
22 TUGboat, Volume 37 (2016), No. 1

Glisterings: Assemblies; Table talk
Peter Wilson

It did a ghastly contrast bear
To those bright ringlets glistering fair.

Marmion, Sir Walter Scott

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Eric, or, Little by Little

Book title, Frederick W. Farrar

1 Assemblies
1.1 Adding to a macro
On occasions it is useful to be able to extend a pre-
existing macro. For instance, to assemble a list of
the names of the members of some organization, or
the reviewers of some article, and then print them.
In simple cases the LATEX kernel
\g@addto@macro{〈macro〉}{〈addition〉}
can be used for this.
\makeatletter
\newcommand*{\member}[1]{%

\@ifundefined{@members}{%
% a new list of members
% define it as the argument (member name)

\newcommand{\@members}{#1}}{%
% a list exists, add the argument to it

\g@addto@macro{\@members}{, #1}}}
\newcommand*{\showmembers}{%

\ignorespaces\@members}
\newcommand*{\themembers}{\showmembers

\let\@members\relax}
\makeatother

The macro \member{〈name〉} can be used several
times to add 〈name〉 to the \@members macro. The
macro \themembers can then be called to print the
contents of \@members and clear \@members so a new
list may be started. If you want to print the list more
than once then use \showmembers which prints, but
does not clear, the list.
\member{Fred} \member{Joe}
\member{Susan} \member{Faye}

\themembers ⇒ Fred, Joe, Susan, Faye

For more complex additions, for instance when
the macro to be extended takes arguments, then the
patchcmd package [4] could be the answer.

Once having created a list of members it might
have to be changed because one or more members

have left. This is more complicated and I present it
only as an example of what could be done.

The \deletemember{〈name〉} will go over the
list of members, creating a new temporary working
list with the exception of the 〈name〉 member, then
replace the original list with the working one.

\makeatletter
\let\xpf\expandafter% just a shorthand
\newcommand*{\deletemember}[1]{%

\let\@tempmembers\relax
\def\@dm@num{1}%
\@for\member@:=\@members\do{%

\ifnum\@dm@num<2\relax
\def\t@mp@b{#1}% initial entry
\ifx\member@\t@mp@b%

\def\@dm@num{0}%
\else

\def\t@mp@b{\space #1}% later entries
\ifx\member@\t@mp@b%

\def\@dm@num{0}%
\fi

\fi
\fi
\ifnum\@dm@num=0\relax

\def\@dm@num{2}%
\else

\xpf\xpf\xpf\transfer\xpf{\member@}%
\fi}%

\let\@members\@tempmembers}
\makeatother

The coding of \deletemember is not straightfor-
ward. The LATEX kernel’s \@for construct is used to
loop over the comma-separated entries in \@members,
putting, in turn, each entry into the \member@ macro.
Due to the way that \@members is constructed, the
name of the initial entry is recovered as name, while
a later entry is recovered as ␣name; hence the two
tests for the argument 〈name〉 against the recovered
\member@ name.

The \@dm@num macro is used to track the state
of the process. At the start it is set to 1. If it is less
than 2, attempts are made to match the argument
with the current list name and if a match is found
then \@dm@num is set to 0. After the argument check,
if the argument is matched (\@dm@num = 0) then
\@dm@num is reset to 2, otherwise the current member
name is added to the working list. This all means
that once the list name matches the argument then
no further attempts at matching are needed or done,
and the remaining original members are simply added
to the working list. At the end the original list is set
to the temporary working list.

The tricky part is that the current contents of
\member@, not the macro itself, should be added

Peter Wilson

TUGboat, Volume 37 (2016), No. 1 23

to the working list.1 The bunch of \expandafters
around the call to \transfer expands \member@ to
its definition before it gets handed over as the argu-
ment to \transfer.

The macro \transfer{〈name〉} adds 〈name〉
to the macro \@tempmembers containing a list of
comma separated names. It has the same general
form as the earlier \member macro.
\makeatletter
\newcommand*{\transfer}[1]{%

\@ifundefined{@tempmembers}{%
\newcommand*{\@tempmembers}{#1}%

}{%
\g@addto@macro{\@tempmembers}{,#1}%

}}
\makeatother

Here are some examples of adding and deleting
members to and from the original member list above.

\member{Alice} \member{Bob} \member{Claire}
\member{David} \member{Erica}

\showmembers ⇒ Fred, Joe, Susan, Faye, Alice,
Bob, Claire, David, Erica
\deletemember{David}\showmembers ⇒ Fred,
Joe, Susan, Faye, Alice, Bob, Claire, Erica
\deletemember{Fred}\showmembers ⇒ Joe,
Susan, Faye, Alice, Bob, Claire, Erica
\member{Xerxes} \member{Zeno}

\showmembers ⇒ Joe, Susan, Faye, Alice, Bob,
Claire, Erica, Xerxes, Zeno
\deletemember{Miriam}\showmembers ⇒ Joe,
Susan, Faye, Alice, Bob, Claire, Erica, Xerxes,
Zeno

1.2 Piecing a paragraph
Ron Aaron wanted a different kind of assembly. He
wrote [1]:
What I wish to do is accumulate text into a paragraph
‘as I go’. My simple approach is to allocate a box,
and then unbox and add the text. But this doesn’t
work as I intend:
\newbox\textbox
\def\addbox#1{%
\setbox\textbox\vbox{
\unvbox\textbox#1}}

\addbox{Hello}
\addbox{there!}
\box\textbox
What I get is each appended bit of text in a separate
line. I’ve tried to ‘\unskip’ and ‘\unkern’ etc. after

1 If the macro is added then the list will consist of nothing
but a series of \member@, thus all expanding to the identical
name (the current definition of \member@ when the list is
printed).

the \unvbox but whatever I do I get a list of lines
. . .

Trying out Ron’s example the result is:

Hellothere!

The squashed vertical spacing between the lines is
real, not an artifact of this article.

In responding, Philip Taylor [5], having said
that using a \vbox would be difficult, then gave two
suggestions; either use an \hbox directly or a token-
list register. His \hbox solution (and my example)
is:
\newbox\textbox
\def\addbox #1{%
\setbox \textbox = \hbox
\bgroup
\unhbox \textbox #1%

\egroup}
\addbox{Hello}
\addbox{ World!}
\addbox{ Now isn’t that a rather

common saying?}
\unhbox\textbox

with the result:

Hello World! Now isn’t that a rather common
saying?

At various points after this I have used code like
\addbox{ (n) text}
as an example of assembling a paragraph piece by
piece and at the end showing the result via:
\unhbox\textbox

\addbox{(1) Start of a paragraph.}

Philip’s second solution uses a token register:
\newtoks\texttoks
\def\addtoks #1{%
\texttoks =
\expandafter {\the \texttoks #1}}

\addtoks {Goodbye}
\addtoks { \emph{vain} world. Ah, the

weariness in that statement
does one no good.}

\the \texttoks

and the example produces:

Goodbye vain world. Ah, the weariness in that
statement does one no good.

\addbox{ (2) After an interruption
add more.}

Note that with both of Philip’s solutions you
have to explicitly incorporate spaces where you want

Glisterings: Assemblies; Table talk

24 TUGboat, Volume 37 (2016), No. 1

them to occur in the assembled paragraph. It seemed,
though, that Ron really wanted to use a \vbox but
I have neither seen nor been able to come up with
satisfactory code.
\addbox{ (3) This is the end

of the piecewise
paragraph.}

\unhbox\textbox
Now print the piecewise paragraph giving:

(1) Start of a paragraph. (2) After an interrup-
tion add more. (3) This is the end of the piecewise
paragraph.

Beneath those rugged elms, that yew-tree’s
shade,
Where heaves the turf in many a
mouldering heap,
Each in his narrow cell for ever laid,
The rude forefathers of the hamlet sleep.

Elegy Written in a Country
Churchyard, Thomas Gray

2 Table talk
Arbo [2] wanted a tabular layout like the one shown
in Figure 1 and tried using code like this to produce
it.
\begin{tabular}{r|c|l}
\hline
First & Second & Third \\
Text &

\multicolumn{1}{c|c|c|c|}%
{C 1 & C 2 & C 3 & C 4}

& More text \\
Words &

\multicolumn{1}{c|c|c}%
{C 5 & C 6 & C 7}

& Text \\
Title &

\multicolumn{1}{c|c}%
{C 8 & C 9}

& Some text \\
\hline
\end{tabular}

If you try it you will find, like Arbo, that it
doesn’t work, resulting in a string of error messages
beginning with:

First Second Third
Text C 1 C 2 C 3 C 4 More text

Words C 5 C 6 C 7 text
Title C 8 C 9 Some text

Figure 1: Desired tabular layout

! Missing } inserted.
<inserted text>

}
l.6945 {C 1 & C 2 & C 3 & C 4}

The problem is that \multicolumn merges mul-
tiple columns into one whereas the requirement here
was to split one column into several.

Donald Arseneau [3] responded that ‘They don’t
look aligned at all, so don’t call them columns’, and
provided code for an \addcell macro. Arbo modi-
fied it very slightly to center the \vlines, with the
final version as follows:
\newcommand{\addcell}{\unskip\hfill

\hspace\tabcolsep\vline\hspace\tabcolsep
\hfill % added by Arbo
\ignorespaces}

Using this, the tabular in Figure 1 is created by:
\begin{tabular}{|r|c|l|}\hline
First & Second & Third \\
Text & C 1

\addcell C 2 \addcell C 3 \addcell C 4
& More text \\

Words & C 5
\addcell C 6 \addcell C 7

& text \\
Title & C 8 \addcell C 9 & Some text \\
\hline
\end{tabular}

References
[1] Ron Aaron. How to append text to a paragraph

(in an existing vbox)? Post to xetex mailing
list, 16 July 2010.

[2] Arbo. How to produce multiple columns
within a multicolumn. Post to comp.text.tex
newsgroup, 2 November 2010.

[3] Donald Arseneau. Re: How to produce
multiple columns within a multicolumn. Post to
comp.text.tex newsgroup, 2 November 2010.

[4] Michael J. Downes. The patchcmd package,
2000. http://ctan.org/pkg/patchcmd.

[5] Philip Taylor. Re: How to append text to a
paragraph (in an existing vbox)? Post to xetex
mailing list, 16 July 2010.

� Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Peter Wilson

