
234 TUGboat, Volume 36 (2015), No. 3

Automating LATEX(3) testing

Joseph Wright and LATEX3 team

1 Introduction

Testing has always been an important part of the
work of the LATEX team. Over the last couple of years,
ideas first developed in the early 1990s have been used
to create a flexible testing tool, l3build (Mittelbach,
Robertson, and LATEX3 team, 2014; LATEX3 team,
2015). In an ideal world, every change would be
checked by a full run of the entire test suite. In
reality, that’s not always the case: mistakes happen.
What’s therefore needed is to automate testing every
time a change is made.

These concerns are not unique to the (LA)TEX
world, and thus it’s no surprise that a variety of auto-
mated code testing approaches are already available.
It can be done using a ‘real’ local machine, a private
virtual machine or, increasingly commonly, a hosted
solution. There are many companies now offering
automated remote testing on virtual machines, and
as this means a minimal amount of setup, it’s this
approach that the LATEX team have been exploring.

Automating testing is part of a wider concept
called ‘continuous integration’, often referred to as CI.
As with many ideas in code development, this tends
to attract a lot of acronyms and odd tool names: I’ll
try to keep those to a minimum here.

2 Setting up

For open source projects like LATEX3, many of the
providers of hosted services offer free accounts. LATEX
has chosen to use Travis-CI (http://travis-ci.
org), partly as it is well-known, partly as it is easy
to set up, and partly as it fits into other parts of our
setup (see below). Of course, there are many other
worthy choices.

The two key things any automated test sys-
tem has to know: where to find the code that is
changing and how to run the required tests. Travis-
CI integrates with GitHub (http://github.com),
one of the large number of websites offering host-
ing for version control using Git (Git team, 2015).
The team have had the GitHub site for some time
(http://github.com/latex3/latex3), so integrat-
ing with Travis-CI was easy.

Setting up the testing itself means telling Travis-
CI about the type of code being tested. This is done
using a plain text file, .travis.yml, which has to
be in the main directory of the code repository. For
common programming languages, such as C, Java or
Ruby, Travis-CI knows the normal testing setups and
likely only needs to be told the language involved.

For TEX, that’s not the case: we (I) need to give
the system more information. Moreover, the virtual
machine setup used by Travis-CI doesn’t have a TEX
system installed as standard. So there is a bit of
work to do, but luckily in a well-documented and
simple format.

Setting up the actual tests means pointing the
system at l3build, which can be done in two lines:

script:

- texlua build.lua check -H

This will run in the main directory of the code repos-
itory, and will run all of the current tests for LATEX3.
As the test is, ultimately, just pass/fail, I’ve told
l3build to halt immediately if any test fails (-H).

To get a TEX system installed, I need to run a
script, which will clearly depend on the nature of
the virtual machine. For Travis-CI, that’s currently
Ubuntu 12.10LTS, so I use a bash script. For the
test system, I need to make sure that script gets
run before our tests; this is what Travis-CI calls the
install step:

install:

- source ./support/texlive.sh

The script itself needs to run an automated
TEX (Live) installation. That has two parts: first
downloading and installing a minimal system, then
adding on extra packages that I need. (We’ll see
later why a small system is useful.) The script is
relatively straightforward:

Obtain TeX Live

wget http://mirror.ctan.org/systems/\

texlive/tlnet/install-tl-unx.tar.gz

tar -xzf install-tl-unx.tar.gz

cd install-tl-20*

Install a minimal system

./install-tl \

--profile=../support/texlive.profile

Add the TL system to the PATH

PATH=/tmp/texlive/bin/x86_64-linux:$PATH

export PATH

cd ..

Core requirements for the test system

tlmgr install babel babel-english \

latex latex-bin latex-fonts \

latexconfig xetex

tlmgr install --no-depends ptex uptex

The run of install-tl above uses a so-called
profile file to tell the TEX Live installer what to do.
That’s again quite short:

Joseph Wright and LATEX3 team

http://travis-ci.org
http://travis-ci.org
http://github.com
http://github.com/latex3/latex3

TUGboat, Volume 36 (2015), No. 3 235

Profile for minimal TeX Live installation

selected_scheme scheme-minimal

TEXDIR /tmp/texlive

TEXMFCONFIG ~/.texlive2015/texmf-config

TEXMFHOME ~/texmf

TEXMFLOCAL /tmp/texlive/texmf-local

TEXMFSYSCONFIG /tmp/texlive/texmf-config

TEXMFSYSVAR /tmp/texlive/texmf-var

TEXMFVAR ~/.texlive2015/texmf-var

option_doc 0

option_src 0

Here, we do not install the sources or documenta-
tion (clearly not needed for runtime testing) and the
installation location is non-standard: I don’t have
sudo on the virtual machine and the profile installa-
tion doesn’t (yet) support ~ (the home folder) in the
installation path.

You might wonder if I could have used apt-get

to add the Ubuntu managed TEX Live. That runs,
and means I wouldn’t need a script (.travis.yml
has an entry type for running apt-get). However,
it installs TEX Live 2009, which is too old to run
l3build. (There have been a lot of changes in LuaTEX
since then.) For the team tests, we always assume an
up-to-date and current TEX Live, so it makes sense
to have the same on the Travis-CI setup.

You might also wonder how I worked out exactly
what the minimal requirements were for the installa-
tion. That was a bit of work, but the idea was simple
enough: run the tests on a local virtual machine and
add packages one at a time until everything works!

3 Refining

Once the above was set up, Travis-CI started running
automated tests each time changes were made to the
GitHub version of the LATEX3 code. There were
of course a few teething issues: it turned out that
l3build was returning error level 0 (‘success’) even
when tests failed! That was soon fixed in our code: a
first demonstration of the use of automated testing.

With a virtual machine, each time tests are run
the machine is ‘reset’ to a known state. That meant
that each code change needed to do a fresh install of
TEX Live: one of the reasons for keeping the system
small. Ideally, I wanted to avoid the load on CTAN

if possible. To do that, we’ve added caching to our
.travis.yml file:

cache:

directories:

- /tmp/texlive

- $HOME/.texlive2015

This compresses the directories listed at the end of
each test run, then adds them to the ‘clean’ machine

at the start of the next run.
Caching gives us a way to make sure a TEX

system is available, but what about when the cache
has to be reset, when new packages are needed or
when updates are available? A bit of bash scripting
sorts all of that. First, the basic installation can be
wrapped up in a test looking for a TEX system:

See if there is a cached version of TL

PATH=/tmp/texlive/bin/x86_64-linux:$PATH

export PATH

if ! command -v texlua >/dev/null; then

Earlier script code

fi

We can then run the update process:

Keep no backups (makes cache smaller)

tlmgr option autobackup 0

Update the TL install

tlmgr update --self --all \

--no-auto-install

and finally add extra packages

tlmgr install \

adobemapping \

amsmath \

...

With this approach, the list of extra packages can
keep growing, and any new entries will get added
automatically. If the cache has to be cleared, an en-
tirely new TEX Live and all of the required packages
will be installed.

With the standard settings, Travis-CI emails the
person who made code changes that led to the tests
failing. For the LATEX3 source repository, we have a
mailing list for every commit, so it makes sense to
send those failure messages to the list too, which is
done like this:

notifications:

email:

recipients:

- latex3-commits@tug.org

on_success: change

on_failure: always

on_start: never

4 In use

Setting up all of the above took only a few days, and
much of that was working out how best to install
a TEX Live setup automatically and then to cache
it. The actual .travis.yml configuration took only
minutes to do.

Running the full test suite for LATEX3 currently
takes around 6 minutes on the virtual machine, de-
pending on whether the TEX Live system needs to be

Automating LATEX(3) testing

236 TUGboat, Volume 36 (2015), No. 3

Figure 1: Log output from Travis CI (abridged).

re-installed. That’s about the same time as it takes
on a MacBook Pro i7 (my own laptop). So checking
the code in almost real-time is certainly workable.

Most of the time the tests pass, and the web
page shows a simple report to this effect. When a

test fails, as well as the email sent, the web page
shows the failure. Notice that in both cases we get
the commit reference, which we can use to go straight
to the code changes on GitHub. There is also an
overview of changes over time, so you can quickly
get a feel for what broke and fix the system.

Sometimes of course you need more detail, and
for that the terminal log is visible (Figure 1). As you
can see, each phase of the process is separated out
so you can collapse parts that are not important: for
example, if the install phase is fine but there is a
problem with the tests. The log loads in real time
when a test is running, so you can monitor what’s
happening and if necessary kill a test, for example if
something seems to have hung.

That flexibility and speed means it’s been pos-
sible to add more tests, checking on how the core
LATEX code interacts with some contributed packages.

5 Conclusions

Setting up and running an automated test system
using a hosted virtual machine makes running tests
on every change easy. It shouldn’t be seen as an
alternative to running tests before changing code,
but it is another tool to exploit in keeping ahead of
the inevitable bugs.

References

Git team. http://git-scm.com, 2015.

LATEX3 team. “The l3build package”. Available on
CTAN: http://ctan.org/pkg/l3build, 2015.

Mittelbach, Frank, W. Robertson, and LATEX3
team. “l3build— A modern Lua test suite for
TEX programming”. TUGboat 35(3), 287–293,
2014. http://tug.org/TUGboat/tb35-3/
tb111mitt-l3build.pdf.

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2.co.uk

� LATEX3 team
www.latex-project.org

Joseph Wright and LATEX3 team

http://git-scm.com
http://ctan.org/pkg/l3build
http://tug.org/TUGboat/tb35-3/tb111mitt-l3build.pdf
http://tug.org/TUGboat/tb35-3/tb111mitt-l3build.pdf

	Introduction
	Setting up
	Refining
	In use
	Conclusions

