform the inference of formula 59
himself, here is formula 30:

b
a
c
a
c
b (30.

And here, the abovementioned substitutions have
been applied to it: a

⌣ f(a).
g(a)
f(b)
g(b)
f(b)
g(b)

a
⌣ f(a)

g(a)

If this

formula is placed at the top of Fig. 3, the inference
for formula 59 is clear.

246 TUGboat, Volume 36 (2015), No. 3

Typesetting Frege’s notation. Of course, Frege
was aware that the typesetting of his notation is
very difficult. He argued [10, p. 364] that his two-
dimensional form was easier to read and understand
than the usual compression of all formulas into a
single line. And he was not willing to change his
layout to make the work of the typesetters easier.
Using one half of a verse by Friedrich Schiller, he
wrote (loosely translated): “The ease of typesetting
is not, however, the supreme good.”

In the next section I present my symbolic cod-
ing to reproduce Frege’s notation as closely as pos-
sible. Then a recursive notation is introduced that
allows writing the input for a formula on a single
line. Of course, the output is the two-dimensional
structure defined by Frege and the lengths of con-
tent strokes are automatically calculated to have all
terminal strings aligned.

Other people have worked on the problem to
typeset Frege’s notation in TEX. J. Parsons devel-
oped a package begriff.sty for LATEX [21]. It doesn’t
fulfill my above mentioned goals; for example, the
overall look of the notation of the Begriffsschrift is
not reached and the alignment of judgment strokes
or terminal strings is not easy, as the lengths of the
content strokes are set manually. The look of the
output is improved in [20]. The article [17] describes
a GUI to support the manual work and outputs
formulas in the coding of begriff.sty ; it was used
in a translation project for Frege’s Grundgesetze
(see [1]). The team created its own package grund-

gesetze.sty [22] to typeset the English translation
[8] of Frege’s main work [7]. The package is based
on begriff.sty and inherits some of its weak points.
The style of Frege’s notation in his main work differs
from the style of the Begriffsschrift (see section 4).

2 Symbolic representation

It is easy to understand that Frege’s notation can be
applied in a longer text only if macros are available
to support the input. My first decision: Greek and
Fraktur letters are entered using control words of
length 2; the letter that must be typeset is preceded
by either a ‘g’ for uppercase Greek, or a ‘k’ for low-
ercase Greek, or a ‘d’ for Fraktur. The assignments
of characters to Greek letters follows [16, p. 20]. For
example, \gA produces an uppercase Greek Alpha
(A) and \da gives a. The Fraktur font is taken from
AMS-TEX’s Euler family of fonts. (Not all combi-
nations of two letters are allowed. For example, the
control word \dp is already used by TEX.)

First, I thought to use \halign for the formu-
las, but this approach has some major drawbacks:

Udo Wermuth

• Page breaks in long inferences are not possible
when they are typeset as a single alignment.
Frege never broke a formula; page breaks occur
inside an inference only after the inference line.

• The templates and the horizontal positions of
formulas have to be carefully aligned if each
formula is an \halign itself.

• Laborious counting of &-signs inside a formula
is needed to position the parts correctly.

As the notation requires control words for the
line segments anyway, the following simple approach
seems to be possible:

1. All symbols (and the empty space) of the nota-
tion are defined in a uniform length.

2. Normal text lines are used (which might have
to be typeset without interline spacing).

I observed that the symbols consist of three
parts. This can be seen most easily in the condi-
tion. Therefore I defined a macro * with three
parameters. (I saved the plain TEX meaning of *
as \discretionarytimes.)

For example, I write the triple *--- for the
content stroke (), which consists of three equal
parts. *-~- is the single negation (). *-:-

gives the then-part () of a condition, which finds
in *_’- its partner () in the following line. A
*_!_ () is used to connect a then- and its if-part
over several lines. And *.a. builds the concavity
(a
⌣) with the letter a. Although one might think

that the colon appears only in the middle of a triple
one should consider a triple like *:-: () to get a
more compact variant to code two then-parts. (This
compact form is required in the Grundgesetze [7],
which has a two-column page layout. Figure 7 shows
the compact form of the formulas of Fig. 1.) In order
to connect the symbols in this coding all elements
must have the same length. And of course, all hor-
izontal lines must have the same thickness and the
same position above the baseline.

First, I identified 19 different parts without the
concavity. The flexibility in defining symbols from
these parts is more than the Begriffsschrift requires:
It uses 8860 triples in the whole text but only 73
different ones; 21 triples occur just once and only 10
more than 100 times.

Here is the list of the seven basic parts:

_ is the empty space;
- is a horizontal line for the content stroke and

the inference rule;
~ is a horizontal line with centered negation;
+ is a horizontal line with two centered negation

indicators (affirmation);
: is the then-part of the condition;

TUGboat, Volume 36 (2015), No. 3 247

’ is the if-part of the condition;
! is a vertical line (part of the so-called condi-

tion stroke) that connects an if-part with the
corresponding then-part over several lines.

Four symbols are used for special situations:

[is a vertical line placed left and starts a hori-
zontal line (a judgment with a content stroke);

| is the vertical line for the substitution;
= is two horizontal lines used for an inference that

involves more than two formulas;
3 is two vertical lines used for definitions (see

Fig. 5).

And finally there are eight symbols to fine-tune the
output to match the original in certain situations:

" a skip, that is, no output at all;
(negation, with the indication of negation moved

to the left;
) negation, indicator moved to the right;
< negation, indicator placed at the left end;
> negation, indicator placed at the right end;
^ affirmation, with indicators moved to the left;
/ affirmation, indicators moved to the right;
] a vertical line placed right, that is, only the

judgment stroke is printed.

Second, the definition of the concavity requires
typesetting of letters. The width of such a letter is
considered to be counted as two elements of a triple.
So special symbols for shorter elements are defined,
which must be used in pairs. Three additional basic
symbols are needed:

a is the letter for the concavity (‘a’ can be re-
placed by other letters);

. is a short vertical line (i.e., a content stroke);
, is a short vertical line with a centered negation

indicator;
; is a short vertical line with double negation.

And two more are needed for fine-tuning:

@ signals (without any output) that a letter for
the concavity follows;

‘ represents negation but the indicator is moved
to the left;

A triple for the concavity must be started with one
of the following symbols: .,‘;@. If it is not @, then
the symbol after the letter must be one of .,‘;.

I call the definition of formulas in this encoding
the symbolic representation of Frege’s notation. Of
course, the production of the input needs a lot of
keystrokes. But it allows the creation of any for-
mula, even those not obeying the rules, so that I
could typeset the errors in the Begriffsschrift. And
using an editor with a monospaced font means that
the formula can be read in the input file.

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

\nlp1\ci{\hss\thinspace58\hss}\rep3*___*_[-*-:-*---*-:-\ce{$f(b)$}
\nlpc1{$f(A)$}*_|_*-:-\ci{$f(A)$}\rep2*___*_!_*___*_’-\ce{$g(b)$}

\nlp1*_|_*_’-\ci{$g(A)$}\rep2*___*_’-*.a.*-:-\ce{$f(\da)$}
\nlpc1{c}*_|_\ci{b} \rep3*___*___*___*_’-\ce{$g(\da)$}

\bcc1/m30:.\rep3*___\null \rep6*---\ecc
\nlpc1{a}*_|_\ci{$f(b)$} \rep2*___*_[-*-:-*-:-*,a.*-:-\ce{$f(\da)$}
\nlpc1{c}*_|_\ci{$g(b)$} \rep2*___*___*_!_*_!_*___*_’-\ce{$g(\da)$}
\nlpc1{b}*_|_*.a.*-:-\ci{$f(\da)$} *___*_!_*_’-*---*--(\ce{$f(b)$}

\nlp1*_|_*___*_’-\ci{$g(\da)$} *___*_’-*---*---*---\ce{$g(b)$}
\fono{59}

Figure 4: Symbolic representation for Fig. 3

The output scales with the size of the font if
size-changing macros are set up similarly to p. 414
of [14]. For example, here is a formula in sizes 10 pt,
9 pt, and 8 pt: A

B
, A

B

, A

B

(with con-

stant baselineskip here; that can be changed too).

A detailed example. As an example, the input
of Fig. 3 with formula 59 is given here in detail; see
Fig. 4. So it is a real world example, containing more
than the code for a single formula. Several macros
must be introduced to handle the whole structure of
the original text.

First, since spaces after the * macro count,
I use a \null to ignore spaces and to align the
substitution and the formulas for the inference in
this example.

The control words \ci (Character Inside) and
\ce (Character at the End) place their arguments in
an \hbox. In the case of \ci the box has the width
of the * macro and possibly following spaces are
ignored. The macro \fono (FOrmula NO.) outputs
the number of the formula at the right of the text
line with an opening parenthesis and a period. And
\rep (REPeat) is a macro with two arguments. The
second argument must be a * sequence. The out-
put looks as if this sequence was entered as many
times as the first argument states. For example,
\rep3*___ produces exactly the same output as
*___*___*___.

The three main macros are: (a) \nlp (NewLine
and Position), (b) \nlpc (NLP with Character), and
(c) \bcc #1/#2#3:#4#5\ecc (Begin/End ConClu-
sion). In the five parameters of (c) the third is the
number of the used formula that is placed above
the substitution rule. The number of colons, which
shows the type of inference, is specified by the fourth
parameter. The fifth parameter, which is ended by
the \ecc marker, draws the line or lines required in
the notation of the inference. The second parameter
positions the colon(s). In the above-displayed case
an ‘m’ (middle) is used. The other possibilities are ‘l’
(left) and ‘r’ (right). (In fact, only the ‘m’ is required
by the description given above. But in order to

248 TUGboat, Volume 36 (2015), No. 3

reproduce the original text at one place an ‘l’ is
needed.) The first parameter has the same meaning
as the parameter of the \nlp macro: it gives the
indent from the left as a multiple of the width of
the * macro. But the \nlp macro does more than
just the indentation. It finishes the previous line
and uses a strut to specify the height and depth of
the new line. This macro is discussed later in more
detail. The last macro \nlpc is an abbreviation:
\def\nlpc#1#2{\nlp{#1}\llap{#2}}. It does the
work of the \nlp macro and places its second argu-
ment in the empty space created by the indentation.

My first goal is achieved with this output. It is
very close to the text as it is printed in the original.
The second goal, to have a set of macros to make
the typesetting of the whole book “easy”, is not
completely achieved. The amount of typing is huge
and some counting for the positioning of symbols is
required. So the output is acceptable, but the input
has to be improved.

Parameters. The macros for the symbolic repre-
sentation were written to take some parameters for
changing the appearance. This is necessary as Frege
made some changes in this area for the Grundge-
setze [7]. All the internal macro names start with
the prefix \gfbs and most of them have a German
name after this prefix. For example, the dimen
register \gfbsstrichdicke sets the thickness of the
content stroke. And \gfbsraise gives the height of
the content stroke above the baseline.

Here is a list of a few dimen registers:

• \gfbsstrichdicke for horizontal lines; default
is 0.5 pt.

• \gfbsurteildicke for the judgment bar; de-
fault is 1 pt.

• \gfbsersetzungdicke for the line that is used
in the substitution part; default is 0.8 pt.

• \gfbsschlussdicke for the thick inference line;
default is 0.8 pt.

• \gfbsraise for the height of horizontal lines;
default is 0.5 ex.

• \gfbsneg for the height of the negation indica-
tor; default is 0.25 ex.

Udo Wermuth

• \gfbsuht for the height of the judgment stroke;
default is 1.5 ex.

• \gfbsudp for the depth of this stroke; default
is 0.5 ex.

• \gfbsschlussabstand for the distance between
the two lines in an inference; default is 2.5 pt.

• \gfbsvolleeinheit for the width of a single
part in the * macro; default is 0.57 em.

These parameters are used to calculate the values
of other dimen registers; for example, the register
\gfbselementdimen contains the width of a com-
plete *macro and is roughly 3\gfbsvolleeinheit.
(The units overlap a little bit to make sure that
no gaps appear between the line parts.) The above
dimen parameters are not used directly in the main
macros of the code so that values can be adjusted for
different output formats. For example, the following
dimensions are used in the Begriffsschrift:

• \gfbshoehe equals \gfbsraise;
• \gfbsnegdp equals \gfbsneg;
• \gfbssdicke equals \gfbsstrichdicke;
• \gfbsht is the sum of the value \gfbshoehe

and the value \gfbssdicke;
• \gfbseinheit is the width of one part of the
* macro minus the overlap;

• \gfbszweiheit is 2× \gfbsvolleeinheit mi-
nus the overlap.

Besides the listed dimens two flags are defined:

• \gfbsnegdirekt controls whether the negation
indicator and content stroke touch or leave a
small gap; the gap occurs in the Begriffsschrift,
but not in the Grundgesetze. The default is
\gfbsnegdirektfalse, so the gap is present.

• \gfbsfonoohnepunkt controls whether the clos-
ing period in a formula number is omitted. The
default is \gfbsfonoohnepunktfalse, i.e., the
period is printed.

Macros. In this subsection a few aspects of the
macro definitions needed for the symbolic represen-
tation are discussed. Let us look at the definition of
\nlp:

\def\nlp#1{\hfil\break\gfbsstrut
\hskip#1\gfbselementdimen\relax}

The \hskip sets the current position to a multiple
of the width of the * macro.

The control word \gfbsstrut provides a strut
(see [14, p. 82]) whose height and depth can be set
inside the text. Such a strut is needed to get ac-
ceptable page breaks. (See pages 79 and 80 of [5]
for bad breaks that can occur.) The macro pack-
age provides two commands to change the height

TUGboat, Volume 36 (2015), No. 3 249

and depth of the strut either by a specified percent-
age (\gfbsreduziereabstandum) or by an explicit
value (\gfbssetzeabstand). The control sequence
\gfbsabstandzuruecksetzen resets the strut to its
original height and depth.

The main macro of the symbolic representation
is simply a nested \if sequence. Well, at its end
are 36 \fis, so it might not look very simple. The
macro \gfbsteilelement processes one parameter
of the * macro.

Let’s look at a few (simplified) examples:

\def\gfbsteilelement#1{%
\if...
\else\ifx #1~% negated content stroke

\hbox to \gfbsvolleeinheit{%
\gfbsrulefill}%

\hskip-0.5\gfbseinheit
\hskip-0.5\gfbssdicke
\ifgfbsnegdirekt

\vrule width \gfbssdicke
height \gfbshoehe
depth \gfbsnegdp

\else
\vrule width \gfbssdicke

height .8\gfbshoehe
depth \gfbsnegdp

\fi
\hskip-0.5\gfbssdicke
\hskip 0.5\gfbseinheit

\else\ifx...
\else\ifx #1:% then-connection

\hbox to \gfbsvolleeinheit{%
\gfbsrulefill}%

\hskip-0.5\gfbseinheit
\hskip-0.5\gfbssdicke
\vrule width \gfbssdicke

height \gfbshoehe
\hskip-0.5\gfbssdicke
\hskip 0.5\gfbseinheit

\else\if...
\fi\fi...\fi\fi...\fi}

\gfbsrulefill defines a macro for horizontal
rules that have a distance of \gfbshoehe above the
baseline. It acts like \hrulefill (see [14, p. 357]).

\def\gfbsrulefill{%
\leaders\hrule height \gfbsht

depth -\gfbshoehe
\hfill}

The concavity is built with the symbol \smile:
⌣ (I don’t use [11]). It is placed so that the hor-
izontal lines are attached at its ends. At the right
and left the ⌣ has a little bit more than 1u empty
space. The symbol itself has a total width of 18u
(see [15, p. 441]). This data is used to calculate the
seamless junction with the horizontal lines. For very
thick lines the thicker ⌣ of AMS-TEX is used. The
Fraktur letter is placed above this symbol with the
macro \buildrel (see [14, p. 437]).

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

\ifdim\gfbssdicke<0.59 pt
\setbox0=% plain \TeX \smile

\hbox{$\mathchar"015E$}%
\else

\setbox0=% \AmSTeX
\hbox{$\mathchar"0\hexno\cmmibfam5E$}%

\fi
\dimen0=\gfbseinheit \advance\dimen0 by-.5\wd0
\dimen2=\wd0 \divide\dimen2 by 18 % approx. 1u
\advance\dimen0 by 1.5\dimen2
\hbox to \gfbszweiheit{%

\hbox to\dimen0{\gfbsrulefill}%
\kern-1.2\dimen2
\raise\gfbshoehe\hbox{\lower\ht0\hbox{%

$\buildrel{{\frak #1}}\over{\box0}$}}%
\kern-1.5\dimen2
\gfbsrulefill}%

As mentioned earlier, the concavity needs twice
the width of a single unit and the two other elements
of a triple take only a half width each. So the
symbols .,‘; must appear as a pair.
\def\gfbsteilelement#1{%

\if...
\else\ifx #1.% half

\hbox to 0.5\gfbsvolleeinheit{%
\gfbsrulefill}%

\ifgfbszweitehaelfte
\gfbszweitehaelftefalse

\else
\gfbshoehlungtrue
\gfbszweitehaelftetrue

\fi
\else\ifx #1, % half and negated
...
\else\ifx #1;% half, double negation
...
\else

\ifgfbszweitehaelfte
\errhelp=\gfbshaelftehilfe
\errmessage{Unexpected ...}%
\gfbszweitehaelftefalse

\fi\fi...\fi...\fi...\fi}

If the flag \gfbshoehlungtrue is set then the
next symbol is used as the letter for the concavity.
The other flag \gfbszweitehaelfte signals that a
symbol of the set .,‘; is used instead of the @.

This code snippet shows that error conditions
are caught. Using \newlinechar=‘\^^J, the follow-
ing help message is shown if the pairing didn’t work.
\newhelp\gfbshaelftehilfe{After a signaled %
‘‘for all’’ one of (1) \string., (2) \string,, %
(3) \string;^^J or (4) \string‘ must directly %
follow the variable. These symbols must be %
paired^^J in any combination around the %
character that is used as the^^J variable in %
the ‘‘for all’’.}

In total more than 20 error messages with associated
help messages are coded in the package.

Special symbols. Figure 1 shows that the terminal
strings are another idiosyncratic aspect of the work,

250 TUGboat, Volume 36 (2015), No. 3







d
⌣

a
⌣ F (a)

f(d, a)
F (d)


 ≡

δ
|
α



F (α)

f(δ, α)




(69.

(a) Property F is hereditary in the f -sequence.






F
⌣ F(y)

a
⌣ F(a)

f(x, a)

δ
|
α



F(α)

f(δ, α)




≡
γ

β̃
f(xγ , yβ)




(76.

(b) y follows x in the f -sequence.






(z ≡ x)
γ

β̃
f(xγ , zβ)


 ≡

γ

β̃
f(xγ , zβ)




(99.

(c) z belongs to the f -sequence beginning with x.






e
⌣

d
⌣

a
⌣ (a ≡ e)

f(d, a)
f(d, e)


 ≡

δ
I
ǫ
f(δ, ǫ)




(115.

(d) The procedure f is single-valued.

Figure 5: Special symbols of [4]
and their meaning

in addition to the Frege notation. These symbols are
introduced in the third part of the Begriffsschrift,
in which the formalism is applied to the theory of
sequences. So these symbols are not part of the
formal syntax of the notation, but nevertheless they
are needed to typeset the book.

With the use of the abovementioned definition

symbol (“*_3-” outputs “ ”), Frege introduces
four special symbols. All of them can be built with
available symbols of Computer Modern. The sym-
bol for the definition is followed by an equivalence
((A) ≡ B). A is a formula and B is defined as the
abbreviation for this formula. Just to show that
these definitions can be typeset with the macros the
definitions are given in Fig. 5. Because of limitations
in space the compact form is used although it is not
used in the Begriffsschrift.

The right-hand sides of the definitions are coded
as “normal” macros. The first one has one parame-
ter, the second and third two and the last none. The
right-hand sides in Fig. 5 are named \1F, \2xy, \4xz,
and \5, resp. These macros are also used in Fig. 6. (I
use digits to build control symbols: The \3 is defined
to be an abbreviation for a frequently used sub-
formula, which is written as its replacement text; see
line 1 of Fig. 6. But this is not a “normal” macro
and to use it “expansion” must be called first; see
the exclamation mark in front of every use of \3 in

Udo Wermuth

\def\3#1#2{*.a.{..{{#1(\da)}}
.{{f(#2,\da)}}}}

\gfbskompakttrue % use compact form
\outof p0,0"77"with\thatis
\formula p5|{..{..{..{F(y)}

.{!\3Fx}}
.{\1F}}

.{\2xy}}
\followswith p0"12"a.p4s7
\substituting p0 a:{F(y)}

b:!\3Fx
c:\1F
d:\2xy

\whichgives
\formula p5|{..{..{..{F(y)}

.{\1F}}
.{!\3Fx}}

.{\2xy}}
\named "85"
\followswith p0"19"a.p4s7
\substituting p0 \ :{\ }

b:{..{F(y)}
.{\1F}}

c:!\3Fx
d:\2xy
a:{..{..{F(z)}

.{{f(y,z)}}}
.{\1F}}

\whichgives
\formula p5|{..{..{..{..{..{F(z)}

.{{f(y,z)}}}
.{\1F}}

.{!\3Fx}}
.{\2xy}}

.{..{..{..{F(z)}
.{{f(y,z)}}}

.{\1F}}
.{..{F(y)}

.{\1F}}}}
\named "86"
\followswith p0"73"a:p4s7
\substituting p0 y:z

x:y
\whichgives
\formula p5|{..{..{..{..{F(z)}

.{{f(y,z)}}}
.{\1F}}

.{!\3Fx}}
.{\2xy}}

\named "87"

Figure 6: The input for Fig. 7 in short form

Fig. 6. The details are discussed in the next section,
which introduces the short form.)

3 A recursive short form

Of course, the symbolic representation is not easy to
code. It would be much better to reduce the com-
plexity of typing the symbolic representation with
additional macros. So I developed a short form that

TUGboat, Volume 36 (2015), No. 3 251

TEX transforms into the symbolic representation to
reach the desired quality for the output. Figure 6
shows the input for Fig. 7 that corresponds to Fig. 2
but uses the abovementioned compact form for the
output (see line 3 in Fig. 6).

The short form has three types of commands:

1. place a content stroke (with or without negation
or affirmation indicators, i.e., signs) in front of
a formula;

2. place a concavity and optional signs in front of
a formula;

3. combine two formulas into a condition construc-
tion again with optional signs in front of the two
formulas and for the overall construction.

If the terminal strings are called a formula too then
every formula in Frege’s notation can be build recur-
sively with these commands. The optional judgment
stroke is attached after the formula is created.

I decided to use signs in the above-listed cases 2
and 3 and not only in case 1. In this way case 1 is
only needed when the content stroke stands alone.

The structures of the commands are as follows:

1. =〈sign〉{〈formula〉}

2. *〈sign〉〈character〉〈sign〉{〈formula〉}

3. 〈sign〉〈sign〉{〈formula〉}〈sign〉{〈formula〉}

〈formula〉 is a previously generated formula or a ter-
minal string, which is typeset in math mode. 〈sign〉
is an optional sign and has one of three values:

. represents no sign;

- represents the negation;

+ represents the affirmation.

Note: The braces around 〈formula〉 are not required
if it is a terminal string of one token. Double braces
are required if the string has more than 5 tokens.

Here are some examples:

1. =.a outputs a;

2. *.a.{f(\da)} outputs a
⌣ f(a);

3. ..\gA.\gB outputs A
B
;

4. ..\gA.{*.a.{f(\da)}} is A
a
⌣ f(a)

;

5. +-\gA-\gB outputs A
B
.

The fourth example shows how the formulas are
nested: In the formula of the third example the B
is replaced by the formula of example 2. The con-
struction with = that is shown in the first example
is not often used in nested formulas, as the length
of the content strokes in a condition is calculated
automatically to have a proper alignment.

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

77 F (y)
a
⌣ F (a)

f(x, a)

δ
|
α



F (α)

f(δ, α)
γ

β̃
f(xγ , yβ)

(12) :

a F (y) F (y)

b a
⌣ F (a)

δ
|
α



F (α)

f(δ, α)

f(x, a) a
⌣ F (a)

c
δ
|
α



F (α)

f(δ, α)
f(x, a)

d
γ

β̃
f(xγ , yβ)

γ

β̃
f(xγ , yβ) (85.

(19) :

F (z)
b F (y) f(y, z)

δ
|
α



F (α)

f(δ, α)

δ
|
α



F (α)

f(δ, α)

c a
⌣ F (a) a

⌣ F (a)
f(x, a) f(x, a)

d
γ

β̃
f(xγ , yβ)

γ

β̃
f(xγ , yβ)

a F (z) F (z)
f(y, z) f(y, z)

δ
|
α



F (α)

f(δ, α)

δ
|
α



F (α)

f(δ, α)

F (y)

δ
|
α



F (α)

f(δ, α) (86.

(73) : :

y z F (z)
x y f(y, z)

δ
|
α



F (α)

f(δ, α)
a
⌣ F (a)

f(x, a)
γ

β̃
f(xγ , yβ) (87.

Figure 7: Typesetting Fig. 1 in compact form;
typed into this article (Fig. 6 shows the source)

A single formula is started with the command
\frege, which has two parameters. The first param-
eter codes the decision if the formula is a judgment;

252 TUGboat, Volume 36 (2015), No. 3

it is a judgment if the first parameter is ‘|’ instead
of ‘.’. The second parameter is the formula in the
short form.

Again a few examples: \frege|{-.\gA+\gB}.
The generated formula is a condition with an overall
negation, an unsigned A, and an affirmed B. This
is the output: A

B
. The replacement of \gB by

{..\gB.\gG} gives \frege|{-.\gA+{..\gB.\gG}}

and this code outputs A
B
Γ

.

Let’s go back to formula 59 of Fig. 3. The short
form for this formula is

\frege|{..{..{*-a.{..{f(\da)}.{g(\da)}}}
-{f(b)}}

.{g(b)}}

with the expected output a
⌣ f(a).

g(a)
f(b)
g(b)

But remember: in the text, Formula 59 does
not stand alone. We need the complete chain of
inference with a correct placement of several for-
mulas. Such an inference is not coded with the
use of \frege, which is only used for formulas in
running text. (There are small differences between
a formula in running text and in an inference.) In
inferences it is replaced by \formula, which has an
additional parameter to determine the position of
the formula. The substitutions are coded as pairs of
formulas separated by a colon. Figure 8 shows the
complete code for Fig. 3. It uses a control symbol
\0 to make it easier to add the sub-formula with
the concavity as explained below.

The parameter type “pn” is used to position
the formula, in units of the * macro, as before (see
the \nlp macro above). The four-parameter macro
\outof p#1,#2"#3"with#4\thatis starts a block
of formulas. The first parameter is the position.
The third parameter is the number of the formula
that follows. The second parameter is special: It
is used to place the formula number several lines
lower. Usually it is 0 to get the same baseline. But
in the Begriffsschrift a few cases appear that have no
substitutions and the number is placed one line or
two lines lower. (Recall that one of my goals was to
reproduce the original text as closely as possible.)
The last parameter is a sequence of formula pairs
separated by colons; this is the list of substitutions.
Such a list is also used as the second parameter of
the macro \substituting p#1 #2\whichgives.

The macro \followswith p#1"#2"a#3p#4s#5

is used to typeset the lines indicating the type of

Udo Wermuth

\def\0#1{*#1a.{..{f(\da)}.{g(\da)}}}
\outof p1,0"58"with

f(A):{..{f(A)}.{g(A)}}
c:b

\thatis
\formula p5|{..{..{f(b)}.{g(b)}}.{!\0.}}
\followswith p1"30"a.p5s6
\substituting p1 a:{f(b)}

c:{g(b)}
b:{!\0.}

\whichgives
\formula p5|{..{..{!\0-}-{f(b)}}.{g(b)}}
\named "59"

Figure 8: Short form notation for Fig. 3

inference. The first parameter is the position of the
used formula number that is given as the second
parameter. The fourth parameter is the position of
the lines for the inference and their length is given by
the last parameter. The type of inference is given
by the third parameter. The whole macro stands
for the following (invalid TEX) statement in the no-
tation of the above-explained \bcc. . . \ecc macro:
\bcc{#1}/m{#2}:#3\rep{#4-#1-1}*___\rep{#5}

*---\ecc.

Finally, the macro \named assigns a number to
the inferred formula.

Figure 3 of the inference for formula 59 shows
that the sub-formula *.a.{..{f(\da)}.{g(\da)}}

has to be entered two times. Besides the three basic
commands I defined a fourth one: macro expansion.
The token after a ! is expanded as a formula macro,
which might have up to three parameters. In Fig. 8
the macro \0 is defined as the abbreviation for the
above expression. To make it more flexible, a pa-
rameter for the first sign was added to the macro.

The output of the code is shown in Fig. 9, which
should be identical to Fig. 3.

Parameters. The number of lines in a formula is
defined by the parameter \gfbsmaxanzahlzeilen.
The default is 25 lines, which is sufficient to type-
set the Begriffsschrift. For each line two pairs of
\toks and \skip registers are created: the first pair
codes a single line of the Frege formula, the second
a substitution in front of that line. A few flags are
available in the macros. The first one is a flag that
is not defined as an \if:

• \nosubst must be given before the macro pack-
age is loaded. The value ‘t’ indicates that no
registers for substitutions are needed, so the
number of registers is reduced by 50%. (As
a result, several commands are no longer us-
able, for example, \substituting is “turned
off” and the command \outof becomes \use.)

TUGboat, Volume 36 (2015), No. 3 253

58 f(b)
f(A) f(A) g(b)

g(A) a
⌣ f(a)

c b g(a)

(30) :

a f(b) a
⌣ f(a)

c g(b) g(a)
b a

⌣ f(a) f(b)
g(a) g(b) (59.

Figure 9: Output of the source of Fig. 8

• \gfbslognotation controls if the result of the
short form is written to TEX’s log file in an
extended symbolic representation; details are in
the next subsection. The default is false.

• \gfbszeigestats controls the output of some
statistics about the maximum number of lines
used in the formulas. The output is written to
the log file and to the screen. The default is
\gfbszeigestatsfalse.

Macros. The macros for the short form are much
more complicated than those for the symbolic rep-
resentation. They cannot be explained in greater
detail in this article, but a few aspects are described;
some of them might be well-known patterns.

The symbolic representation that is produced
from the short form uses one \toks register for each
line to store the coding. The registers carry the line
number of the formula in their names. A static part
of the name for the token registers is extended by the
line number as a roman numeral (see [14, ex. 7.10]):

\csname
gfbstoks\romannumeral\gfbszeile

\endcsname

This code accesses a token register whose name is
created with a \csname and \endcsname construc-
tion. If the counter \gfbszeile has the value 4 then
the above code equals \gfbstoksiv. To add the
element \gfbselement to the left of a token register
the following method is used (see [14, p. 378]):

\edef\gfbstoken{\the\gfbselement
\the\csname gfbstoks\romannumeral\gfbszeile
\endcsname}

\global\csname gfbstoks\romannumeral\gfbszeile
\endcsname=\expandafter{\gfbstoken}%

For each line that is produced from the short
form three values are stored:

a) the length of the line counted as those parts of
the macro * that contribute to the output;

b) the number of the line to which the current line
is connected upwards;

c) the maximum line number that is connected
directly or indirectly to the current line.

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

An example best shows how these numbers are
used to build a formula. For example, A

B
Γ

is to be formed from the two formulas A
B

and

Γ . The first formula occupies lines 1 and 2, the
second line 3. Then line 1 gets the three values
(2, 0, 2), line 2 (2, 1, 2), and line 3 (1, 0, 3). First
the length of lines 1 and 3 are compared and the
shorter line and all its “descendants” are filled with
the abovementioned technique to add something to
the left of a token register. Then the two lines are
connected. So to join lines 1 and 3 with a condition
the length of line 3 (the first value of the triple) must
be increased to match the length of line 1 using one
*---. Next, at the left side of line 1 *-:- is added.
And all its dependent lines, i.e., line 2, get a *_!_.
Line 3 receives the matching *_’-. The data for
the lines is updated to the values (3, 0, 3), (3, 1, 2),
and (3, 1, 3), resp.

I had the (crazy?) idea to store the numbers in a
single \skip register. The length is the normal part
of the skip, the other two parameters are defined as
the stretch and the shrink value.
\def\ggobble#1#2{\relax}
\def\setskip#1#2#3#4{%

% #1: line no.; #2: no. of parts;
% #3: line no. up; #4: max line no. down
\global\csname

gfbsskip\romannumeral #1%
\endcsname=#2pt plus #3pt minus #4pt}

\def\getskip#1.#2 #3 #4.#5 #6 #7.#8{%
\global\gfbsanzahl=#1% no. of parts
\global\gfbshaengtan=#4% line no. up
\global\gfbsgehtbis=#7% max no. down
\ggobble}

The macro \setskip is called with the register
number, i.e., the line number, and the three values
to be stored. \getskip assigns the stored values
of the \skip register to three named counters when
called in this way:
\expandafter\getskip\the\csname

gfbsskip\romannumeral\gfbszeile
\endcsname

The output of \the creates characters of the
category “other” except for spaces. So a simple
“pt” cannot be used in the parameter text (see [14,
p. 375]). To delete the last “pt” the macro \ggobble
is called. It deletes the next two tokens. In order to
understand \getskip, the output of a well-known
quantity, for example, \bigskipamount, should be
studied.

Outputting the created symbolic representation
in the log file of TEX is easy, as only the token
registers must be written:

254 TUGboat, Volume 36 (2015), No. 3

\wlog{\the\csname
gfbstoks\romannumeral\gfbszeile

\endcsname}

For other commands \string is used, for example:

\wlog{\string\bcc\string{#1\string}/m%
\string{#2\string}:#3\string%
\rep\string{\the\gfbsgrundeinzug%
\string}\string*___\string\rep%
\string{#5\string}\string*---%
\string\ecc}

Finally, I want to write a few words about the
size of the implementation. The macro package for
the notation contains more than 1800 lines of code.
It is produced from a WEB-like coding system. To
make sure that all the macros produce the desired
output 330 test cases have been coded.

The macros grew in several steps and not all
problems might have the best solution. Nevertheless
I hope I have accomplished my goals and the system
is quite usable.

4 Extensions for the Grundgesetze

To reproduce the formulas used in Frege’s Grundge-
setze [7] some adaptation of the macros is required.
Besides the abovementioned compact form, which is
used throughout the Grundgesetze, the most obvi-
ous changes were the use of lines that have a uniform
thickness and an increased set of inferences. Fig-
ure 10 shows an example of the style used in the
Grundgesetze.

This is not the place to describe the necessary
changes in detail, but a few comments are worth-
while. The command \toggleGGstyle switches be-
tween the style of the Begriffsschrift and the style of
the Grundgesetze. It uses the flag \gfbsuseGGstyle
(with the default setting \gfbsuseGGstylefalse)
to activate the line thickness of the Grundgesetze.

As explained above, several \dimen registers are
used to change the output of the symbolic represen-
tation. To change these registers into the style of
the Grundgesetze a few values are defined. Now the
control words start with \gfgg:

• \gfggstrichdicke represents the uniform line
thickness; default is 0.58 pt.

• \gfggraise is the height of the content stroke;
default is 0.14 ex.

• \gfggneg is the height of the negation indica-
tor; default is 0.47 ex.

• \gfgguht is the height of the judgment stroke;
default is 1.4 ex.

• \gfggudp is the depth of the judgment stroke;
default is 0.9 ex.

Udo Wermuth

Compact form. Frege used a more compact form
for the formulas in the Grundgesetze. (Figure 7
shows the compact form for the formulas of Fig. 2.)
The short form is able to produce this form because
it creates a kind of extended symbolic representa-
tion. The “extension” is the use of symbols that
change their output. The selection process is com-
plex and involves the * macros to the right of the
current position. Eleven more symbols are defined
and nine of them can change. In the following list
two forms are given for the new symbols: one for
the normal output and one for the compact form.

0 represents negation that is either moved to the
left (‘(’) or moved to the right (‘)’): 0=();

1 represents affirmation: 1=^/
2 again affirmation: 2=^+;
4 represents optional content stroke: 4=-";
5 represents optional empty space: 5= ";
6 represents judgment strokes: 6=[];
7 represents a negated concavity: 7=‘,;
8 again negation: 8=<~;
9 represents a content stroke that has only one

third of its usual length;
* is a skip whose length is multiplied by 5/3;
$ is used only with a concavity and represents

either a short content stroke or an empty space.

\gfbskompakt switches to the compact form. The
default for the flag is false. The compact form does
not always give perfect results, i.e., it doesn’t match
the original. Therefore some flags are defined that
have to be invoked in a problematic formula.

• \gfbskeinekompaktehoehlung controls the use
of the compact form for concavities. Its default
value is false.

• \gfbsaussagesichtbar controls whether a con-
tent stroke can disappear completely in front of
a statement. Its default value is also false.

Again examples might be useful to demonstrate
the effects of the flags. On the left the non-compact
form is given and on the right the same formula with
\gfbskompakttrue is output:

a
⌣ Ψ(a)
e
⌣ Φ(e)

a
⌣ Ψ(a)
e
⌣ Φ(e)

.

The sign in the first line gives an asymmetrical re-
sult on the right. Next, here is the same formula
with \gfbskeinekompaktehoehlungtrue as well as
\gfbskompakttrue:

a
⌣ Ψ(a)
e
⌣ Φ(e)

.

As a second example, we can look at the out-
put for \frege.{=.a} and \frege.{=.{=.a}}. It is
identical in the compact form: a and a. The

TUGboat, Volume 36 (2015), No. 3 255

III f
⌣ f(a)

f(a)
a = a

��

a = a
f
⌣ f(a)

f(a) (α

•

I f(a)
f(a)

︸ ︸
f
⌣ f(a)

f(a) (β

(α):

a = a (IIIe

Figure 10: Inferences from the
Grundgesetze [7], p. 66

activation of \gfbsaussagesichtbartrue shows a
difference: a a.

New inferences. A flag is defined to control the
use of the new inferences: \gfggschlussweisetrue
allows the following construction in the formulas.
If the first symbol in the * macro is a question
mark then the next two symbols are used to define
the building blocks of an inference in the style of
the Grundgesetze. Note that the thick line with
the centered circle in Fig. 10 is only a separator for
inference chains. It is coded as a normal macro.

The width of each of the two symbols after ‘?’
is 50% larger then the usual width of a part in the
macro *. The following symbols are defined:

? (must be the first in the triple) signals that the
next two symbols build an inference line;

- is a single horizontal stroke;
. is a single (centered) period;
= is a double stroke;
* is a single stroke in the height of the upper line

of the double stroke;
_ is an empty space;
" is a skip;
> has no output; the next symbol is a transition-

sign (now the translation of technical terms fol-
lows [8]);

x (must follow a >) represents the contraposition;
u (must follow a >) represents a “quantification”.

Now the eight transition-signs of the Grundge-
setze can be typeset:

a) *?>x gives �� ;
b) *?>u gives ︸ ︸ ;
c) *?--*?--*?-- gives ;

Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX

d) *?==*?==*?== gives ;
e) *?-_*?-_*?-_ gives ;
f) *?=_*?=_*?=_ gives ;
g) *?=**?=**?=* gives ;
h) *?.-*?.-*?.- gives · · · .

Although I have not yet finished my copy of [7]
I assume that this is the core that is required to
typeset the formulas of the Grundgesetze. Of course,
this work has special strings too. Its 29 symbols are
different from those used in the Begriffsschrift; they
all stay on a single line. Some symbols are available
in a special font created by J. J. Green (see [12]).

References

[1] The Arché Grundgesetze Translation Project
http://www.st-andrews.ac.uk/~arche/projects/

grundgesetze/grundgesetze.shtml (accessed:
2014-11-29)

[2] Martin Davis, “Frege: From Breakthrough to
Despair,” in The Universal Computer—The Road

from Leibniz to Turing (New York: W. W. Norton
& Company, 2000), 41–58

[3] Encyclopædia Britannica, “Gottlob Frege”
in Encyclopædia Britannica online, primary
contributor: Michael A. E. Dummett.
http://www.britannica.com/EBchecked/topic/

218763/Gottlob-Frege (accessed: 2014-11-29)
[4] Gottlob Frege, Begriffsschrift, eine der arithme-

tischen nachgebildete Formelsprache des reinen

Denkens (Halle an der Saale: Louis Nebert, 1879)
[5] Gottlob Frege, “Begriffsschrift, a formula

language, modeled upon that of arithmetic, for
pure thought,” in [24], 1–82; this translation of [4]
was done by S. Bauer-Mengelberg

[6] Gottlob Frege, “Letter to Russell (1902),” in [24],
126–128; the translation was done by B. Woodward

[7] Gottlob Frege, Grundgesetze der Arithmetik—

begriffsschriftlich abgeleitet (Jena: Hermann Pohle;
Volume 1, 1893 Volume 2, 1903)

[8] Gottlob Frege, Basic Laws of Arithmetic (Oxford:
Oxford Univ. Press, 2013); translation of [7] by
Philip A. Ebert and Marcus Rossberg
http://www.frege.info/index.html (accessed:
2014-11-29)

[9] Gottlob Frege, “Über den Zweck der Begriffs-
schrift”, Suppl. zur “Jenaischen Zeitschrift für
Naturwissenschaft” 16 (1882/83), 1–10

[10] Gottlob Frege, “Über die Begriffsschift des Herrn
Peano und meine eigene”, Berichte über die Ver-
handlungen der Königlich Sächsischen Gesellschaft
der Wissenschaften zu Leipzig, Mathematisch-
Physische Classe 48 (1896), 361–378

[11] J. J. Green, bguq,
http://ctan.org/pkg/bguq (accessed: 2014-11-29)

256 TUGboat, Volume 36 (2015), No. 3

[12] J. J. Green, fge,
http://ctan.org/pkg/fge (accessed: 2014-11-29)

[13] J. J. Green, Marcus Rossberg and Philip A. Ebert,
“The Convenience of the Typesetter; Notation and
Typography in Frege’s Grundgesetze der Arithme-

tik,” Bull. Symbolic Logic, 21:1 (2015), 15–30
[14] Donald E. Knuth, The TEXbook, Volume A of

Computers & Typesetting (Boston:
Addison-Wesley, 1984)

[15] Donald E. Knuth, Computer Modern Typefaces,
Volume E of Computers & Typesetting (Boston:
Addison-Wesley, 1986)

[16] Silvio Levy, “Using Greek Fonts with TEX,”
TUGboat 9:1 (1988), 20–24
http://tug.org/TUGboat/tb09-1/tb20levy.pdf

(accessed: 2014-11-29)
[17] R. MacInnis, J. McKinna, J. Parsons, and

R. Dyckhoff, “A mechanised environment for
Frege’s Begriffsschrift notation,” Workshop Mathe-
matical User Interfaces 2004, Bialowieza (Poland)

[18] The MacTutor History of Mathematics archive.
http://www-history.mcs.st-andrews.ac.uk/

Biographies/Frege.html (accessed: 2014-11-29)
[19] W. V. Quine, “On Frege’s Way Out,” Mind New

Series, Vol. 64, No. 254 (1955), pp. 145–159.
[20] Quirin Pamp, frege.sty,

http://ctan.org/pkg/frege (accessed: 2014-11-29)
[21] Josh Parsons, begriff.sty,

http://ctan.org/pkg/begriff (accessed:
2014-11-29)

[22] Marcus Rossberg, grundgesetze.sty,
http://ctan.org/pkg/grundgesetze (accessed:
2014-11-29)

[23] Bertrand Russell, “Letter to Frege (1902),” in [24],
124–125; the translation was done by B. Woodward

[24] Jean van Heijenoort (ed.), From Frege to Gödel:

A Sourcebook in Mathematical Logic, 1879–1931,
(Cambridge, MA: Harvard University Press, 1967)

[25] Udo Wermuth, GFnotation.tex,
http://ctan.org/pkg/gfnotation (accessed:
2015-09-22)

[26] Edward N. Zalta, “Gottlob Frege,” The Stanford
Encyclopedia of Philosophy (Fall 2014 Edition)
http://plato.stanford.edu/archives/fall2014/

entries/frege (accessed: 2014-11-29)
[27] Edward N. Zalta, “Frege’s Theorem and Founda-

tions for Arithmetic,” The Stanford Encyclopedia
of Philosophy (Summer 2014 Edition)
http://plato.stanford.edu/archives/sum2014/

entries/frege-theorem (accessed: 2014-11-29)

⋄ Udo Wermuth
Babenhäuser Straße 6
63128 Dietzenbach
Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

TUGboat, Volume 36 (2015), No. 3 257

GMOA, the ǵGeneral Manipulation Of
ArgumentsǶ: An extension to the l3expan

package of the expl3 bundle and language

Grzegorz Murzynowski

Abstract

After an introduction on how and why we switched
to expl3, we present general assumptions and con-
ventions of this language. Then we take a more
detailed look at the l3expan package and the mar-
vellous improvements of code it facilitates.

Then we describe our generalization and exten-
sion to the machinery provided by l3expan. We call
it ǳGMOAǴ, ǳGeneral Manipulation of ArgumentsǴ
and argue why itǶs quite an earned description.

We point out that GMOA is based on a inite
automaton yet parses an arbitrary properly braced
⟨speciication⟩ which involves recognizing the Dyck
language, and we explain how does this not contra-
dict that fundamental theorem.

1 Switching to expl3 or: ǳDr. Strangelove
or: How I Learned to Stop Worrying
and Love the BombǴ

1.1 The Proverb

There is a saying about oneǶs perception of human-
made things, especially technology: ǳWhatever you
know before 20, is just a part of Nature. What you
learn between 20 and 35, is a ǵnoveltyǶ that youǶre
curious or even enthusiastic about. Whatever you
heard of after 35, you want to neither learn nor even
know, as itǶs ǵAgainst NatureǶ and an ǵAbomination
in the Eyes of the LORDǶ. Ǵ

Well, I understood IǶd probably have to take
expl3 seriously when Will Robertson rewrote his font-

spec package in(to) it some six years ago. When I
was 36. Yes, exactly as the Proverb says.

Overcoming the Proverb took me four years. A
new project had to begin at my work to let me think
itǶs a good time to learn and deploy ǳthis abom-
inable nonsenseǴ. ;-)

And voilà, since only two months later all the
new TEX code of mine is shorter by some ten thou-
sand \expandafterǶs, so much more elegant (I hope)
and noticeably less buggy.

As probably happens to all neophytes, the ǳOld
ThingsǴ (here: LATEX 2ε) look to me ugly and ob-
scure while code written in expl3, no matter how
unreadable to any ǳnormalǴ TEX user or even a

EditorǶs note: Originally published in the BachoTEX 2015
proceedings, pp. 49–56 (GUST). Revised by the author.

TEXnician, seems to me to be a visible instance of
utter readability and clarity1.

The ǳfunctionsǴ have their signatures as part
of their names; the ǳvariablesǴ (data carriers) also
tell their scope and type by themselves; thereǶs no
fear of an open \if..., moreover, no fear of unread-
ably nested conditions and \fiǶs in wrong places, as
compound condition(als) might be written as Bool-
ean expressions and computed in just one expansion
of \romannumeral -`0 (more later on this).

And so many more of such beauties (and odd-
ities) that at least an entire volume the size of this
TUGboat issue might be written about them.

So — who and why should or shouldnǶt be afraid
of expl3?

1.2 WhoǶs afraid of Virginia Woolf

As you probably have already noticed, IǶm talking
about programming in TEX. Not about directly us-

ing it for typesetting or writing texts.
The expl3 language is intended for TEX pro-

grammers (such as macro package writers), not for
the end users.

Therefore, if youǶre using LATEX for writing/
publishing things and when trouble strikes you do
not hack some code yourself but look for an existing
macro package to do the job, you have very little
reason to worry and can safely stop reading here. :)

So far, weǶve discussed the ǳ-loveǴ of the section
title. Now letǶs get to the ǳStrange-Ǵ.

1.3 General assumptions and conventions

As the reference manual/documentation2 is quite
comprehensive and instructive, let us only summa-
rize what we consider most important for under-
standing of further material.

First of all, a special \catcode regime. The
blank characters are assigned catcode 9 ǳignoredǴ —
which means there is no need for all those to indent
and choose line breaks in code yet avoid spurious
spaces in text and so on.

In expl3 you can use blanks as blanks, i.e., to
make the code clearer for reading. ǳThe blanksǴ
include the line end (not by re\catcodeing it, but
in another, beautifully twisted way) so also blank
lines can be used just for organizing of code.

It took me some time to get used to this. E.g.,
under this catcode regime, with this code:

\ifnum 1=0

1a

1 cf. O.Wilde, ǳThe Importance of Being EarnestǴ.
2 ǳThe LATEX3 InterfacesǴ, http://mirrors.ctan.org/

macros/latex/contrib/l3kernel/interface3.pdf

GMOA: An extension to the l3expan package

258 TUGboat, Volume 36 (2015), No. 3

\else

0z

\fi

you get the condition satisied and the conditional
expanded to a, the oppose of what what a wannabe-
TEXnician like myself is used to. (As the irst end-
of-line doesnǶt translate to a space (catcode 10) but
is just ignored, and the number read at the right
side of comparison is 01.

On the other hand, when you use expl3, you
are not supposed to use TEX primitives (with their
original names and syntax, at least).3

Other important re-catcodings are that _ and
: are made letters (cat.11) and used in control se-
quence names as signiicant or generic word joiners
and separators. Without going into too much detail
here, letǶs give a couple of examples. First:

\l__gme_additional_letters_tl

means a local __ internal variable of type _tl, ǵto-
ken listǶ, of the ǳmoduleǴ (macro package/document
class) gme.

And second:

\prg_replicate:nn

means an expl3 ǳfunctionǴ of the module ǳprgǴ, tak-
ing two braced arguments (usually, like a TEX macro
with two undelimited parameters; this will be dis-
cussed later).

The obligatory : separates the expl3 function
name from its signature. The signature is a (inite,
possibly empty) sequence of the letters:

c, D, f, n, N, o, p, T, F, w, x.

Each letter speciies one argument, except for w,
which means ǳweird syntaxǴ and D, which means
ǳDONǶT!Ǵ, for TEX primitives and other commands
that should not be used outside the expl3 kernel.

It should be emphasized that the ǳfunctionsǴ of
expl3 are not always macros, either in the sense of
taking undelimited arguments or in implementation.
One should rather think of them as a conceptual
construct, like LATEX 2ε ǳcommandsǴ.

3 This ǳhide your TEX and forget you ever used itǴ (cf.
MarquisǶ de SadeǶs ǳSpeech to the womenǴ at the beginning
of ǳ120 Days of SodomǴ) is probably the only thing I deinitely
dislike in expl3 (as I did in LATEX2ε).
ItǶs partially because of my intellectual inertia, I admit.

But also, and more importantly, because of my strong be-
lief that not many people (if anyone) could compete with
Prof. Knuth in the ͻͤχʹε (ǵart/craftǶ) of computer program-
ming. Which implies that hardly anything written on top
of TEX could be, IǶm not saying: better than it; IǶm saying:
comparable with it. I believe that some of TEXǶs ǳbeauties-
odditiesǴ will strike at some point anyway, and then looking
down to some lowest-level things is inevitable.

ItǶs also explicitly stated in the Reference Doc-
umentation that the uppercase letters (ǳargument
typesǴ) N and V require a single token without braces,
while all the others allow many tokens, in braces; for
those latter, wrapping even a single token in braces
is encouraged.

The p argument type is solely for macro pa-
rameter strings in the sense of The TEXbookǶs chap-
ter 20 and therefore can neither contain braces nor
be wrapped with them. WeǶll see later how this
works with the l3expan conventions and (not quite)
with our extension to them.

Here is a variant of the previous function:

\prg_replicate:Vo

This requires the irst argument to be an expl3 vari-
able and renders its value; the second argument is
hit with one \expandafter and only such prepro-
cessed arguments are given the ǳoriginalǴ or ǳpri-
maryǴ \prg_replicate:nn function.

As we are talking ǳfunctionsǴ in expl3, they ǳre-
turnǴ a ǳresultǴ. We use these words in the sense of
expl3 henceforth; bear in mind that, translated to
our good old TEX jargon, they generally mean ǵwhat
at some point is left in TEXǶs ǳmouthǴ after execu-
tion of this stufǶ or, most often, just ǵexpand toǶ.

Which brings us to part two, the pre-expansion
of arguments with the l3expan package.

2 The l3expan package: Pre-expansion of
macro arguments

Consider the not-so-unusual situation that before
applying a macro, the soon-to-be arguments should
be preprocessed (ǳtenderizedǴ4). For instance, a
control sequence \arg@i@int, a \count register or
\numexpr, hit with \the; an {⟨arg.2⟩} subjected to
\edef; and {⟨condition⟩{⟨arg.3T⟩}{⟨arg.3F⟩}} ex-
panded either to {⟨arg.3T⟩} or {⟨arg.3F⟩} but not
further, depending on ⟨condition⟩.

In LATEX 2ε we would write something like:

\newtoks \l@aux@args@toks

\newtoks \l@auxA@toks

\newtoks \l@auxB@toks

\l@auxA@toks = {{⟨arg.3T⟩}}

\l@auxB@toks={{⟨arg.3F⟩}}

\edef\aux@macro {%

\if⟨test⟩ ⟨condition⟩
\the\l@auxA@toks

\else

\the\l@auxB@toks

\fi

4 cf. http://myfirstdictionary.blogspot.com/2011/03/

todays-word-is-shoo.html

Grzegorz Murzynowski

TUGboat, Volume 36 (2015), No. 3 259

}

\l@aux@args@toks

\expandafter {\aux@macro } % "{⟨arg.3⟩}"

\edef \aux@macro {⟨arg.2⟩}
\l@aux@args@toks

\expandafter\expandafter\expandafter

{\expandafter \aux@macro

\the\l@aux@args@toks }

% "{⟨arg.2-ed⟩}{⟨arg.3⟩}"

\expandafter \def \expandafter

\aux@macro \expandafter{%
\the \arg@i@int % it can be a numexpr,

we donǶt know the num. of tokens

}

\l@aux@args@toks

\expandafter\expandafter\expandafter

{\expandafter \aux@macro

\the\l@aux@args@toks }

% "{⟨val.of arg.1⟩}{⟨arg.2-ed⟩}{⟨arg.3⟩}"

% and, inally,

\expandafter __mod_foo:nnn

\the \l@aux@args@toks

As we can see, thatǶs rather hard core. Even
with the shorthands of our gmutils package(s), it
wouldnǶt look much better.

Now, with l3expan, we can type

\::V \::x \::f \:::

__mod_foo:nnn

\arg_i_int {⟨arg.2⟩}
{\⟨test⟩:nTF{⟨condition⟩} {⟨arg.3T⟩}{⟨arg.3F⟩}}

Four lines instead of ca. 30.
Or, if we expect such pre-expansions more of-

ten, we can introduce a variant of the expl3 function
__mod_foo:nnn:

\cs_generate_variant:Nn

__mod_foo:nnn {Vxf}

__mod_foo:Vxf

\arg_i_int {⟨arg.2⟩}
{ __⟨condition⟩:TF {⟨arg.3T⟩}{⟨arg.3F⟩} }

By the way, if the nature of pre-processing al-
lows, all those \:: macros are expandable. How is
that done? Except for \:::, all the \::Ƕs are \long

3-parameter macros with #1 delimited with \:::, #2

undelimited and #3 depending on the nature of pre-
processing, usually undelimited. For instance, \::o

is deined like (TEX primitives are given here in their
original names, l3expan uses them in expl3 aliases;
please remember the blanks are cat.9 ǳignoredǴ):

\long\def

\::o #1 \::: #2#3

{ \expandafter __exp_arg_next:nnn

\expandafter {#3} {#1} {#2}

}

\long\def

\::f #1 \::: #2#3

{

\expandafter __exp_arg_next:nnn

\expandafter { \romannumeral -`0 #3 }

{#1} {#2}

}

\long\def

__exp_arg_next:nnn #1#2#3

{ #2 \::: { #3 {#1} } }

Which means that \::o applies one \expandafter

to its #3 and then lets __exp_arg_next:nnn do the
rest.

Similarly, \::f applies \romannumeral in such
a way that any leading expandable tokens of #3 are
expanded until the irst unexpandable token is seen.
Please note the -`0 preceding #3. Thanks to it, even
if #3 expands to decimal digit(s), \romannumeral is
satisied with -`0 as a complete ⟨number⟩ speciica-
tion and, as this number is negative (the charcode
of 0 is 48), expands to ⟨empty⟩ (empty sequence of
tokens). Thus we get an ǳAFAPǴ (ǵAs Far As Possi-
bleǶ) expansion of #3 in just one \expandafter.

(Very few things move me as deeply as this
trick, if I may express my personal yet professional
feelings here.)

Some of the pre-processors which render the
value of a variable also use \romannumeral-`0, de-
pending on the variable type. The current imple-
mentation of the _tl type, for instance, as param-
eterless macros not, e.g., as \toks registers, allows
for rendering their value with just an \expandafter,
or even just the use of the variable name, in many
contexts.

What happens next: the __exp_arg_next:nnn

macro appends the pre-processed \::Ƕs #3 to the
end of (that \::d) #2 (the result-so-far). All of
that inally looks like:

⟨#1⟩ % remaining \::Ƕs

\::: {⟨#2⟩[{]⟨#3 pre-processed⟩[}]}

⟨further input⟩

The mysterious \::: delimiter control sequence is
\firstofone or, in its expl3 naming, \use:n; so
that when all the \::Ƕs do their job, it strips the
outer braces of the inal result.

For those pre-processors which pass their re-
sult stripped of braces, thereǶs another version of
the ǳpass-the-resultǴ macro:

\long\def

GMOA: An extension to the l3expan package

260 TUGboat, Volume 36 (2015), No. 3

__exp_arg_next:Nnn #1#2#3

{ #2 \::: { #3 #1 } }

As you can clearly see, the diference in behaviour
of these macros seems to be relected in lower-/up-
percase opposition of the letter(s) n vs. N.

However, both the Reference Documentation
and further explanations from the LATEX3 team dis-
courage such an interpretation, underlining the expl3

goal to allow (force) the user ǳnot to rely on imple-
mentationǴ and focus on the requirements (in most
cases purely conventional): N ǳrequiringǴ a single
and un-braced token, most often a control sequence,
and n ǳrequiringǴ an arbitrary token(s) in braces, as
in the ⟨balanced text⟩ of The TEXbook.

However, if we really stick to the conventions
and donǶt rely on implementation5 (how is that pos-
sible for a TEX programmer, let alone a TEXnician?
;-)), everything seems to work just ine.

Which leads us to some remarks concerning the
pre-expansion of arguments and its generalization
to GMOA. (With tidying-up the ǳargument typesǴ
with respect to it.)

3 GMOA, a ǵGeneral Manipulation Of
ArgumentsǶ or: a DFA that seemingly
recognizes the Dyck Language

Long story short, on top of the l3expan pre-expand-
ers we add arbitrary rearrangements and/or group-
ing of arguments. In a ǳone-charǴ syntactic man-
ner similar to the tabular speciications. And ex-
pandable (except for x and X). And with consistent
naming conventions, coherent with l3expan to some
degree.

And, last but not least, performed (at the stage
of translation of the speciiers sequence into \::-
like macros) by a DFA, a (deterministic) inite au-
tomaton. Which includes a Dyck Language recogni-
tion. Without falsifying the theorem that there does
not exist a DFA to do that.

5 There is a temptation of using some functions as if they
were (e)TEX primitives, like \hbox:n (as currently allowing
the \bgroup...\egroup syntax) or \tl_to_str:n as the sup-
posed expl3 alias for \detokenize. Just DONǶT. Quoting
Joseph WrightǶs email, ǳ. . .for example, where the team needs
to use the primitive behaviour of \detokenize [. . .], we use
the ǵrawǶ name \etex_detokenize:DǴ.
IǶm not sure what a non-(LATEX3 team) person should do in

this case, since the Reference Documentation reads: ǳThe D

speciier means do not use. [. . .] Only the kernel team should
use anything with a D speciier!Ǵ WeǶre again at ǳHide your
TEX and forget youǶve ever used itǴ? Over my dead body.
The gme3u8.sty package (of mine) provides aliases for the

(e)TEX primitives my way and anyone is invited to use them
(at their own risk, of course). (The list is not complete, I just
add what I needed so far.)

Roadmap for this section. After an excuse for
using non-ASCII chars which need a special font, we
give a formal deinition of the GMOA speciications.
Then we present an overview of the GMOA machin-
ery, its modus operandi, and some of its macros
alongside with their conceptual structure as a inite
automaton.

In the subsequent (subusubsequent? ;-)) (sub-
sub)sections we present groups of speciiers and re-
spective automaton states / stages of parsing:

• the ⟨destination⟩ tokens,
• the ⟨prep-or-↓⟩s,
• the meta-operators,
• the digits / ⟨FSM⟩s,
• the braces / ⟨BDSM⟩s

We end this section with examples: one that is
almost-comprehensive though not-necessarily-useful
and a handful of ǳreal-lifeǴ ones. All of them go
beyond whatǶs possible with l3expan only.

A disclaimer about (non-)ASCII chars and
the custom font Ubu Stereo. Before we pro-
ceed, a remark. The expl3 language keeps strictly to
ASCII. Any characters outside of ASCII that occur
in the next part of this paper, especially those from
the ǳdistant far-awaysǴ of the Unicode or even from
the Private Use Area (PUA henceforth), are entirely
my ǳfault and guiltǴ.

I use some letters looking similar to some non-
letter ASCII chars with the intention of making the
names even more self-explanatory, while simulta-
neously respecting the expl3 naming conventions.
Other characters are chosen for perfectly rational
reasons (e.g., ⚸, the astrological symbol of the name
of my dearest dog, which I use as my ǳtrademarkǴ in
the expl3 module part of names). And, a some chars
FontForged by myself to depict TEX primitives and
other often-used things in one character each.

All are put together in one font named Ubu
Stereo. The font is based on Ubuntu Mono with
some characters copied from other libre fonts, espe-
cially DejaVu Sans and FreeSerif. I act with those
fonts as I please (PL: ǳWedle mojego widzimisięǴ),
hence ǳUbuǴ (cf. A. Jarry, ǳUbu le RoiǴ &c.). ǳSte-
reoǴ, because itǶs not all monospaced, as some wide
characters are given double width for better distinc-
tion, such as і, and some combine to double width
in pairs in a kind of typographical rubato, with one
char half-width (declared as another escape char)
and the other one-and-a-half-width, to provide one-
char control sequences (IǶm curious if they consti-
tute reasonable mnemonics to anyone but me):

էը \expandafter
էի \noexpand

Grzegorz Murzynowski

TUGboat, Volume 36 (2015), No. 3 261

էլ \unexpanded % e-TeX primitive
էթ ... էժ \csname ... \endcsname % stator(s) of

an electric motor; make the stuf between them
spin.

With that description, we switch the mono font
to Ubu Stereo from now on and get down to GMOA

at last.

3.1 Description by examples

To give an idea of GMOA, let us rewrite an example
from the previous section.

\⋮⋮ I Vxr :
__mod_foo:nnn
\l__arg_i_int {⟨arg.2⟩}
{\<condition>:TF {⟨arg.3T⟩}{⟨arg.3F⟩} }

where \⋮⋮ is the name of the main GMOA macro
(subject to alias on userǶs request) and the subse-
quent letters are the speciiers of operations, ǳthe
operatorsǴ for short. So far, nothing more than in
l3expan, as I stands for ǳIdentityǴ and just preserves
__mod_foo:nnn until the rest of the arguments are
preprocessed, V and x act as (are translated to) \::V
\::x and r translates to (an alias of) \::f, i.e., does
the \romannumeral -`0 trick.

But letǶs have a look at some real-life use (cour-
tesy of the PARCAT project, parcat.eu):

\⋮⋮ 1։{4։֌67֏} 1֊{4֊֌67֐} :
\DeclareOption % 1

{oneside}{twoside} % 2, 3

\PassOptionsToClass % 4

{report} % 5

\protected\def % 6

__insˈ_pageˈoddityˈcount: % 7

\c_one \c@page % 8, 9

This code declares a LATEX 2ε document class
options oneside and twoside that difer only in the
meaning of __insˈ_pageˈoddityˈcount: and both
pass their names to the basic document class report.
I.e., \⋮⋮...: rearranges the code above into:

\DeclareOption {oneside}
{\PassOptionsToClass {oneside} {report}%
\protected \def __insˈ_pageˈoddityˈcount:

{\c_one }%
}
%
\DeclareOption {twoside}
{\PassOptionsToClass {twoside} {report}%
\protected \def __insˈ_pageˈoddityˈcount:

{\c@page }%
}

Some parts of the code have been replicated as many
times as needed, their order changed, some groups
of arguments were put into the same pairs of braces.

By writing all the mutatis mutandis text just
once with the ǳmutandisǴ not repeated, the code
is kept strictly parallel, i.e., change-robust, as any
change need be made in only one place.

On the other hand, using this machinery has
the obvious disadvantage that you have to learn the
mini-language of speciiers. Hopefully, this is an
acceptable expense. Another inconvenience is the
counting of the arguments, which might be quite
tricky, especially if there are mixed sequences of
stand-alone operators and ⟨FSM⟩/⟨BDSM⟩ parts in
a speciication (discussed in the examples following
the formal deinition).

I dare think of \⋮⋮ as superior6 to both the
l3expan low-level \:: macros and the machinery of
\cs_generate_variant:Nn in some aspects.

It provides much more general rearrangement
and pre-processing options than either of the latter.
It has much shorter syntax than the \:: macros;
moreover, it can also be used within the usual cat-
code regime (provided the very name is aliased prop-
erly), as the speciiers are parsed with the \strcmp
comparisons, which are independent of the catcodes.

Except for braces, which are discussed in the
section 3.2.6.

3.2 GMOA: Formal language deinition

⟨GMOA⟩ ::= \⋮⋮ ⟨speciication⟩ :
⟨speciication⟩ ::=

⟨destination⟩⟨FSoO⟩⟨optional .⟩
⟨speciication⟩

⟨destination⟩ ::= ⟨empty⟩ | ξ | ɱ | ɲ
⟨optional .⟩ ::= ⟨empty⟩ | .
⟨FSoO⟩ ǳFinite Sequence of OperatorsǴ ::=

⟨empty⟩ | ⟨SAlos⟩⟨optional ;⟩⟨FSoO⟩
| ⟨FSM⟩⟨optional ;⟩⟨FSoO⟩

⟨optional ;⟩ ::= ⟨empty⟩ | ;
⟨SAlos⟩ Stand-AloneǶs ::= ⟨prepsǶnǶ↓s⟩

| ⟨SAlos⟩(⟨prep.seq.⟩)⟨SAlos⟩
| ⟨SAlos⟩`⟨prep⟩⟨SAlos⟩
| ⟨SAlos⟩⁎⟨prep⟩⟨SAlos⟩
| ⟨SAlos⟩⁑⟨prep⟩⟨SAlos⟩
| ⟨SAlos⟩⟨meta-ᴿ⟩⟨SAlos⟩

⟨prepsǶnǶ↓s⟩ ::= ⟨empty⟩
| ⟨prep-or-↓⟩⟨prepsǶnǶ↓s⟩

⟨prep-or-↓⟩ ::= ⟨prep⟩ | ↓
⟨prep.seq.⟩ ::= ⟨empty⟩ | ⟨prep⟩⟨prep.seq.⟩

6 ItǶs ininitely easier to expand/develop something than
to invent it in the irst place. l3expan does things IǶve not
even thought of in ten years of my TEXnicianǶs life. Or if
I did, it was: ǳNah . . . itǶs impossible; you just canǶt hit the
2nd undelimited argument with \expandafter since you donǶt
know how many tokens are there in the irst oneǴ.

GMOA: An extension to the l3expan package

262 TUGboat, Volume 36 (2015), No. 3

⟨prep⟩ ::= c | ć | Ć | ð |  | f | h | H | i | I | k | K | n | N
| o | O | ե | դ | p | P | q | Q | r | R | s | S | T | F | v | V | x
| X

⟨meta-ᴿ⟩ ::= ᴿ⟨arbitrary-meta-ᴿ⟩
| ×⟨number speciication⟩⟨meta-replicated⟩

⟨arbitrary-meta-ᴿ⟩ ::= a(ny) TEX code that
ᴿ-expands to [consistent part of] a
⟨speciication⟩

⟨number speciication⟩ ::= the
\prg_replicate:nnǶs irst argument

⟨meta-replicated⟩ ::= the \prg_replicate:nnǶs
second argument

⟨FSM⟩ ǳFinite Sequence ManipulationǴ ::=

⟨opt.cardinality⟩⟨FSM w.card.par.⟩
⟨opt.cardinality⟩ ::= ⟨empty⟩ | |⟨digit⟩|
⟨FSM w.card.par.⟩ ǳFSM with cardinality

paradigm knownǴ ::=

⟨FSM chunk⟩⟨optional ,⟩
⟨FSM w.card.par.⟩

⟨FSM chunk⟩ ::= ⟨digits with prep.seqs.⟩
| ⟨BDSM⟩

⟨digits with prep.seqs.⟩ ::= ⟨empty⟩
| ⟨digit⟩⟨prep.seq.⟩⟨digits with prep.seq.⟩

⟨digit⟩ ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| ց | ւ | փ | ք | օ | ֆ | ֈ | ։ | ֊ | ֋ | ֌ | ֍ | ֎ | ֏ | ֐ | ֑ | ֒
| ֓ | ֔ | ֕ | ֖

⟨optional ,⟩ ::= ⟨empty⟩ | ,
⟨BDSM⟩ ǳBraced Dyck-language Sequence

ManipulationǴ ::=

{⟨FSM chunk⟩}⟨prep.seq.⟩
The chars of a speciication are hit with \string, one
by one, so each gets catcode 12 (other) unless it has
catcode 5, 9, 10, 14, or 15.

The only cat.1 and cat.2 characters allowed are
{ and } and they have to be balanced.

Blank chars, either in expl3 catcode regime (i.e.,
cat.9 ǳignoredǴ) or in the usual (cat.10) are skipped
and may be used at will to improve readability.

Let us now explain the semantics, i.e., ǳsee what
this mouse trap really doesǴ.7

3.2.1 Overview of the DFA

\⋮⋮ is a macro with one parameter delimited with :11
(catcode ǳletterǴ). Taking an entire ⟨speciication⟩
at once serves only for checking if there is a prede-
ined macro to handle the given case.

If no such shortcut is predeined, the code

էթ __⋮¹_strᔥsKN:w ⟨speciication⟩ :{}

is executed, where էթ is just \csname and the next
control sequence is a GMOA irst-stage (⋮¹) \string-
preceded (str) macro for the state (ᔥs) named KN,

7 cf. William Tenn, ǳErrand BoyǴ, in ǳThe Seven SexesǴ,
1968.

ǵKnow NothingǶ. Which is, as one can guess, the
initial state.

From there on the characters of ⟨speciication⟩
are hit with \string, picked one-by-one, tested, and
transitions performed accordingly, which TEXnically
amounts to putting further and further ǳtelescopicǴ
\csnameǶs, i.e., the sequences of tokens that could
and should be transformed into a control sequence
at the very moment the matching \endcsname is met.

Only, the immediate predecessor of each such
\endcsname is . . . \expandafter. And the token next
to \endcsname is . . . another \csname:

\csname cs-name-1 \expandafter\endcsname%
\csname cs-name-2 ...

I think of this trick as of an (architectural) arch or
bridge; and I think of \csname...\endcsname as the
stator(s) of an electric motor, which make(s) the
stuf between them spin. Hence the PUA/Ubu signs
based on Japanese quotation marks:

էթ cs-name-1 էծ cs-name-2 էժ

Now, a GMOA

\⋮⋮ ξIo ɱIir :

is at some point translated into:

էթ ::I⁎ էծ ::o⁎ էծ ::I էծ ::i էծ ::r էծ ::: էժ

and turns into the \:: macros from right to left.

At the moment of submitting this paper for
printing, GMOAs DFA consists of 12 states with 64
transitions (and 11 ⟨meta-ᴿ⟩ interruptions).

The transitions are labeled not with particular
characters but with equivalence classes of: ⟨prep⟩s,
⟨⁎meta-operator⟩s, ⟨destination⟩ tokens, &c.

ItǶs probably not a signiicant savings of mem-
ory or other computational costs, but does result
in a great simplifying of the code. It also makes
the code more change- and development-robust; e.g.,
adding a new argument type, which is denoted with
a char of equivalence class ⟨prep⟩, does not require
any changes in the automaton.

3.2.2 The destination

Parsing of a ⟨speciication⟩ starts from determining
of the ǳdestinationǴ, i.e., the way the result of the
next ⟨FSoO⟩ is yielded:

⟨empty⟩ If no explicit destination token is given,8

the usual ǳjust onceǴ is assumed, like l3expanǶs
\::/__exp_arg_next:nnn. This is equivalent to
the use of ɱ.

ɱ Greek letter small sigma inal form, the open
variant, for ǳͺͼʹαγωγͥ ͷͶͲ΄Ǵ /synagoge poly/,

8 i.e., the irst char met is none of ɱ,ɲ,ξ.

Grzegorz Murzynowski

TUGboat, Volume 36 (2015), No. 3 263

ǵgather (as) manyǶ (with intended associations
with the correlation between social diversity and
open-mindedness of people). Therefore let us
call this ǳjust once and multiǴ.

ɲ stands for ǳͺͼʹαγωγͥ ͳ΃ʹͶǴ /synagoge mono/,
ǵgather [as] oneǶ, Greek letter small sigma mid-
dle form, the closed variant, to be associated
with enclosing of all the picked and pre-pro-
cessed arguments in one common resulting pair
of braces. (ǳJust once and as oneǴ.)

ξ for Greek ǳ͵αʹαǴ, ǵ[use] againǶ: the result is put
back as input for further parts of speciication,
after this ⟨destination⟩ is done (quite like rumi-
nants do). (ǳWeǶll meet againǴ, as in the inal
credits of ǳDr. Strangelove or . . .Ǵ.)

[We skip the description of the ǳGrand Gather-
ingǴ post-meta ⟨SAlos⟩ Σ and Ξ as having originated
in the formative stage of the GMOA language and
most probably doomed for deletion. Basically, they
act like ɱ and ξ, only applying to ǳeverything done
so farǴ and have notably less elegant syntax.]

3.2.3 The ⟨prep-or-↓⟩Ƕs

If one understands (the beauty of) the l3expan pre-
processors, then the ⟨prep⟩s are the easy part.9 All
those letters either directly correspond to some expl3

ǳargument typeǴ and the respective \:: macro (and
are internally translated to it), or extrapolate their
idea, perhaps even towards a kind of a completeness
or full(er) symmetry.

They can be divided into two groups: ǳargu-
ment pre-processorsǴ and ǳspecial pickersǴ, the lat-
ter being H,h,p,Q,q. They pick (scan) the arguments
delimited in special ways as described below, and
donǶt do anything else to them. All the others, the
ǳargument pre-processorsǴ, take undelimited argu-
ments (again in the sense of The TEXbook, chap-
ter 20) and submit them to various kinds of expan-
sion or ǳrenderingǴ.

What needs to be emphasized is the expl3 con-
cept of ǳargument typesǴ, although mostly consis-
tent with my idea of upper- and lowercase opera-
tors, uses the opposition of upper- and lowercase
with a diferent purpose. The original intent, ex-
pressed both in the Reference Documentation and in
the LATEX3 team membersǶ responses to my emails,
is that N and V require a single and unbraced token,
usually a control sequence, while all the others al-
low many tokens, in that case in braces (except the
p type for obvious reasons).

9 cf. ǳDevilǶs AdvocateǴ, Al Pacino as Satan talking salary
with Tom Cruise.

(And, not to forget that the T and F argument
types refer to the argument originally braced yet
returned without braces.)

This is, as far as I understand it, part of the
general goal of creating an abstract programming
language, not necessarily using TEX in the future.

My ideas are more moderate. IǶd like just to
provide some easier ways to memorize and shortcut
some programmatic constructs in TEX, for a person
who is acquainted with TEX and with at least some
of its beauties-oddities. Therefore the GMOA mini-
language of one-char speciiers consistently (to the
maximum extent permitted by expl3) ǳthinksǴ of the
uppercase speciiers as referring to the resulting ar-
guments unbraced and their lowercase counterparts
as referring to the arguments braced, up to intro-
ducing ǳlowercase digitsǴ, as weǶll see later.

So, let us see what the pre-processors do. The
ones homonymic with l3expan ǳargument typesǴ are
put in [square brackets].

[c],ć,Ć The uppercase Ć is an alias for c, i.e., apply-
ing \csname...\endcsname before passing the ar-
gument on without braces. The lowercase ć does
the same, only passing the result on in braces.
What is this useful for? First, for the TEX prim-
itives that require a {⟨balanced text⟩}. Second,
for theoretically possible constructs like

cs name 1\expandafter\endcsname\csname cs
name 2 ...

ð, (Icelandic, etc., letter eth/Eth) Hit the argu-
ment with \the. In the current implementation
of expl3, itǶs almost equivalent to V for some
expl3 data types, namely: _int, _dim and _skip.

ð is equivalent to V, and  – VI. v is equiv-
alent to ⁎cð in stand-alone contexts or cð as
⟨prep.seq.⟩ of an ⟨FSM⟩ or ⟨BDSM⟩.

However, due to the ǳDonǶt rely on imple-
mentationǴ rule one should always use the v or
V speciier to render the value of an expl3 data
carrier. (Which is a bit more expensive than
the \the.)

h,H,[p] Pick the #{-delimited argument and return it
without braces (H, p) or wrapped in braces (h).

i,I Identity operation, braced or unbraced with re-
spect to the lettercase.

k,K \detokenize the argument.

[n],[N] No pre-processing. Equivalent to i/I in the
current implementation of l3expan (described
separately as that implementation should not
be relied upon).

[o],[O] One level expansion with \expandafter. (As
currently implemented in l3expan.)

GMOA: An extension to the l3expan package

264 TUGboat, Volume 36 (2015), No. 3

ե,դ Cyrillic letter lowercase/uppercase binocular o.
Two-level expansion with \expandafter. Used
by the author for elegant (in his opinion) pre-
processing of macros that should be expanded
to their content and that content hit again, e.g.:

\def\number_of_page:{\the\c@page}

q,Q Pick the argument delimited with \q_stop.
[f],r,R Apply \romannumeral -`0 to the argument.

This causes the leading token(s) of that argu-
ment to be fully expanded until an unexpand-
able token is seen. So, itǶs called f for the
ǳfullǴ and not called so by myself for the ǳuntil
irst unexpandableǴ. Here comes a point where
I prefer to refer to (some) knowledge of TEX,
namely, of the \romannumeral primitive.

s,S Hit the argument with \string. ItǶs worth em-
phasizing that the uppercase variant returns the
result without braces, which for a control se-
quence means at least two bare tokens (except
for \␣).

[T],[F] Strictly parallel to the l3expan/expl3 homo-
nyms (functionally equivalent to our I but in-
tended to indicate the conditional branches).

[v],[V] Strictly parallel to the l3expan/expl3 homo-
nyms (rendering the value of a data carrier (an
expl3 variable or constant), given as a control
sequence for V or as the tokens of its name for
v). Related to ð and ; see above.

[x],X Hit the argument with \edef. The lowercase
variant translates to the \::x macro in l3expan/
expl3 which, in its current implementation, re-
turns the result in braces. The uppercase vari-
ant returns the result without braces and is not
present in expl3.

The ↓ operator discards the respective argu-
ment. Therefore there is no need to use it in the
⟨FSM⟩s (including ⟨BDSM⟩s), as there you just skip
a digit for that purpose.

When used as SAlos, the ⟨prep-or-↓⟩s refer to
and are applied to subsequent arguments from the
input.

When following a ⟨digit⟩, the ⟨prep⟩s refer to
and are applied to the ⟨digit⟩th argument from the
input, counting as explained later.

When following a BDSM, the ⟨prep⟩s refer to
that BDSM as if it was a single argument taken from
the input.

Before we deal with the ⟨FSM⟩s and ⟨BDSM⟩s,
a word on the meta-operators as they apply to the
just-presented ⟨prep⟩s, and other speciiers that con-
stitute categories (GMOA ǳchar-classesǴ) by them-
selves.

3.2.4 The meta-operators

The `, ⁎, ⁑ and (...) meta-operators, i.e., the op-
erators modifying actions of ⟨prep⟩s, are intended
to allow applying multiple pre-processings to the
same argument without calling the ⟨FSM⟩ machin-
ery (which is much more expensive, as weǶll see).
As they are redundant with respect to the general
power of GMOA, we leave the details for an inter-
ested reader in the documentation.

The ᴿ meta-operator (or rather: interruptor)
suspends parsing of ⟨speciication⟩, hits whatever is
next to it with \romannumeral -`0 and then hopefully
resumes the parsing. That allows you to branch the
very speciication of a given GMOA, not only its ar-
guments. Including nesting of GMOAs. Does it in-
crease its expressive power? Probably not, but it
lets you write code in a more meta- way. Also in a
way much more obscure, yet shorter.

× is a shorthand for ᴿ\prg_replicate:nn; thus
it requires two pairs of braces to follow, the irst
containing a ⟨number speciication⟩ and the other
the things you wish to replicate. This way, instead
of

\⋮⋮ ... ↓↓↓↓↓↓↓↓ ...:

you can type

\⋮⋮ ... ×8↓ ...:

As you may have noticed, at this point I do rely
on the current implementation of \prg_replicate:nn,
both on its expandability and on the fact that so far
itǶs a macro with two undelimited arguments (i.e.,
the presence of braces is not obligatory in fact).

LetǶs now deal with the ⟨digit⟩s, that is, the
general permutations.

3.2.5 The general permutations, or the
⟨FSM⟩s without regrouping

The ⟨digit⟩s refer to subsequent arguments from the
input. However, the counting starts after the earlier
⟨FSoO⟩s are done and the preceding ⟨SAlos⟩ from
the current ⟨FSoO⟩.

Which means that we skip the arguments picked
and processed within earlier (possibly implicit) ɱ and
ɲ destinations and the ↓Ƕs independent of destina-
tion, and include the ones destined ξ, and all stand-
alone ⟨prep⟩s from the current destiny. Consider

\⋮⋮ ɱ Iii ξ o↓. 1343 :
__gme_foo:nnn {⟨1st arg.⟩}{⟨2nd arg.⟩}
{__gme_argˈB:N __gme_ըˈed:}% and then d.1

{⟨to be ↓-discarded⟩}
{⟨d.2-arg (discarded)⟩}{⟨d.3-arg⟩}{⟨d.4-arg⟩}

The text of the 3rd line gets hit by \expandafter.
The argument from the next line is discarded by

Grzegorz Murzynowski

TUGboat, Volume 36 (2015), No. 3 265

↓ (no matter that itǶs within a ξ /xana/ destina-
tion). As the . is seen, the ξ ⟨FSoO⟩ is inished, i.e.,
the \expandaftered argument is put back for further
processing. Which means it becomes the ǳdigit 1Ǵ
of the last ⟨FSoO⟩ (with implicit destination ɱ just
like the irst).

Three subsequent braces are picked according
to their speciications and since the digit 2 does not
occur in the ⟨FSoO⟩, the {⟨d.2-arg...⟩} brace is dis-
carded.

The result looks like:

__gme_foo:nnn {⟨1st arg.⟩}{⟨2nd arg.⟩}
{⟨one-lev.exp.of⟩__gme_argˈB:N __gme_ըˈed:}
{d.3-arg}{d.4-arg}{d.3-arg}

The processing of a ǳgeneral permutationǴ can
be described as two stages: (stage one) preparation
of the ǳslabǴ10 and then (stage two) picking num-
bered arguments from it.

Stage one consists of picking of proper number
of arguments (only undelimited so far, but one can
put some ξ ⟨FSoO⟩ before that contains some ǳspe-
cial pickersǴ, right?), (re)wrapping them in braces
and separating with indices which will be the argu-
ment delimiters for the ǳdigitǴ-picking macros.

In this role we have just ǳbareǴ digits and Latin
capital letters (hex digits so far), which is safe since
the (GMOA) argumentsǶ contents is ǳinvisibleǴ to
TEXǶs macro argument scanner, thanks to the braces.

For instance, a slab (or, closer to TEX digestive
tract metaphors, a ǳcrawǴ) for the 4-permutation in
the example above looks as follows:

⟨the FSM translated into \::\?-like macros⟩
\::: {} % container for the result

\::___⋮⋮_FSMᔥargs % start-delimiter of the ǳslabǴ

1{⟨d.1-arg⟩} 2{⟨d.2-arg⟩} 3{⟨d.3-arg⟩} 4{⟨d.4-
arg⟩}

\q__⋮⋮_FSMˈcrawᔥstop % end-delimiter of the ǳslabǴ
or ǳcrawǴ

{⟨tail of the (whole) ⟨speciication⟩⟩\:::} %
delimited just like in l3expan

{⟨the result of earlier part of ⟨speciication⟩⟩}%

The slab is functionally a one-dimensional array
(a vector). The accessor macros read all the stuf
until their proper index and the argument after that
index and add that argument to the result container,
and return all the stuf including the ǳoriginalǴ copy
of their argument back to the slab.

It looks very expensive; it would probably be
more eicient to deine index-named macros whose
contents would be the ⟨FSM⟩Ƕs arguments. Then

10 ǳLetǶs go to the lab ǶnǶ see whatǶs on the slabǴ, ǳThe
Rocky Horror Picture ShowǴ.

access to an element would cost only one \csname...
\endcsname plus one one-level expansion of it. (Plus
one initial \long\edef{\unexpanded{⟨arg.⟩}}11 each.)

But when implemented this way, it stays ex-
pandable. Why is that so important? IǶm not sure.
But itǶs certainly fun to be able to process quite com-
plex rearrangements with just one \romannumeral -`0!

But, one may ask, how does GMOA know how
many arguments should be taken for an ⟨FSM⟩?

As ⟨opt.cardinality⟩ is ⟨empty⟩ here, the largest
value of ⟨digit⟩ is assumed. Again, in an expand-
able way, via an initial assumption of 0 and com-
paring current ⟨digit⟩ with the largest-so-far, which
is passed as an argument to the next step of parsing-
expansion.

If the ⟨opt.cardinality⟩ value is given explicitly,
the comparisons are performed anyway and an error
raised at a digit exceeding the cardinality declared.

Each ⟨digit⟩ of an ⟨FSM⟩may be followed by
⟨prep.seq.⟩, in which case a respective sequence of
operations is applied to the resp. copy of the resp.
argument, as stated above.

To allow arguments beyond the 9th, the ց . . . ֆ
symbols are used with those ǳribbon-accentsǴ to dis-
tinguish the hexadecimal digits A–F from their Latin-
letter counterparts (in this role, Unicode points from
the PUA, U+E990–5 as provided in the Ubu Stereo
font, and also Elisp functions for inserting them in
my GNU Emacs), whereas the latter might become
⟨prep⟩s in the future (the letter D is already in use
by expl3, although not handled by GMOA). (Yet in-
ternally represented as hexadecimal digits A . . . F.)

The ǳlowercaseǴ hex digits ֈ . . . ֑,֐ . . . ֖ serve
as shorthands for 1i . . . ֆi, i.e., while 1 . . . ֆ render
the respective arguments without braces, ֈ . . . ֖ pass
their arguments (re)braced (which is why in the Ubu
Stereo font they have those tiny under- and over-
braces).

So, it seems we are handling a dynamic-length
data structure within purely expandable sub-TEX.
Are we really? Yes, to some degree. Namely, to
the largest number (of arguments) for which ǳslabǴ-
preparing and ǳslabǴ-referring macros are previously
deined.

3.2.6 The ⟨BDSM⟩Ƕs mystery explained
or: how a DFA can recognize a Dyck
language ;-)

A ⟨BDSM⟩, ǳBraced Dyck-language Sequence Ma-
nipulationǴ, is an enrichment of an ⟨FSM⟩ with (bal-
anced) braces (of cat.1 and cat.2).

11 The need for \long is clear. \edef{\unexpanded serves to
avoid ǳthe hash clashǴ.

GMOA: An extension to the l3expan package

266 TUGboat, Volume 36 (2015), No. 3

As stated above, any closing brace can be fol-
lowed by ⟨prep.seq.⟩ as if it was a single ⟨digit⟩, in
which case the sequence of operators is applied to
that entire brace as one argument.

The GMOA machinery can parse arbitrary (re)-
grouping speciications, limited of course by TEXǶs
capacity and other resources.

The translation is performed by (a part of) a
DFA, a deterministic inite automaton.That is, by a
construct whose well-known limitation is its inabil-
ity to recognize a language of properly paired and
arbitrarily nested parentheses. Or, as ǳnaturallyǴ
comes to a TEXnicianǶs mind, curly braces; a.k.a.
the Dyck language.12

Nonexistence of such a DFA is proven ordine

geometrico. A proof formalizes the intuition that a
(given) machine with only inite set of states, say n,
cannot properly ǳcountǴ the braces nested deeper
than n levels.

As stated above, each token of a GMOA ⟨specif-
ication⟩ is hit with \string so itǶs actually the open-
ing brace {12 (ǳotherǴ) taken into further processing
from every ⟨BDSM⟩ chunk.

But — the mystery is unveiled — although the
very irst and opening brace of a given ⟨BDSM⟩ is hit
with \string and thus turned to cat.12 ǳotherǴ, and
so are all the remaining ones, itǶs not done character
by character.

When the automaton meets an opening brace
which has already been ǳpetriiedǴ (if we are fans of
Platform 9¾) or ǳdenaturedǴ (if weǶd like to Br eak

Ba d), it uses this trick (էը is \expandafter, remem-
ber?):

էը{\ifnum 0=էը`էը}\fi

to put an unbalanced {1 back and then use TEXǶs
argument scanner to pick the entire ⟨BDSM⟩ chunk.

So, itǶs not the GMOA DFA which ǳrecognizes
a von Dyck languageǴ but TEX itself. We have not
subverted Computer Science!

But thatǶs just the beginning.
Next, an outermost {⟨FSM chunk⟩} like this is

\detokenized and a special delimiter appended to it.
Then, this part of ⟨speciication⟩ is parsed again,

char-by-char, with the opening brace starting a new
branch of (binary) concatenations, terminated with
a (unary) operation of bracing when the closing brace
is met, with the leafs being ⟨digit⟩s, and rewritten
to Reverse Polish Notation (RPN) (with a variant of
the Shunting Yard Algorithm, of course).

12 More precisely, the language recognized apparently ǳby
GMOAǶs DFAǴ is a Dyck languageǶs closure with respect to
insertions of /(⟨digit⟩⟨prep.seq.⟩)*/Ƕs and concatenations with
/(⟨SAlos⟩)*/Ƕs, where ǳ/ . . . /Ǵ denotes a regexp.

Once the special BDSMǶs delimiter is met, the
automaton goes to the state ǳYield what youǶve
Reverse-PolishedǴ which results in emptying another
kind of a ǳcrawǴ into the main result container.

3.3 An almost-comprehensive usage
example (yet not necessarily useful)

Assume (redeining core commands just for brevity):

\escapechar \c_minus_one
\def\w{wia} \def\v{\u} \def\t{tro} \def\u{\t}

\quark_new:N\q_pia

and set
էը \showtokens էը { _ᴿ_ᴿgo: % debug

show-commands

\⋮⋮ % <<<<< % My Precioussssssssssss

ξ h↓↓ % ξ as in ǳ͵αʹαǴ, ǵ[use] againǶ; h as in ǳhashǴ,
parameter delimited with #{

⁑I % ǳEat the cookie and have the cookie:Ǵ take
an argument from input, yield one copy to the
result and put another back at input.

. % the limit of ξǶs scope.

% a new ⟨destination⟩ begins; as the next char
is not a ⟨destination token⟩, an implicit ɱ,
ǳͺͼʹαγωγͥ ͷͶͲ΄Ǵ, ǵgather (as) manyǶ is assumed.

21 % take two (undel.) arguments from input and
put them in reversed order (outer braces of).

⁑I
ξ % an explicit ⟨destination⟩ token terminates the

scope of the previous one.

io
(ooo)% (parentheses) apply all three oǶs to the same

argument.

hii
`oo. % apply o to an arg. and leave for further

preprocessors, i.e., for the second o; equivalent
to (oo).

2345671 {։8֊}8֋8{֌8֍8֎}1

28ց871 ւ86871 79փ79փ79փ1.
11111111. % equivalent to ⁑I⁑I⁑I⁑I⁑I⁑I⁑II.

ɲ 1 4369785 2.
: % end of speciiers

% now the text(s) to be passed through GMOA:

ta metoda nazywa się {ѕ↓1}{і↓2}
{^^J} % 1
\w \v areo {te}{ra}

% 2 3 4 5 6
{ էը \use_none:nn _ᴿ_ᴿgo:\cs_to_str:N \q_pia}

% 7
- ! {tra} {ae} { }

% 8 9 ց ւ փ
{}
ԻԼ.AaBrsu

% 123456789
^^J^^J
}% end of text for \showtokens.

Grzegorz Murzynowski

TUGboat, Volume 36 (2015), No. 3 267

And the result is (typed out in the terminal):

\::_ ->
{\showtokens}
>
ta metoda nazywa się
wiatroareoterapia
{{wia}-{tro}}-{areo}-{{te}-{ra}-{pia}}
wia-tra-pia
ae-ra-pia
pia! pia! pia!

{ԻA.BursaԼ}

.
l.43 }

% end of text for \showtokens
?

And the ǳ\::-like macrosǴ are (\escapechar=0):

__⋮⋮_prepareˈɳՅξՆ:w % the letter ɳ for Greek ǳͻͶ
ͻͤͲͶ͹Ǵ, ǵthe End, the Final DestinyǶ :3

::h ::↓ ::↓ ::I⁑ __⋮⋮_ɳᔥyield:w
__⋮⋮_prepareˈɳՅɱՆ:w ⋮⋮_prepareˈFSM:w Fխ2 I

Fխ1 I
q__⋮⋮_FSMˈcrawᔥstart 2 % the digit of cardinality

::I⁑ __⋮⋮_ɳᔥyield:w
__⋮⋮_prepareˈɳՅξՆ:w ::i ::o ::o⁎ ::o⁎ ::o ::h

::i ::i ::o⁎ ::o __⋮⋮_ɳᔥyield:w
__⋮⋮_prepareˈɳՅɱՆ:w ⋮⋮_prepareˈFSM:w
Fխ2 I Fխ3 I Fխ4 I Fխ5 I Fխ6 I Fխ7

I Fխ1 I Bε Bխ2 Bwrapi Bͽ Bխ8
BwrapI Bͽ Bխ3 Bwrapi Bͽ ::i Fխ8
I Fխ4 i Fխ8 I Bε Bխ5 Bwrapi Bͽ
Bխ8 BwrapI Bͽ Bխ6 Bwrapi Bͽ
Bխ8 BwrapI Bͽ Bխ7 Bwrapi Bͽ ::i
Fխ1 I Fխ2 I Fխ8 I FխA I Fխ8 I
Fխ7 I Fխ1 I FխB I Fխ8 I Fխ6 I
Fխ8 I Fխ7 I Fխ1 I Fխ7 I Fխ9 I
FխC I Fխ7 I Fխ9 I FխC I Fխ7 I
Fխ9 I FխC I Fխ1 I

q__⋮⋮_FSMˈcrawᔥstart C % the digit of cardinality

__⋮⋮_ɳᔥyield:w
__⋮⋮_prepareˈɳՅɱՆ:w ⋮⋮_prepareˈFSM:w Fխ1 I

Fխ1 I Fխ1 I Fխ1 I Fխ1 I Fխ1 I
Fխ1 I Fխ1 I

q__⋮⋮_FSMˈcrawᔥstart 1 __⋮⋮_ɳᔥyield:w
__⋮⋮_prepareˈɳՅɲՆ:w ⋮⋮_prepareˈFSM:w Fխ1 I

Fխ4 I Fխ3 I Fխ6 I Fխ9 I Fխ7 I
Fխ8 I Fխ5 I Fխ2 I

q__⋮⋮_FSMˈcrawᔥstart 9 __⋮⋮_ɳᔥyield:w :::
{}% the main result container

ta metoda nazywa się ... % the input

3.4 Real-life uses of GMOA

The GMOA mechanism can be used anywhere that
l3expan can be, and with no need of ǳgenerating vari-
antsǴ, yet still with shortcuts for the typical cases,

as the ⟨speciication⟩ is irst tested for existence of
a predeined macro like l3expan \exp_args:....

Thanks to the p/H and h ⟨prep⟩s, we are able
to pick any number of unbraced tokens delimited
with an opening brace. That allows for, among
other things, creating ǳsemi-transparentǴ condition-
als that disappear in one branch or discarding such
h sequences in the other. Or just pick an entire left
side of an assignment with one h/H (again, courtesy
of the PARCAT project):

\⋮⋮ Hr :
\⚸_pdef:Npn
\PagesTotal
{ % sth. expandable to sth. hopefully useful

\cs_if_exist:NTF
\c__insˈ_pagesˈtotal_int % if a count register /

_int variable is deined—

{ \int_use:N \c__insˈ_pagesˈtotal_int }% . . .

then brrrring it on!—

{ _ᴿstop: \textbf{??} }% . . . otherwise expand to
ǳWe donǶt knowǴ.

}

The mutatis mutandis multiple deinitions in a
single piece of code were discussed in section 3.1.

Another interesting use has been noticed only
while preparing this paper for print:

The well-known trick,

\begingroup
\obeylines %
\firstofone{\endgroup %
\def
{⟨sth.useful⟩}%

}

(the line end following the last } is back of the usual
cat.5, i.e., thereǶs no line end at all ;-) yet the cat.13
ǳactiveǴ line end has been redeined to ⟨sth.useful⟩)
could not be easily applied to things other than cat-
codes. Such as locally recording a locally changed
font size and bringing that local record beyond the
scope of the changed font size.

Well, now it can be:

\smaller % set the font one-step smaller than current
\font ((gm)relsize)

\⋮⋮ Io :
{ \group_end:
\⚸_def∷ __⚸ˈfontˈsizeᔥsmaller: }

\f@size % the inner LATEX2ε macro bearing current
font size is expanded and wrapped in braces
before closing current group, i.e., before the font
size is reverted to its previous value.

The code above opens a group, then changes the font
size (locally), including redeinition of the LATEX 2ε

GMOA: An extension to the l3expan package

268 TUGboat, Volume 36 (2015), No. 3

macro \f@size that bears the size value in pt; then
the GMOA preprocessing expands that (locally) re-
deined macro to its contents, i.e., to the literal value
of current font size and (re)wraps it in braces; then
puts \group_end:... before the expanded and braced
literal font size value, thus making it robust to the
closing of group and making it the body of the macro
__⚸ˈfontˈsizeᔥsmaller:.

ItǶs true that that could be written in ǳpure
l3expanǴ, although with diferent bracing and more
\::Ƕs:

\group_begin:
\smaller
\::N \::N \::o \:::
\group_end:
\⚸_def∷ __⚸ˈfontˈsizeᔥsmaller:
{ \f@size }

But what if we also need another macro that
bears both the value of the smaller \f@size and of
the normal \baselineskip? (So that the \acro com-
mand changes only the size of letters and not the
line spacing.)

\group_begin:
\⋮⋮ ξ {12}o. % render current baseline skip, wrap it

in brace and return back to the input—

2ֈ % . . . and revert the order of braces, stripping
of the originally-second; these ⟨digits⟩ constitute
a separate ⟨FSM⟩ with the ⟨destination⟩ implicit
ɱ and refer to the rendered and braced value
of \baselineskip and the brace with the inner
GMOA.

:
\the\baselineskip
{
\smaller
\⋮⋮ ξ Io. I 12֋, 13{֋֌} : % the last ⟨digit⟩ ֌

refers to the value of (normal) \baselineskip
rendered by the outer GMOA.

{ \group_end:
\⚸_edef∷
__⚸ˈfontˈsizeᔥsmaller:
__⚸ˈfontˈsizesᔥsmaller:

}
\f@size

}

3.5 GMOA as a part of the gme3u8 package
and in statu viæ

We realize that GMOA, along with the whole gme3u8

macro package, with all its ǳfarǴ and even PUA

Unicode usage that require a tailored font and spe-
cial input methods (such as Elisp functions for GNU

Emacs), are not useful for anyone except the author
of this article.

However, we intend to make it usable for the
others as soon as we get some signals of interest.
Indeed, weǶll be grateful for any remarks concerning
GMOA, especially suggestions for development, and
programming in expl3 in general.

⋄ Grzegorz Murzynowski

PARCAT.eu

g.murzynowski֨parcat֩eu
natror֨sent֩at

Production notes

Karl Berry

As a reader might imagine, editing this article posed
unusual challenges. Grzegorz provided his Ubu Stereo

font (discussed in the text) to make it possible.
To process the article, we used X ELATEX, using file-

name lookups for the fonts: FreeSerif.otf, DejaVuSans.
ttf, Carlito-Regular.ttf, UbuStereo-Regular.ttf.
Avoiding system font lookups allows the article to be
processed on different systems without having to change
their font configurations, highly desirable for TUGboat.

For the actual editing, however, it was necessary to
make it work on GNU/Linux, so I edited my configuration
file ~/.fonts.conf to contain the line:

<dir>/some/directory</dir>

in the <fontconfig> block, where /some/directory is
the directory where I saved UbuStereo-Regular.ttf. To
my knowledge, all GNU/Linux systems use Fontconfig
(fontconfig.org) to find application fonts.

To make Fontconfig know about the new directory:

fc-cache -fv # | sort >/tmp/fc

The commented-out part redirects lots of possibly-but-
not-necessarily interesting output from the terminal.

This command shows the names of all the (scalable)
monospaced fonts available:

fc-list :spacing=mono:scalable=true family |sort

Sadly, Ubu Stereo does not show up here, as it is techni-
cally not monospaced (per the article). Eliminating the
:spacing=mono selector (i.e., listing all scalable fonts), it
does appear.

To use the font in a standard terminal:

xterm -fa ’Ubu Stereo’ -fs 19

The font size (-fs) is what worked best on my monitor.
Then I ran GNU Emacs (gnu.org/s/emacs) within

the xterm: emacs-nw. Running Emacs directly under X
had complications I didn’t need to track down. I used the
latest Emacs (24.5), compiled from the original source,
as Unicode support is one of the most active development
areas in Emacs.

I didn’t need Grzegorz’s Elisp code (referred to in
the article), since I could use the existing unitext.

A final lament: I find that xterm, emacs, and other
programs just drop characters from UTF-8-encoded source
when input and font do not match perfectly. What hap-
pened to “be liberal in what you accept”? Beware . . .

Grzegorz Murzynowski

TUGboat, Volume 36 (2015), No. 3 269

TheTreasure Chest

The following is a list of selected new packages posted
to CTAN (http://ctan.org) from March through
October 2015, with descriptions based on the an-
nouncements and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believe to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

biblio

bestpapers in biblio/bibtex/contrib

Maintain an author’s list of “best papers”.
bookdb in biblio/bibtex/contrib

BibTEX style for cataloging a home library.

fonts

academicons in fonts

Makes available 20 icons from the Academicons font.
cjk-gs-integrate in fonts/utilities

Tools to integrate CJK fonts into Ghostscript.
comicneue in fonts

Comic Neue support.
esrelation in fonts

Symbol set for describing relations per Byron Cook.
* imfellenglish in fonts

IM Fell English fonts, based on original Fell types.
old-arrows in fonts

CM old-style arrows with smaller arrowheads.
sourceserifpro in fonts

Source Serif Pro support.
svrsymbols in fonts

New font with symbols for use in physics.
* tempora in fonts

Greek and Cyrillic to accompany Times.
typicons in fonts

Makes available 336 icons from the Typicons font.

graphics

blochsphere in graphics/pgf/contrib

Pseudo-3D diagrams of Bloch spheres via PGF/TikZ.
karnaughmap in graphics/pgf/contrib

Karnaugh maps via PGF/TikZ.
mcf2graph in graphics/mcf2graph

Chemical structure diagrams with
Metafont/MetaPost.

roundrect in graphics/metapost/contrib/macros

Configurable rounded rectangles in MetaPost, with
optional text.

shapes in graphics/metapost/contrib/macros

Polygons, reentrant stars, and fractions in circles
with MetaPost.

xebaposter in graphics/pgf/contrib

Scientific posters for xepersian using PGF/TikZ.

info

greekinfo3 in info/greek

“Twenty-five years of Greek TEXing”: Overview of
systems, packages, and fonts for Greek TEX.

language

arabi-add in language/arabic

Support for hyperref and bookmark with Arabic
and Farsi.

macros/generic

termmenu in macros/generic

Support for terminal-based menus using expl3.

macros/latex/contrib

alertmessage in macros/latex/contrib

Display alert messages (informational, warning, etc.).
bewerbung in macros/latex/contrib

Typeset a job application.
br-lex in macros/latex/contrib

Typeset Brazilian legal texts.
bxpdfver in macros/latex/contrib

Specify output PDF version and compression level.
cfr-initials in macros/latex/contrib

Templates for use of initials package.
* checklistings in macros/latex/contrib

Pass verbatim contents through a compiler and
reincorporate the resulting output.

cleanthesis in macros/latex/contrib

Clean, simple thesis style.
cntperchap in macros/latex/contrib

Store counter values per chapter.
colorspace in macros/latex/contrib

PDF color spaces for spot colors and overprinting.
copyedit in macros/latex/contrib

Copyediting support for LATEX documents.
denisbdoc in macros/latex/contrib

Denis Bitouzé’s documentation support package.
diadia in macros/latex/contrib

Diabetes diary.
dynamicnumber in macros/latex/contrib

Dynamically typeset numbers and values.
easyreview in macros/latex/contrib

Support reviews and editorial tasks.
elements in macros/latex/contrib

Properties of chemical elements (article in this issue).

macros/latex/contrib/elements

270 TUGboat, Volume 36 (2015), No. 3

elocalloc in macros/latex/contrib

Local allocation macros (per etex.sty) for
LATEX 2015.

exercises in macros/latex/contrib

Typeset exercises and solutions, with automatic
addition of points.

fcavtex in macros/latex/contrib

Thesis class for FCAV/UNESP, Brazil.
fitbox in macros/latex/contrib

Fit graphics on a page.
fithesis in macros/latex/contrib

Thesis support for Masaryk University, Czech.
gradstudentresume in macros/latex/contrib

Template for graduate student resumes. (See article
in this issue.)

gzt in macros/latex/contrib

Support for La Gazette des Mathématiciens.
hang in macros/latex/contrib

Environments for hanging paragraphs and list items.
lstbayes in macros/latex/contrib

listings language driver for Bayesian modeling
lamguages: BUGS, JAGS, Stan.

medstarbeamer in macros/latex/contrib

Beamer template for MedStar health presentations.
multiaudience in macros/latex/contrib

Generate audience-specific versions of one document.
nevelok in macros/latex/contrib

Automatic definite articles for Hungarian.
nmbib in macros/latex/contrib

Successor to multibibliography for multiple
bibliographies with different sort orders.

numending in macros/latex/contrib

Morphological end of units for East Slavic languages.
pdfpagediff in macros/latex/contrib

Find differences between two PDF documents.
proofread in macros/latex/contrib

Commands for inserting annotations.
recipebook in macros/latex/contrib

Typeset 5.5′′ × 8′′ recipes for browsing or printing.
reledmac in macros/latex/contrib

Successor to eledmac/eledpar for critical editions.
rmathbr in macros/latex/contrib

Repetition of operator at a line break within an
inline equation.

screenplay-pkg in macros/latex/contrib

Package version of the screenplay class.
semproc in macros/latex/contrib

Seminar proceedings based on KOMA-Script.
shdoc in macros/latex/contrib

Float environment to document a terminal session.
tagpair in macros/latex/contrib

Word-by-word glosses, translations, and bibliographic
attributions.

uassign in macros/latex/contrib

Typeset class assignments.
ucharcat in macros/latex/contrib

Lua implementation of the (new in 2015) X ETEX
\Ucharcat primitive, for LuaTEX.

whuthesis in macros/latex/contrib

Thesis template for Wuhan Univ. undergraduates.
xellipsis in macros/latex/contrib

Configurable ellipses with predefined formats for
common styles.

xpiano in macros/latex/contrib

Extension of the piano package.

macros/latex/contrib/beamer-contrib

fibeamer in m/l/c/beamer-contrib

Beamer theme for thesis defense presentations at
Masaryk University, Czech.

macros/latex/contrib/biblatex-contrib

archaeologie in m/l/c/biblatex-contrib

Citation style for the German Archaeology Institute.
biblatex-opcit-booktitle in m/l/c/biblatex-contrib

Support for ‘op. cit.’ in the booktitle of a subentry.
biblatex-subseries in m/l/c/biblatex-contrib

Manage subseries with BibLATEX.

macros/luatex

cloze in macros/luatex/latex

Create cloze reading comprehension texts.
ctablestack in macros/luatex/generic

Category code table stacks.

macros/plain

gfnotation in macros/plain/contrib

Typeset Frege notation (see article in this issue).

macros/xetex

bidihl in macros/xetex/latex

Experimental bidi-aware text highlighting.
quran in macros/xetex/latex

Typeset the whole or a part of the Qur’an.

support

autosp in support

Preprocessor to generate note-spacing commands
for MusiXTEX scores.

* bibtexperllibs in support

BibTEX (pure) Perl libraries from CPAN.
comment_io in support

Python script to (un)comment lines.
* make4ht in support

Simplified build system (includes library) for tex4ht.
pdbf-toolkit in support

Toolkit for creating Janiform data documents.
pdfbook2 in support

Create booklets from PDF files, in Python.
srcredact in support

Support a master source with output for different
audiences. (See article in TUGboat 36:2.)

tex4ebook in support

Convert to ebook formats from LATEX, using tex4ht.

macros/latex/contrib/whuthesis

TUGboat, Volume 36 (2015), No. 3 271

An online glossary of typographic terms

by Janie Kliever

Boris Veytsman

While movable type appeared only several centuries
ago, lettering—whether using chisel, or pen, or
brush, or stylus, or . . . — is much older. The craft
of putting together beautiful letters to express a
thought is ancient. Its terminology developed over a
long time, and may confuse or intimidate a novice.
Take an individual letter, for example. Like a strange
animal, a letter can have an arm, a leg, a foot, an
eye, joints, a chin, an ear, a tail, a shoulder or even
a crotch. Like a plant, it can have a stem. Like a
bus system, it has terminals. And like a London bus,
it can be single-story or double-story.

The advent of computers led to a democratiza-
tion of typography: now anybody can create pages
without spending years learning calligraphy or con-
siderable money buying a letterpress. Thus some
amount of typographic literacy is needed for many
people, if only to be able to talk to a web designer
while setting up a personal or corporate site. While
there are many books explaining the basics of typog-
raphy to novices, a free online dictionary is always
welcome.

A glossary of typographic terms by Janie Kliever,
published online at https://designschool.canva.
com/blog/typography-terms/ by Canva, tries to
provide such dictionary. It has 34 short entries,
with a minimal amount of text. Instead, the author
uses tastefully designed drawings, like the ones on
Figures 1–4.

The dictionary is intended for novices. One of
the comments on the site says,

Oh my God. I’m obsessed with typography
but have no idea there are terms for it. I love
this.

Nevertheless, the field of typography may have sur-
prises for everybody, like gadzook meaning a part
of a ligature which does not belong to constituting
letters (Figure 4).

Janie Kliever has created a useful and beau-
tiful site, which deserves to be among typophiles’
bookmarks.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Figure 1: Slanted and italic

Figure 2: Swash

Figure 3: X-height

Figure 4: Ligature

Figures c© Janie Kliever via Canva.com.

272 TUGboat, Volume 36 (2015), No. 3

BachoTEX 2015 proceedings

The BachoTEX 2015 proceedings was published by
GUST, the Polish language TEX user group (gust.

org.pl). The conference web page is gust.org.pl/

bachotex/2015-en.

Ryszard Kubiak, Z LATEXa na Sphinksa —
doświadczenie konwersji [LATEX to Sphinx — a
conversion experience]; pp. 5–12

A thousand-page user manual for a large soft-
ware system was converted from LATEX to Sphinx.
The goal was to get the documentation in a nice
notation, from which good quality HTML and PDF

(via TEX) can be easily generated. It took several
months for the conversion to be completed. Why it
took so long, what was difficult and what was easy,
what lessons it taught — these and other topics are
presented in the paper.

Jean-Michel Hufflen, From MlBibTEX 1.3
to 1.4; pp. 13–17

Since last year, we implemented new features
from the present version of MlBibTEX (1.3), such
as inexact years for dates, and additional checking
for person and journal names. We summarize them
briefly and explain that the next step (version 1.4)
would cause important change because of dealing
with different encodings. We show how this upgrade
to a major release has been planned.

Jean-Michel Hufflen, How to accompany a
popular song? Some bases and tips; pp. 18–22

We show some basic tips about accompanying a
popular song. We present basic chords, and simple
ways to arrange them. These general tips could be
easily adapted to specific instruments such as the
piano, the guitar, and double-bass. Examples com-
ing from popular Polish music will be demonstrated
and be subjects of exercises. Attending this work-
shop only requires basic knowledge of music, that is,
reading notes on staves.

Paweł Łupkowski, Pakietomat — a
crowd-sourced LATEX package documentation
in Polish; pp. 23–25

This paper presents the project of crowd-sourced
LATEX package documentation in Polish. The basic
idea is presented, and certain specific solutions are
discussed. Also, selected statistics for the project
(such as the number of views, users and the most
popular packages) are presented.

Luigi Scarso, MFLUA 0.5; pp. 26–30
This paper introduces MFLUA 0.5, the first pub-

lic version of a new implementation of METAFONT

which embeds a Lua interpreter to avoid requiring

analysis of the log in order to extrapolate informa-
tion about the outlines and bitmaps of the glyphs.
Some examples of the new possibilities are shown.

Valentinas Kriaučiukas, Lukas Razinkovas
and Lolita Žamoitinaitė, Parsing LATEX for
LATEX; pp. 31–36

When you need a tool to find or change some-
thing in LATEX source, you need a LATEX parser. To
build such, you must know the syntax of LATEX com-
mands and deal somehow with author’s macros. Even
with all that knowledge, you need to decide when to
stop the improvement loop of TEX engine simulation.
In one of our projects, related to computer linguistics,
the participants wrote three different LATEX parsers
and used a fourth one. We will present our work
together with the current statistics. A LATEX parser
has several use cases of general interest, like spelling
or previewing, which we will briefly consider. The
main goal is to discuss components needed for a suc-
cessful parser project and how a TEX engine could
be involved in the parsing (native LATEX parser?).

Krzysztof Pszczoła, O projekcie progression

transformed into art [On the project ‘progression
transformed into art’]; pp. 37–41

The ‘progression transformed into art’ project is
about graphics which possess these three properties:

• they visualize certain progressions (until now I
have been using arithmetic and geometric pro-
gressions but the project is evolving),

• are generated with short and elegant MetaPost
code (that’s a working assumption, but as hap-
pens with assumptions, realizations may differ),

• are visually attractive (that’s again an assump-
tion; see above).

I will present the graphics created until now.
For some of them, I will also present how the results
arrived at their final forms.

The first graphics were created during 2014;
I intend to continue in this vein. The project’s
web page is being developed, currently at http:

//pro-trans.tumblr.com.
Additionally, the thoughts arising while working

on the project led me to an idea of teaching basics
of programming to elementary and secondary school
pupils; co-authors of such a schoolbook are welcome.

Paweł Łupkowski, Making your researcher’s life
easier: How to prepare transparent and dynamic
research reports with LATEX; pp. 42–48

In my talk I will present LATEX packages that
make preparing a research report (containing widely-
used data analyses) easier. We aim at research re-
ports that are transparent and dynamic. By trans-
parent I mean a report whose source code contains

TUGboat, Volume 36 (2015), No. 3 273

the information about the operations performed on
a raw data. Such a solution allows for easy grasping
the idea behind the analysis for author and reviewer
as well as for collaborators or students. As for the
dynamic aspect, the idea is that it should generate
the resulting values on a basis of an external raw
data file. Thanks to this, each time the raw data
change, the output values in the report will also
change automatically (thus freeing the author from
the worry of updating the values manually). I will
present the following packages: datatool, exceltex,
sweave and embedfile.

Grzegorz Murzynowski, GMOA, the ‘General
Manipulation Of Arguments’: an extension to
the l3expan package of the expl3 bundle and
language; pp. 49–56

[Printed in this issue of TUGboat.]

Hans Hagen, Exporting XML and ePub from
ConTEXt; pp. 57–60

[Printed in TUGboat 36:1.]

Jean-Michel Hufflen, Musical typography’s
dimensions; pp. 61–65

In comparison to reading a book — which is a lin-
ear process — reading a musical score may induce ad-
vanced processes, which influence the interpretation
of musical notations. In addition, getting inputs for
musical scores seems to be difficult to implement out-
side interactive systems, that is, WYSIWYG. Some
WYSIWYM systems, such as MusiXTEX or LilyPond,
have been put into action, but they are not accurate
for any kind of music. We explore these dimensions

of reading music and explain why musical typography
should implement many facets of musical processes.

Damien Thiriet, Od bépo do nozak: praca nad
polską ergonomiczną klawiaturą [From bépo to
nozak: working on a Polish ergonomic keyboard];
pp. 66–70

My discovery of the French ergonomic keyboard
bépo (http://www.bepo.fr) fundamentally changed
my approach to working with the computer. I not
only was encouraged to invest in better equipment
(a matrix keyboard), I also quickly started to work
on my own version of the layout for writing in the
French and Polish languages, the bépo-pl (http:

//bepo.fr/wiki/Utilisateur:Damien_thiriet).
Recently I’ve realized that it would be better to
write with a clean Polish language layout, which
I call nozak. In the presentation I will show that
layout and discuss the underlying assumptions.

[Received from Tomasz Przechlewski.]

Die TEXnische Komödie 4/2015

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (http://www.
dante.de). (Non-technical items are omitted.)

Peter Zimmermann, TEX im Barock. Bericht
vom 13. Bayerischen—TEX-Stammtisch am 1.
und 2. August 2015 in Eichstätt [TEX in the
baroque era. Report from the 13th Bavarian
TEX summit on August 1st and 2nd in Eichstätt];
pp. 14–17

The 13th Bavarian TEX summit, a joint meeting
of Erlangen/Nürnberg and Munich regulars, brought
18 participants to Eichstätt, a town dominated by
buildings from the baroque era.

Stephan Lukasczyk, Rückblick: DANTE-
Herbsttagung in Graz [DANTE fall meeting in
Graz]; pp. 18–23

The DANTE e.V. annual meeting took place in
Graz this year. From September 4th to 6th, TEX
enthusiasts from Austria and Germany met in the
capital of Steiermark to discuss all kinds of TEX-
related items.

Dominik Wagenführ, Mit LATEX zum E-Book
[From LATEX to ebook]; pp. 25–65

Ebook readers and other mobile devices gain
more and more popularity. Therefore, LATEX authors
also want to publish their works in EPUB and similar
formats. This article presents eight workflows to
create ebooks, following Christine Römer’s article on
this topic in DTK 1/2015.

Herbert Voß, Ausgabe einer LATEX-Datei im
Format EPUB [Creating an EPUB file from LATEX];
pp. 65–69

tex4ebook is a new package (http://ctan.org/
pkg/tex4ebook) that can create EPUB, a common
ebook format. Its capabilities are, however, lim-
ited to documents with a not-too-complicated LATEX
structure.

Rolf Niepraschk, Ausgabe der Paketliste von
TEX Live mit LuaTEX [Creating TEX Live’s
package list with LuaTEX]; pp. 70–72

In an earlier article we showed how with the
help of a Unix shell script a TEX file can be created
that shows all installed TEX Live packages. In this
article we show how the same can be achieved with
LuaTEX and some Lua code.

[Received from Herbert Voß.]

274 TUGboat, Volume 36 (2015), No. 3

c© Jim Benton

by permission of the artist

TUG

Institutional

Members

TUG institutional members

receive a small discount on

memberships, site-wide electronic

access, and other benefits:

http://tug.org/instmem.html

Thanks to all members for their

support!

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Google, San Francisco, California

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

River Valley Technologies,

Trivandrum, India

River Valley Technologies,

London, United Kingdom

RSGP Consulting Pvt. Ltd.,

Trivandrum, India

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TNQ, Chennai, India

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Cambridge,

Centre for Mathematical Sciences,

Cambridge, United Kingdom

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know to be
false, but we cannot check out any of the information; we
are transmitting it to you as it was given to us and do
not promise it is correct. Also, this is not an official
endorsement of the people listed here. We provide this list
to enable you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants at

http://tug.org/consultants.html. If you’d like to be
listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page

layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-

ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483

Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to

typeset mathematics well.
Not that picky? We also handle most of your typical

TEX and LATEX typesetting needs.
We have been typesetting in the commercial and

academic worlds since 1979.
Our team includes Masters-level computer scientists,

journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a

TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in: the typesetting of books,

manuscripts, articles, Word document conversions as well as
creating the customized packages to meet your needs.

Call or email to discuss your project or visit my website
for further details.

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual, linguistic, and

technical typesetting using most flavors of TEX, I have
typeset books for Pragmatic Programmers, Oxford

University Press, Routledge, and Kluwer, among others,

and have helped numerous authors turn rough manuscripts,

TUGboat, Volume 36 (2015), No. 3 275

some with dozens of languages, into beautiful camera-ready
copy. In addition, I’ve helped publishers write, maintain,
and streamline TEX-based publishing systems. I have an

MA in Linguistics from Harvard University and live in the
New York metro area.

Sievers, Martin

Im Alten Garten 5
54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with more than ten years of
typesetting experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents. From setting up
entire book projects to last-minute help, from creating
individual templates, packages and citation styles (BIBTEX,

biblatex) to typesetting your math, tables or graphics— just
contact me with information on your project.

Sofka, Michael

8 Providence St.

Albany, NY 12203

+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming, macro

writing, and typesetting books, articles, newsletters, and
theses in TEX and LATEX: Automated document conversion;
Programming in Perl, C, C++ and other languages; Writing
and customizing macro packages in TEX or LATEX;
Generating custom output in PDF, HTML and XML; Data
format conversion; Databases.

If you have a specialized TEX or LATEX need, or if you

are looking for the solution to your typographic problems,
contact me. I will be happy to discuss your project.

Veytsman, Boris

46871 Antioch Pl.

Sterling, VA 20164
+1 703 915-2406

Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and much
more. I have about eighteen years of experience in TEX and
three decades of experience in teaching & training. I have
authored several packages on CTAN, published papers in
TEX related journals, and conducted several workshops on

TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.thesiseditor.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience: edited
hundreds of ESL journal articles, economics and physics
textbooks, scholarly monographs, LATEX manuscripts for the
Physical Review; career as professional, published physicist.

2015

Oct 13 –
Dec 20

Ada Lovelace, Celebrating 200 years of
a computer visionary, Oxford, UK.
blogs.bodleian.ox.ac.uk/

adalovelace/events/

2016

Feb 25 – 27 Typography Day 2016,
“Typography and Education”,
Srishti School of Art, Design & Technology,
Bangalore, India. www.typoday.in

Mar 11 TUGboat 37:1, submission deadline.

Mar 30 –
Apr 1

DANTE Frühjahrstagung and

54th meeting, “TEX and Schools”,
Bergische Universität,
Wuppertal, Germany.
www.dante.de/events.html

Apr 29 –
May 3

BachoTEX2016:

24th BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex/2016

May 12 – 14 TYPO Berlin 2016, “Beyond
Design”, Berlin, Germany.
typotalks.com/berlin/

Jul 4 – 7 Book history workshop, École de
l’institut d’histoire du livre,
Lyon, France. ihl.enssib.fr

Jul 5 – 9 The 6th International Conference on
Typography and Visual Communication
(ICTVC), “Against lethe . . . ”,
Thessaloniki, Greece. www.ictvc.org

Jul 12 – 16 Digital Humanities 2016, Alliance of
Digital Humanities Organizations,
“Digital Identities: the Past and the
Future”, Kraków, Poland. dh2016.org

276 TUGboat, Volume 36 (2015), No. 3

Calendar

Jul 18 – 22 SHARP 2016, “The Generation and
Regeneration of Books”. Society for
the History of Authorship, Reading
& Publishing, “Languages of
the Book”/“Les langues du livre”.
Paris, France. www.sharpparis2016.com

TUG2016

Toronto, Canada.

Jul 23, 24 Optional pre-conference tours.

Jul 24 Evening reception and registration.

Jul 25 – 27 The 37th annual meeting of the
TEX Users Group.
Presentations covering the TEX world.
tug.org/tug2016

Jul 28 Typographic excursions and banquet.

Jul 29 Optional post-conference tour [potential].

Jul 24 – 28 SIGGRAPH 2015, “Render the Possibilities”,
Anaheim, California.
s2016.siggraph.org

Aug 1 – 5 Balisage: The Markup Conference,
Washington, DC. www.balisage.net

Sep 13 – 16 ACM Symposium on Document
Engineering, Vienna, Austria.
www.doceng2016.org

Sep 14 – 18 Association Typographique Internationale
(ATypI) annual conference, Warsaw,
Poland. www.atypi.org

Sep 16 The Updike Prize for Student Type
Design, application deadline, 5:00 p.m.
EST. www.provlib.org/updikeprize

Sep 25 –
Oct 1

10th International
ConTEXt Meeting, “Piece of Cake”,
Kalenberg, The Netherlands.
meeting.contextgarden.net/2016

Status as of 31 October 2015

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings. In-
terested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

Until the end of 2015, a TUG membership drive continues!

Invite friends, win prizes— info at tug.org/membership.

TUGBOAT Volume 36 (2015), No. 3

Introductory

180 Barbara Beeton / Editorial comments
• typography and TUGboat news

200 Taco Hoekwater / History of cookbooks
• from ancient Greece to allrecipes.com

188 Simon Laube / TEX in schools: Just Say Yes!
• benefits of using LATEX in schools, for students and teachers

214 Thomas Thurnherr / Introduction to list structures in LATEX
• basic list usage and packages for additional control

Intermediate

269 Karl Berry / The treasure chest
• new CTAN packages, March–October 2015

191 Charles Bigelow / About the DK versions of Lucida
• squarish capital ‘O’ for Don Knuth, in Lucida Grande Mono and Lucida Console

208 Peter Flynn / Typographers’ Inn
• usability of digital typography; hierarchy and balance; Emacs on Android

217 Anagha Kumar / gradstudentresume: A document class for graduate student CVs
• a new class for academic CVs, and practical tips on creating classes

210 LATEX Project Team / LATEX news, issue 22, January 2015
• new LATEX2ε bug-fix policy, updates to the kernel, hyperlinked documentation

212 LATEX Project Team / LATEX news, issue 23, October 2015
• enhanced support for LuaTEX, more floats and inserts, updated Unicode data, pre-release releases

190 Linus Romer / Smoky letters
• randomized but still elegant capital D for a copperplate ‘Danke’

Intermediate Plus

268 Karl Berry / Production notes
• editing Unicode text requiring a special font for PUA characters in Emacs

227 Clemens Niederberger / Chemistry in LATEX2ε—an overview of existing packages and possibilities
• overview of chemmacros, mhchem, chemformula, and more

220 Peter Wilson / Glisterings: Longest string; Marching along; A blank argument;
A centered table of contents

• even/odd arguments, list indexing, memoir toc typesetting, and more

234 Joseph Wright / Beamer overlays beyond the \visible
• generalized slide overlays for only, alert, and other operations

Advanced

257 Grzegorz Murzynowski / GMOA, the ‘General Manipulation Of Arguments’:
An extension to the l3expan package of the expl3 bundle and language

• a DFA-based generalization of expl3’s l3expan

237 Luigi Scarso / Two applications of SWIGLIB: GraphicsMagick and Ghostscript
• loading binary modules for performance and generality

243 Udo Wermuth / Typesetting the “Begriffsschrift” by Gottlob Frege in plain TEX
• handling the unusual mathematical notation invented by Frege

Contents of other TEX journals

272 EuroBachoTEX 2015; Die TEXnische Komödie 4/2015

Reports and notices

179 TUG Board / From the Board of Directors
• suspension of the TUG President

182 Norbert Preining / Adrian Frutiger, 1928–2015

184 Joachim Schrod / Thomas Koch, 1964–2014

185 Stefan Kottwitz / DANTE e.V. 2015 meeting reports

271 Boris Veytsman / An online glossary of typographic terms by Janie Kliever
• review of this pictorial glossary

274 Jim Benton / A summons

274 Institutional members

275 TEX consulting and production services

276 Calendar

