
222 TUGboat, Volume 37 (2016), No. 2

A Telegram bot for printing LATEX files

Amartyo Banerjee and S.K Venkatesan

Abstract

A proof of concept of a Telegram bot running on a
Raspberry Pi is described here. The bot will accept
a LATEX file from the user, process it and send back
to the user a PDF file resulting from that processing.
The following are discussed:

1. The genesis of the idea of the bot.

2. The use case for the bot as it exists at present,
and after additional functionality is implemented.

3. The learning process and obstacles encountered
in developing it.

4. Additional functionality planned to be imple-
mented, such as processing a multi-file LATEX
document, and printing the PDF file.

5. Steps needed to make it production ready, in-
cluding robust error handling and proper input
sensitization.

6. Potential for a complete rewrite to meet scalabil-
ity requirements and get around file download
limitations in the Telegram bot API.

1 Introduction

The authors present a proof of concept of a Tele-
gram [1] bot [2], meant to run on the Raspberry
Pi [3]. The purpose of this bot is to accept (LA)TEX
files submitted by a user running the Telegram client
on a mobile phone or on a PC/laptop browser, and
to send back a PDF file produced by compiling the
(LA)TEX files using pdfTEX or X ETEX or whatever
(LA)TEX compiler is invoked by the files.

2 Genesis of the idea

The idea for implementing this bot arose out of a
brainstorming session when the various uses that
could be made of the Raspberry Pi were discussed.
The question that came up was if it is possible to
run TEX on the Raspberry Pi. After checking online,
it was found that not only could TEX be run on the
Raspberry Pi, but people were in fact running it [4].
At this point we considered a potential use case for
the Raspberry Pi, wherein people could type up a
TEX file on their mobile phone, send it to server
software running on the Pi which could compile the
TEX file into PostScript or PDF and print it out. The
person who had submitted the TEX file could then
come and collect the typeset and printed output of
that TEX file. This service could be a paid service.

Figure 1: A Raspberry Pi

3 The use case for the bot

At the moment the printing functionality is not yet
implemented. Even the current functionality, how-
ever, has some use cases. A user could use (LA)TEX
to write a music score [5], and see what the type-
set output would look like. Or they could type a
chess game of a certain move in LATEX chess notation,
and get back a view of what that looks like when
typeset [6].

The idea is to eventually have a system where a
person can submit one or more (LA)TEX files which
will be processed and the resulting output will be
printed out. The print can be collected later on,
which would make the bot suitable for use in a print
shop. So a user could submit a (LA)TEX file to the
bot, it would be processed into a Postscript or PDF

file and this file could then be printed out. The user
could then pay to collect the print.

4 The learning process and obstacles
encountered

Initially the idea was for the TEX files to be submitted
via SMS. However, we decided against this on the
basis of our recollection of the difficulties in working
with SMS messages in computer programs, especially
as there are also restrictions in India on how many
SMS messages can be sent by a particular number
and to a particular number, as also restrictions on
what sort of attachments can be sent by SMS, and on
their size. Last but not least each SMS costs money.

For these reasons we decided to use messaging
software that does not depend on SMS messages to
send messages and attachments. In the authors’ cir-
cle of friends and acquaintances, the most often used
messaging applications on their mobile phones are
WhatsApp [7] and Viber [8], with more WhatsApp
users than Viber, and those contacts in the first au-
thor’s phonebook who use both are far more likely
to check WhatsApp than Viber.

Amartyo Banerjee and S.K Venkatesan



TUGboat, Volume 37 (2016), No. 2 223

This seemed to make WhatsApp the software
of choice for transmitting TEX files to the proposed
server software. The case seemed to be strengthened
by the fact that in past searches for ideas of things
that could be done with a Raspberry Pi, the first
author had seen a write-up on using WhatsApp on
the Raspberry Pi to send notifications to the owner
of the Raspberry Pi [9] whenever events occurred
which the owner was interested in knowing about.

To the best of the first author’s recollection how-
ever, in the comments made on the web page [9], it
had been pointed out that the use of WhatsApp in
this manner involved the use of reverse engineered
knowledge of the WhatsApp protocol, which is pro-
prietary. The protocol could be changed anytime by
WhatsApp, which would break any software relying
on the reverse engineered understanding of the proto-
col. Writing such software and using it also had the
potential of violating WhatsApp’s terms of service,
which could result in termination of the WhatsApp
account of the person whose mobile phone number
had been used to register the unofficial software that
used the reverse engineered WhatsApp protocol.

In these same comments, it was pointed out that
in contrast to WhatsApp, the Telegram messaging ap-
plication had an officially documented protocol [10],
permitted the existence of open source clients [11],
and provided not just one but two APIs [12] which
could be used to interact with Telegram and its
servers, and which could be used to write software us-
ing Telegram as the messaging part of that software.

As it turns out, the first author’s recollection
turns out to be faulty in this case. They have been un-
able to find any comments stating anything listed in
the above two paragraphs. Perhaps such comments
had indeed been seen on that website but in that case
they have subsequently been deleted. Checking in
the Wayback Machine [13] for past versions of the url
in [9] does show certain comments which have been
deleted from the live site, but not the comments the
first author seems to recall. Alternatively, the first
author saw such comments elsewhere but now cannot
recall where that could have been, nor have they been
able to discover in their recent web searches any other
website containing such comments. It is possible that
in the first author’s memory they have conflated their
reasoning with a url where they thought they had
seen someone else make those points.

That being said, the substance of the first au-
thor’s objections remains valid. The url mentioned
in [9] refers to the use of a python library named
Yowsup [14]. This library uses a reverse engineered
API for WhatsApp, named Chat API [15]. On one
of the Chat API web pages [16], they mention that

they have received a cease and desist letter from
WhatsApp’s lawyers, a copy of which they have made
publicly available at the url listed in [17]. Although
the author of Chat API states in [16] that they will
maintain the repository mentioned whose url is [15],
the letter shown in [17] does confirm that Chat API

is a reverse engineering of WhatsApp’s API, and
that WhatsApp considers the development and use
of Chat API to be a violation of its terms of service.

It is also the case that the author of the tutorial
in [9] mentions partway through [18] the risks of
getting one’s mobile phone number banned through
repeated attempts to register the same number, and
recommends using Telegram.

Remembering these objections, however hazily,
when the time came to choose how a potential user
could send TEX files to the proposed server software
running on the Raspberry Pi, it was decided to use
Telegram. The authors discussed the reasoning and
concerns of the first author. Given that SMS is intrin-
sic to every mobile phone and WhatsApp is already
widely installed the second author might have in-
sisted on using either of these. Instead the second au-
thor agreed with the first author, reasoning that the
potential users they had in mind could be persuaded
to install Telegram on their mobile phones, and in
any case at some future date a mobile phone applica-
tion could be written integrating a text editor with
the ability to send TEX files to the server software. In
that case potential users would have to be persuaded
to install that application on their phone anyway.

As mentioned above, Telegram provides a choice
of two APIs to interact with it. One is an API to write
a full-fledged Telegram client [19]. Our program, if
written using the Telegram client API, would thus
be a client from the point of view of the Telegram
servers while also being a server. In other words,
it would be a client from the point of view of the
Telegram servers, but a server from the point of view
of our users. The service provided by it would be
the fact that as mentioned above, if sent a (LA)TEX
file it would return a typeset PDF and/or print said
PDF.

The second API [20] allows one to write a bot for
Telegram. The exact definition of what a Telegram
bot is and can do can be found on the Telegram
website [2, 20]. That being said, the closest analogy
that comes to mind is the variety of bots [21] written
for IRC [22]. In some sense it seems to the authors
that Telegram bots are a repackaging of an old idea
for a generation of Internet users whose primary
interaction with the Internet is via smartphones,
who might have never come to know about IRC and
IRC bots.

A Telegram bot for printing LATEX files



224 TUGboat, Volume 37 (2016), No. 2

On reviewing the two APIs, it seemed to the
first author that writing a bot might be an easier
thing to get started with, especially if one wanted
to get a proof of concept implementation up and
running quickly. It helped that a write-up on how to
implement a Telegram bot on the Raspberry Pi [23]
was easily found. Before going any further it should
be mentioned that a third possible way exists, which
is to use a command line desktop/laptop Telegram
client [11], which would run on the Raspberry Pi,
and could be configured to perform certain tasks on
certain events, such as the receipt of a file from a user,
etc. This approach has both advantages and disad-
vantages. The disadvantages led to the bot approach
being chosen, but the advantages might lead to the
software being implemented using the command line
Telegram client after all in a future iteration.

Just as in the case of running a Telegram bot
on the Raspberry Pi, it was easy to find web pages
giving instructions on using the Telegram command
line client on the Raspberry Pi [24], as a means of
controlling the Raspberry Pi remotely [25] and receiv-
ing notifications from the Raspberry Pi when certain
events happened. Although we worked through the
tutorials listed on those web pages, it was not imme-
diately obvious how to extend the examples given to
achieve what we wanted to achieve.

In contrast, the web pages providing instructions
on implementing a Telegram bot on the Raspberry
Pi [23] lead to a GitHub page containing the software
used to implement the bot [26], which in turn had
slightly more complex examples [27, 28] that could
be extended to achieve what we wanted. The fact
that the bot examples were written in Python, which
the first author is more familiar with, as compared
to Lua, which the Telegram command line client
examples were written in, was also a factor that led
the first author to choose the bot approach. Yet
another factor in choosing the bot approach was
the fact that using the Telegram client required the
first author to use their mobile phone number to
register with the Telegram server [24], as compared
to a bot, which does not require a mobile phone
number [20, 23].

Nevertheless, there is one advantage of using
the Telegram command line client which may lead
to it being used in a future iteration of the software.
The advantage is that as per the existing Telegram
bot API, the maximum size of a file that may be
downloaded by a bot from the Telegram servers is
20MB [29]. This means of course, that the maximum
size of a file that can be sent by a user of our software
is 20MB. For the command line client, as also official
Telegram clients released for various platforms, the

size limitation is much higher, perhaps even as much
as an order of magnitude.

Now, 20MB seems like more than enough for
(LA)TEX files, which are after all like source code.
However, one can never predict how large a (LA)TEX
file a user might wish to compile and print. Further-
more, this 20MB limit can be reached much more
quickly if the user chooses to make references to fig-
ures and other graphics files in their (LA)TEX files, to
be included in the final typeset PostScript/PDF file.

During discussions, the second author stated
that they did not anticipate many of the users they
had in mind needing to exceed that 20MB limit, so
for now the bot approach is the only implementation
that exists. If the software is found generally useful,
a new implementation using the command line client
approach will be done in future.

The implementation of the code took a few days.
Much of this time was spent working through the
tutorial for implementing a Telegram bot on the
Raspberry Pi [23], trying to understand and then
extend the more complex examples given on the
website of the software used to implement the bot
API [27, 28, 30], known as telepot [26], trying to
understand the Telegram bot API [31] per se, and
simply brushing up the first author’s Python and
general programming knowledge.

Further time was taken up when the function
provided by telepot to download a file [32] was found
not to work. In this case that meant the code would
hang at that point, until one was forced to kill the bot.
Initially a workaround was coded whereby wget [33,
34] was used to directly download the file from the
Telegram servers. After digging into the implemen-
tation of the file download function, and doing some
research online [35], using comments in the telepot
source code itself [36], we were able to patch the tele-
pot source files to make the download file function
work correctly. The patch itself is trivial although
the effort to figure out what to do was not. It will
be submitted to the author of telepot.

There was also the time involved in searching
for LATEX server implementations, i.e. some software
that listens on the network, receives LATEX files from
clients and does something with it, either compile
it and send back the typeset output or print it or
something else. We found a few interesting links
but nothing that fit our purpose [37–41]. On the
other hand, those web searches did provide pointers
to what was eventually implemented [42, 43].

5 User experience and implementation

As currently implemented, the user will have the
following experience when interacting with the bot.

Amartyo Banerjee and S.K Venkatesan



TUGboat, Volume 37 (2016), No. 2 225

First, the prerequisites. The user will have to down-
load and install the official Telegram client for their
smartphone [44–46]. There is a registration process
which requires providing a mobile phone number,
which is used by the Telegram server for verification
and to complete the installation of the client pro-
gram. This is similar to the process used to install
other mobile phone centric messaging applications
like WhatsApp and Viber. Any user who has suc-
cessfully installed and used these other applications
to communicate with others should have no problem
completing this process on Telegram.

After this, they have to search for the bot,
named AmartyoFirstBot. On selecting this bot from
the search results, initially a button labelled ‘Start’
will appear, which has to be pressed. According to
the bot API documentation [47], this is one of the
commands to which the bot must give a response,
but at present it does nothing. At this point a chat
session will be opened with the bot. The interface at
this point is similar to opening a chat with a user on
the other messaging applications mentioned earlier.

Now the user has to select an attachment to
send, by pressing the button on the phone touch-
screen that resembles a paper clip. This brings up
a series of icons, which are meant to select photos,
videos, music, voice clips and documents. The icon to
send documents must be selected, and then a LATEX
file selected using the file manager interface. Once
selected the user is taken back to the chat session,
and an icon appears the pressing of which sends the
LATEX file to the bot.

It must be emphasized at this point that the
process of installing Telegram, searching for a contact
or another Telegram user or a bot, is identical for
every Telegram user whether or not they ever interact
with our bot. The same applies to starting a chat
session, either with a user or a bot, and for selecting
an attachment to send and sending it.

What is unique in our case is that when a LATEX
file is sent, the user will ultimately see that a bot has
sent a PDF file as a message, and will have an option
to download it. On downloading it, they can tap on
the icon and the PDF file will display in whichever
application is configured to display PDF files.

On the server side, the bot, on receiving a chat
message, checks if it has been sent a document, and
if that document is a LATEX file. If so, it down-
loads that file and saves it in a temporary directory.
It then changes to that directory and invokes the
latexmk [48] command on the received LATEX file,
using Python’s facility for calling external programs.
In the invocation it passes certain parameters to
latexmk, along with the name of the LATEX file. One

Figure 2: The LATEX bot

of these specifies that latexmk should try to create a
PDF file, which by default latexmk does by invoking
the pdflatex [49] command. The bot checks the
return code of latexmk, and if the return code indi-
cates that latexmk succeeded, it proceeds to send the
PDF file created by latexmk to the user who had sent
the LATEX file. At this point the bot changes back to
the directory it was in before it received the LATEX
file. It continues running, waiting for messages.

6 Future functionality

As mentioned above, the bot is strictly a proof of
concept at this point. It lacks functionality and also
robust error handling, not to mention any effort at
sanitizing what it receives from the user. In terms of
functionality, the most obvious thing missing is the
ability to handle anything more than a single TEX
file. Thus, a user who has written a thesis or report
in LATEX, which typically include a single master TEX
file with reference to multiple other LATEX files, each
containing either the text of a chapter, or maybe
references to other LATEX files, as well as figures and
other pictures, will not be able to use the bot to
compile and print that report or thesis.

The authors have an idea for implementing this
functionality. It involves allowing the user to send
the bot a zip file containing all the LATEX and other
files needed to compile and produce a report, such
as figures. It will be the user’s responsibility to
make sure the folder structure inside the zip file
corresponds to the declarations in the main LATEX
file, such that invoking latexmk on the main file
will successfully find all the other LATEX files and
any (Encapsulated) PostScript or other graphics files
needed, as well as any non-standard fonts or other
files. If the user wishes to use fonts beyond those
that every TEX installation is expected to have by
default, it will be their responsibility to include those

A Telegram bot for printing LATEX files



226 TUGboat, Volume 37 (2016), No. 2

font files inside the zip file at the correct path such
that latexmk can find them.

The bot will expect the name of the zip file, the
part before the .zip extension, to be the same as the
name of LATEX file inside it. This LATEX file contain-
ing the same name as the zip file will be expected
to be the main LATEX file, on which latexmk will
be invoked. On successful compilation, the resulting
PDF file will be sent back to the user and/or printed.

Other ideas for functionality include options for
letting the user indicate if they wish to simply receive
the PDF file or to actually print it. In the latter case,
they will initially receive the PDF file to verify that
the output is as they expect, and then an option to
approve the final print. This will be important in
case the bot is used in a business, such as a print
shop. Requiring the user to approve the PDF before
printing should help in avoiding disputes where the
user claims the printed output does not look like
they wanted it to and refuses to pay for the print.

At this point it is not clear how this “approve
before printing” functionality will be implemented.
The Telegram bot API already provides a variety of
information such as the user id, the chat session id,
the message id, etc. This will have to be kept track
of in some sort of database, using which the bot will
be able to know whom it received a particular TEX
or zip file from, that the compilation succeeded and
the PDF file was successfully sent back to that user,
and that the user has approved it and agreed to print
it. Some sort of record will have to kept of the fact
that a user has approved a printout. On the user
end, perhaps a combination of custom keyboards,
which is functionality provided by the Telegram bot
API, can be used to provide a user interface for this
approval functionality.

Other functionality that needs to be implemented
is the /start command, which every bot is expected
to implement, along with a few others [47].

7 Becoming production ready

As far as error handling is concerned, at present
if latexmk returns a non-zero error code, the bot
simply exits with an error code of 1. This is obviously
not suitable for production purposes. If latexmk fails
to compile the TEX document, the bot should send
relevant error messages back to the user, to enable
the user to correct whatever errors caused latexmk

to fail, whether in the syntax of a single LATEX file,
or in the paths where other LATEX files or graphics/
font files are supposed to exist.

It might also be the case that latexmk fails be-
cause the user intended to produce PostScript as
the final output, not PDF, and that pdfLATEX has

failed because the LATEX files refer to PostScript files
for use as figures, not Encapsulated PostScript. In
that case, since PostScript is perfectly suitable for
printing, the bot should attempt to invoke latexmk

with the option to produce a PostScript file as the
final output, not PDF. Software for viewing PDF

files is widespread nowadays, but this is not the case
for PostScript files. For the purpose of sending some-
thing back to the user, the PostScript file produced
by latexmk should be converted using ps2pdf [50],
and this PDF file can then be sent by the bot. On the
other hand, the PostScript file produced by latexmk

should be the one sent to the printer by the bot.
Similarly, the user may have intended for their

files to be compiled by X ELATEX [51, 52] rather
than pdfLATEX, in which case the bot should invoke
latexmk appropriately.

Perhaps one approach is to invoke latexmk by
default with the -pdf option, then try with the
-xelatex option, and if that fails try with the -ps

option. If all these fail, the bot should give up and
send an appropriate error message back to the user.

A more tricky case arises in cases where latexmk
returns 0, but the resulting PDF still does not contain
what the user intended. This can happen for exam-
ple when trying to typeset music using LATEX and
the abc [53] notation. We noticed that if there was
a syntax error in the abc notation within the LATEX
file [54, 55], a PDF file might get successfully created
but with the actual typeset music missing. This
is because in this case latexmk, or even pdflatex,
invokes another program called abcm2ps [56, 57],
which fails to compile the erroneous abc syntax. The
abcm2ps program does print error messages indicat-
ing that it has failed. However, it either does not exit
with appropriate error codes, or those are ignored
by pdflatex and/or latexmk, most likely pdflatex.
As a result latexmk returns 0 to indicate success
when in fact this is not the case.

Perhaps one option is to check if the LATEX file
is using the relevant LATEX package for abc notation,
and in that case check the output of latexmk for
the known error messages by abcm2ps indicating
that it has failed. In which case the misleading zero
exit code of latexmk should be ignored, and the
bot should send back the relevant error messages
of abcm2ps. However, this will make the bot code
more complicated, so perhaps a better approach is to
make changes to either abcm2ps or pdflatex, which
ever it needs to be, such that if abcm2ps fails then
pdflatex should exit with a non-zero value.

What is to be done if latexmk received a sig-
nal [58] causing it to exit uncleanly is not clear to the
authors at the moment. It seems to the first author

Amartyo Banerjee and S.K Venkatesan



TUGboat, Volume 37 (2016), No. 2 227

at present that the options are for the bot to treat it
as a transient error and try invoking latexmk again,
or assume that something is seriously wrong with the
system it is running on, try to send an appropriate
error message to the user, and exit as cleanly as it
can. More thought and discussion is required before
any decision can be taken.

Last but not least, to be production ready, the
bot must implement sanitization of inputs submit-
ted by the user. This is a necessity for any internet
facing server software in this era of SQL injection
attacks [59], cross site scripting attacks [60], priv-
ilege escalation [61] and arbitrary remote code ex-
ecution vulnerabilities [62], which are often made
possible by not sanitizing or improperly sanitizing
user inputs [63, 64], especially when provided by
some unknown and untrusted user over the Internet.
Measures to be taken that come to mind immediately
are making sure the names of files submitted by the
user are sane, and that certain metadata needed by
the bot are present, even in cases where the bot API

says such metadata is optional [65]. Other measures
include making sure that the contents of files submit-
ted by the user match their claimed mime type, and
that they are not in fact viruses and/or some other
malware. This is a subject in which the first author
does not have much expertise, and more research
is needed to ensure that the bot implements proper
input sanitization.

8 Potential for a complete rewrite

In the long run the bot may need to be re-written
in Python 3, simply to take advantage of the fact
that telepot provides an API to write asynchronous
code, which might well be a necessity for scalability
reasons at some point in the future, but only for
Python 3 [66]. This will involve learning about the
differences between Python 2 and Python 3, and
about how to program asynchronously in Python 3,
and then how to use telepot in an asynchronous man-
ner. This will take quite a lot of time, so we only
expect to do it if and when the bot becomes popular
enough that scalability issues matter. At any rate,
it will be done after implementing necessary func-
tionality and fixing the error handling and sanitizing
user inputs as listed above.

9 Epilogue

At the time of completion of the first draft of this
paper, the bot had been written and was running
on the first author’s laptop. The Raspberry Pi on
which the bot was meant to run was delivered to the
first author on 10th June, 2016. Subsequently the
Raspberry Pi was powered up and made to run and

the prerequisites for getting the bot running on the
Raspberry Pi were installed and configured. As of
the current date the bot is installed on the Raspberry
Pi. It currently needs to be started manually, once
the Raspberry Pi is powered up.

Making sure the bot starts running automati-
cally upon powering up the Raspberry Pi is one of
the improvements to be done in future, along with
all the other improvements outlined above, including
printing functionality.

References

[1] telegram.org

[2] core.telegram.org/bots

[3] www.raspberrypi.org/help/what-is-a-

raspberry-pi

[4] www.raspberrypi.org/forums/viewtopic.

php?f=63&t=8279

[5] martin-thoma.com/how-to-write-music-

with-latex

[6] www.highschoolmathandchess.com/2011/10/

06/creating-chess-diagrams

[7] www.whatsapp.com

[8] www.viber.com/en

[9] www.instructables.com/id/WhatsApp-on-

Raspberry-Pi/?ALLSTEPS

[10] core.telegram.org/mtproto

[11] github.com/vysheng/tg

[12] core.telegram.org/api

[13] archive.org/web

[14] github.com/tgalal/yowsup

[15] github.com/mgp25/Chat-API

[16] github.com/mgp25/Chat-API/wiki/

WhatsApp-incoming-updates#11-july-2015

[17] www.docdroid.net/gWpFsXz/whatsapps-

cease-and-desist-and-demand-against-

chat-api.pdf.html

[18] www.instructables.com/id/WhatsApp-on-

Raspberry-Pi/step2/Registration

[19] core.telegram.org/api#telegram-api

[20] core.telegram.org/api#bot-api

[21] en.wikipedia.org/wiki/IRC_bot

[22] en.wikipedia.org/wiki/Internet_Relay_

Chat

[23] www.instructables.com/id/Set-up-

Telegram-Bot-on-Raspberry-Pi/?ALLSTEPS

[24] www.instructables.com/id/Telegram-on-

Raspberry-Pi/?ALLSTEPS

[25] www.instructables.com/id/Raspberry-

remote-control-with-Telegram/?ALLSTEPS

A Telegram bot for printing LATEX files



228 TUGboat, Volume 37 (2016), No. 2

[26] github.com/nickoala/telepot

[27] github.com/nickoala/telepot/blob/

master/examples/simple/skeleton.py

[28] github.com/nickoala/telepot/blob/

master/examples/simple/skeleton_route.

py

[29] core.telegram.org/bots/api#getfile

[30] github.com/nickoala/telepot/blob/

master/doc/reference.rst

[31] core.telegram.org/bots/api

[32] github.com/nickoala/telepot/blob/

master/telepot/__init__.py#L460

[33] en.wikipedia.org/wiki/Wget

[34] www.gnu.org/software/wget

[35] stackoverflow.com/questions/17285464/

whats-the-best-way-to-download-file-

using-urllib3

[36] github.com/nickoala/telepot/blob/

master/telepot/__init__.py#L473

[37] alex.nederlof.com/blog/2013/02/22/

latex-build-server

[38] web.archive.org/web/20120120210031/

http://bugsquash.blogspot.com/2010/

07/compiling-latex-without-local-

latex.html

[39] scribtex.wordpress.com/2010/01/17/the-

common-latex-service-interface

[40] github.com/jpallen/clsi

[41] launchpad.net/rubber

[42] superuser.com/questions/173914/dropbox-

latex-automated-pdf-compile

[43] latex-community.org/forum/viewtopic.

php?f=28&t=9512

[44] telegram.org/dl/android

[45] telegram.org/dl/ios

[46] telegram.org/dl/wp

[47] core.telegram.org/bots#global-commands

[48] users.phys.psu.edu/~collins/software/

latexmk

[49] tug.org/applications/pdftex

[50] www.ghostscript.com/doc/current/Ps2pdf.

htm

[51] xetex.sourceforge.net

[52] tug.org/xetex

[53] abcnotation.com

[54] martin-thoma.com/how-to-write-music-

with-latex/#abc

[55] martin-thoma.com/how-to-write-music-

with-latex/#example

[56] moinejf.free.fr

[57] abcplus.sourceforge.net/#abcm2ps

[58] en.wikipedia.org/wiki/Unix_signal

[59] en.wikipedia.org/wiki/SQL_injection

[60] en.wikipedia.org/wiki/Cross-site_

scripting

[61] en.wikipedia.org/wiki/Privilege_

escalation

[62] en.wikipedia.org/wiki/Arbitrary_code_

execution

[63] en.wikipedia.org/wiki/Improper_input_

validation

[64] xkcd.com/327

[65] core.telegram.org/bots/api#document

[66] github.com/nickoala/telepot#async

� Amartyo Banerjee and S.K Venkatesan
TNQ Books and Journals
Chennai, India
http://tnqsoftware.co.in

Amartyo Banerjee and S.K Venkatesan


