
The apnum package: Arbitrary precision
numbers implemented in TEX macros

Petr Oľsák

TEX doesn’t provide a comfortable environment
for calculations at the primitive level. There are
the well-known commands \advance, \multiply

and \divide but dividing two decimal numbers
with these commands is a somewhat complicated
task for macro programmers. The additional ε-TEX
primitives \numexpr and \dimexpr do not make
it easier. Of course, various LATEX packages ex-
ist for more comfortable numerical calculations.
None of them satisfied my needs so I decided to
create my own solution: the apnum.tex package
(http://www.ctan.org/pkg/apnum). You can set
an arbitrary precision for the calculation when using
this package. You can do addition, multiplication,
division, power, square root, and evaluation of com-
mon functions sin, cos, tan, arcsin, arccos, arctan,
exp and ln. The result is calculated with \apFRAC

decimal positions after the decimal point. You can
set this register to an arbitrary value. Of course, if
you need thousands of decimal digits then you must
wait a while. Nevertheless, optimization techniques
were used when implementing algorithms.

The documentation is in the file apnum.pdf. It
is not only the user-level documentation, but also
detailed technical documentation is included. You
can find the description of all internal macros and
all the numerical algorithms used.

The expression scanner

After \input apnum in your document, you can
use the macro \evaldef〈sequence〉{〈expression〉}.
It makes comfortable calculation available. The
〈expression〉 can include binary operators +, -, *, /
and ^ with the usual precedence. The operands are
“numbers”. Users can use parentheses () as usual.
The result is stored to the 〈sequence〉 as a “literal
macro”. Examples:

\evaldef\A {2+4*(3+7)}

% the macro \A is the result, 42

\evaldef\B {\the\pageno * \A}

% \B is 42 times page number

\evaldef\C {123456789 * -123456789123456789}

% \C is -15241578765432099750190521

\evaldef\D {1.23456789 + 12345678.9 - \A}

% \D is 12345596.13456789

\evaldef\X {1/3}

% \X is .33333333333333333333

The result of division doesn’t have absolute preci-
sion; the number of digits after the decimal point is

82 TUGboat, Volume 37 (2016), No. 1

limited by the value of \apFRAC, which is 20 by de-
fault. Absolute precision is implemented when +, -,
* and ^ operators are used. When using / or evalu-
ating math functions like sinx, only \apFRAC digits
are calculated after the decimal point.

The operands in the 〈expression〉 are most sim-
ply numbers in the format

〈sign〉〈digits〉.〈digits〉

where optional 〈sign〉 is a sequence of + and/or -

characters. A nonzero number is treated as negative
if and only if there is an odd number of - signs.
The first group or second group of decimal 〈digits〉
(but not both) can be empty. The decimal point is
optional if the second group of 〈digits〉 is empty.

Alternatively, you can specify an operand in sci-
entific notation in the format

〈sign〉〈digits〉.〈digits〉E〈e-sign〉〈digits〉

The sequence before E determines the mantissa and
the sequence after E is the exponent. The 〈e-sign〉 is
+ or - or nothing. If you are using scientific notation
of operands then the result (calculated by \evaldef)
is usually in the same form. The reason is simple.
If you want to calculate (for example) 3E+2000 *

5E+1300 then apnum will not waste time working
with “full numbers” with a lot of digits (converted
from scientific form) but calculates only 3*5=15 and
the exponent of the result 3300 is appended. Much
more information about scientific format is in the
documentation of the apnum package.

The operands in the 〈expressions〉 can be any
of the following:

• Numbers, as described above.
• \the〈register〉 or \number〈register〉. This al-

lows accessing TEX register values.
• A macro which expands directly to a number.

This allows working with “variables”.
• A “function-like” macro which returns a value.

This allows the implementation of functions.
The identifier of a function-like macro can be
followed by zero or more parameters, each of
which must be enclosed in braces {}.

For instance, \EXP is a function-like macro.
This macro has one parameter which is another
(nested) 〈expression〉. The \EXP macro returns the
value of the exponential function ex where x is the
given 〈expression〉. Example:

\def\X{.25}

\evaldef\A{\EXP{2*\X} - 1}

% \A is the result of e^{2X} - 1

Petr Oľsák

Users can define their own function-like macros; see
the next section. The package apnum defines fol-
lowing function-like macros (with one parameter as
nested 〈expression〉): \SQRT, \EXP, \LN, \SIN, \COS,
\TAN, \ASIN, \ACOS, \ATAN. The meaning of these
macros is clear from their names.

Note that you must use parentheses () for
precedence settings in an 〈expression〉, but use
braces {} as delimiters of parameters of function-
like macros. The spaces in the 〈expression〉 are
ignored. Example:

\def\A{20}

\evaldef\B{ 30*\SQRT{ \SIN{\PI/6} +

1.12*\the\widowpenalty } / (4-\A) }

The evaluation of operators and function-like
macros works at the main processor level of TEX.
Unlike some comparable LATEX packages, the apnum

package doesn’t support calculations at the expan-
sion processor level only. The reason is calculation
speed optimization.. Moreover, I wanted it to be
possible to use apnum in classical TEX, without ε-
TEX primitives. And without the ε-TEX primitives
then expansion-level calculation is very complicated.
So, I rejected the expansion-only calculation. An-
other significant advantage of this decision is related
to the possibility of creating function-like macros by
users: they need not worry about main processor vs.
expansion processor evaluation when creating their
own function-like macros.

In my opinion, a skillful macro programmer
doesn’t require expansion-level calculation. He/she
can use

\evaldef\V{〈expression〉}\edef\foo{...\V...}

instead of \edef\foo{...〈expression〉...} when-
ever he/she needs to do this.

There are some side effects of \evaldef pro-
cessing:

• The value of the \apSIGN register. It is set to
−1, 0, 1 according to whether the result is neg-
ative, zero or positive.
• The internal macro \OUT is a copy of the result.

Creating function-like macros

Let us start with creating our own function-like
macros. We must follow two rules:

• The first token must be \relax after the first
level of expansion. This is a signal that this is a
function-like macro and not a normal numerical
constant. The expression scanner creates a new
TEX group and executes the macro in it.

TUGboat, Volume 37 (2016), No. 1 83

• The function-like macro must define the macro
\OUT as the result of processing, as a number,
and the \apSIGN register must be set to the sign
of the result. The expression scanner takes con-
trol again and uses these values as one operand
in the 〈expression〉 currently being processed.

Several examples of function-like macros follow.

Hyperbolic sine (and inverse). There are some
well-known mathematical functions not predefined
in the apnum package. I believe that remembering
the name of such a function is not markedly eas-
ier than remembering its natural definition, and the
latter is much more useful and educational. So, I
left such work to users. For example the hyperbolic
sine can be defined by

\def\SINH#1{\relax % mandatory \relax

\evaldef\myE{\EXP{#1}}%

\evaldef\OUT{ (\myE - 1/\myE) / 2 }%

}

This corresponds to the formula

sinhx =
ex − e−x

2
.

First, the mandatory \relax is given in the macro.
Then the value ex is saved in a temporary macro
\myE. We need not worry about a name conflict
(\myE being used elsewhere) because the macro is
processed in the TEX group. The final \evaldef

gives the desired result (including \apSIGN setting).
A reader may have another idea:

\def\SINH#1{\relax

\evaldef\OUT{(\EXP{#1} - \EXP{-(#1)})/2}}

This implementation of \SINH also works, but it is
not optimal because the slow calculation of \EXP is
done twice. The internal 〈expression〉 #1 must also
be evaluated twice.

Another example is the inverse of hyperbolic
sine:

\def\ASINH#1{\relax

\evaldef\X{#1}\LN{\X+\SQRT{\X^2+1}}}

The following identity is used here

sinh−1 x = ln
(
x+

√
x2 + 1

)
.

Here, we do not need to explicitly define the \OUT

macro because \LN is another function-like macro,
so it does this work.

Sine of argument in degrees. The default
function-like macros \SIN, \COS and \TAN expect
their argument in radians, meaning they have a
period 2π. Sometimes, it is useful to use degrees
instead of radians. There is a simple way to define

The apnum package: Arbitrary precision numbers implemented in TEX macros

functions \SINdeg, \COSdeg and \TANdeg with
argument in degrees:

\def\SINdeg#1{\relax \SIN{(\PI/180)*(#1)}}

\def\COSdeg#1{\relax \COS{(\PI/180)*(#1)}}

\def\TANdeg#1{\relax \TAN{(\PI/180)*(#1)}}

Note the parentheses around the #1 argument. This
is because the argument may be an expression with
(say) an addition.

We have another problem: the values in degrees
are typically expressed in sexagesimal numeral sys-
tem (degrees, minutes, seconds). Thus we create
the function-like macro \DEG to take the value in
sexagesimal notation and return a normal decimal
number. Namely:

\DEG{12;30’45.756’’}% means

% 12 degrees, 30 minutes, 45.756 seconds

\evaldef\a{\DEG{12;30’45.756’’}} % = 12.51271

\evaldef\a{\DEG{12;30’}}% % = 12.5

\evaldef\a{\DEG{12}}% % = 12

\evaldef\a{\DEG{12.5}}% % = 12.5

The conversion is done only if a semicolon is used
after the degrees value. On the other hand, a dot
means the normal decimal dot in the number. The
symbol for minutes ’ and seconds ’’ at the end of
the value is optional, so \DEG{12;30} also returns
12.5. The \DEG macro can be defined using this
code:

\def\DEG#1{\relax \DEGa#1;’’\relax}

\def\DEGa#1;#2’#3’#4\relax{%

\evaldef\OUT{#1}%

\ifnum\apSIGN<0 \def\tmps{-}%

\else \def\tmps{+}\fi

\DEGb#2;\relax{\OUT+\tmp/60}%

\DEGb#3;\relax{\OUT+\tmp/3600}%

}

\def\DEGb#1;#2\relax#3{\edef\tmp{#1}%

\ifx\tmp\empty \else

\edef\tmp{\tmps\tmp}\evaldef\OUT{#3}\fi

}

The macro reads the argument using \DEGa, where
#1 is the degrees, #2 minutes and #3 seconds. The
first \evaldef calculates degrees. If the result is
negative, we need to subtract the possible minutes
and seconds (\tmps includes -).

The \DEGb macro removes the semicolon and
next value. The raw value is stored in \tmp. Finally,
\evaldef adds the minutes part and seconds part
to the result \OUT.

Given the \DEG macro, we can now define
macros \SINd, \COSd and \TANd. They accept the
sexagesimal notation in its argument. For example,
\SINd{12;30} is the sine of 12 degrees and 30
minutes.

84 TUGboat, Volume 37 (2016), No. 1

\def\SINd#1{\relax \SIN{(\PI/180)*\DEG{#1}}}

\def\COSd#1{\relax \COS{(\PI/180)*\DEG{#1}}}

\def\TANd#1{\relax \TAN{(\PI/180)*\DEG{#1}}}

If a semicolon is not present in the argument, it is
processed as a normal 〈expression〉 in degrees.

Maximum. We create the function-like macro

\MAX{〈expression〉,〈expression〉,...,〈expression〉}

Thus, the argument of this \MAX macro is a comma-
separated list of any number of 〈expression〉s (at
least one 〈expression〉 is needed). The macro re-
turns the maximum of all given 〈expression〉s.

We cannot use the \ifnum or \ifdim primitives
for comparison of two values because these values
can be very large or have a very small difference, for
example the first difference may be at the 50th dec-
imal digit after decimal point. The documentation
apnum.pdf recommends to use the \TEST macro,
which can be defined:

\def\TEST#1#2#3#4{%

\evaldef\tmp{#1-(#3)}\ifnum\apSIGN #2 0 }

and used:

\TEST {〈expression1 〉} 〈relation〉 {〈expression2 〉}
\iftrue 〈true part〉 \else 〈false part〉 \fi

where 〈relation〉 is one of the characters <, >, =.
The implementation of the \TEST macro is based
on subtraction of the given two 〈expression〉s and
testing the resulting \apSIGN. Note that the space
after zero in the \TEST definition is needed because
it closes the scanning of the zero number.

The \MAX implementation looks like this:

\newcount\mynum

\def\TEST#1#2#3#4{%

\evaldef\tmp{#1-(#3)}\ifnum\apSIGN #2 0 }

\def\MAX#1{\relax \MAXa#1,,}

\def\MAXa#1,{%

\evaldef\maxOUT{#1}\mynum=\apSIGN \MAXb}

\def\MAXb#1,{%

\ifx,#1,\let\OUT=\maxOUT \apSIGN=\mynum \else

\evaldef\maxNEXT{#1}%

\ifnum\apSIGN>\mynum

\mynum=\apSIGN \let\maxOUT=\maxNEXT

\else \TEST\maxNEXT>\maxOUT \iftrue

\let\maxOUT=\maxNEXT \fi\fi

\expandafter \MAXb \fi

}

The \MAXa macro prepares the first value into
\maxOUT and the sign of this value is \mynum. Then
\MAXb is called repeatedly until #1 is empty. If #1
is empty, the resulting \apSIGN is set from \mynum

and \OUT is \maxOUT; else, the next expression #1

is evaluated. If the sign of this partial result is

Petr Oľsák

greater than the sign of the current result, then we
do not need to execute the \TEST macro and can
simply set new \maxOUT and \mynum. Else \TEST is
processed and new value of \maxOUT is set only if
the new result is greater than the current result.

We can create the analogous macro \MIN with-
out copying all this code. We can just define the
macro \mmREL as < or > and then use this macro
instead of the > character in the above code.

Linear interpolation. We can use “declaration
macros” \setF...\endF to define the function \F

via a table of values. For example:

\setF

\F{2} = 15 ;

\F{3} = 10 ;

\F{8} = 11 ;

\endF

Some \F{〈expression〉} = 〈expression〉; entries are
listed here. A finite number of values of the function
\F is given this way. Next, we define the function-
macro \F{〈expression〉} which returns the value of
the given \F using linear interpolation.

For the sake of simplicity, we don’t implement a
sorting algorithm and instead assume that the input
values are sorted by the user. The previous exam-
ple complies with this condition because 2 < 3 < 8.
Next, we suppose that the function \F is undefined
outside the boundary input values (i. e. outside the
[2, 8] interval in our example). If the user tries to
evaluate \F outside this interval then an “out of
range” message is printed.

The \setF macro saves the information to
the \Flist macro. This is a list of input values,
i. e. 2;3;8; in our example. Moreover, the macros
\F:〈number〉 are defined as the function value. The
first entry has the number 1, second 2, etc. In our
example, the \F:1 macro is defined as 15, \F:2 as
10 and \F:3 as 11. The \setF macro is defined by
this code:

\newcount\mynum

\def\setF{\mynum=0 \def\Flist{}\setFa}

\def\endF{end setF}

\def\setFa#1{%

\ifx#1\endF \else \expandafter \setFb \fi

}

\def\setFb#1#2#3;{%

\evaldef\X{#1}%

\evaldef\Y{#3}%

\advance\mynum by1

\expandafter

\edef\csname F:\the\mynum\endcsname{\Y}%

\edef\Flist{\Flist\X;}%

\setFa}

TUGboat, Volume 37 (2016), No. 1 85

The function-like macro \F evaluates the input pa-
rameter x = \X and scans the \Flist contents to
find the sub-interval I of two consecutive input val-
ues where x ∈ I. The boundary values of the in-
terval I are denoted by a = \A and b = \B, i. e.
I = [a, b). The values F (a) = \FA, F (b) = \FB are
known and linear interpolation is applied:

\OUT = F (x) = F (a) +
(x− a)

(
F (b)− F (a)

)
b− a

\def\TEST#1#2#3#4{%

\evaldef\tmp{#1-(#3)}\ifnum\apSIGN #2 0 }

\def\F#1{\relax

\evaldef\X{#1}%

\expandafter\Fa\Flist;\endF}

\def\Fa#1;{%

\TEST{#1}>\X \iftrue

\Fe \expandafter \Fc \fi % out of range

\def\A{#1}\mynum=0

\Fb

}

\def\Fb#1;{%

\advance\mynum by1

\ifx;#1;% the last item

\TEST\X=\A \iftrue

\evaldef\OUT{\Xa}\else \Fe \fi % out range

\expandafter \Fc \fi

\TEST{#1}>\X \iftrue

\def\B{#1}%

\edef\FA{\csname F:\the\mynum\endcsname}%

\advance\mynum by1

\edef\FB{\csname F:\the\mynum\endcsname}%

\evaldef\OUT{\FA+(\X-\A)*(\FB-\FA)/(\B-\A)}%

\expandafter \Fc

\fi

\def\A{#1}%

\Fb

}

\def\Fc#1\endF{}

\def\Fe{\def\OUT{0}\apSIGN=0

\message{F{\X} OUT OF RANGE}}

Printing and evaluating from shared source

So far, we have seen how the apnum package evalu-
ates 〈expression〉s. As of version 1.5, apnum is able
to print the same 〈expression〉s in math mode. The
format of printing is determined automatically and
is close to mathematical tradition. This is done with
the \eprint{〈expression〉}{〈declaration〉} macro.
You can specify the identifiers of “variables” in the
〈declaration〉.

We illustrate this feature by defining a macro
\ep{〈expression〉}. It prints the 〈expression〉 and
then evaluates the same 〈expression〉, showing the

The apnum package: Arbitrary precision numbers implemented in TEX macros

value. The macros \X, \Y and \Z are variables for
these examples.

\def\vars{\def\X{x}\def\Y{y}\def\Z{z}}

%

\def\ep#1{$\displaystyle

\eprint{#1}\vars% printing

\evaldef\OUT{#1}% evaluation

\ROUND\OUT6% round result to 6 digits

\corrnum\OUT % .digits -> 0.digits

\ifx\XOUT\empty =\else\doteq\fi \OUT$}

We need to give values to the variables x, y, z before
starting the experiment:

\def\X{0.51} \def\Y{-2.7} \def\Z{17}

Now, let’s apply the \ep macro in a variety of cases:

\ep{(\X^2+1)/((\X+1)*(\X-2))}

x2 + 1

(x+ 1) · (x− 2)

.
= −0.560069

\ep{-((\X^2-1)/((\X+1)*(\X-1)))}

− x2 − 1

(x+ 1) · (x− 1)
= −1

\ep{\SIN{\Y}^2 + \COS{\Y}^2}

sin2 y + cos2 y
.
= 0.999999

\ep{\ASIN{\X} + \ATAN{\X+1}}

arcsinx+ arctan(x+ 1)
.
= 1.521041

\ep{\SIN{\PI/4}}

sin
π

4

.
= 0.707106

\ep{\SQRT{2}/2}√
2

2

.
= 0.707106

\ep{\PI}

π
.
= 3.141592

\ep{\FAC{\Z}}

z ! = 355687428096000

\ep{\SQRT{\iFLOOR{\Y}^2+1}}√
byc2 + 1

.
= 3.162277

\ep{\iFLOOR{\Y} + \iFRAC{\Y}}

byc+ {y} = −2.7

\ep{\LN{\X/\Y^2}+1}

ln
x

y2
+ 1

.
= −1.659848

\ep{(\X+\Y)*-3}

(x+ y) · (−3) = 6.57

86 TUGboat, Volume 37 (2016), No. 1

\ep{-3*-(\X+\Y)}

−3 · (−(x+ y)) = −6.57

\ep{\BINOM{5}{1}+\BINOM{5}{2}}(
5

1

)
+

(
5

2

)
= 15

\ep{2^5/2}

25

2
= 16

\ep{4^3^2}

43
2

= 262144

\ep{(4^3)^2} (
43
)2

= 4096

\ep{\EXP{\LN{2}+\LN{3}}}

eln 2+ln 3 .
= 5.999999

Note that the \eprint macro does not insert
redundant parentheses and follows traditional math
typesetting. For example \SIN{\X}^2 prints as
sin2 x. On the other hand, new parentheses are
sometimes needed, for example -3*-(\X+\Y) is
printed in the form −3 · (−(x+ y)).

About the implementation

The algorithms used are described in detail in the
technical part of the apnum.pdf documentation.
This section introduces only the basic ideas.

Expression interpreter. When I was young
(about 15 years old) I was a participant in a hobby
course on programming. We were working with a
mainframe EC 1010. Our teacher taught me how to
program an expression interpreter (with operators
of various priorities) using stacks. My first imple-
mentation of this was in FORTRAN. Now, many
years later, I was able to use this knowledge and
implemented the expression scanner again, now in
apnum. The apnum package implements the expres-
sion scanner in two steps: first the 〈expression〉 is
converted to Polish notation and this format is used
for evaluating (or printing) in the second step.

Basic operations. Addition, subtraction, multi-
plication and division are implemented similarly to
the way pupils learn to do these operations in school.
The main difference is the base of the number sys-
tem used. Students use base 10, manipulating with
the ten different digits of this system and drilling the
“small multiplication table” up to 100. On the other
hand, apnum uses a number system with base 10000,
each “digit” has up to four decimal digits and TEX

Petr Oľsák

supports a “multiplication table” to 108 using the
\multiply primitive. This is possible because the
maximum number that can be represented in TEX
registers is 231

.
= 2 · 109. For example, to multiply

two ten digit numbers, pupils need to do 100 multi-
plications but TEX needs only 9 multiplications.

TEX can only do direct access to its memory us-
ing new macro definitions. But this is not a good ap-
proach for implementing “digits” values. I did many
tests of various methods. I found that the linear ac-
cess to the sequence of “digits” in the input stream
is the most efficient. Data are expanded to the input
stream and read again. One problem is that we have
only one input stream, but we typically need to read
digits from two sources. So apnum uses a special in-
terleaved format for these calculations. The data are
converted from human-readable form to this inter-
leaved format when we need to convert pairs of four
decimal digits to one internal “digit”. Then the cal-
culation is processed (typically in a loop) over this
interleaved format.

The division algorithm is well known from
school too: the “tail” of partially calculated remain-
ders is constructed. The apnum package optimizes
this processing if the divisor is only one “digit” (i. e.
at most four decimal digits). Then the complexity
of division depends linearly on the desired number
of digits in the result. When the divisor has more
“digits”, then apnum uses the special interleaved
data format mentioned above.

Many other optimizations were done. For ex-
ample, suppose a big number with many digits is
given in the parameter #1 and a macro is written
roughly like this:

\def\macro#1{%

\ifA \ifB do something{#1}%

\else do something{#1}\fi

\else do something{#1}\fi}

This \macro approach above is not a good idea.
Why? Because the big parameter is expanded three
times here, thus much data is skipped many times
by \if...\else...\fi primitives. This is time-
consuming. So it is much better to do \def\tmp{#1}

at the beginning of \macro and then do skipping
over \tmp only.

Mathematical functions. As a student I did a
school assignment on “long numbers” on the main-
frame installed at our university. Punch cards were
used. I implemented addition, subtraction, multi-
plication and division. My dream was to continue
with this work and implement classical math func-
tions as well. But lack of time and the unsuitable
technology was too much of barrier, so the dream

TUGboat, Volume 37 (2016), No. 1 87

wasn’t realized at that time. But now, I returned
to my student days and started to implement math
functions in apnum. The dream has been fulfilled
now.

Square root. One of the algorithms for computing
square roots is similar to the division algorithm, but
its complexity isn’t linear with the number of desired
digits in the result. I had started working on this
algorithm on the mainframe as a student, but now,
I decided to use Newton’s method.

We need to find the first approximation x0 of√
a. Then the tangent line to the graph of the

function f(x) = x2 − a is constructed in the point
[x0, f(x0)]. The position of the tangent can be found
using calculus. The intersection of this line with the
x axis is the next approximation of

√
a. This step

is repeated until the desired precision is reached. I
decided to use the linear interpolation of the func-
tion

√
x in the interval [1, 100] for calculating the

first approximation used by Newton’s method. The
linear interpolation uses known values in the points
1, 4, 9, 16, . . . , 81, 100. Only classical TEX operations
(no apnum operations) are used for calculating the
first approximation. If we need 20 digits in the result
then 5 iterations of Newton’s method is sufficient
because the number of calculated digits is doubled
in each iteration step and the linear interpolation
starts with 1 digit calculated.

If the argument is outside the interval [1, 100]
then we can shift its decimal point by an even num-
ber M of positions. Then we do the calculation of
square root. Finally, we shift the decimal point back
by M/2 positions in the result. This idea is based

on the fact that
√

100 = 10.

Exponential. The well-known Taylor series is used
in apnum:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·

This series converges well for |x| < 1 because
of the factorial in the denominators. But what to
do if the argument x is outside [−1, 1]? First of all,
negative arguments are converted to positive using
identity e−x = 1/ex. If the argument x ≥ 4 then we
calculate d = bx/ ln 10c and use the identity

ex = ex− d · ln 10 · 10d

This means that we need to calculate the exponen-
tial of the argument x′ ∈ [0, ln 10] ⊂ [0, 4) and then
we shift the decimal point of the result by d digits.

If the argument x ∈ [1, 4) then we divide it by
two or by four in order to have x′ ∈ [0, 1). Then
we use the Taylor series mentioned above for x′ and

The apnum package: Arbitrary precision numbers implemented in TEX macros

finally the result is (ex
′
)2 if x′ = x/2 or ((ex

′
)2)2 if

x′ = x/4. This is based on the identity e2x = (ex)2.
We need to do about 20 steps in the Taylor

series for 20 digits of precision because 20! ≈ 1019.

Logarithm. The following series derived from the
inverse of the hyperbolic tangent is used:

lnx = 2 tanh−1
x− 1

x+ 1
=

= 2

(
x− 1

x+ 1
+

1

3

(
x− 1

x+ 1

)3

+
1

5

(
x− 1

x+ 1

)5

+ · · ·

)
.

The disadvantage of this series is that it converges
well only for x ≈ 1. But we are able to modify the
argument so that it is approximately equal to one.

First, we calculate A = x/ exp(l̃nx), where l̃nx is an
approximation of lnx. We use linear interpolation.
It is evident that A ≈ 1 because exp(lnx) = x, if
exact lnx is used. Next, we calculate lnA using

the series above. Finally, lnx = lnA+ l̃nx because

x = A · exp(l̃nx) and ln(ab) = ln a+ ln b.
This algorithm need be implemented only for

x ∈ [1, 10). If the argument is outside this interval,
then we shift the decimal point by M positions and
then calculate x = x′ · 10M , lnx = lnx′ +M · ln 10.
The frequently used value ln 10 is calculated to the
needed precision only once and saved into memory.

Because the linear interpolation for l̃nx differs
from the exact result at the second decimal digit,
the same is true for the difference between A and 1.
Each step of the Taylor series improves precision by
four digits because there are only odd powers.

Sine and cosine. The known Taylor series for sine
and cosine are similar to the Taylor series for the
exponential. So, we need to have the argument in
the interval [0, 1). We can shift it by a multiple of
period (or half-period), but we need to know the
constant π first. The apnum package calculates and
saves π to 30 digits in its memory. If more preci-
sion is desired then π is re-calculated by the Chud-
novsky formula. It converges very well, with 14 new
exact digits per one step. It has only one problem:
to calculate

√
640320. This constant is used in the

Chudnovsky formula. So apnum stores the initial
approximation for Newton’s method (for

√
x calcu-

lation) with 12 decimal digits for this special case.
This saves several steps of Newton’s method.

After the sine or cosine argument x is shifted
by a half-period multiple, we have x ∈ [0, π). If x
is outside of [0, π/2) then we can use the identities
sinx = sin(π − x) or cosx = − cos(π − x). Now,
we have a new argument x ∈ [0, π/2). If x is out-
side the interval [0, π/4) then we can use identities

88 TUGboat, Volume 37 (2016), No. 1

cosx = sin(π/2 − x) or sinx = cos(π/2 − x). The
new argument is in the interval [0, π/4) ⊂ [0, 1) and
the Taylor series for sine or cosine can be used.

Inverse of tangent. The function tan−1 x =
arctanx is implemented by the series for the argu-
ment 1/x:

arctan
1

x
=

x

1 + x2
+

2

3

x

(1 + x2)2
+

+
2

3

4

5

x

(1 + x2)3
+

2

3

4

5

6

7

x

(1 + x2)4
+ · · ·

It converges well for x > 1. If x ∈ (0, 1) then we can
use the identity arctanx = π/2 − arctan 1/x and if
the argument is negative we use the fact that the
function is odd.

Other common mathematical functions can be
expressed directly with the functions mentioned
above.

The final joke

The apnum package uses only TEX primitives and
the basic plain TEX macro \newcount. Thus, the
package works in classical or extended TEX with
any format. This is the general approach of al-
most all my macros. On the other hand, typical
LATEX packages require the LATEX format and don’t
work with anything else. This is shown explic-
itly for example by \NeedsTeXFormat{LaTeX2e}

in such macros. The LATEX macros are usu-
ally a mix of TEX primitives and LATEX con-
structs: a mix of \def and \newcommand, a mix of
\newcount and \newcounter, a mix of \advance

and \addtocounter, a mix of \hbox and \mbox, a
mix of \setbox and \sbox, a mix of \vrule and
\rule etc. Pure TEX macros (which can be used in
plain TEX too) are infrequent in the LATEX world,
unfortunately (in my view).

So, I decided to put the following code at the
end of my apnum.tex:

% please, don’t remove this message

\ifx\documentclass\undefined \else

\message{WARNING: the author of apnum

package recommends: Never use LaTeX.}\fi

Thus the above message is printed on the terminal
and in the log file when LATEX is used. This ex-
presses my opinion about LATEX. And I hope that
this does not matter, because a typical LATEX user
reads neither the log file nor the terminal output, be-
cause plenty of useless information is printed there.

� Petr Oľsák
Czech Technical University in Prague
http://petr.olsak.net

Petr Oľsák

