TUGboat, Volume 36 (2015), No. 3

GMOA, the ‘General Manipulation Of
Arguments’: An extension to the I13expan
package of the expl3 bundle and language

Grzegorz Murzynowski

Abstract

After an introduction on how and why we switched
to expl3, we present general assumptions and con-
ventions of this language. Then we take a more
detailed look at the I3expan package and the mar-
vellous improvements of code it facilitates.

Then we describe our generalization and exten-
sion to the machinery provided by I3expan. We call
it “GMOA”, “General Manipulation of Arguments”
and argue why it’s quite an earned description.

We point out that GMOA is based on a finite
automaton yet parses an arbitrary properly braced
(specification) which involves recognizing the Dyck
language, and we explain how does this not contra-
dict that fundamental theorem.

1 Switching to expl3 or: “Dr. Strangelove
or: How I Learned to Stop Worrying
and Love the Bomb”

1.1 The Proverb

There is a saying about one’s perception of human-
made things, especially technology: “Whatever you
know before 20, is just a part of Nature. What you
learn between 20 and 35, is a ‘novelty’ that you're
curious or even enthusiastic about. Whatever you
heard of after 35, you want to neither learn nor even
know, as it’s ‘Against Nature’ and an ‘Abomination
in the Eyes of the LORD’.”

Well, I understood I'd probably have to take
expl3 seriously when Will Robertson rewrote his font-
spec package in(to) it some six years ago. When I
was 36. Yes, exactly as the Proverb says.

Overcoming the Proverb took me four years. A
new project had to begin at my work to let me think
it’s a good time to learn and deploy “this abom-
inable nonsense”. ;-)

And voila, since only two months later all the
new TEX code of mine is shorter by some ten thou-
sand \expandafter’s, so much more elegant (I hope)
and noticeably less buggy.

As probably happens to all neophytes, the “Old
Things” (here: IATEX 2¢) look to me ugly and ob-
scure while code written in expl3, no matter how
unreadable to any “normal” TEX user or even a

Editor’s note: Originally published in the BachoTgX 2015
proceedings, pp. 49-56 (GUST). Revised by the author.

257

TgXnician, seems to me to be a visible instance of
utter readability and clarity!.

The “functions” have their signatures as part
of their names; the “variables” (data carriers) also
tell their scope and type by themselves; there’s no
fear of an open \if. .., moreover, no fear of unread-
ably nested conditions and \fi’s in wrong places, as
compound condition(als) might be written as Bool-
ean expressions and computed in just one expansion
of \romannumeral -0 (more later on this).

And so many more of such beauties (and odd-
ities) that at least an entire volume the size of this
TUGDboat issue might be written about them.

So—who and why should or shouldn’t be afraid
of expl3?

1.2 Who’s afraid of Virginia Woolf

As you probably have already noticed, I'm talking
about programming in TEX. Not about directly wus-
ing it for typesetting or writing texts.

The expl3 language is intended for TEX pro-
grammers (such as macro package writers), not for
the end users.

Therefore, if you're using IATEX for writing/
publishing things and when trouble strikes you do
not hack some code yourself but look for an existing
macro package to do the job, you have very little
reason to worry and can safely stop reading here. :)

So far, we’ve discussed the “-love” of the section
title. Now let’s get to the “Strange-”.

1.3 General assumptions and conventions

As the reference manual/documentation? is quite
comprehensive and instructive, let us only summa-
rize what we consider most important for under-
standing of further material.

First of all, a special \catcode regime. The
blank characters are assigned catcode 9 “ignored” —
which means there is no need for all those to indent
and choose line breaks in code yet avoid spurious
spaces in text and so on.

In expl3 you can use blanks as blanks, i.e., to
make the code clearer for reading. “The blanks”
include the line end (not by re\catcodeing it, but
in another, beautifully twisted way) so also blank
lines can be used just for organizing of code.

It took me some time to get used to this. E.g.,
under this catcode regime, with this code:

\ifnum 1=0
la

L cf. O.Wilde, “The Importance of Being Earnest”.
2 “The IATEX3 Interfaces”, http://mirrors.ctan.org/
macros/latex/contrib/13kernel/interface3.pdf

GMOA: An extension to the 13expan package

http://mirrors.ctan.org/macros/latex/contrib/l3kernel/interface3.pdf
http://mirrors.ctan.org/macros/latex/contrib/l3kernel/interface3.pdf

258

\else
0z
\fi

you get the condition satisfied and the conditional
expanded to a, the oppose of what what a wannabe-
TrXnician like myself is used to. (As the first end-
of-line doesn’t translate to a space (catcode 10) but
is just ignored, and the number read at the right
side of comparison is 01.

On the other hand, when you use expl3, you
are not supposed to use TEX primitives (with their
original names and syntax, at least).?

Other important re-catcodings are that _ and
: are made letters (cat.11) and used in control se-
quence names as significant or generic word joiners
and separators. Without going into too much detail
here, let’s give a couple of examples. First:

\1__gme_additional_letters_tl

means a local __ internal variable of type _t1, ‘to-
ken list’, of the “module” (macro package/document
class) gme.

And second:

\prg_replicate:nn

means an expl3 “function” of the module “prg”, tak-
ing two braced arguments (usually, like a TEX macro
with two undelimited parameters; this will be dis-
cussed later).

The obligatory : separates the expl3 function
name from its signature. The signature is a (finite,
possibly empty) sequence of the letters:

c,D,f,n,N,0,p, T,F,w, x.

Each letter specifies one argument, except for w,
which means “weird syntax” and D, which means
“DON’T!”, for TEX primitives and other commands
that should not be used outside the expl3 kernel.

It should be emphasized that the “functions” of
expl3 are not always macros, either in the sense of
taking undelimited arguments or in implementation.
One should rather think of them as a conceptual
construct, like IMTEX 2¢ “commands”.

3 This “hide your TEX and forget you ever used it” (cf.
Marquis’ de Sade’s “Speech to the women” at the beginning
of “120 Days of Sodom”) is probably the only thing I definitely
dislike in expl3 (as I did in IATEX 2¢).

It’s partially because of my intellectual inertia, I admit.
But also, and more importantly, because of my strong be-
lief that not many people (if anyone) could compete with
Prof. Knuth in the téyve (‘art/craft’) of computer program-
ming. Which implies that hardly anything written on top
of TEX could be, ’'m not saying: better than it; I’'m saying:
comparable with it. I believe that some of TEX’s “beauties-
oddities” will strike at some point anyway, and then looking
down to some lowest-level things is inevitable.

Grzegorz Murzynowski

TUGhboat, Volume 36 (2015), No. 3

It’s also explicitly stated in the Reference Doc-
umentation that the uppercase letters (“argument
types”) N and V require a single token without braces,
while all the others allow many tokens, in braces; for
those latter, wrapping even a single token in braces
is encouraged.

The p argument type is solely for macro pa-
rameter strings in the sense of The TEXbook’s chap-
ter 20 and therefore can neither contain braces nor
be wrapped with them. We’'ll see later how this
works with the I3expan conventions and (not quite)
with our extension to them.

Here is a variant of the previous function:

\prg_replicate:Vo
This requires the first argument to be an expl3 vari-
able and renders its value; the second argument is
hit with one \expandafter and only such prepro-
cessed arguments are given the “original” or “pri-
mary” \prg_replicate:nn function.

As we are talking “functions” in expl3, they “re-
turn” a “result”. We use these words in the sense of
expl3 henceforth; bear in mind that, translated to
our good old TEX jargon, they generally mean ‘what
at some point is left in TEX’s “mouth” after execu-
tion of this stuff’ or, most often, just ‘expand to’

Which brings us to part two, the pre-expansion
of arguments with the 13expan package.

2 The I13expan package: Pre-expansion of
macro arguments

Consider the not-so-unusual situation that before
applying a macro, the soon-to-be arguments should
be preprocessed (“tenderized”®). For instance, a
control sequence \arg@i@int, a \count register or
\numexpr, hit with \the; an {(arg.2)} subjected to
\edef; and {(condition){({arg.3T)}{(arg.3F)}} ex-
panded either to {(arg.3T)} or {(arg.3F)} but not
further, depending on (condition).
In IMTEX 2¢ we would write something like:

\newtoks \1@aux@args@toks
\newtoks \1@auxAQ@toks
\newtoks \1@auxBOtoks

\1@auxA@toks = {{(arg.3T)}}
\1l@auxB@toks={{(arg.3F)}}

\edef\aux@macro {%
\if (test) (condition)
\the\1l@auxA@toks
\else
\the\1@auxB@toks
\fi

4 cf. http://myfirstdictionary.blogspot.com/2011/03/
todays-word-is-shoo.html

http://myfirstdictionary.blogspot.com/2011/03/todays-word-is-shoo.html
http://myfirstdictionary.blogspot.com/2011/03/todays-word-is-shoo.html

TUGboat, Volume 36 (2015), No. 3

}

\1@aux@args@toks
\expandafter {\aux@macro } % "{(arg.3u)}"

\edef \aux@macro {({arg.2)}
\1l@aux@args@toks
\expandafter\expandafter\expandafter
{\expandafter \aux@macro
\the\l@aux@args@toks }

% "{(arg.2-ed)}{(arg.3u)}"

\expandafter \def \expandafter
\aux@macro \expandafter{’
\the \arg@i@int %, it can be a numexpr,
we don’t know the num. of tokens
}
\1l@aux@args@toks
\expandafter\expandafter\expandafter
{\expandafter \aux@macro
\the\l@aux@args@toks }
% "{(val.of arg.1)}{(arg.2-ed) }{(arg.3u)}"

% and, finally,

\expandafter __mod_foo:nnn
\the \1@aux@args@toks

As we can see, that’s rather hard core. Even
with the shorthands of our gmutils package(s), it
wouldn’t look much better.

Now, with I3expan, we can type

Ne:V N\ \e:f \:e:

__mod_foo:nnn

\arg_i_int {(arg.2)}

{\(test) :nTF{(condition)} {(arg.3T)}{(arg.3F)}}
Four lines instead of ca. 30.

Or, if we expect such pre-expansions more of-
ten, we can introduce a variant of the expl3 function
__mod_foo:nnn:

\cs_generate_variant:Nn
__mod_foo:nnn {Vxf}

__mod_foo:Vxf

\arg_i_int {(arg.2)}

{ __(condition) : TF {(arg.3T)}{(arg.3F)} }

By the way, if the nature of pre-processing al-

lows, all those \: :1z macros are expandable. How is
that done? Except for \: ::, all the \: :1’s are \long
3-parameter macros with #1 delimited with \:::, #2
undelimited and #3 depending on the nature of pre-
processing, usually undelimited. For instance, \::o
is defined like (TEX primitives are given here in their
original names, |3expan uses them in expl3 aliases;
please remember the blanks are cat.9 “ignored”):

\long\def
\::0#1 \::: #2#3

259

{ \expandafter __exp_arg_next:nnn
\expandafter {#3} {#1} {#2}

}

\long\def

\::f #1 \::: #2#3
{

\expandafter __exp_arg_next:nnn
\expandafter { \romannumeral - 0 #3 }
{#1} {#2}

}

\long\def
__exp_arg_next :nnn #1#2#3
{#2\::: {#3 {#1} } }

Which means that \::0 applies one \expandafter
to its #3 and then lets __exp_arg_next:nnn do the
rest.

Similarly, \: : £ applies \romannumeral in such
a way that any leading expandable tokens of #3 are
expanded until the first unexpandable token is seen.
Please note the -~0 preceding #3. Thanks to it, even
if #3 expands to decimal digit(s), \romannumeral is
satisfied with -~0 as a complete (number) specifica-
tion and, as this number is negative (the charcode
of 0 is 48), expands to (empty) (empty sequence of
tokens). Thus we get an “AFAP” (‘As Far As Possi-
ble’) expansion of #3 in just one \expandafter.

(Very few things move me as deeply as this
trick, if I may express my personal yet professional
feelings here.)

Some of the pre-processors which render the
value of a variable also use \romannumeral-"0, de-
pending on the variable type. The current imple-
mentation of the _tl type, for instance, as param-
eterless macros not, e.g., as \toks registers, allows
for rendering their value with just an \expandafter,
or even just the use of the variable name, in many
contexts.

What happens next: the __exp_arg_next:nnn
macro appends the pre-processed \::w’s #3 to the
end of (that \::wd) #2 (the result-so-far). All of
that finally looks like:

(#1) % remaining \:w's
N {(#2)[{](#3 pre-processed)[}]}
(further input)

The mysterious \::: delimiter control sequence is
\firstofone or, in its expl3 naming, \use:n; so
that when all the \::w’s do their job, it strips the
outer braces off the final result.

For those pre-processors which pass their re-
sult stripped of braces, there’s another version of
the “pass-the-result” macro:

\long\def

GMOA: An extension to the 13expan package

260

__exp_arg_next:Nnn #1#2#3
{#2\::: {#3#1}}

As you can clearly see, the difference in behaviour
of these macros seems to be reflected in lower-/up-
percase opposition of the letter(s) n vs. N.

However, both the Reference Documentation
and further explanations from the IATEX3 team dis-
courage such an interpretation, underlining the expl3
goal to allow (force) the user “not to rely on imple-
mentation” and focus on the requirements (in most
cases purely conventional): N “requiring” a single
and un-braced token, most often a control sequence,
and n “requiring” an arbitrary token(s) in braces, as
in the (balanced texty of The TEXbook.

However, if we really stick to the conventions
and don’t rely on implementation® (how is that pos-
sible for a TEX programmer, let alone a TEXnician?
i-)), everything seems to work just fine.

Which leads us to some remarks concerning the
pre-expansion of arguments and its generalization
to GMOA. (With tidying-up the “argument types”
with respect to it.)

3 GMOA, a ‘General Manipulation Of
Arguments’ or: a DFA that seemingly
recognizes the Dyck Language

Long story short, on top of the I13expan pre-expand-
ers we add arbitrary rearrangements and/or group-
ing of arguments. In a “one-char” syntactic man-
ner similar to the tabular specifications. And ex-
pandable (except for x and X). And with consistent
naming conventions, coherent with 13expan to some
degree.

And, last but not least, performed (at the stage
of translation of the specifiers sequence into \: :z-
like macros) by a DFA, a (deterministic) finite au-
tomaton. Which includes a Dyck Language recogni-
tion. Without falsifying the theorem that there does
not exist a DFA to do that.

5 There is a temptation of using some functions as if they
were (e)TEX primitives, like \hbox:n (as currently allowing
the \bgroup. ..\egroup syntax) or \tl_to_str:n as the sup-
posed expl3 alias for \detokenize. Just DON’T. Quoting
Joseph Wright’s email, .. .for example, where the team needs
to use the primitive behaviour of \detokenize [...], we use
the ‘raw’ name \etex_detokenize:D”.

I’'m not sure what a non-(I#TEX3 team) person should do in
this case, since the Reference Documentation reads: “The D
specifier means do not use. [...] Only the kernel team should
use anything with a D specifier!” We’re again at “Hide your
TEX and forget you've ever used it”? Over my dead body.

The gme3u8.sty package (of mine) provides aliases for the
(e)TEX primitives my way and anyone is invited to use them
(at their own risk, of course). (The list is not complete, I just
add what I needed so far.)

Grzegorz Murzynowski

TUGhboat, Volume 36 (2015), No. 3

Roadmap for this section. After an excuse for
using non-ASCII chars which need a special font, we
give a formal definition of the GMOA specifications.
Then we present an overview of the GMOA machin-
ery, its modus operandi, and some of its macros
alongside with their conceptual structure as a finite
automaton.

In the subsequent (subusubsequent? ;-)) (sub-
sub)sections we present groups of specifiers and re-
spective automaton states / stages of parsing:

o the (destination) tokens,
o the (prep-or-])s,

e the meta-operators,

o the digits / (FSM)s,

o the braces / (BDSM)s

We end this section with examples: one that is
almost-comprehensive though not-necessarily-useful
and a handful of “real-life” ones. All of them go
beyond what’s possible with [3expan only.

A disclaimer about (non-)ASCII chars and
the custom font Ubu Stereo. Before we pro-
ceed, a remark. The expl3 language keeps strictly to
ASCII. Any characters outside of ASCII that occur
in the next part of this paper, especially those from
the “distant far-aways” of the Unicode or even from
the Private Use Area (PUA henceforth), are entirely
my “fault and guilt”.

I use some letters looking similar to some non-
letter ASCII chars with the intention of making the
names even more self-explanatory, while simulta-
neously respecting the expl3 naming conventions.
Other characters are chosen for perfectly rational
reasons (e.g., §, the astrological symbol of the name
of my dearest dog, which I use as my “trademark” in
the expl3 module part of names). And, a some chars
FontForged by myself to depict TEX primitives and
other often-used things in one character each.

All are put together in one font named Ubu
Stereo. The font is based on Ubuntu Mono with
some characters copied from other libre fonts, espe-
cially DejaVu Sans and FreeSerif. I act with those
fonts as I please (PL: “Wedle mojego widzimisie”),
hence “Ubu” (cf. A. Jarry, “Ubu le Roi” &c.). “Ste-
reo”, because it’s not all monospaced, as some wide
characters are given double width for better distinc-
tion, such as —, and some combine to double width
in pairs in a kind of typographical rubato, with one
char half-width (declared as another escape char)
and the other one-and-a-half-width, to provide one-
char control sequences (I'm curious if they consti-
tute reasonable mnemonics to anyone but me):

79 \expandafter
7% \noexpand

TUGboat, Volume 36 (2015), No. 3

7% \unexpanded % e-TeX primitive
L ... 7k \csname ... \endcsname % stator(s) of
an electric motor; make the stuff between them
spin.
With that description, we switch the mono font
to Ubu Stereo from now on and get down to GMOA
at last.

3.1 Description by examples

To give an idea of GMOA, let us rewrite an example
from the previous section.

\i: I Vxr:

__mod_foo:nnn

\l__arg_i_int {{arg.2)}

{\<condition>:TF {{arg.3T)}{(arg.3F)} }
where \i: is the name of the main GMOA macro
(subject to alias on user’s request) and the subse-
quent letters are the specifiers of operations, “the
operators” for short. So far, nothing more than in
I3expan, as I stands for “Identity” and just preserves
__mod_foo:nnn until the rest of the arguments are
preprocessed, V and x act as (are translated to) \::V
\::x and r translates to (an alias of) \::f, i.e., does
the \romannumeral -0 trick.

But let’s have a look at some real-life use (cour-
tesy of the PARCAT project, parcat.eu):

\if 1z{4z3675} 13{433673}

\DeclareOption % 1
{oneside}{twoside} % 2,3
\PassOptionsToClass % 4
{report} % 5
\protected\def % 6
__1ins'_page'oddity'count: % 7
\c_one \c@page % 8,9

This code declares a INTEX 2 document class
options oneside and twoside that differ only in the
meaning of __ins'_page'oddity'count: and both
pass their names to the basic document class report.
T.e., \ii...: rearranges the code above into:

\DeclareOption {oneside}
{\PassOptionsToClass {oneside} {report}%
\protected \def __1ins'_page'oddity'count:
{\c_one }%
}
%
\DeclareOption {twoside}
{\PassOptionsToClass {twoside} {report}%
\protected \def __1ins'_page'oddity'count:
{\c@page }%
}
Some parts of the code have been replicated as many
times as needed, their order changed, some groups
of arguments were put into the same pairs of braces.

261

By writing all the mutatis mutandis text just
once with the “mutandis” not repeated, the code
is kept strictly parallel, i.e., change-robust, as any
change need be made in only one place.

On the other hand, using this machinery has
the obvious disadvantage that you have to learn the
mini-language of specifiers. Hopefully, this is an
acceptable expense. Another inconvenience is the
counting of the arguments, which might be quite
tricky, especially if there are mixed sequences of
stand-alone operators and (FSM)/(BDSM) parts in
a specification (discussed in the examples following
the formal definition).

I dare think of \ii as superior® to both the
[3expan low-level \::z macros and the machinery of
\cs_generate_variant:Nn in some aspects.

It provides much more general rearrangement
and pre-processing options than either of the latter.
It has much shorter syntax than the \::u macros;
moreover, it can also be used within the usual cat-
code regime (provided the very name is aliased prop-
erly), as the specifiers are parsed with the \strcmp
comparisons, which are independent of the catcodes.

Except for braces, which are discussed in the
section 3.2.6.

3.2 GMOA: Formal language definition

(GMOA) ::= \ii (specification) :
(specification) ::=
(destination) (FSoO) (optional .)
(specification)
(destination) ::= (empty)|§|¢|o
(optional .) ::= (empty) | .

(FSoO) “Finite Sequence of Operators” ::=
(empty) | (SAlos)(optional ;)(FSoO)
| (FSM)(optional ;)(FSoO)
(optional ;) ::= (empty) | ;
(SAlos) Stand-Alone’s ::= (preps’n’ls)
| (SAlos) ({prep.seq.))(SAlos)
| (SAlos) " (prep)(SAlos)
| (SAlos)«(prep)(SAlos)
| (SAlos)¥(prep)(SAlos)
| (SAlos)(meta-R)(SAlos)
(preps’n’]s) = (empty)
| (prep-or-|){preps’n’|s)
(prep-or-) ::= (prep)|!
(prep.seq.) ::= (empty) | (prep)(prep.seq.)

6 It’s infinitely easier to expand/develop something than
to invent it in the first place. [3expan does things I’ve not
even thought of in ten years of my TgXnician’s life. Or if
I did, it was: “Nah...it’s impossible; you just can’t hit the
2nd undelimited argument with \expandafter since you don’t
know how many tokens are there in the first one”.

GMOA: An extension to the 13expan package

parcat.eu

262
(prep) == c|¢|C|d|D|f|h|H|1|I|k|K|n|N
[ofofelo[p[PlalQ[r[R[s[S|T[F|v|V|x
| X
(meta-R) ::= R{arbitrary-meta-R)

| x(number specification)(meta-replicated)
(arbitrary-meta-R) ::= a(ny) TEX code that
R-expands to [consistent part of] a
(specification)
(number specification) ::= the
\prg_replicate:nn’s first argument
(meta-replicated) ::= the \prg_replicate:nn’s
second argument
(FSM) “Finite Sequence Manipulation” ::=
(opt.cardinality) (FSM w.card.par.)
(opt.cardinality) ::= (empty) | |(digit)|
(FSM w.card.par.) “FSM with cardinality
paradigm known” ::=
(FSM chunk)(optional ,)
(FSM w.card.par.)
(FSM chunk) ::= (digits with prep.seqs.)
| (BDSM)
(digits with prep.segs.) ::= (empty)
| (digit)(prep.seq.){digits with prep.seq.)
(digity == 1]2|3]4]|5|6|7]|8]9
|AlBIC|D[E[F|2]z|3|3|3|e|z|8|3]ale
lelalelz
(optional ,) ::= (empty) |,
(BDSM) “Braced Dyck-language Sequence
Manipulation” ::=
{(FSM chunk)}({prep.seq.)
The chars of a specification are hit with \string, one
by one, so each gets catcode 12 (other) unless it has
catcode 5, 9, 10, 14, or 15.
The only cat.1 and cat.2 characters allowed are
{ and } and they have to be balanced.
Blank chars, either in expl3 catcode regime (i.e.,
cat.9 “ignored”) or in the usual (cat.10) are skipped
and may be used at will to improve readability.

Let us now explain the semantics, i.e., “see what

this mouse trap really does”.”

3.2.1 Overview of the DFA

\ i is a macro with one parameter delimited with : 1
(catcode “letter”). Taking an entire (specification)
at once serves only for checking if there is a prede-
fined macro to handle the given case.

If no such shortcut is predefined, the code

L __i*_str“s"KN:w (specification) :{}
is executed, where I is just \csname and the next

control sequence is a GMOA first-stage (i) \string-
preceded (str) macro for the state (“s) named KN,

7 cf. William Tenn, “Errand Boy?”, in “The Seven Sexes”,
1968.

Grzegorz Murzynowski

TUGhboat, Volume 36 (2015), No. 3

‘Know Nothing’ Which is, as one can guess, the
initial state.

From there on the characters of (specification)
are hit with \string, picked one-by-one, tested, and
transitions performed accordingly, which TEXnically
amounts to putting further and further “telescopic”
\csname’s, i.e., the sequences of tokens that could
and should be transformed into a control sequence
at the very moment the matching \endcsname is met.

Only, the immediate predecessor of each such
\endcsname is ... \expandafter. And the token next
to \endcsname is ... another \csname:

\csname cs-name-1 \expandafter\endcsname%
\csname cs-name-2 ...

I think of this trick as of an (architectural) arch or
bridge; and I think of \csname...\endcsname as the
stator(s) of an electric motor, which make(s) the
stuff between them spin. Hence the PUA/Ubu signs
based on Japanese quotation marks:

il cs-name-1 7 cs-name-2 7k
Now, a GMOA

\ii €Io gIir :
is at some point translated into:

1 SRR G IR SR IR | G) | GRS) |
and turns into the \::w macros from right to left.

At the moment of submitting this paper for
printing, GMOAs DFA consists of 12 states with 64
transitions (and 11 (meta-R) interruptions).

The transitions are labeled not with particular
characters but with equivalence classes of: (prep)s,
(xmeta-operator)s, (destination) tokens, &c.

It’s probably not a significant savings of mem-
ory or other computational costs, but does result
in a great simplifying of the code. It also makes
the code more change- and development-robust; e.g.,
adding a new argument type, which is denoted with
a char of equivalence class (prep), does not require
any changes in the automaton.

3.2.2 The destination

Parsing of a (specification) starts from determining
of the “destination”, i.e., the way the result of the
next (FSoO) is yielded:

(empty) If no explicit destination token is given,
the usual “just once” is assumed, like 13expan’s
\::1/__exp_arg_next:nnn. This is equivalent to
the use of c.

8

¢ Greek letter small sigma final form, the open
variant, for “cuvaywyn mol” /synagoge poly/,

8 i.e., the first char met is none of ¢,o0,€.

TUGboat, Volume 36 (2015), No. 3

‘gather (as) many’ (with intended associations
with the correlation between social diversity and
open-mindedness of people). Therefore let us
call this “just once and multi”.

o stands for “ovvaywyn wovo” /synagoge mono/,
‘gather [as] one’, Greek letter small sigma mid-
dle form, the closed variant, to be associated
with enclosing of all the picked and pre-pro-
cessed arguments in one common resulting pair
of braces. (“Just once and as one”.)

€ for Greek “Eava”, ‘[use| again’: the result is put
back as input for further parts of specification,
after this (destination) is done (quite like rumi-
nants do). (“We’ll meet again”, as in the final
credits of “Dr. Strangelove or ...".)

[We skip the description of the “Grand Gather-
ing” post-meta (SAlos) ¥ and = as having originated
in the formative stage of the GMOA language and
most probably doomed for deletion. Basically, they
act like ¢ and §, only applying to “everything done
so far” and have notably less elegant syntax.]

3.2.3 The (prep-or-l)’s

If one understands (the beauty of) the I13expan pre-
processors, then the (prep)s are the easy part.” All
those letters either directly correspond to some expl3
“argument type” and the respective \: :z macro (and
are internally translated to it), or extrapolate their
idea, perhaps even towards a kind of a completeness
or full(er) symmetry.

They can be divided into two groups: “argu-
ment pre-processors” and “special pickers”, the lat-
ter being H,h,p,Q,q. They pick (scan) the arguments
delimited in special ways as described below, and
don’t do anything else to them. All the others, the
“argument pre-processors”, take undelimited argu-
ments (again in the sense of The TgXbook, chap-
ter 20) and submit them to various kinds of expan-
sion or “rendering”.

What needs to be emphasized is the expl3 con-
cept of “argument types”, although mostly consis-
tent with my idea of upper- and lowercase opera-
tors, uses the opposition of upper- and lowercase
with a different purpose. The original intent, ex-
pressed both in the Reference Documentation and in
the IATEX3 team members’ responses to my emails,
is that N and V require a single and unbraced token,
usually a control sequence, while all the others al-
low many tokens, in that case in braces (except the
p type for obvious reasons).

9 cf. “Devil’s Advocate”, Al Pacino as Satan talking salary
with Tom Cruise.

263

(And, not to forget that the T and F argument
types refer to the argument originally braced yet
returned without braces.)

This is, as far as I understand it, part of the
general goal of creating an abstract programming
language, not necessarily using TEX in the future.

My ideas are more moderate. I'd like just to
provide some easier ways to memorize and shortcut
some programmatic constructs in TgX, for a person
who is acquainted with TEX and with at least some
of its beauties-oddities. Therefore the GMOA mini-
language of one-char specifiers consistently (to the
maximum extent permitted by expl3) “thinks” of the
uppercase specifiers as referring to the resulting ar-
guments unbraced and their lowercase counterparts
as referring to the arguments braced, up to intro-
ducing “lowercase digits”, as we’ll see later.

So, let us see what the pre-processors do. The
ones homonymic with 13expan “argument types” are
put in [square brackets].

[c],¢,¢ The uppercase € is an alias for c, i.e., apply-
ing \csname...\endcsname before passing the ar-
gument on without braces. The lowercase ¢ does
the same, only passing the result on in braces.
What is this useful for? First, for the TEX prim-
itives that require a {(balanced text)}. Second,
for theoretically possible constructs like

cs name 1\expandafter\endcsname\csname cs
name 2 ...

3,0 (Icelandic, etc., letter eth/Eth) Hit the argu-
ment with \the. In the current implementation
of expl3, it’s almost equivalent to V for some
expl3 data types, namely: _int, _dim and _skip.

d is equivalent to V, and D — VI. v is equiv-
alent to xcd in stand-alone contexts or cd as
(prep.seq.) of an (FSM) or (BDSM).

However, due to the “Don’t rely on imple-
mentation” rule one should always use the v or
V specifier to render the value of an expl3 data
carrier. (Which is a bit more expensive than
the \the.)

h,H,[p] Pick the #{-delimited argument and return it
without braces (H, p) or wrapped in braces (h).

1,I Identity operation, braced or unbraced with re-
spect to the lettercase.

k,K \detokenize the argument.

[n],[N] No pre-processing. Equivalent to 1/I in the
current implementation of [3expan (described
separately as that implementation should not
be relied upon).

[0],[0] One level expansion with \expandafter. (As
currently implemented in [3expan.)

GMOA: An extension to the 13expan package

264

0,0 Cyrillic letter lowercase/uppercase binocular o.
Two-level expansion with \expandafter. Used
by the author for elegant (in his opinion) pre-
processing of macros that should be expanded
to their content and that content hit again, e.g.:

\def\number_of_page:{\the\c@page}

q,Q Pick the argument delimited with \q_stop.

[f],r,R Apply \romannumeral -'0 to the argument.
This causes the leading token(s) of that argu-
ment to be fully expanded until an unexpand-
able token is seen. So, it’s called f for the
“full” and not called so by myself for the “until
first unexpandable”. Here comes a point where
I prefer to refer to (some) knowledge of TEX,
namely, of the \romannumeral primitive.

s,S Hit the argument with \string. It’s worth em-
phasizing that the uppercase variant returns the
result without braces, which for a control se-
quence means at least two bare tokens (except
for \L).

[T],[F] Strictly parallel to the I3expan/expl3 homo-
nyms (functionally equivalent to our I but in-
tended to indicate the conditional branches).

[v],[v] Strictly parallel to the I3expan/expl3 homo-
nyms (rendering the value of a data carrier (an
expl3 variable or constant), given as a control
sequence for V or as the tokens of its name for
v). Related to § and b; see above.

[x],x Hit the argument with \edef. The lowercase
variant translates to the \::x macro in 13expan/
expl3 which, in its current implementation, re-
turns the result in braces. The uppercase vari-
ant returns the result without braces and is not
present in expl3.

The ¢ operator discards the respective argu-
ment. Therefore there is no need to use it in the
(FSM)s (including (BDSM)s), as there you just skip
a digit for that purpose.

When used as SAlos, the (prep-or-|)s refer to
and are applied to subsequent arguments from the
input.

When following a (digit), the (prep)s refer to
and are applied to the (digit)th argument from the
input, counting as explained later.

When following a BDSM, the (prep)s refer to
that BDSM as if it was a single argument taken from
the input.

Before we deal with the (FSM)s and (BDSM)s,
a word on the meta-operators as they apply to the
just-presented (prep)s, and other specifiers that con-
stitute categories (GMOA “char-classes”) by them-
selves.

Grzegorz Murzynowski

TUGDboat, Volume 36 (2015), No. 3

3.2.4 The meta-operators

The °, %, ¥ and (...) meta-operators, i.e., the op-
erators modifying actions of (prep)s, are intended
to allow applying multiple pre-processings to the
same argument without calling the (FSM) machin-
ery (which is much more expensive, as we'll see).
As they are redundant with respect to the general
power of GMOA, we leave the details for an inter-
ested reader in the documentation.

The R meta-operator (or rather: interruptor)
suspends parsing of (specification), hits whatever is
next to it with \romannumeral - '@ and then hopefully
resumes the parsing. That allows you to branch the
very specification of a given GMOA, not only its ar-
guments. Including nesting of GMOAs. Does it in-
crease its expressive power? Probably not, but it
lets you write code in a more meta- way. Also in a
way much more obscure, yet shorter.

x is a shorthand for R\prg_replicate:nn; thus
it requires two pairs of braces to follow, the first
containing a (number specification) and the other
the things you wish to replicate. This way, instead
of

L I 2 A AR A A

you can type

As you may have noticed, at this point I do rely
on the current implementation of \prg_replicate:nn,
both on its expandability and on the fact that so far
it’s a macro with two undelimited arguments (i.e.,
the presence of braces is not obligatory in fact).

Let’s now deal with the (digit)s, that is, the
general permutations.

3.2.5 The general permutations, or the
(FSM)s without regrouping

The (digit)s refer to subsequent arguments from the
input. However, the counting starts after the earlier
(FSoO)s are done and the preceding (SAlos) from
the current (FSoO).

Which means that we skip the arguments picked
and processed within earlier (possibly implicit) ¢ and
o destinations and the !’s independent of destina-
tion, and include the ones destined €, and all stand-
alone (prep)s from the current destiny. Consider

\ii gIii €&€ol. 1343:
__gme_foo:nnn {(Ist arg.)}{(2nd arg.)}
{__gme_arg'7B:N __gme_%"'ed:}% and then d.1

{(to be i-discarded)?}
{(d.2-arg (discarded))}{(d.3-arg)}{(d.4-arg)}

The text of the 3rd line gets hit by \expandafter.
The argument from the next line is discarded by

TUGboat, Volume 36 (2015), No. 3

! (no matter that it’s within a § /xana/ destina-
tion). As the . is seen, the § (FSoO) is finished, i.e.,
the \expandaftered argument is put back for further
processing. Which means it becomes the “digit 1”
of the last (FSoO) (with implicit destination ¢ just
like the first).

Three subsequent braces are picked according
to their specifications and since the digit 2 does not
occur in the (FSo0), the {(d.2-arg...)} brace is dis-
carded.

The result looks like:

__gme_foo:nnn {{1st arg.)}{(2nd arg.)}
{(one-lev.exp.of)__gme_arg'7B:N __gme_%''ed:}
{d.3-arg}{d.4-arg}{d.3-arg}

The processing of a “general permutation” can
be described as two stages: (stage one) preparation
of the “slab”'? and then (stage two) picking num-
bered arguments from it.

Stage one consists of picking of proper number
of arguments (only undelimited so far, but one can
put some § (FSoO) before that contains some “spe-
cial pickers”; right?), (re)wrapping them in braces
and separating with indices which will be the argu-
ment delimiters for the “digit”-picking macros.

In this role we have just “bare” digits and Latin
capital letters (hex digits so far), which is safe since
the (GMOA) arguments’ contents is “invisible” to

TEX’s macro argument scanner, thanks to the braces.

For instance, a slab (or, closer to TEX digestive
tract metaphors, a “craw”) for the 4-permutation in
the example above looks as follows:

(the FSM translated into \::\?-like macros)
\::: {} % container for the result

\::___ii _FSM*args % start-delimiter of the “slab”

1{(d.1-arg)} 2{(d.2-arg)} 3{(d.3-arg)} 4{(d.4-
arg)}

\q__ii FSM'craw”stop % end-delimiter of the “slab”
or “craw”

{(tail of the (whole) (specification))\:::} %

delimited just like in I3expan
{(the result of earlier part of (specification))}%

The slab is functionally a one-dimensional array
(a vector). The accessor macros read all the stuff
until their proper index and the argument after that
index and add that argument to the result container,
and return all the stuff including the “original” copy
of their argument back to the slab.

It looks very expensive; it would probably be
more efficient to define index-named macros whose
contents would be the (FSM)’s arguments. Then

10 «Let’s go to the lab 'n’ see what’s on the slab”, “The
Rocky Horror Picture Show”.

265

access to an element would cost only one \csname. ..
\endcsname plus one one-level expansion of it. (Plus
one initial \long\edef{\unexpanded{{arg.)}}'* each.)

But when implemented this way, it stays ex-
pandable. Why is that so important? I'm not sure.
But it’s certainly fun to be able to process quite com-
plex rearrangements with just one \romannumeral - 0!

But, one may ask, how does GMOA know how
many arguments should be taken for an (FSM)?

As (opt.cardinality) is (empty) here, the largest
value of (digit) is assumed. Again, in an expand-
able way, via an initial assumption of 0 and com-
paring current (digit) with the largest-so-far, which
is passed as an argument to the next step of parsing-
expansion.

If the (opt.cardinality) value is given explicitly,
the comparisons are performed anyway and an error
raised at a digit exceeding the cardinality declared.

Each (digit) of an (FSM)may be followed by
(prep.seq.), in which case a respective sequence of
operations is applied to the resp. copy of the resp.
argument, as stated above.

To allow arguments beyond the 9th, the A...F
symbols are used with those “ribbon-accents” to dis-
tinguish the hexadecimal digits A-F from their Latin-
letter counterparts (in this role, Unicode points from
the PUA, U+E990-5 as provided in the Ubu Stereo
font, and also Elisp functions for inserting them in
my GNU Emacs), whereas the latter might become
(prep)s in the future (the letter D is already in use
by expl3, although not handled by GMOA). (Yet in-
ternally represented as hexadecimal digits A...F.)

The “lowercase” hex digits z...3,a...% serve
as shorthands for 1i...Fi, i.e., while 1...F render
the respective arguments without braces, z...7 pass
their arguments (re)braced (which is why in the Ubu
Stereo font they have those tiny under- and over-
braces).

So, it seems we are handling a dynamic-length
data structure within purely expandable sub-TEX.
Are we really? Yes, to some degree. Namely, to
the largest number (of arguments) for which “slab”-
preparing and “slab”-referring macros are previously
defined.

3.2.6 The (BDSM)’s mystery explained
or: how a DFA can recognize a Dyck
language ;-)
A (BDSM), “Braced Dyck-language Sequence Ma-
nipulation”, is an enrichment of an (FSM) with (bal-
anced) braces (of cat.1 and cat.2).

11 The need for \long is clear. \edef{\unexpanded serves to
avoid “the hash clash”.

GMOA: An extension to the 13expan package

266

As stated above, any closing brace can be fol-
lowed by (prep.seq.) as if it was a single (digit), in
which case the sequence of operators is applied to
that entire brace as one argument.

The GMOA machinery can parse arbitrary (re)-
grouping specifications, limited of course by TEX’s
capacity and other resources.

The translation is performed by (a part of) a
DFA, a deterministic finite automaton.That is, by a
construct whose well-known limitation is its inabil-
ity to recognize a language of properly paired and
arbitrarily nested parentheses. Or, as “naturally”
comes to a TEpXnician’s mind, curly braces; a.k.a.
the Dyck language.'?

Nonexistence of such a DFA is proven ordine
geometrico. A proof formalizes the intuition that a
(given) machine with only finite set of states, say n,
cannot properly “count” the braces nested deeper
than n levels.

As stated above, each token of a GMOA (specif-
ication) is hit with \string so it’s actually the open-
ing brace {12 (“other”) taken into further processing
from every (BDSM) chunk.

But —the mystery is unveiled —although the
very first and opening brace of a given (BDSM) is hit
with \string and thus turned to cat.12 “other”, and
so are all the remaining ones, it’s not done character
by character.

When the automaton meets an opening brace
which has already been “petrified” (if we are fans of
Platform 9%) or “denatured” (if we’d like to [Br |eak
[Ba]d), it uses this trick (+# is \expandafter, remem-
ber?):

72 {\1fnum 0=r3" 733\ fi
to put an unbalanced {; back and then use TEX’s
argument scanner to pick the entire (BDSM) chunk.

So, it’s not the GMOA DFA which “recognizes
a von Dyck language” but TEX itself. We have not
subverted Computer Science!

But that’s just the beginning.

Next, an outermost {(FSM chunk)} like this is
\detokenized and a special delimiter appended to it.

Then, this part of (specification) is parsed again,
char-by-char, with the opening brace starting a new
branch of (binary) concatenations, terminated with
a (unary) operation of bracing when the closing brace
is met, with the leafs being (digit)s, and rewritten
to Reverse Polish Notation (RPN) (with a variant of
the Shunting Yard Algorithm, of course).

12 More precisely, the language recognized apparently “by
GMOA’s DFA” is a Dyck language’s closure with respect to
insertions of /((digit)(prep.seq.))*/’s and concatenations with
/((SAlos))*/’s, where “/.../” denotes a regexp.

Grzegorz Murzynowski

TUGhboat, Volume 36 (2015), No. 3

Once the special BDSM’s delimiter is met, the
automaton goes to the state “Yield what you've
Reverse-Polished” which results in emptying another
kind of a “craw” into the main result container.

3.3 An almost-comprehensive usage
example (yet not necessarily useful)

Assume (redefining core commands just for brevity):

\escapechar \c_minus_one
\def\w{wia} \def\v{\u} \def\t{tro} \def\u{\t}
\quark_new:N\q_pia
and set
7% \showtokens %' { _R_Rgo:

show-commands

% debug

\i{ % <<<<< % My Precioussssssssssss
§ hil % € asin “Eava”, ‘[use] again’; h as in “hash”,
parameter delimited with #{

£I % “Eat the cookie and have the cookie:” take
an argument from input, yield one copy to the
result and put another back at input.
% the limit of €’s scope.
% a new (destination) begins; as the next char

is not a (destination token), an implicit c,
”»” 3

“ouvaywyn mohd”, ‘gather (as) many’ is assumed.

21 % take two (undel.) arguments from input and
put them in reversed order (outer braces off).

i1

€ % an explicit (destination) token terminates the
scope of the previous one.

io

(000)% (parentheses) apply all three o’s to the same
argument.

hit

"00. % apply o to an arg. and leave for further
preprocessors, i.e., for the second o; equivalent
to (00).

2345671 {383}828{358¢87}1

287871 B86871 79T79TT9ICL.

11111111. % equivalent to FIFIFTFTETFIEII.

o 14369785 2.

: % end of specifiers

% now the text(s) to be passed through GMOA:

tau metodau nazywau sie {u-t1}{u—1i2}
{*MI} %1

\w \v areo {te}{ra}
%2 3 4 5 6
{ 7" \use_none:nn _R_Rgo:\cs_to_str:N \q_pia}
% 7
- 1 {tra} {ae} {u}
%89 A B T
{u}
[1.AaBrsu
% 123456789
I\I\J/\/\J

}% end of text for \showtokens.

TUGboat, Volume 36 (2015), No. 3

And the result is (typed out in the terminal):

\i:_ ->
{\showtokens}
>

ta metoda nazywa sie
wiatroareoterapia
{{wia}-{tro}}-{areo}-{{te}-{ra}-{pia}}
wia-tra-pia
ae-ra-pia
pia! pia! pia!

{[A.Bursal}

1.43}
% end of text for \showtokens
?
And the “\::e-like macros” are (\escapechar=0u):

_ E_prepare't{&}:w % the letter t for Greek “to0
t€hoc”, ‘the End, the Final Destiny’ :3

sehosel ool iIE i teyield:w

_EE_prepare't{q}:w ii_prepare'FSM:w "Fd#2 "I
“F#1 I

q__:i _FSM'craw”start 2 % the digit of cardinality

IF i teyield:w

_55_prepare't<£>:w ::1::0 1:0% 0% ::0 ::h
il ool tiox o __ii_tvyleld:w

_53_prepare't<q>:w ii_prepare'FSM:w

“F#2 T CF#3 I "F#4 "I CF#5 "I "F#6 "I TFH7
"I "F#1 "I "Be "B#2 "B"wrap”i "B» "B#8
"B'wrap”I "B> "B#3 "B'wrap”i "B ::1 "F#8
“I “F44 "1 "F48 "1 "Be "BE5 "B wrap™i “B>

“B#8 "B wrap”I "B> “B#6 "B"wrap”i "B»
“B#8 "B wrap”I "B> "B#7 "B"wrap”i "Ba ::1i
“F#1 I CF#2 "I CF#8 "I "F#A "I "F#8 I
F#7 T F#L T CF#B I CF#8 "I "Fd#6 I
“F#8 "I "F#7 "I "F#1 "I "F#7 "I "F#9 "I
“"F#C "I "F#7 T "F#9 "I "F#C "I "F#7 I
“F#9 "I "F#C "I "F#1 I
q__:i_FSM'craw”start C % the digit of cardinality
__i: tvyleld:w

SS_prepare't{c}:w ii prepare'FSM:w “"Fd#1 "I
“F#1 I CF#1 I CF#1 I CF#1 I R I
"FH1 T FH#1 I

q__ii FSM'craw”start 1 __:i t-yield:w

ES_prepare't{o}:w ii_prepare'FSM:w "Fd1 "I
“F#4 T CF#3 I CF#6 "I CF#9 I CF#7 I
“F#8 "I "F#5 "I "F#2 "I

q__ii FSM'craw”start 9 __ii t-yield:w :::
{}% the main result container
tau metodau nazywau sie ... % the input

3.4 Real-life uses of GMOA

The GMOA mechanism can be used anywhere that
I3expan can be, and with no need of “generating vari-
ants”, yet still with shortcuts for the typical cases,

267

as the (specification) is first tested for existence of
a predefined macro like 13expan \exp_args:....

Thanks to the p/H and h (prep)s, we are able
to pick any number of unbraced tokens delimited
with an opening brace. That allows for, among
other things, creating “semi-transparent” condition-
als that disappear in one branch or discarding such
h sequences in the other. Or just pick an entire left
side of an assignment with one h/H (again, courtesy
of the PARCAT project):

\ii Hr:
\¢_pdef:Npn
\PagesTotal
{ % sth. expandable to sth. hopefully useful
\cs_if_exist:NTF
\c__ins'_pages'total_int % if a count register /
_int variable is defined —
{ \int_use:N \c__ins'_pages'total_int }% ...
then brrrring it on! —

{ _Rstop: \textbf{??} }% ...
“We don’t know”.

otherwise expand to

The mutatis mutandis multiple definitions in a
single piece of code were discussed in section 3.1.

Another interesting use has been noticed only
while preparing this paper for print:
The well-known trick,
\begingroup
\obeylines %
\firstofone{\endgroup %
\def
{(sth.useful)}%
}

(the line end following the last } is back of the usual
cat.b, i.e., there’s no line end at all ;-) yet the cat.13
“active” line end has been redefined to (sth.useful))
could not be easily applied to things other than cat-
codes. Such as locally recording a locally changed
font size and bringing that local record beyond the
scope of the changed font size.
Well, now it can be:

\smaller % set the font one-step smaller than current
\font ((gm)relsize)
it Io:
{ \group_end:
\¢_def: __¢'font'size”smaller: }
\f@size % the inner IATEX 2¢ macro bearing current
font size is expanded and wrapped in braces

before closing current group, i.e., before the font
size is reverted to its previous value.

The code above opens a group, then changes the font
size (locally), including redefinition of the IATEX 2¢

GMOA: An extension to the 13expan package

268

macro \f@size that bears the size value in pt; then
the GMOA preprocessing expands that (locally) re-
defined macro to its contents, i.e., to the literal value
of current font size and (re)wraps it in braces; then
puts \group_end: ... before the expanded and braced
literal font size value, thus making it robust to the
closing of group and making it the body of the macro
__¢'font'size”smaller:.

It’s true that that could be written in “pure
[3expan”, although with different bracing and more
\::’s:

\group_begin:

\smaller

\i:N\::N\::o\:::

\group_end:

\¢_def: __¢'font'size“smaller:
{ \f@size }

But what if we also need another macro that
bears both the value of the smaller \f@size and of
the normal \baselineskip? (So that the \acro com-
mand changes only the size of letters and not the
line spacing.)

\group_begin:
\it € {12}o. % render current baseline skip, wrap it

in brace and return back to the input—

22 % ... and revert the order of braces, stripping
off the originally-second; these (digits) constitute
a separate (FSM) with the (destination) implicit
¢ and refer to the rendered and braced value
of \baselineskip and the brace with the inner

GMOA.
\the\baselineskip
{
\smaller
\if § Io. I 12z, 13{z3} : % the last (digit) 5

refers to the value of (normal) \baselineskip
rendered by the outer GMOA.

{ \group_end:
\¢_edef:
__¢'font'size”smaller:
__¢'font'sizes”smaller:
}
\f@size
}

3.5 GMOA as a part of the gme3u8 package
and in statu vie

We realize that GMOA, along with the whole gme3u8
macro package, with all its “far” and even PUA
Unicode usage that require a tailored font and spe-
cial input methods (such as Elisp functions for GNU
Emacs), are not useful for anyone except the author
of this article.

Grzegorz Murzynowski

TUGDboat, Volume 36 (2015), No. 3

However, we intend to make it usable for the
others as soon as we get some signals of interest.
Indeed, we'll be grateful for any remarks concerning
GMOA, especially suggestions for development, and
programming in expl3 in general.

¢ Grzegorz Murzynowski
PARCAT.eu
g.murzynowski:@parcatigeu
natrori@sentiiat

Production notes

Karl Berry

As a reader might imagine, editing this article posed
unusual challenges. Grzegorz provided his Ubu Stereo
font (discussed in the text) to make it possible.

To process the article, we used XqI4TEX, using file-
name lookups for the fonts: FreeSerif.otf, DejaVuSans.
ttf, Carlito-Regular.ttf, UbuStereo-Regular.ttf.
Avoiding system font lookups allows the article to be
processed on different systems without having to change
their font configurations, highly desirable for TUGboat.

For the actual editing, however, it was necessary to
make it work on GNU/Linux, so I edited my configuration
file ~/.fonts.conf to contain the line:

<dir>/some/directory</dir>

in the <fontconfig> block, where /some/directory is
the directory where I saved UbuStereo-Regular.ttf. To
my knowledge, all GNU/Linux systems use Fontconfig
(fontconfig.org) to find application fonts.

To make Fontconfig know about the new directory:

fc-cache -fv # | sort >/tmp/fc

The commented-out part redirects lots of possibly-but-
not-necessarily interesting output from the terminal.

This command shows the names of all the (scalable)
monospaced fonts available:

fc-list :spacing=mono:scalable=true family |sort

Sadly, Ubu Stereo does not show up here, as it is techni-
cally not monospaced (per the article). Eliminating the
:spacing=mono selector (i.e., listing all scalable fonts), it
does appear.

To use the font in a standard terminal:

xterm -fa ’Ubu Stereo’ -fs 19

The font size (-fs) is what worked best on my monitor.

Then I ran GNU Emacs (gnu.org/s/emacs) within
the xterm: emacs-nw. Running Emacs directly under X
had complications I didn’t need to track down. I used the
latest Emacs (24.5), compiled from the original source,
as Unicode support is one of the most active development
areas in Emacs.

I didn’t need Grzegorz’s Elisp code (referred to in
the article), since I could use the existing unitext.

A final lament: I find that xterm, emacs, and other
programs just drop characters from UTF-8-encoded source
when input and font do not match perfectly. What hap-
pened to “be liberal in what you accept”? Beware ...

	Switching to expl3 or: “Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb”
	The Proverb
	Who's afraid of Virginia Woolf
	General assumptions and conventions

	The l3expan package: Pre-expansion of macro arguments
	GMOA, a ‘General Manipulation Of Arguments’ or: a DFA that seemingly recognizes the Dyck Language
	Description by examples
	GMOA: Formal language definition
	Overview of the DFA
	The destination
	The <prep-or-downarrow>'s
	The meta-operators
	The general permutations, or the <FSM>s without regrouping
	The <BDSM>'s mystery explained or: how a DFA can recognize a Dyck language ;-)

	An almost-comprehensive usage example (yet not necessarily useful)
	Real-life uses of GMOA
	GMOA as a part of the gme3u8 package and in statu viæ

