
TUGboat, Volume 37 (2016), No. 1 53

LuaTEX 0.90 backend changes for PDF

and more

Hans Hagen

Abstract

LuaTEX 0.90 brings a sweeping reorganization of the
backend, especially PDF-related features. Many fun-
damental primitives, both commands and variables,
have been renamed and generalized. Some primitives
have been removed from the TEX interface, but can
be made available through Lua. Internally, some uses
of whatsits have been converted to regular nodes.

1 Introduction

The original design of TEX has a clear separation
between the frontend and backend code. In principle,
shipping out a page boils down to traversing the to-
be-shipped-out box and translating the glyph, rule,
glue, kern and list nodes into positioning just glyphs
and rules on a canvas. The DVI backend is therefore
relatively simple, as the DVI output format delegates
to other programs the details of font inclusion and
such into the final format; it just describes the pages.

Because we eventually want color and images
as well, there is a mechanism to pass additional
information to post-processing programs. One can
insert \specials with directives like insert image

named foo.jpg. The frontend as well as the backend
are not concerned with what goes into a special; the
DVI post-processor of course is.

The PDF backend, on the other hand, is more
complex as it immediately produces the final type-
set result and, as such, offers possibilities to insert
verbatim code (\pdfliteral), images (\pdfximage
cum suis), annotations, destinations, threads and all
kinds of objects, reuse typeset content (\pdfxform
cum suis); in the end, there are all kinds of \pdf...
commands. The way these were implemented in Lua-
TEX prior to 0.82 violates the separation between
frontend and backend, an inheritance from pdfTEX.
Additional features such as protrusion and expansion
add to that entanglement. However, because PDF is
an evolving standard, occasionally we need to adapt
the related code. A separation of code makes sure
that the frontend can become stable (and hopefully
frozen) at some point.1

In LuaTEX we had already started making this
separation of specialized code, such as a cleaner im-
plementation of font expansion, but all these \pdf...

Author’s note: Thanks to Alan Braslau and Karl Berry for
text corrections.

1 In practice nowadays, the backend code changes little,
because the PDF produced by LuaTEX is rather simple and is
easily adapted to the changing standard.

commands were still pervasive, leading to fuzzy de-
pendencies, checks for backend modes, etc. so a log-
ical step was to straighten all this out. That way
we give LuaTEX a cleaner core constructed from tra-
ditional TEX, extended with ε-TEX, Aleph/Omega,
and LuaTEX functionality.

2 Extensions

A first step, then, was to transform generic (i.e. inde-
pendent from the backend) functionality which was
still (sort of) bound to Aleph and pdfTEX, into core
functionality. A second step was to reorganize the
backend specific PDF code, i.e. move it out of the
core and into the group of extension commands. This
extension group is somewhat special and originates
in traditional TEX; it is the way to add your own
functionality to TEX, the program.

As an example for future programmers, Don
Knuth added four (connected) primitives as exten-
sions: \openout, \closeout, \write and \special.
The Aleph and pdfTEX engines, on the other hand,
put some functionality in extensions and some in
the core. This arose from the fact that dealing with
variables in extensions is often inconvenient, as they
are then seen as (unexpandable) commands instead
of integers, token lists, etc. That the write-related
commands are there is almost entirely due to being
the demonstration of the mechanism; everything re-
lated to reading files is in the core. There is one
property that perhaps forces us to keep the writers
there, and that’s the \immediate prefix.2

In the process of separating, we reshuffled the
code base a bit; the current use of the extensions
mechanism still suits as an example and also gives
us backward compatibility. However, new backend
primitives will not be added there but rather in
specific plugins (if needed at all).

3 From whatsits to nodes: images, forms,
directions

The PDF backend introduced two new concepts into
the core: (reusable) images and (reusable) content
(wrapped in boxes). In keeping with good TEX prac-
tice, these were implemented as whatsits (a node
type for extensions); but this created, as a side effect,
an anomaly in the handling of such nodes. Consider
looping over a node list where we need to check di-
mensions of nodes; in Lua, we can write something
like this:

while n do

if n.id == glyph then

2 Unfortunately we’re stuck with \immediate in the back-
end; a deferred keyword would have been handier, especially
since other backend-related commands can also be immediate.

LuaTEX 0.90 backend changes for PDF and more



54 TUGboat, Volume 37 (2016), No. 1

-- wd ht dp

elseif n.id == rule then

-- wd ht dp

elseif n.id == kern then

-- wd

elseif n.id == glue then

-- size stretch shrink

elseif n.id == whatsits then

if n.subtype == pdfxform then

-- wd ht dp

elseif n.subtype == pdfximage then

-- wd ht dp

end

end

n = n.next

end

So for each node in the list, we need to check
these two whatsit subtypes. But as these two con-
cepts are rather generic, there is no evident need to
implement it this way. Of course the backend has to
provide the inclusion and reuse, but the frontend can
be agnostic about this. That is, at the input end, in
specifying these two injects, we only have to make
sure we pass the right information (so the scanner
might differentiate between backends).

Thus, in LuaTEX these two concepts have been
promoted to core features:

\pdfxform \saveboxresource

\pdfximage \saveimageresource

\pdfrefxform \useboxresource

\pdfrefximage \useimageresource

\pdflastxform \lastsavedboxresourceindex

\pdflastximage \lastsavedimageresourceindex

\pdflastximagepages \lastsavedimageresourcepages

The index should be considered an arbitrary
number set to whatever the backend plugin decides
to use as an identifier. These are no longer whatsits,
but a special type of rule; after all, TEX is only
interested in dimensions. Given this change, the
previous code can be simplified to:

while n do

if n.id == glyph then

-- wd ht dp

elseif n.id == rule then

-- wd ht dp

elseif n.id == kern then

-- wd

elseif n.id == glue then

-- size stretch shrink

end

n = n.next

end

The only consequence for the previously existing
rule type (which, in fact, is also something that
needs to be dealt with in the backend, depending
on the target format) is that a normal rule now has

subtype 0 while the box resource has subtype 1 and
the image subtype 2.

If a package writer wants to retain the pdfTEX
names, the previous table can be used; just prefix
\let. For example, the first line would be (spaces
optional, of course):

\let \pdfxform \saveboxresource

3.1 Direction nodes

A similar change has been made for “direction” nodes,
which were also previously whatsits. These are now
normal nodes so again, instead of consulting whatsit
subtypes, we can now just check the id of a node.

It should be apparent that all of these changes
from whatsits to normal nodes already greatly sim-
plify the code base.

4 Commands promoted to the core

Many more commands have been promoted to the
core. Here is an additional list of original pdfTEX
commands and their new counterparts (this time
with the \let included):

\let\pdfpagewidth \pagewidth

\let\pdfpageheight \pageheight

\let\pdfadjustspacing \adjustspacing

\let\pdfprotrudechars \protrudechars

\let\pdfnoligatures \ignoreligaturesinfont

\let\pdffontexpand \expandglyphsinfont

\let\pdfcopyfont \copyfont

\let\pdfnormaldeviate \normaldeviate

\let\pdfuniformdeviate \uniformdeviate

\let\pdfsetrandomseed \setrandomseed

\let\pdfrandomseed \randomseed

\let\ifpdfabsnum \ifabsnum

\let\ifpdfabsdim \ifabsdim

\let\ifpdfprimitive \ifprimitive

\let\pdfprimitive \primitive

\let\pdfsavepos \savepos

\let\pdflastxpos \lastxpos

\let\pdflastypos \lastypos

\let\pdftexversion \luatexversion

\let\pdftexrevision \luatexrevision

\let\pdftexbanner \luatexbanner

\let\pdfoutput \outputmode

\let\pdfdraftmode \draftmode

\let\pdfpxdimen \pxdimen

\let\pdfinsertht \insertht

Hans Hagen



TUGboat, Volume 37 (2016), No. 1 55

\protected\def\pdfliteral {\pdfextension literal }

\protected\def\pdfcolorstack {\pdfextension colorstack }

\protected\def\pdfsetmatrix {\pdfextension setmatrix }

\protected\def\pdfsave {\pdfextension save\relax}

\protected\def\pdfrestore {\pdfextension restore\relax}

\protected\def\pdfobj {\pdfextension obj }

\protected\def\pdfrefobj {\pdfextension refobj }

\protected\def\pdfannot {\pdfextension annot }

\protected\def\pdfstartlink {\pdfextension startlink }

\protected\def\pdfendlink {\pdfextension endlink\relax}

\protected\def\pdfoutline {\pdfextension outline }

\protected\def\pdfdest {\pdfextension dest }

\protected\def\pdfthread {\pdfextension thread }

\protected\def\pdfstartthread {\pdfextension startthread }

\protected\def\pdfendthread {\pdfextension endthread\relax}

\protected\def\pdfinfo {\pdfextension info }

\protected\def\pdfcatalog {\pdfextension catalog }

\protected\def\pdfnames {\pdfextension names }

\protected\def\pdfincludechars {\pdfextension includechars }

\protected\def\pdffontattr {\pdfextension fontattr }

\protected\def\pdfmapfile {\pdfextension mapfile }

\protected\def\pdfmapline {\pdfextension mapline }

\protected\def\pdftrailer {\pdfextension trailer }

\protected\def\pdfglyphtounicode {\pdfextension glyphtounicode }

Table 1: List of pdfTEX commands and their new \pdfextension equivalents in LuaTEX.

5 Commands: from \pdf...

to \pdfextension

There are many commands that start with \pdf

and, over the history of development of pdfTEX and
LuaTEX, some have been added, some have been
renamed, others removed. Instead of the many, we
now have just one: \pdfextension. A couple of
usage examples:

\pdfextension literal {1 0 0 2 0 0 cm}

\pdfextension obj {/foo (bar)}

Here, we pass a keyword that tells for what to
scan and what to do with it. A backward-compatible
interface is easy to write. Although it delegates a bit
more management of these \pdf commands to the
macro package, the responsibility for dealing with
such low-level, error-prone calls is there anyway. The
full list of \pdfextensions is given in table 1. The
scanning after the keyword is the same as for pdfTEX.

6 Variables: from \pdf... to \pdfvariable

As with commands, there are many variables that
can influence the PDF backend. The most important
one was, of course, that which set the output mode
(\pdfoutput). Well, that one is gone and has been
replaced by \outputmode. A value of 1 means that
we produce PDF.

One complication of variables is that (if we want
to be compatible), we need to have them as real TEX
registers. However, as most of them are optional,
an easy way out is simply not to define them in the
engine. In order to be able to still deal with them as
registers (which is backward compatible), we define
them as shown in table 2.

You can set them as follows (the values shown
here are the initial values):

\pdfcompresslevel 9

\pdfobjcompresslevel 1

\pdfdecimaldigits 3

\pdfgamma 1000

\pdfimageresolution 71

\pdfimageapplygamma 0

\pdfimagegamma 2200

\pdfimagehicolor 1

\pdfimageaddfilename 1

\pdfpkresolution 72

\pdfinclusioncopyfonts 0

\pdfinclusionerrorlevel 0

\pdfignoreunknownimages 0

\pdfreplacefont 0

\pdfgentounicode 0

\pdfpagebox 0

\pdfminorversion 4

\pdfuniqueresname 0

LuaTEX 0.90 backend changes for PDF and more



56 TUGboat, Volume 37 (2016), No. 1

\edef\pdfminorversion {\pdfvariable minorversion}

\edef\pdfcompresslevel {\pdfvariable compresslevel}

\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}

\edef\pdfdecimaldigits {\pdfvariable decimaldigits}

\edef\pdfhorigin {\pdfvariable horigin}

\edef\pdfvorigin {\pdfvariable vorigin}

\edef\pdfgamma {\pdfvariable gamma}

\edef\pdfimageresolution {\pdfvariable imageresolution}

\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}

\edef\pdfimagegamma {\pdfvariable imagegamma}

\edef\pdfimagehicolor {\pdfvariable imagehicolor}

\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}

\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}

\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}

\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}

\edef\pdfpkmode {\pdfvariable pkmode}

\edef\pdfpkresolution {\pdfvariable pkresolution}

\edef\pdfgentounicode {\pdfvariable gentounicode}

\edef\pdflinkmargin {\pdfvariable linkmargin}

\edef\pdfdestmargin {\pdfvariable destmargin}

\edef\pdfthreadmargin {\pdfvariable threadmargin}

\edef\pdfformmargin {\pdfvariable formmargin}

\edef\pdfuniqueresname {\pdfvariable uniqueresname}

\edef\pdfpagebox {\pdfvariable pagebox}

\edef\pdfpagesattr {\pdfvariable pagesattr}

\edef\pdfpageattr {\pdfvariable pageattr}

\edef\pdfpageresources {\pdfvariable pageresources}

\edef\pdfxformattr {\pdfvariable xformattr}

\edef\pdfxformresources {\pdfvariable xformresources}

Table 2: List of pdfTEX variables and their new \pdfvariable equivalents in LuaTEX.

\pdfhorigin 1in

\pdfvorigin 1in

\pdflinkmargin 0pt

\pdfdestmargin 0pt

\pdfthreadmargin 0pt

Their removal from the frontend has helped
again to clean up the code and, by making them
registers, their use is still compatible. A call to
\pdfvariable defines an internal register that keeps
the value (of course this value can also be influenced
by the backend itself). Although they are real regis-
ters, they live in a protected namespace:

\meaning\pdfcompresslevel

which gives:

macro:->[internal backend integer]

It’s perhaps unfortunate that we have to remain
compatible because a setter and getter would be
much nicer. I am still considering writing the exten-
sion primitive in Lua using the token scanner, but

it might not be possible to remain compatible then.
This is not so much an issue for ConTEXt that always
has had backend drivers, but, rather, for other macro
packages that have users expecting the primitives (or
counterparts) to be available.

7 Read-only variables: from \pdf...

to \pdffeedback

The backend can report on some properties that
were also accessible via \pdf... primitives. Because
these are read-only variables, another primitive now
handles them: \pdffeedback. This primitive can be
used to define compatible alternatives, as shown in
table 3.

The variables are internal, so they are anony-
mous. When we ask for the meaning of some that
were previously defined:

\meaning\pdfhorigin

\meaning\pdfcompresslevel

\meaning\pdfpageattr

Hans Hagen



TUGboat, Volume 37 (2016), No. 1 57

\def\pdfcolorstackinit {\pdffeedback colorstackinit}

\def\pdfcreationdate {\pdffeedback creationdate}

\def\pdffontname {\numexpr\pdffeedback fontname\relax}

\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}

\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}

\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}

\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}

\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}

\def\pdfpageref {\numexpr\pdffeedback pageref\relax}

\def\pdfretval {\numexpr\pdffeedback retval\relax}

\def\pdfxformname {\numexpr\pdffeedback xformname\relax}

Table 3: List of read-only pdfTEX variables and their new \pdffeedback equivalents in LuaTEX.

we will get, similar to the above:

macro:->[internal backend dimension]

macro:->[internal backend integer]

macro:->[internal backend tokenlist]

8 \pdf... primitives removed

Finally, here is the list of primitives that have been re-
moved, with no TEX-level equivalent available. Many
were experimental, and they can be easily be pro-
vided to TEX using Lua.

\knaccode

\knbccode

\knbscode

\pdfadjustinterwordglue

\pdfappendkern

\pdfeachlinedepth

\pdfeachlineheight

\pdfelapsedtime

\pdfescapehex

\pdfescapename

\pdfescapestring

\pdffiledump

\pdffilemoddate

\pdffilesize

\pdffirstlineheight

\pdfforcepagebox

\pdfignoreddimen

\pdflastlinedepth

\pdflastmatch

\pdflastximagecolordepth

\pdfmatch

\pdfmdfivesum

\pdfmovechars

\pdfoptionalwaysusepdfpagebox

\pdfoptionpdfinclusionerrorlevel

\pdfprependkern

\pdfresettimer

\pdfshellescape

\pdfsnaprefpoint

\pdfsnapy

\pdfsnapycomp

\pdfstrcmp

\pdfunescapehex

\pdfximagebbox

\shbscode

\stbscode

9 Conclusion

The advantage of a clean backend separation, sup-
ported by just the three primitives \pdfextension,
\pdfvariable and \pdffeedback, as well as a collec-
tion of registers, is that we can now further clean the
code base, which remains a curious mix of combined
engine code, sometimes and sometimes not converted
to C from Pascal. A clean separation also means that
if someone wants to tune the backend for a special
purpose, the frontend can be left untouched. We will
get there eventually.

All the definitions shown here are available in
the file luatex-pdf.tex, which is part of the Con-
TEXt distribution.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

LuaTEX 0.90 backend changes for PDF and more


