
TUGboat, Volume 37 (2016), No. 3 269

LuaTEX 0.82 OpenType math enhancements

Hans Hagen

Abstract

LuaTEX 0.82 (and later) have had improvements in
OpenType math typesetting.

1 Introduction

When TEX typesets mathematics it makes some as-
sumptions about the properties of fonts and dimen-
sions of glyphs. Due to practical limitations in the
traditional eight-bit fonts, such as the number of
available characters in a font and a limited number
of heights and depths, some juggling takes place.
For instance, TEX sometimes uses dimensions as a
signal to treat some characters as special. This is
not a problem as long as one knows how to make
a font and in practice that was done by looking at
the properties of Computer Modern to implement
similar shapes. After all, there are not that many
math fonts around and basically there is only one
engine that can deal with them properly.

However, when Microsoft set the standard for
OpenType math fonts it also steered the direction
of their use in rendering mathematics. This means
that the LuaTEX engine, which handles OpenType
fonts, has to implement some alternative code paths.
At the start, this involved a bit of gambling because
there was no real specification; since then we now
have a better picture. One of the more complex
changes that took place is in the way italic correction
is applied. A dirty way out of this dilemma would be
to turn the math fonts into virtual ones that match
traditional TEX properties, but this would not be a
nice solution.

It must be noted that in the process of imple-
menting support for the new fonts, Taco (Hoekwater)
turned some noad types (see below) into a generic
noad with a subtype. This simplified the transition.
At the same time, a lot of detailed control was added
in the way successive characters are spaced.

In LuaTEX before 0.85, the italic correction was
always added when a character got boxed (a fre-
quently used preparation in the math builder). Now
this is only done for the traditional fonts because,
concerning italic correction, the OpenType standard
states:1

1. When a run of slanted characters is followed by
a straight character (such as an operator or a
delimiter), the italic correction of the last glyph
is added to its advance width.

1 Recently version 1.8 has been published on the Microsoft
website.

2. When positioning limits on an N-ary operator
(e.g., integral sign), the horizontal position of
the upper limit is moved to the right by half of
the italic correction, while the position of the
lower limit is moved to the left by the same
distance.

3. When positioning superscripts and subscripts,
their default horizontal positions are also differ-
ent by the amount of the italic correction of the
preceding glyph.

And, with respect to kerning:

4. Set the default horizontal position for the su-
perscript as shifted relative to the position of
the subscript by the italic correction of the base
glyph.

I must admit that when the first implementa-
tion showed up, my natural reaction to unexpected
behaviour was just to compensate for it. One such so-
lution was simply not to pass the italic correction to
the engine and deal with it in Lua. In practice, that
didn’t work well for all cases; one reason was that the
engine saw the combination of old fonts as a new one
and followed a mixed code path.2 Another approach
I tried was a mix of manipulated italic values and
Lua, but finally, as specifications settled I decided
to leave it to the engine completely, if only because
successive versions of LuaTEX behaved much better.

So, as we were closing in on the first stable re-
lease of LuaTEX (1.0.0 was released on September 27,
2016; this note was mostly written in the early part
of 2016), I decided to fix the pending issues and sat
down to look at the math-related code. I must admit
that I had never looked in depth into that part of
the machinery. In the next sections I will discuss
some of the outcomes of this exercise.

I will also discuss some extensions that have been
on the agenda for years. They are rather generic
and handy, but I must also admit that the MkIV

code related to math has so many options to control
rendering that I’m not sure if they will ever be used
in ConTEXt. Nevertheless, these generic extensions
fit well into the set of basic features of LuaTEX.

2 Italic correction

As stated above, the normal code path included
italic correction in all the math boxes made. This
meant that, in some places, the correction had to
be removed and/or moved to another place in the
chain. This is a natural side effect of the fact that
TEX runs over the intermediate list of math nodes

2 ConTEXt employed Unicode math right from the start
of LuaTEX.

LuaTEX 0.82 OpenType math enhancements

270 TUGboat, Volume 37 (2016), No. 3

∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__

2H____V
H__

Figure 1: Italic correction examples (1):
superscripts shifted right and subscripts left.

∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ ∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__

Figure 2: Italic correction examples (2):
plain integral vs. integral with limits

(noads) and turns them into regular nodes, mostly
glyphs, kerns, glue and boxes.

The complication is not so much the italic cor-
rections themselves, because we could just continue
to do the same, but the fact that these corrections
are to be interpreted differently in case of integrals.
There, the problem is that we have to (kind of) look
backward at what is done in order to determine what
italic corrections are to be applied.

The original solution was to keep track of the
applied correction via variables but that still made
some analysis necessary. In the new implementation,
more information is stored in the processed noads.
This is a logical choice given that we have already
added other information. It also makes it possible to
fix cases that will (for sure) show up in the future.

In figure 1 we show two examples of inline italic
correction. The superscripts are shifted to the right
and the subscripts to the left. In the case of an
integral sign, we need to move half the correction.
This is triggered by the \nolimits primitive. In fig-
ure 2 we show the difference between just an integral
character and one tagged as having limits.3

The amount of correction, if present at all, de-
pends on the font, and in this document we use
DejaVu math. Figure 3 shows a few variants. As
you can see, the amount of correction is highly font
dependent.

3 Vertical delimiters

When we go into display math, there is a good chance
that an integral has to be enlarged. The integral
sign in Unicode has slot 0x222B, so we can define a
bigger one as follows:

\def\standardint{\Umathchar "1 "0 "222B }

\def\wrappedint{\mathop{\Umathchar "1 "0 "222B}}

\def\biggerint{\mathop{

\Uleft height3ex depth3ex axis

3 We show some boxes so that you can get an idea what
TEX is doing. Essentially, TEX puts superscripts and sub-
scripts on top of each other with some kern in between and
then corrects the dimensions.

∫H__

2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ 𝑓 2H__

H__ 𝑓2H__
H__ 𝑓 2H__

2H____V
H__

cambria

∫H__

2H__

H__ ∫H__
2H__

H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__

2H____V
H__

pagella

∫H__

2H__

H__ ∫H__
2H__

H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__
H__ 𝑓2H__

2H____V
H__

latin modern

∫H__
2H__

H__ ∫H__ 2H__
H__ ∫H__

2H__

2H____V
H__ 𝑓2H__

H__ 𝑓2H__H__ 𝑓2H__

2H____V
H__

lucida ot

Figure 3: Italic correction examples (3):
correction amounts are font-dependent.

\Udelimiter "0 "0 "222B \Uright .}}

\def\evenbiggerint{\mathop{

\Uleft height 6ex depth 6ex axis

\Udelimiter "0 "0 "222B \Uright .}}

The axis keyword will apply a shift up over the
size of the current styles math axis. We use this in
some examples as:

$

\displaystyle\standardint ^a_b\enspace

\displaystyle\wrappedint ^a_b\enspace

\displaystyle\biggerint ^a_b\enspace

\displaystyle\evenbiggerint^a_b\enspace

$

In figure 4 you can see some subtle differences.
The wrapped version doesn’t shift the superscript
and subscript. The reason is that the operator is
hidden in its own wrapper and the scripts attach
at an outer level. So, unless we start analyzing the
innermost noad and apply that to the outer, we
cannot know the shift. Such analyzing is asking
for problems: where do we stop and what slight
variations do we take into account? It’s better to be
predictable.

Another observation is that Latin Modern does
not provide (at least not yet) large integrals at all.

The following four cases are equivalent:

\Uleft height 3ex depth 3ex axis

\Udelimiter "0 "0 "222B

\Uright .

\Uleft .

\Uright height 3ex depth 3ex axis

\Udelimiter "0 "0 "222B

\Uleft .

\Umiddle height 3ex depth 3ex axis

Hans Hagen

TUGboat, Volume 37 (2016), No. 3 271

𝑎H__

∫H__

𝑏H____V

𝑎H__

∫H__

__V

𝑏H____V

𝑎H__

∫H__H__
H__

H__

𝑏H____V

𝑎H__

∫H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__

∫H____V

H__
H__

H__

𝑏H____V

𝑎H__

H__H__

𝑏H____V

𝑎H__

H__H__

__V

𝑏H____V

𝑎H__

H__H__
H__

H__

𝑏H____V

𝑎H__

⌠H__

⎮H__

⎮H__

⎮H__

⌡H____V

H__
H__

H__

𝑏H____V

𝑎H__

∫H__

𝑏H____V

𝑎H__

∫H__

__V

𝑏H____V

𝑎H__

∫H__H__
H__

H__

𝑏H____V

𝑎H__

∫H__H__
H__

H__

𝑏H____V

𝑎H__

∫H__H__

𝑏H____V

𝑎H__

∫H__H__

__V

𝑏H____V

𝑎H__

⌠H__⎮H__⎮H__

⌡H____V

H__
H__

H__

𝑏H____V

𝑎H__

⌠H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__⎮H__

⌡H____V

H__
H__

H__

𝑏H____V

Figure 4: Comparison of integral variants (standard, wrapped, bigger, even bigger)
among fonts: TEX Gyre Pagella, Cambria, Latin Modern, and Lucida OT.

∫ ∫

⌠
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫

⌠
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

noaxisFigure 5: Cambria integrals, adaptive; axis left,
noaxis right.

(
⎛
⎜

⎝

⎛
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜

⎝

(((

⎛
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜
⎜
⎜

⎝

noaxisFigure 6: Cambria left parenthesis, adaptive;
axis left, noaxis right.

\Udelimiter "0 "0 "222B

\Uright .

\Uleft .

\Umiddle height 3ex depth 3ex axis

\Udelimiter "0 "0 "222B

\Uright .

However, because this all looks a bit clumsy, we
now provide a new primitive:

\Uvextensible

height 〈dimension〉
depth 〈dimension〉
[no]axis
exact

〈delimiter〉
The symbol to be constructed will have size

height plus depth. When an axis is specified, the
symbol will be shifted up, which is normally the case

∫ ∫ ∫

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

∫ ∫ ∫

⌠
⎮
⎮
⎮
⎮
⎮
⎮

⌡

⌠
⎮
⎮
⎮
⎮

⌡

axis exact axis exact

Figure 7: Cambria integrals, with dimensions.

((

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

((

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

((

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

((

⎛
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎜
⎜
⎜

⎝

axis exact axis exact

Figure 8: Cambria left parenthesis, with dimensions.

for such symbols. The keyword exact will correct
the dimensions when no exact match is made, and
this can be the case as long as we use the stepwise
larger glyphs and before we end up using the com-
posed shapes. When no dimensions are specified, the
normal construction takes place and the only key-
word that can be used then is noaxis which keeps
the axis out of the calculations. After about a week
of experimenting and exploring options, this combi-
nation made most sense, read: no fuzzy heuristics
but predictable behaviour. After all, one might need
different solutions for different fonts or circumstances
and the applied logic (and expectations) can (and
will, for sure) differ per macro package. Figures 5–8
show some examples.

4 Horizontal delimiters

Horizontal extenders also have some new options. Al-
though one can achieve similar results with macros,
the following might look a bit more natural. Also,

LuaTEX 0.82 OpenType math enhancements

272 TUGboat, Volume 37 (2016), No. 3

(default) ↔ ↔ ↔ ↔ ↔ ↔ ↔
↔ ↔ ↔ ↔ ↔ ↔ ↔

left ↔↔ ↔ ↔ ↔ ↔ ↔
↔↔ ↔ ↔ ↔ ↔ ↔

middle ↔↔ ↔ ↔ ↔ ↔ ↔
↔↔ ↔ ↔ ↔ ↔ ↔

right ↔↔ ↔ ↔ ↔ ↔ ↔
↔↔ ↔ ↔ ↔ ↔ ↔

Figure 9: Stepwise wider \Uhextensible with options
(Cambria).

(default) !
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

left !
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

middle !
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

right !
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

!
↔

Figure 10: Stepwise wider \Udelimiterunder with
options (Cambria).

some properties are lost once the delimiter is con-
structed, so macros can become complex when trying
to determine the original dimensions involved.

We start with the new \Uhextensible primitive
that accepts a dimension. It’s just a variant of the
over and under delimiters with no content part.

\Uvextensible

height 〈dimension〉
depth 〈dimension〉
left | middle | right
〈family〉
〈slot〉

So for example you can say:

$\Uhextensible width 30pt 0 "2194$

The left, middle and right keywords are only
interpreted when the requested size can’t be met
due to stepwise larger glyph selection (i.e., before we
start using arbitrary sizes made of snippets). Figure 9
shows what we get when we step from 2–20 points
by increments of 2 points in Cambria.

The dimensions and options can also be given
to the four primitives:
\Uoverdelimiter \Uunderdelimiter

\Udelimiterover \Udelimiterunder

Figure 10 shows what happens when the delimiter is
smaller than requested. The source for the samples
looks like this:

$\Udelimiterunder width 1pt 0 "2194

{\hbox{\strut !}}

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

xits – has variants

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

cambria – lacks variants

∑̸800 ∑̸900 ∑̸1000 ∑̸1100 ∑̸1200 ∑̸1300 ∑̸1400 ∑̸1500

pagella – lacks variants

Figure 11: Using overlay in \Umathaccent.

When no dimension is given the keywords are
ignored as it makes no sense to mess with the exten-
sible in that case.

5 Accents

Many years ago, I observed that overlaying charac-
ters (which happens when we negate an operator
which has no composed negation glyph) didn’t al-
ways give nice results and, therefore, a tracker item
was created. When going over the todo list, I ran
across a suggested patch by Khaled Hosny that added
an overlay accent type. As the suggested solution
fits in with the other extensions, a variant has been
implemented.

The results definitely depend on the quality and
completeness of the font, so here we will use XITS.
The placement of an overlay also depends on the
top accent shift as specified in the font for the used
glyph. Instead of a fixed criterion for trying to find
the best match, an additional fraction (numerator)
parameter can be specified. A value of 800 means
that the target width is 800/1000.

The \Umathaccent command now has the fol-
lowing syntax:

\Umathaccent

[top | bottom | overlay]
[fixed]
[fraction 〈number〉]
〈delimiter〉
{〈content〉}
When we have an overlay, the fraction concerns

the height; otherwise it concerns the width of the
nucleus. In both cases, it is only applied when search-
ing for stepwise larger glyphs, as extensibles are not
influenced. An example of a specification is:

\Umathaccent

overlay "0 "0 "0338

fraction 950

{\Umathchar"1"0"2211}

Figure 11 shows what we get when we use dif-
ferent fractions (from 800 up to 1500 with a step of
100). We see that \overlay is not always useful.

Normally you can forget about the factor be-
cause overlays make most sense for inline math, which

Hans Hagen

TUGboat, Volume 37 (2016), No. 3 273

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

Figure 12: Skewed fraction results in Latin Modern.

uses relatively small glyphs, so we can get �̸� x̸ ̸xxx
with the following code:

$\Umathaccent overlay "0 "0 "0338 {x}$

$\Umathaccent overlay "0 "0 "0338 {\tf x}$

$\Umathaccent overlay "0 "0 "0338 {\tf xxx}$

A normal accent can also be influenced by fraction:

⏞𝑎 × 𝑏 ⏞𝑎 × 𝑏 ⏞𝑎 × 𝑏 ⏞𝑎 × 𝑏 ⏞⏞⏞𝑎 × 𝑏

6 Fractions

A normal fraction has a reasonable thick rule but as
soon as you make it bigger you will notice a peculiar
effect:

𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Such a fraction is specified as:

x + { {a} \abovewithdelims () 5pt {b} }

A new keyword exact avoids the excessive spacing:

x + { {a} \abovewithdelims () exact 5pt {b} }

Now we get:

𝑥 + (𝑎
𝑏) 𝑥 + (𝑎

𝑏) 𝑥 + (𝑎
𝑏

) 𝑥 + (𝑎
𝑏

) 𝑥 + (𝑎
𝑏

)

1pt 2pt 3pt 4pt 5pt

One way to get consistent spacing in such frac-
tions is to use struts:

x + { {\strut a} \abovewithdelims () exact 5pt

{\strut b} }

Now we get:

𝑥 + (
𝑎
𝑏

) 𝑥 + (
𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
) 𝑥 + (

𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Yet another way to increase the distance be-
tween the rule and text a bit is:

\Umathfractionnumvgap \displaystyle4pt

\Umathfractiondenomvgap\displaystyle4pt

This looks quite consistent:

𝑥 + (𝑎
𝑏

) 𝑥 + (𝑎
𝑏

) 𝑥 + (
𝑎
𝑏

) 𝑥 + (
𝑎
𝑏

) 𝑥 + (
𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Here we use code like:

$\displaystyle x +

{{a} \abovewithdelims() exact 2pt {b}}$

Using struts, it is best to zero the gap:

𝑥 + (𝑎
𝑏

) 𝑥 + (
𝑎
𝑏

) 𝑥 + (
𝑎
𝑏

) 𝑥 + (
𝑎
𝑏

) 𝑥 + (
𝑎

𝑏
)

1pt 2pt 3pt 4pt 5pt

Here we use code like:

$\displaystyle x + {{\strut a} \abovewithdelims()

exact 2pt {\strut b}}$

7 Skewed fractions

The math parameter table contains values specify-
ing horizontal and vertical gaps for skewed fractions.
Some guessing is needed in order to implement some-
thing that uses them, so we now provide a primitive
similar to the other fraction related ones but with a
few options that one can use to influence the render-
ing. Of course, a user can mess around directly
with the parameters \Umathskewedfractionhgap

and \Umathskewedfractionvgap.
The syntax used here is:

{ {1} \Uskewed / 〈options〉 {2} }

{ {1} \Uskewedwithdelims / () 〈options〉 {2} }

The options can be noaxis and exact, a com-
bination of them or just nothing. By default we add
half the axis to the shifts and also by default we
zero the width of the middle character. For Latin
Modern, the results are shown in figure 12.

8 Side effects

Not all bugs reported as such are really bugs. Here
is one that came from a misunderstanding: In Eijk-
hout’s TEX by Topic, the rules for handling styles in
scripts are described as follows:

• In any style superscripts and subscripts are
taken from the next smaller style. Exception:
in display style they are taken in script style.

LuaTEX 0.82 OpenType math enhancements

274 TUGboat, Volume 37 (2016), No. 3

• Subscripts are always in the cramped variant of
the style; superscripts are only cramped if the
original style was cramped.

• In an ..\over.. formula in any style the nu-
merator and denominator are taken from the
next smaller style.

• The denominator is always in cramped style;
the numerator is only in cramped style if the
original style was cramped.

• Formulas under a \sqrt or \overline are in
cramped style.

In LuaTEX, one can set the styles in more detail,
which means that you sometimes have to set both
normal and cramped styles to get the effect you want.
If we force styles in the script using \scriptstyle

and \crampedscriptstyle we get the following (all
render the same):

default 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

script 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

This is coded as follows:

$b_{x=xx}^{x=xx}$

$b_{\scriptstyle x=xx}^{\scriptstyle x=xx}$

$b_{\crampedscriptstyle x=xx}

^{\crampedscriptstyle x=xx}$

Now we set the following parameters:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

This gives:

default 𝑏𝑥 =𝑥 𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

Since the result is not what is expected (vis-
ually), we should say:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

\Umathordrelspacing\crampedscriptstyle=30mu

\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

default 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

mode down up
0 dynamic dynamic CH2 + CH+

2 + CH2
2

1 𝑑 𝑢 CH2 + CH+
2 + CH2

2

2 𝑠 𝑢 CH2 + CH+
2 + CH2

2

3 𝑠 𝑢 + 𝑠 − 𝑑 CH2 + CH+
2 + CH2

2

4 𝑑 + (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH2 + CH+
2 + CH2

2

5 𝑑 𝑢 + 𝑠 − 𝑑 CH2 + CH+
2 + CH2

2

CH2 + CH+
2 + CH2

2 CH2 + CH+
2 + CH2

2 CH2 + CH+
2 + CH2

2
0 1 2

CH2 + CH+
2 + CH2

2 CH2 + CH+
2 + CH2

2 CH2 + CH+
2 + CH2

2
3 4 5

Figure 13: The effect of setting \mathscriptsmode.

9 Fixed scripts

We have three parameters that are used for anchoring
superscripts and subscripts, alone or in combinations.

d \Umathsubshiftdown

u \Umathsupshiftup

s \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other
than zero, these are used for calculating fixed po-
sitions. This is something that is needed in, for
instance, chemical equations. You can manipulate
the mentioned variables to achieve different effects,
and the specifications are shown in figure 13, with
enlarged examples below the table.

10 Remark

The changes that we have made are hopefully not
too intrusive. Instead of extending existing com-
mands, new ones were introduced so that compati-
bility should not be a significant problem. To some
extent, these extensions violate the principle that
extensions should be done in Lua, but TEX being
a math renderer and OpenType replacing old font
technology, we felt that we should make an exception
here. Hopefully, not too many bugs were introduced.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

Hans Hagen

