
TUGboat, Volume 37 (2016), No. 1 79

Exploring \romannumeral and expansion

Joseph Wright

Abstract

The TEX \romannumeral primitive leads a double
life. As well as its obvious use for making Roman
numerals, it also offers a powerful method for con-
trolling expansion. Here, I look at why this comes
about, why we might want to use it, and give illus-
trative examples where only \romannumeral gives
the results we want.

1 Expansion control

TEX is a macro expansion language, and so methods
for manipulating exactly when tokens are expanded
are a core part of its programmer toolbox. Exper-
ienced TEXers know that \expandafter will skip
over one token and expand the next in the input
stream, so for example

\def\foo{\baz}

\def\baz{a}

\expandafter\show\foo

gives

> \baz=macro:

->a.

\foo ->\baz

Another primitive that is used regularly to con-
trol expansion is \edef, which exhaustively expands
everything in the input it is given. For example:

\def\foo{\baz}

\def\baz{a}

\edef\test{\foo}

\show\test

gives

> \test=macro:

->a.

The combination of \expandafter and \edef,
along with the \noexpand primitive, can be used
to carry out a wide range of reordering of TEX
input. However, there are some provisos. The
\expandafter primitive is itself expandable but only
carries out exactly one expansion. Thus it cannot be
used if we don’t know exactly how many expansion
might be needed.

On the other hand, \edef will completely ex-
pand input but is an assignment so cannot be used in
an expansion context (for example, inside \csname,
an assignment of a numerical register, etc.). Using
\edef also gives us no (easy) way to stop an ex-
pansion part-way through some input. These cases
need a different approach and take us away from
primitives intended for expansion.

2 Enter \romannumeral

TEX’s syntax for numbers (integers) allows an op-
tional leading space (or spaces), optional leading sign
(or signs), the integer itself and an optional trailing
space. The number can be given literally (for ex-
ample 1234), can be the result of expansion or can
be an ‘internal integer’. The latter is, for example,
what using a count register or ‘ syntax results in: a
‘complete’ number where TEX will not look for any
further digits.

How does this help with expansion? TEX needs
a number (as it understands them) in several places,
for example after \count (to select a register) and
\number (to produce a literal number from various
forms of input).

TEX also needs a number after \romannumeral:
this primitive is of course meant for conversion of
that number into a Roman numeral! However, in
contrast to \number, which produces some output in
all cases, \romannumeral yields nothing at all if the
number it is given to work with is negative. Using
\romannumeral for expansion is all about exploiting
this fact in combination with TEX’s definition of a
number.

With the simple input

\romannumeral-1%

TEX will continue expanding after the 1 character
to search for a continuation of the number or an
optional space. It will expand tokens as it goes but
will stop (without error) at the first non-expandable
non-digit. Thus, an indirect redefinition (of \foo)
like this:

\def\demo#1{%

\begingroup

\toks0=\expandafter

{\romannumeral-1#1}%

\showthe\toks0 %

\endgroup

}

\def\foo{\baz}

\def\baz{\def\foo{}}

\demo{\foo}

will give as a result the “interior” definition of \foo
(defined in \baz):

> \def \foo {}.

(where TEX has added spaces in the usual way to de-
limit tokens in the \show output). Contrast this with
the result of trying to use \edef here, for example:

\def\demo#1{%

\begingroup

\edef\temp{#1}%

\toks0=\expandafter

Exploring \romannumeral and expansion



80 TUGboat, Volume 37 (2016), No. 1

{\meaning\temp}%

\showthe\toks0 %

\endgroup

}

\def\foo{\baz}

\def\baz{\def\foo{}}

\demo{\foo}

which results in:

! TeX capacity exceeded, sorry

[input stack size=5000].

\baz ->\def \foo

{}

So, using \romannumeral for expansion looks
useful but there’s an issue: what if we supply addi-
tional digits? This probably won’t be deliberate, but
the input we want to expand might just start with
some digits. The above will fail as such digits will
be used as part of the number.

Happily, the syntax for an internal integer avoids
this problem: TEX searches for an optional space but
not for any more numerical input. The notation
normally used to specify the internal integer is TEX’s
‘ notation: ‘0 or ‘\q are commonly used but have
no special meaning.

\def\demo#1{%

\toks0=\expandafter

{\romannumeral-‘0#1}%

\showthe\toks0 %

}

\def\foo{\baz}

\def\baz{123\def\foo{}456}

\demo{\foo}

gives the desired

> 123\def \foo {}456.

3 In use

This ‘\romannumeral trick’ is commonly used where
it’s desirable to provide a macro that will give a
result in a known number of expansions. In general,
with a template like

\def\demo#1{%

\romannumeral-‘0%

% ... expandable code here ...

we can be sure that \demo will expand in exactly
two steps, provided of course that the code we’ve
supplied doesn’t stop the expansion (we’ll deal with
that below).

The one thing that will disappear from the input
when using \romannumeral expansion is a leading
space: remember that TEX is looking for an optional
trailing space to the integer we’ve used to trigger
expansion. Luckily, it’s rare to be worried about

retaining leading spaces in the contexts where we
might want to use this approach.

In fact, we can exploit the fact that TEX is
looking for a space: deliberately inserting one can
be used to halt expansion at a known point, leaving
potentially-expandable material untouched. That’s
handy if we want to stop once we have a ‘result’. That
naturally leads to the question of how we can arrange
to produce a ‘result’ that consists of unexpandable
tokens without ending up stopping expansion. It
turns out to be easy enough, but is best shown by
an example, as follows.

4 Two examples

To show some practical uses for the \romannumeral

trick, I’m going to take a couple examples based on
some code in the expl3 language (LATEX3 team, 2015).
To keep a focus on what we want to think about,
these are somewhat simplified from the ‘parent’ ver-
sions, and in particular will work with TEX90: no
ε-TEX primitives are used, at the cost of dropping a
few features from the actual expl3 code.

The first example is a macro to pick arbitrary
cases from a list of possible integer values. The
\ifcase primitive is of course extremely fast but be-
comes highly inconvenient when the values involved
are not close to 0 or are spread out. The approach
we can take is as follows:

\catcode‘\@=11 %

\long\def\@firstoftwo#1#2{#1}

\long\def\@secondoftwo#1#2{#2}

\long\def\intcase#1#2#3{%

\romannumeral-‘0%

\intcase@loop{#1}#2{#1}{#3}\stop

}

\long\def\intcase@loop#1#2#3{%

\ifnum#1=#2 %

\expandafter\@firstoftwo

\else

\expandafter\@secondoftwo

\fi

{\intcase@end{#3}}

{\intcase@loop{#1}}%

}

\long\def\intcase@end#1#2\stop{\space#1}

Here, the idea is that we don’t know how many times
we will need to apply the \ifnum test, so if the case
statement needs to be fully expanded to a result,
using \expandafter won’t be practical. On the
other hand, by using \romannumeral we can be sure
that exactly two expansions of \intcase will leave
the result (and no other tokens). This behaviour is
going to be useful in the second example.

Joseph Wright



TUGboat, Volume 37 (2016), No. 1 81

TEX provides us with the primitives \lowercase
and \uppercase to carry out case changing. These
primitives are not expandable, which makes using
them a bit tricky. It turns out to be possible to
implement fully-expandable case changing even for
complex cases. Here, I’ll set up a (much) simplified
version that only works with ‘text’ input and will
ignore any spaces.

The \LowerCase user-level macro shown here
sets the \romannumeral expansion then starts off a
loop. Notice that we have an end macro too followed
by an empty brace group: this is going to allow us
to keep expansion going for as long as we want.

\def\LowerCase#1{%

\romannumeral-‘0%

\lowercase@loop#1\lowercase@end{}%

}

The first internal macro simply looks for the end of
the loop, and either picks the end-of-loop or case-
change helper.

\def\lowercase@loop#1{%

\ifx#1\lowercase@end

\lowercase@end

\else

\lowercase@change#1%

\fi

}

To perform the actual case change, we can use the
\intcase macro we just saw. This can be forced
to yield a result before storing the value, which is a
benefit here in terms of performance (we end up with
fewer tokens), but also comes into play if the result
we are providing needs to be examined by some other
code (which might also be forcing expansion!).

Notice that I’ve used another \romannumeral

to avoid a long \expandafter chain in this forced
expansion.

\def\lowercase@change#1\fi{%

\fi

\expandafter\lowercase@store

\expandafter{%

\romannumeral-‘0%

\intcase{‘#1}

{ {‘A}{a}{‘B}{b}{‘C}{c}{‘D}{d}

{‘E}{e}{‘F}{f}{‘G}{g}{‘H}{h}

{‘I}{i}{‘J}{j}{‘K}{k}{‘L}{l}

{‘M}{m}{‘N}{n}{‘O}{o}{‘P}{p}

{‘Q}{q}{‘R}{r}{‘S}{s}{‘T}{t}

{‘U}{u}{‘V}{v}{‘W}{w}{‘X}{x}

{‘Y}{y}{‘Z}{z} }

{#1}%

}%

}

Storing the result of a case change is done by using
the marker end-of-loop macro to add the processed
token to the growing result: keeping the number of
tokens down means TEX is doing less work. Fin-
ishing the loop on the other hand needs the outer
\romannumeral to terminate, which is done by in-
serting a space then the final result.

\def\lowercase@store#1#2\lowercase@end#3{%

\lowercase@loop#2\lowercase@end{#3#1}%

}

\def\lowercase@end#1\fi#2{\fi\space#2}

This code can then be expanded in exactly two
steps to a result

\toks0=\expandafter\expandafter\expandafter

{\LowerCase{abgT&HYRI$*Z}}%

\showthe\toks0 %

...

> abgt&hyri$*z.

or indeed we could once again use \romannumeral

\toks0=\expandafter

{\romannumeral-‘0%

\LowerCase{abgT&HYRI$*Z}}%

\showthe\toks0 %

...

> abgt&hyri$*z.

5 Conclusions

Using \romannumeral can offer expansion control
that is otherwise difficult or impossible in TEX. Par-
ticularly when creating expandable function-like mac-
ros, it is an invaluable tool in a TEX programmer’s
arsenal.

References

LATEX3 team. “The expl3 programming language”.
http://ctan.org/pkg/l3kernel, 2015.

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Exploring \romannumeral and expansion

http://ctan.org/pkg/l3kernel

	Expansion control
	Enter romannumeral
	In use
	Two examples
	Conclusions

