
TUGboat, Volume 37 (2016), No. 3 317

GUST e-foundry font projects

Bogusław Jackowski, Piotr Strzelczyk and
Piotr Pianowski

What is a document? It is a sequence of rectangles
containing a collection of graphic elements.
What is a font? It is a sequence of rectangles containing
a collection of graphic elements.
— Marek Ryćko

1 Introduction

The Polish TEX Users Group (GUST) has paid at-
tention to the issue of the fonts since the begin-
ning of its existence. In a way, it was a must, be-
cause the repertoire of the diacritical characters of
the Computer Modern family of fonts (CM), “canon-
ical” TEX family defined as the Metafont programs
(see [5]), turned out to be insufficient for the Polish
language. The efforts of the GUST font team (GUST

e-foundry), led by Bogusław Jackowski, were kindly
acknowledged by the professor Donald E. Knuth:

Obviously, our first fonts were PK bitmap fonts pro-
grammed using Metafont. Alas, the TEX/Metafont
bitmap font format never became the world-wide
standard. Therefore, the next step were fonts in the
PostScript Type 1 format which fairly soon became
obsolescent and was replaced by the OpenType for-
mat (OTF, a joint enterprise of Microsoft and Adobe,
1996, see [31]) which is actually a common container
for the Adobe PostScript Type1 and Microsoft True-
Type (TTF) formats. In 2007, Microsoft extended
the OTF standard with the capability of typesetting
math formulas, largely based on ideas developed for
TEX, and implemented it in MS Office. Soon, TEX
engines were adapted to process such math OTF

fonts. Therefore our recent fonts are released in the
OpenType format, which also makes them easily us-
able outside of the TEX realm.

So far, no OTF successor is in sight, which is
both good and bad (cf. Section 7.4).

We published our partial results successively as
the work progressed. This paper provides an overall
summary of our work: it describes the collections of
fonts prepared by the GUST e-foundry, deals with
some technical issues related to the generation of

fonts and their structure and puts forward a few
proposals concerning future works.

This is not an overly strict report, but rather a
story about our technical work on fonts, illustrated
by representative examples which, we hope, show
the essence of the matter. In order to keep our nar-
ration smooth, we decided not to use formal captions
with explanations to figures and tables (only num-
bers of figures and tables are given). The relevant
detailed descriptions always appear in the main text.

2 Historical background

PostScript and TEX are genetically related: their
common ancestor is the ingenious idea of a program-
ming language for the description of documents un-
derstood as a sequence of rectangular pages filled
with letters and graphics. Both projects were de-
vised nearly at the same time — at the turn of the
1970s to the 1980s.1 And both are still alive and
well, proving that the idea behind both projects was
indeed brilliant.

From our perspective, the most important thing
in common, and at the same time a key distinc-
tive element, was the different handling of fonts and
graphics; in other words, both systems clearly distin-
guished illustrations from fonts. That approach was
justified by the computer technology at that time.

For both TEX and PostScript, fonts were exter-
nal entities, both used metric files plus files defining
glyph shapes, both defined contours as Bézier splines
(planar polynomials of the 3rd degree), and for both
fonts were to be prepared separately with dedicated
font programs, prior to creating documents.

And this exhausts the list of similarities.
TEX worked with binary metric files, TFM; its

output, a device independent file (DVI), was pro-
cessed by so-called drivers which made use of the
“proper” fonts, that is, the relevant bitmap collec-
tions, and produced output that could be sent to a
printer or to a screen. The bitmaps were prepared
independently with the Metafont program(s) which
interpreted scripts written in the Metafont language
and generated TFM and bitmap files.

In Metafont, the shapes of glyphs are defined
as Bézier curves, stroked with a “pen” and/or filled.

Basic PostScript fonts (i.e., Type 1; see [28])
employ contours defined as non-intersecting closed
Bézier outlines which can only be filled.2 The “filled

1 Formally, TEX was released a little earlier — TEX in
1982, PostScript in 1984, both with earlier work.

2 The PostScript Type 1 documentation [28], p. 34, men-
tions the possibility of stroking: a Type 1 font program can
also be stroked along its outline when the user changes the
PaintType entry in the font dictionary to 2. In this case,

GUST e-foundry font projects

318 TUGboat, Volume 37 (2016), No. 3

outline” paradigm relates also to the Microsoft TTF

format and, thereby, to the OTF format.
PostScript Type1 fonts are usually (but not nec-

essarily) accompanied by corresponding ASCII met-
ric files (AFM), not used by the interpreters of the
PostScript language. In the Microsoft Windows op-
erating system, making an already complex situa-
tion even more complex, binary printer font met-
ric files (PFM) were introduced for Windows drivers
that used PostScript Type 1 fonts.

For a long time, only commercial programs for
generating PostScript Type 1 fonts were available.
Only in 2001, George Williams released his remark-
able FontForge program (initially dubbed PfaEdit;
[25]). FontForge can generate outline fonts in many
formats, including PostScript Type 1 and OTF.

PostScript was promptly (and rightly) hailed as
the standard for printers and, more importantly, for
phototypesetters, therefore a driver converting DVI

files to PostScript became necessary. Fortunately
for TEXies, PostScript is equipped also with Type 3
fonts; glyphs in Type 3 fonts can be represented by
nearly arbitrary graphic objects, in particular, by
bitmaps, therefore the making of a PostScript driver
for converting DVI files to PostScript was possible al-
ready in 1986, when Dvips, the first and still most
popular driver was released by Tomas Rokicki. (It’s
a pity that the idea of Type 3 fonts was not sup-
ported and developed by Adobe.)

There were a few unsuccessful attempts to con-
vert the basic TEX font collection, CM, to the Post-
Script Type 1 format automatically, thus preserving
the parameterization. The main hindrance was the
excessive usage of stroked (both painted and erased)
elements in the CM font programs, while, as was
mentioned previously, the PostScript Type 1 and
OTF formats accept only filled shapes.

The “filled outline” paradigm was a convenient
optimization at the beginning of the computer type-
setting era, when, for example, the generating of the
complete collection of bitmaps for the CM fonts at
resolution, say, 240 dots per inch (typical for dot
matrix printers) took a few days. Nowadays, the
paradigm still thrives by virtue of tradition: there
is an abundance of such fonts and, and what is worse,
all operating systems support only this kind of font.

3 First steps

Taking the above into account, we made up our
minds to design our own programmable system for
generating fonts in “world-compatible” formats.

overlapping subpaths will be visible in the output; this yields
undesirable visual results in outlined characters. In practice,
this possibility is not used.

3.1 Our tools

Our primary tool was MetaPost [4], a successor of
Metafont, which promised well as a tool for mak-
ing PostScript Type 1 fonts due to its native Post-
Script output. We called our MetaPost-based pack-
age MetaType 1 [13]. It was instantiated as a set of
scripts using, besides MetaPost, T1utils, that is, Lee
Hetherington’s (dis)assembler for PostScript Type 1
fonts (cf. [3, 4]). A few scripts written in Gawk and
Perl were also employed.

On the one hand, such a simple approach turned
out to be insufficient for generating OTF fonts, in
particular OTF math fonts. On the other hand, it
turned out to be flexible enough to include an extra
external step for making OTF fonts. For text fonts,
we employed the Adobe Font Development Kit for

OpenType (AFDKO [26]); for math fonts, the Font-
Forge library governed by Python scripts [15, 25].
In the future, we want replace AFDKO by a Font-
Forge+Python utility (cf. Section 7).

A set of MetaPost macros in the MetaType 1
package defines two important procedures, essential
for generating non-intersecting outlines and heavily
used in our font programs: finding a common outline
for overlapping figures, known also as removing over-
laps, and finding the outline of a pen stroke, known
as expanding strokes or finding the pen envelope.

Another important feature, hinting, is imple-
mented, but, in the end, we decided to avoid man-
ual hinting, since it is difficult to control and yields
mediocre results. Metafont has no notion of hint-
ing — the Metafont language simply offers rounding.
Moreover, the language for describing outlines in
PostScript Type 1 fonts cannot express even as triv-
ial a mathematical operation as rounding.

For low-resolution devices, controlled rounding
is crucial — hence the idea of “hinting”, that is, con-
trolled rounding. Alas, hinting algorithms remain
undisclosed, especially with regard to commercial
typesetting devices such as phototypesetters. One
can presume, however, that low-resolution devices
are bound to disappear sooner rather than later: the
resolution of display devices has reached almost 600
dpi and 1200 dpi (and more) for printers is nowa-
days nothing special. Therefore, running with the
hare and hunting with the hounds, we decided to
hint our recently released OTF fonts automatically
with FontForge.

3.2 Trying our tools out

We tested our newborn MetaType 1 engine against
a simple example, namely, Donald E. Knuth’s logo

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 319

font [17]: the sources, originally written in the Meta-
font language, were adapted to MetaType1’s require-
ments. The distributed package contains both Meta-
Type 1 sources and the resulting PostScript Type 1
files for the logo font [13].

The test proved the usefulness of the approach;
hence, in 1999, we started a larger project: the pro-
gramming of the long-established Polish typeface
Antykwa Półtawskiego as a parameterized font. The
preliminary family of fonts was released in 2000. Ten
years later, prompted by the TEX community, we
released the enhanced version of Antykwa Półtaw-

skiego with the relevant OTF files [7]. In parallel,
Janusz M. Nowacki used MetaType 1 to generate
several replicas of Polish fonts, namely, Antykwa To-

ruńska, Kurier, Iwona, and Cyklop [22].

4 Latin Modern collection of fonts

Recall that the repertoire of diacritical characters in
CM fonts was insufficient for most languages using
diacritical characters. The TEX accenting mecha-
nism (the \accent primitive), meant as a solution to
this problem, was unsatisfactory — for example, ac-
cents and hyphenation conflicted. The problem was
recognized relatively early and various approaches
were used to remedy the situation.

For example, the Polish extension of CM in the
PK format was prepared in Poland (PL fonts, [8]),
but this worked only for Polish TEXies.

Also worthy of note is the European Computer

Modern Fonts (EC) project led by Jörg Knappen and
Norbert Schwarz, triggered during the TEX Users
Group conference in Cork, 1990, and finished in
1997 [16]. The EC metric files, however, are slightly
incompatible with CM metric files, by circa 0.025%.3

A rather general technique was applied by Lars
Engebretsen, who attempted to eliminate the ne-
cessity of using the \accent primitive by making
virtual fonts, dubbed Almost European (AE), con-
taining quite a large set of the European diacritical
characters [1].

Hyphenation worked with AE fonts, though still
unsatisfactorily — for example, coinciding of such ac-
cents as cedilla or ogonek with a main glyph is incon-
venient when a non-intersecting outline is required
(for cutting plotters, for outlined titles, and so on).
Moreover, the virtual fonts are obviously unusable
outside the TEX realm.

3 The reason behind this discrepancy is a peculiarity of
Metafont arithmetic: the formula 1/36 ∗ i yields different
results than the formulas i/36 and 1/36i; for example, for
i = 3600 the results are 99.97559 for the first formula and
100 for the latter formulas. The first formula was used in the
EC fonts (in the gendef macro).

4.1 Latin Modern fonts in the PostScript

Type1 format

In 2002, during the EuroBachoTEX meeting, a pro-
posal of converting Engebretsen’s AE fonts into the
PostScript Type1 format and augmenting with them
the set of necessary diacritical characters was put
forward by representatives of European TEX user
groups. We had no choice but to accept the pro-
posal with delight.

Our initial plan was to use the AE fonts as our
departure point; we even wanted to preserve the orig-
inal name, Almost European, coined by Lars Enge-
bretsen. It turned out, however, to be much more
efficient to prepare the enhanced version of the CM

fonts from scratch, and so sticking to Lars Enge-
bretsen’s name seemed inadequate, because the dif-
ferences were too essential.

All in all, inspired by both EC and AE fonts,
we came up with the Latin Modern (LM; see [11])
project which was accepted by the user groups.

Fortunately for us, freely available quality CM

fonts in the PostScript Type 1 format already ex-
isted. In the 1980s and 90s, they were produced
(from traced bitmaps improved by very solicitous
manual tuning) for commercial purposes by Blue
Sky Research and Y&Y. Nearly a decade later, they
were released to the public thanks to the efforts of
the American Mathematical Society.4

We converted the PostScript Type 1 files of the
CM fonts to MetaType 1 and wrote the MetaPost
software relevant for generating the characters we
decided to add (mainly diacritical letters). The work
had already been partially done by Janusz M. No-
wacki, who prepared the PostScript Type1 version of
the PL fonts in 1997. The official version of the LM

fonts, 1.000, was eventually released in 2006 (in the
meantime, several unofficial versions were released
for testing purposes). The LM collection of fonts
consisted of 72 text fonts, each counting about 700
glyphs, plus 20 CM-like math fonts.

In 2009, an extensive revision of the LM fonts
was carried out: the text fonts now contain more
than 800 glyphs each (altogether more than 60,000
glyphs) and the glyphs conform to the changes in-
troduced by Donald E. Knuth in 1992.

4 In 1997, a consortium of scientific publishers (American
Mathematical Society, Elsevier Science, IBM Corporation, So-
ciety for Industrial and Applied Mathematics, and Springer-
Verlag) in cooperation with Blue Sky Research and Y&Y de-
cided to release these excellent fonts non-commercially; in
order to assure the authenticity of the fonts, copyright was
assigned to the American Mathematical Society. (http://

www.ams.org/publications/type1-fonts).

GUST e-foundry font projects

320 TUGboat, Volume 37 (2016), No. 3

Almost all of the CM text fonts have counter-
parts in the LM family; the exceptions are one mono-
spaced font, cmtex10, emulating Donald E. Knuth’s
keyboard layout, and the rarely used cmff10, cmfi10,
cmfib8, and cminch. So far, nobody has complained
about this inconsistency. Instead, encouraged by
Hans Hagen, we decided to create 10 variants of
typewriter LM fonts not having counterparts in the
CM family: lmtlc10, lmtk10, lmtl10, lmvtk10, and
lmvtl10 (monospaced light condensed and mono-
spaced and variable-width dark and light, respec-
tively) plus their oblique variants lmtko10, lmtlo10,
lmtlco10, lmvtko10, and lmvtlo10.

4.2 Latin Modern fonts in the OTF format

It was relatively easy to prepare the LM family of
fonts in the OTF format using the AFDKO package:
it mainly necessitated preparing a few extra data
files in the OpenType Feature File Specification lan-
guage [32]. Needless to say, the experience gathered
at this stage came in handy during the work on the
TG fonts (see Section 5).

There was trouble, however, with the 20 math
fonts. We provided the respective LM equivalents
in PostScript Type1 format. For compatibility with
the (obsolete) PL fonts, the symbol fonts, lmsy* and
lmbsy*, contain two extra glyphs: slanted greater-
or-equal and less-or-equal signs, used traditionally
in Polish math typography. As the math extension
for OpenType did not exist yet, we decided not to
convert these fonts to OTF. We knew that the com-
panies that had invented and maintained the OTF

standard, in cooperation with the American Mathe-
matical Society and the Unicode Consortium, were
working on extending the standard with math type-
setting capabilities. We expected that by using the
enhanced OTF specification we would be able to cre-
ate a TEX-compatible math OTF collection. Alas,
the Unicode Consortium report on Unicode support
for mathematics [37], followed by the initially confi-
dential Microsoft specification [29], snuffed out our
hopes. It turned out that OTF math and TEX math
cannot be reconciled. More information on the inter-
relationships between OTF and TEX math can be
found in Ulrik Vieth’s thorough analysis [24].

4.3 Repertoire issues

Our primary aim was to provide a repertoire of dia-
critical letters rich enough to cover all European lan-
guages. We thoroughly exploited Michael Everson’s
comprehensive study of European alphabets [2], as
well as other sources. Several other languages using
Latin-based alphabets, such as Vietnamese, Navajo
and Pali, are covered.

Initially, contrary to the Latin Modern name,
we considered including Cyrillic alphabets also. Hav-
ing thought the matter over, we decided, with regret,
to abandon this idea and concentrated our efforts on
OTF math fonts.

Besides diacritical characters, the Latin Mod-
ern fonts contain also a number of glyphs tradition-
ally present in TEX fonts, such as Greek symbols,
currency symbols, technical symbols, etc. Detailed
description of the contents of the fonts can be found
in the document entitled The Latin Modern Family

of Fonts. Technical Documentation, included in the
LM distribution package [11].

Two groups of glyphs are widely used in typog-
raphy but neglected to a certain extent in the CM

fonts, namely, caps and small caps and old style nu-

merals, also known as text figures or nautical digits;
the latter name originates from their widespread use
in tables in nautical almanacs at one time. For rea-
sons hard to explain, the caps and small caps were
implemented in the CM family as a separate font,
while the old style numerals (upright!) are in the
math italic font (cmmi*).

The LM fonts incorporated caps and small caps
from the CM family, together with its width idiosyn-
crasy: the lmcsc10 font, like cmcsc10, has capital
letters wider than the lmr10 font by circa 8%. There
are two caps and small caps fonts in the LM collec-
tion, namely, the regular and typewriter specimen,
lmcsc10 and lmtcsc10, as in CM, plus their oblique
variants, lmcsco10 and lmtcsco10, absent from CM.
In principle, small caps glyphs could be transferred
to other fonts, but we decided to not alter the fram-
ing of the original CM family, more so as CM has no
sans-serif caps and small caps; however, the prob-
lem of extending the LM family with bold counter-
parts of lmcsc10 and lmtcsc10 (and their oblique
variants), raised repeatedly by CM/LM users, needs
serious consideration.

Concerning old style numerals, we could not ac-
cept the CM oddity and included them in all text
fonts of the LM family. Further, all numerals come in
2 ‘flavors’: normal (fixed-width a.k.a. tabular) and
proportional (variable-width, having balanced side-
bearings) which altogether yields 4 variants — see
Figure 1.

The TFM format contains only 256 slots for
glyphs, thus, the whole repertoire of glyphs cannot
be accessed at once if TEX is used in a “traditional”
way, that is, with TFM files. In particular, access-
ing the different kinds of numerals when using Post-
Script Type 1 fonts plus TFM metrics turns out to
be clumsy; as a result, only tabular old style numer-
als are available in our package, in the TS1 encoding

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 321

F
ig

u
re

1

(see below). On the one hand, OTF fonts seem more
convenient as they do not impose such a restriction;
for example, all numerals can be accessed by using
the OTF feature mechanism, more precisely, by the
features onum, lnum, pnum, and tnum [33]. On the
other hand, OTF metric data cannot, in general, be
fully compatible with TFM metric data because the
glyph widths in OTF fonts must be represented by
integer quantities. This should be considered a draw-
back by TEXies — see Section 4.4.

Following the LATEX tradition, we provided sev-
eral encodings for the LM fonts, namely:

⋄ CS (CS TUG) encoding (cs-*.tfm),

⋄ EC (Cork) encoding (ec-*.tfm),

⋄ L7X (Lithuanian) encoding (l7x-*.tfm),

⋄ QX (GUST) encoding (qx-*.tfm),

⋄ RM (“regular math”, used in OT1 and OT4)
encodings (rm-*.tfm),

⋄ Y&Y’s TEX’n’ANSI a.k.a. LY1 encoding
(texnansi-*.tfm),

⋄ T5 (Vietnamese) encoding (t5-*.tfm),

⋄ Text Companion for EC fonts a.k.a. TS1

(ts1-*.tfm).

The LATEX support for all these encodings, due to
Marcin Woliński, is also part of the LM distribution.

TFM files nominally representing the same en-
coding do not always define the same set of charac-
ters; for example, the character sets of cmr10.tfm

and cmtt10.tfm differ. The original CM fonts com-
prise 7 different character sets, with an idiosyncratic
difference between the cmr10 and cmr5 layouts. As
a remnant of the CM design, there are 5 different
character sets of the LM text fonts:

1. 821 glyphs (basic set): lmb10 lmbo10 lmbx10

lmbx12 lmbx5 lmbx6 lmbx7 lmbx8 lmbx9

lmbxi10 lmbxo10 lmdunh10 lmduno10 lmr10

lmr12 lmr17 lmr5 lmr6 lmr7 lmr8 lmr9

lmri10 lmri12 lmri7 lmri8 lmri9 lmro10

lmro12 lmro17 lmro8 lmro9 lmss10 lmss12

lmss17 lmss8 lmss9 lmssbo10 lmssbx10

lmssdc10 lmssdo10 lmsso10 lmsso12 lmsso17

lmsso8 lmsso9 lmu10 lmvtk10 lmvtko10

lmvtl10 lmvtlo10 lmvtt10 lmvtto10

2. 824 glyphs: lmssq8 lmssqbo8 lmssqbx8

lmssqo8

extra characters: varI varIJ varIogonek

3. 814 glyphs: lmcsc10 lmcsco10

missing characters: f_k ff ffi ffl fi fl

longs

4. 785 glyphs: lmtk10 lmtko10 lmtl10 lmtlc10

lmtlco10 lmtlo10 lmtt10 lmtt12

lmtt8 lmtt9 lmtti10 lmtto10

missing characters: f_k ff ffi ffl fi fl

Germandbls hyphen.prop IJ ij permyriad

servicemark suppress trademark

varcopyright varregistered zero.oldstyle

zero.prop one.oldstyle one.prop

two.oldstyle two.prop three.oldstyle

three.prop four.oldstyle four.prop

five.oldstyle five.prop six.oldstyle

six.prop seven.oldstyle seven.prop

eight.oldstyle eight.prop nine.oldstyle

nine.prop

5. 784 glyphs: lmtcsc10 lmtcso10

missing characters: as in 4, also longs

4.4 Compatibility issues

We did our best to provide outline fonts that can be
used as a replacement for CM fonts. To a certain
extent, we managed to achieve this goal, namely,
the PostScript drivers which process TEX documents
typeset with CM metric files, can use either CM or
LM PostScript Type 1 fonts — special map files for
PostScript Type 1 fonts are available for this pur-
pose. The metric files, however, cannot be used
replaceably, because the typesetting algorithms are
intrinsically unstable — even tiny (rounding) errors
may yield glaringly different results.

Therefore, LM users also cannot expect Post-
Script Type 1 and OTF fonts to be used replace-
ably. Recall that the OTF format requires integer
number representation for glyph widths. The “refer-
ence” quantity is the em unit: 1 em = 2048 units for
fonts using splines of the 2nd degree, 1 em = 1000
units for fonts using splines of the 3rd degree (e.g.,
our LM and TG fonts). Therefore, in our case, the
difference in width is on average 1/2000 em (twice
as large as the variation in the EC widths), that is,
circa 0.005 pt for 10-point fonts.

Because the MetaType1 sources of the LM fonts
are the result of conversion from PostScript Type 1,

GUST e-foundry font projects

322 TUGboat, Volume 37 (2016), No. 3

the widths stored in the LM TFM files are not iden-
tical to the respective original CM widths. They
are closer, however, to the original quantities by an
order of magnitude compared to the EC and OTF

widths. At the cost of great effort (by referring to
the Metafont sources), we might have eliminated
rounding errors in LM widths. But it would not
cure the problem of (non-)replaceability, as widths
are not the only source of trouble. Differences in
heights and depths of glyphs may also yield unex-
pected behavior of the TEX typesetting algorithm.

The problem of heights and depths in TEX turns
out to be unavoidable, and quite serious: the TFM

format permits by design only 16 different heights
and depths, including the obligatory entries contain-
ing the value zero. If there are in fact more heights
and depths in a given font, their number is cleverly
reduced to 16 by Metafont (as well as by the Meta-
Post and TFtoPL programs). One of the certainly
unwanted results is that the same glyph in different
encodings may have different heights and/or depths!
For example, the height of the letter ‘A’ is 6.88875 pt
in the rm-lmr10.tfm file (this layout is an extension
to 256 slots of the cmr10 layout), it is 6.99648 pt in
the t5-lmr10.tfm file (Vietnamese layout), while in
the canonical cmr10.tfm file it is 6.83331 pt.

This is not the end of the list of possible sources
of incompatibility between CM and LM fonts. Posi-
tioning of the accents is also a long story. These and
related aspects are explained minutely in [12].

Finally, let us consider a somewhat atypical ex-
ample of incompatibility between the LM and CM

fonts related to Donald E. Knuth’s mistake in a CM

ligtable program, uncorrectable for obvious rea-
sons but basically harmless; namely, roman.mf con-
tains the following:

% three degrees of kerning
k#:=-.5u#; kk#:=-1.5u#; kkk#:=-2u#;
ligtable "k":

if serifs: "v": "a" kern -u#, fi
"w": "e" kern k#, "a" kern k#,

"o" kern k#, "c" kern k#;

The culprit is the if serifs clause: the kern pair
‘ka’ appears twice in the TFM files of serif fonts with
the values −u# and −0.5u#, respectively, as is eas-
ily seen in the following fragment of the cmr10.pl

file (the respective lines are marked with arrows):

(CHARACTER C k
(CHARWD R 0.527781)
(CHARHT R 0.694445)
(COMMENT

(KRN C a R -0.055555)⇐

(KRN C e R -0.027779)
(KRN C a R -.027779) ⇐

(KRN C o R -0.027779)

(KRN C c R -0.027779)
)

)

Moreover, there are no ‘va, ‘vc’, ‘ve’, and ‘vo’ kern
pairs in sans-serif fonts, although there are ‘kc’, ‘ka’,
‘ke’, ‘ko’, ‘wa’, ‘wc’, ‘we’, and ‘wo’ kern pairs in these
fonts. We could not see the reason for ignoring ‘v’
in this context, thus we decided to add the relevant
kern pairs in the LM fonts; we also added quite a
few other kern pairs missing, in our opinion, from
the CM fonts, for example, ‘eV’ and ‘kV’.

Summing up, we believed that we had good rea-
sons for giving up the struggle for a “100-percent
compatibility” between LM and CM metrics, what-
ever that would mean, and to confine ourselves to
providing the mentioned replaceability of outlines.

5 The TEX Gyre collection of fonts

Heartened by the results of the LM enterprise, we
accepted without hesitation the next proposal: the
“LMization” of the family of fonts provided by Ghost-
script as a replacement for the renowned Adobe base

35 fonts, generously released by the URW++ com-
pany under free software licenses.

⋄ ITC Avant Garde Gothic (book, book oblique,
demi, demi oblique)

⋄ ITC Bookman (light, light italic, demi,
demi italic)

⋄ Courier (regular, regular oblique, bold,
bold oblique)

⋄ Helvetica (medium, medium oblique, bold,
bold oblique)

⋄ Helvetica Condensed (medium, medium
oblique, bold, bold oblique)

⋄ New Century Schoolbook (roman, roman
italic, bold, bold italic)

⋄ Palatino (regular, regular italic, bold,
bold italic)

⋄ Symbol

⋄ Times (regular, regular italic, bold,
bold italic)

⋄ ITC Zapf Chancery (medium italic)

⋄ ITC Zapf Dingbats

Since our aim was “LMization”, we excluded the
Symbol and ITC Zapf Dingbats non-text fonts from
the scope of our interest.

After a brief (but heated) debate, the name of
the project and of its constituent fonts were coined.
The project was dubbed TEX Gyre (TG) and the
following names were accepted (the respective file
name kernels, original Adobe names and Ghostscript,
that is, URW, names are given in parentheses):

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 323

⋄ TG Adventor (qag / ITC Avant Garde Gothic /
URW Gothic L)

⋄ TG Gyre Bonum (qbk / ITC Bookman /
URW Bookman L)

⋄ TG Cursor (qcr / Courier / Nimbus Mono L)

⋄ TG Heros (qhv / Helvetica / Nimbus Sans L)

⋄ TG Heros Condensed (qhvc / Helvetica
Condensed / Nimbus Sans L Condensed)

⋄ TG Schola (qcs / New Century Schoolbook /
Century Schoolbook L)

⋄ TG Pagella (qpl / Palatino / URW Palladio L)

⋄ TG Termes (qtm / Times / Nimbus
Roman No9 L)

⋄ TG Chorus (qzc / ITC Zapf Chancery /
URW Chancery L)

We initially considered including Cyrillic alpha-
bets, but, as in the case of the LM fonts, we eventu-
ally abandoned this idea, also with regret, the more
so as the Ghostscript fonts at that time contained
an (apparently unfinished) set of Cyrillic glyphs.

We expected that the main effort would be the
making of extra glyphs plus maybe correcting out-
lines here and there. To our surprise, quite a few
glyphs required tuning because of evident errors in
outlines. One of the most striking examples is the
glyph ‘eight’ from the URW Schoolbook bold font5 —
see Figure 2.

F
ig

u
re

2

Mostly, we removed redundant or wrong nodes
(points) from the outline definitions, deleting more
than 5% of them in all. In the case of TG Pagella,
however, the insertion of extra nodes turned out nec-
essary. The chart in Figure 3 shows some statistics
for the upright TG fonts. The diagram concerns the
version of the Ghostscript fonts which we used as
our starting point. We used circa 350 glyphs from

5 Recently, the font has been renamed to ‘C059 bold’; the
bug was removed from the Ghostscript distribution only in
2015, although the TEX Collection 2016 distribution still con-
tains (due to the legacy reasons) the faulty glyph.

each font. The total number of nodes in these glyphs
varied from circa 10,000 to 25,000 per font. In the
current release, the TG text fonts count almost 1100
glyphs each with the number of nodes varying from
circa 30,000 to 65,000 (for sans-serif and serif italic
variants, respectively; see [14]).

F
ig

u
re

3

5.1 Repertoire issues

The difference in the number of glyphs between the
TG and LM text fonts (the former having circa 250
glyphs more per font) is due mainly to the presence
of small caps in the TG fonts (225 glyphs per font).
Also unlike the LM fonts, each TG font contains the
complete Greek alphabet and a few technical glyphs,
such as ‘lozenge’ and ‘lscript’.6 Except for these, the
LM and TG fonts share the same repertoire of glyphs
and the same set of TFM encodings (see Section 4.3).

The LATEX support for these encodings was also
provided by Marcin Woliński.

5.2 Compatibility issues

The consistency of the widths of the original Adobe
and the respective TG glyphs was one of our main
concerns, as the TG fonts were meant as potential
replacements for the Adobe fonts. It turned out,
however, that the original font metric files [27], con-
tained apparent metric flaws which we decided, with
some hesitation, not to retain.

A typical example (concerning Helvetica, a.k.a.
Nimbus Sans L, a.k.a. TG Heros) is depicted in Fig-
ure 4. Both Spanish ‘¡’ and Scandinavian ‘ø’ glyphs
belong to the Adobe Standard Encoding set, hence

6 For historical reasons, the LM fonts contain a few ad-
ditional variants of the base, left, and right double quotes,
absent from the TG fonts.

GUST e-foundry font projects

324 TUGboat, Volume 37 (2016), No. 3

one can expect that they should be considered im-
portant and thus unchangeable. Nevertheless, we
could not see a reason for using widths different
from the ‘!’ and ‘o’ widths, respectively, and cer-
tainly there is no substantiation for the asymmetry
of sidebearings, especially in the case of ‘ø’; there-
fore, we decided to alter the metrics.

F
ig

u
re

4

Fortunately, there are few such cases in the TG

collection; each is mentioned in the documentation
of the TG fonts [14].

Because the original widths for the TG fonts,
unlike in the LM collection, were integer numbers,
there is no metric discrepancy between the Post-
Script Type1 and OTF font formats, as far as widths
are concerned. Heights and depths, however, are
subject to the same restrictions as discussed in Sec-
tion 4.4.

6 OTF math fonts

The chronic problem of lack of math support for the
TG collection became the impetus for our third ven-
ture: math fonts for the LM and TG collections in
the OTF format. The recent update of the LM and
TG fonts took place at the end of 2009. The math ex-
tension for the OTF format ([29]) had been released
and there existed the FontForge font editor ([25])
capable of generating such fonts. So we embarked
upon an expedition into unknown regions — since
then we have focused our attention on the work on
OTF math fonts, again with the benevolent encour-
agement and support from the TEX users groups.

As we should have expected, the task turned
out interesting and absorbing, and, according to Hof-
stadter’s Law,7 we spent more time on it than we ex-
pected. From the very beginning, we aimed at mak-
ing a collection of mutually consistent math OTF

7 Hofstadter’s Law: It always takes longer than you ex-
pect, even when you take into account Hofstadter’s Law —
Douglas R. Hofstadter.

fonts and we underestimated the heterogeneity of
the sources of additional alphabets and the problem
of interrelationships — works on subsequent fonts en-
tailed moving backwards to the fonts which we had
prematurely considered ready. Nevertheless, in 2011,
we happily announced the release of our first math
OTF font, namely, Latin Modern Math. Altogether,
six math fonts have been released by the GUST e-
foundry so far [9, 10]:

⋄ TG Latin Modern Math

⋄ TG Bonum Math

⋄ TG Schola Math

⋄ TG Pagella Math

⋄ TG Termes Math

⋄ TG DejaVu Math

This amounts to nearly half of all OTF math fonts re-
leased in the world. Besides these, the following OTF

math fonts have been released: Asana by Apostolos
Syropoulos, Neo-Euler and XITS by Khaled Hosny,
STIX by the STI Pub companies,8 Cambria Math by
Microsoft,9 Lucida Math by Bigelow & Holmes, and
Minion Math by Johannes Küster; the latter three
fonts are distributed commercially.

6.1 OTF math font contents

Math OTF fonts, as we expounded in [10], are truly
nasty beasts. In accordance with [35] and [37], they
are expected to contain a plethora of glyphs: let-
ters, arrows, math operators and delimiters, geomet-
rical shapes, technical symbols, etc. The presence of
some of them, particularly the (over)abundance of
peculiar geometrical shapes and arrows, is hard to
substantiate in our opinion.

Initially, we planned also releasing the math
companion to the TEX Gyre sans-serif fonts, TG Ad-
ventor and TG Heros, but the Unicode specification
for the contents of math fonts, [37], turned out defi-
nitely “serif-oriented”. Let us take, for example, the
arrangement of the LM Math font shown in Table 1:
following the cited specification, we combined sev-
eral LM source fonts into a single complex font. As
the table clearly shows, the basic subsets, that is,
plain, bold, italic and bold italic are assumed to con-
sist of serif glyphs by default. It is not obvious how

8 The STIX project began through the joint efforts of
American Mathematical Society (AMS), American Institute of
Physics Publishing (AIP), American Physical Society (APS),
American Chemical Society (ACS), Institute of Electrical and
Electronic Engineers (IEEE), and Elsevier Science; these com-
panies are collectively known as the STI Pub companies.

9 Cambria Math was the first math font published, con-
forming to the specification MATH — The mathematical type-
setting table [29]. It was released by Microsoft in 2007, along
with a MS Office version equipped with the capability of han-
dling the math font and editing math formulas.

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 325

the table should be adjusted to suit sans-serif math
fonts. Work on this issue is in progress.

T
a
b

le
1

category charset source fonts

plain (upright, serif) L*, G, D lmr, lmmi (upright)

bold L, G, D lmbx, lmmib (upright)

italic L, G lmmi

bold italic L, G lmmib

sans-serif L, D lmss

sans-serif bold L, G, D lmssbx

sans-serif italic L lmsso

sans-serif bold italic L, G lmssbo

calligraphic L eusm (slanted)

bold calligraphic L eusb (slanted)

Fraktur L eufm

bold Fraktur L eufb

double-struck L, D bbold (by Alan Jeffrey)

monospace L, D lmtt

L, G, D — Latin, Greek and digits, respectively

L* — contains also diacritical letters and punctuation

All the alphanumeric glyphs specified in the table,
except for the “plain” ones (first row), are given
special mathematical Unicode slots — see [37]

The original CM fonts, and thus the LM fonts,
do not contain the complete sans-serif Greek. We
generated the missing glyphs using modified Meta-
font sources in order to generate outlines instead of
bitmaps and tuning the result manually, if required.

Moreover, a math font is bound to contain many
other characters, most notably glyphs used for sub-
scripts of the 1st and 2nd order, used also for super-
scripts; we’ll refer to them shortly pars pro toto as
subscripts. They are accessed by the OTF feature
mechanism, more precisely by the math extension
feature ssty [33].

Extensible symbols, like large brackets or radi-
cals, are another important group of math-oriented
glyphs. An extensible symbol consists of a collection
of a few components (the left part of Figure 5) as-
sembled by the typesetting engine into a seemingly
single character (the right part of Figure 5).

First, a glyph of adequate size is searched for in
the so-called chain of glyph variants (here: the three
leftmost curly braces). If a proper glyph is not found,
the typesetting engine assembles a respectively large
symbol from the relevant pieces using a fairly com-
plex algorithm — everybody who has attempted un-
successfully to fit braces around a formula according
to one’s desire probably knows it.

In the case of the radical symbol, the situation
is still more complex, because the OTF and TEX
geometric structure, as well as the relevant metric
data of the components differ, as is shown in Fig-
ure 6 which visualises “stages” of the assembling of
an extensible radical symbol.

F
ig

u
re

5
F

ig
u

re
6

In both cases, the radical symbol is assembled
from glyphs taken from a relevant font and a line
(rule) drawn by the typesetting program at the top
of the symbol (marked with a gray color). The thick-
ness of the rule, however, is given explicitly as a pa-
rameter in math OTF files, while it is inferred from
the height of the top element of the radical symbol
in TEX (recall the problem of the limited number of
heights in a TEX metric file).

There is an important difference between the
TEX and OTF math font specification concerning ex-
tensible glyphs: TEX is equipped with the ability to
assemble compound glyphs from pieces only verti-
cally, while the OTF format offers both horizontal
and vertical assembling. In TEX (i.e., in the plain

TEX format), such glyphs as horizontal braces are de-
fined by special macros using rules and a few glyphs
from a relevant font:

\def\downbracefill
{$\m@th \setbox\z@\hbox{$\braceld$}%
\braceld\leaders\vrule height\ht\z@

depth\z@\hfill\braceru
\bracelu\leaders\vrule height\ht\z@

depth\z@\hfill\bracerd$}
\def\upbracefill [...]

Incidentally, it seems that diagonal extensible glyphs
have not yet been invented. Could it be that the
conundrum is too difficult to solve?

GUST e-foundry font projects

326 TUGboat, Volume 37 (2016), No. 3

More on the differences between the TEX and
OTF specifications of the structure of math fonts can
be found in Ulrik Vieth’s survey [24].

In the case of LM Math, we were fortunate to
have well-known clean sources for a base, already
containing 7-point and 5-point variants, suitable for
typesetting subscripts, and components for assem-
bling extensible glyphs.

We have to confess, however, that we were not
especially delighted with the Computer Modern cal-
ligraphic script. More pleasingly designed, to our
eyes, are the calligraphic letters of the renowned Eu-
ler family. Therefore, we decided to transfer the
glyphs from the Euler fonts (slanting them slightly)
to the LM Math font:

In the case of the TG math fonts, the situa-
tion was slightly worse. The basic sources, that is,
the text fonts, were already improved by us, but
the sources of the relevant additional character sets
were highly heterogeneous. We used freely available
fonts of the best possible quality as our base; never-
theless, much manual tuning was necessary (recall
the tuning of the sources of the TG text fonts).

Moreover, not all suitable fonts had acceptable
free licenses. In a few cases, we had to contact the
authors personally. It should be emphasized that in
all cases the authors, if we managed to reach them,
courteously agreed to make their fonts available for
our purposes. The following external fonts were used
in the TG math fonts project (in alphabetical order):

⋄ Lato by Łukasz Dziedzic (TG Schola Math)

⋄ Kerkis by Apostolos Syropoulos and Antonis
Tsolomitis (TG Bonum Math)

⋄ Leipziger Fraktur replica by Peter Wiegel
(TG Bonum Math and TG Termes Math)

⋄ Math Pazo by Diego Puga (TG Pagella Math)

⋄ Odstemplik by Grzegorz Luk (gluk)
(TG Pagella Math)

⋄ Theano Modern by Alexey Kryukov
(TG Schola Math)

We are most grateful to all the authors for their
prominent aid.

6.2 Visual issues

Observe that the same monospaced alphanumeric
characters (excerpted from TG Cursor) are shared
by TG Bonum Math, TG Schola Math, and TG Ter-
mes Math. In such cases one must be carefully check
whether the size of the glyphs being included fits the

size of the basic set of glyphs. Nominally, all fonts
(both in the PostScript Type 1 and OTF formats)
have the same design size, 10 typographic points (re-
call that 1 point = 1/72 inch; cf. Section 4.4). Work-
ing on the TG math fonts, we had to adjust the size
of the subsets a few times. For example, we enlarged
the borrowed monospaced glyphs to circa 112.5% in
TG Schola Math; otherwise the monospaced alpha-
bet looked too small in combination with Schola’s
brawny glyphs.

The visual harmonizing of the supplementary
alphabets with the main font face concerns not only
alphanumeric glyphs. Even essentially geometrical
shapes should also reflect the characteristic features
of the main font, for example, the thickness of stems,
the ending of arms, etc. Seemingly trivial glyphs,
such as arrows, serve as a convenient example: they
have slightly different shapes in each of our math
fonts — see Figure 7.

F
ig

u
re

7

Another example is the shape of integrals. His-
torically, the integral symbol originates from the let-
ter ‘long s’10 which is nowadays identical with a bar-
less ‘f’. Therefore, we did our best to preserve some
characteristic features of the letter ‘f’ in the design
of the integral shape — see Figure 8.

F
ig

u
re

8

We are not going to dwell on the visual as-
pects of the math font design, as the number of de-
tails relevant for a font with over 4000 glyphs (and

10 The cursive long ‘s’ for denoting an integral operation,
i.e., infinite summation, was introduced by Gottfried Wilhelm
Leibniz in 1675 in an unpublished paper Analyseos tetrago-
nisticæ pars secunda (Second part of analytical quadrature).

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 327

counting) would perhaps become rather overwhelm-
ing. Notwithstanding, one aspect needs emphasiz-
ing, namely, the problem of sidebearings and kern-
ing for alphanumeric symbols.

It is generally accepted by typographers that
math symbols should have larger sidebearings than
the respective text glyphs. In particular, TEX math
italic glyphs are a little bit broader and have larger
sidebearings than the text italic glyphs. It is not ob-
vious, however, how large such sidebearings should
be. We have already experimented with a few sizes
but further tuning will probably be necessary. Of
course, the broadening of sidebearings should not
be applied to the basic font, that is, regular upright,
because of multiletter names of functions and oper-
ators, such as ‘sin’ or ‘max’, which are traditionally
typeset with regular upright letters.

As regards the problem of kerning, we decided
not to include kerns in math fonts, although provid-
ing kerns for the upright regular alphabet might be
reasonable. Actually, we consider introducing spe-
cial math kerning (so-called “staircase” kerns a.k.a.
“cut-ins”; see Section 7). Thankfully, nobody has
complained yet because of the lack of kerning in our
math OTF fonts.

6.3 Repertoire issues

At present, a common standard for the repertoire of
characters that should be present in an OTF math
font does not exist. After several debates (mostly
during TEX conferences) and many experiments, we
came up with the tentative repertoire scheme pre-
sented in Table 2, which can be considered a detailed
specification of Table 1.

T
a
b

le
2

B – basic letters, A – accented letters, G – Greek letters,
D – digits, O – other symbols, P – punctuation

B A G D O P

plain (upright, serif) +s +s +d
s +s + +s

italic +s +s

bold +s +d
s +s

bold italic +s +s

sans-serif + +

sans-serif italic +

sans-serif bold + + +

sans-serif bold italic + +

calligraphic +

bold calligraphic +

Fraktur +

bold Fraktur +

double-struck + +

monospace + +

d — digamma excluded from relevant Unicode blocks
s — subscripts are to be added

We would like all TG math fonts (Bonum, Deja-
Vu, Pagella, Schola, and Termes) to share this pat-
tern. For LM Math, however, we adopted another
scheme because of legacy concerns. Currently, LM

Math contains circa 4800 glyphs while the remaining
fonts contain circa 4250 glyphs each. LM Math con-
tains more subscripts, as the original sources already
provided them. On the other hand, the TG math
fonts contain more size variants of integral symbols.
This yields circa 550 glyphs more (net) in LM Math.
At the moment, TEX Gyre DejaVu Math contains (in
accordance with Table 2) subscript variants for bold
upright glyphs, while the remaining TG math fonts
need to be complemented with these glyphs. It is
a typical instance of the frequently occurring “back-
tracking” procedures: the final decision was under-
taken only after a few fonts had been released.

Concerning subscripts, it should be emphasized
that subscript glyphs for the TG math fonts are
obtained using the approach applied in the Meta-
font sources of the Euler family of fonts, that is, by
non-uniform rescaling of the respective normal-size
glyphs. In a way, such “optical scaling” can be con-
sidered undesirable; nevertheless, it proved accept-
able for the Euler fonts, thus we decided to apply it
also to the TG math fonts.

Some rather quirky characters which received
Unicode slots are spaces. Unicode [35] defines quite
a few space-related glyphs:

0008 BACKSPACE (<control>)
*0020 SPACE
*00A0 NO-BREAK SPACE
*2002 EN SPACE
*2003 EM SPACE

1361 ETHIOPIC WORDSPACE

1680 OGHAM SPACE MARK
*2004 THREE-PER-EM SPACE
*2005 FOUR-PER-EM SPACE
*2006 SIX-PER-EM SPACE
*2007 FIGURE SPACE
*2008 PUNCTUATION SPACE
*2009 THIN SPACE
*200A HAIR SPACE
*200B ZERO WIDTH SPACE
*202F NARROW NO-BREAK SPACE
*205F MEDIUM MATHEMATICAL SPACE

2408 SYMBOL FOR BACKSPACE

2420 SYMBOL FOR SPACE

3000 IDEOGRAPHIC SPACE

303F IDEOGRAPHIC HALF FILL SPACE
*FEFF ZERO WIDTH NO-BREAK SPACE

1DA7F SIGNWRITING LOCATION-WALLPLANE SPACE

1DA80 SIGNWRITING LOCATION-FLOORPLANE SPACE

E0020 TAG SPACE

We decided to include a subset of the Unicode-
defined spaces (marked with asterisks in the above
list), even though their meaning and usage seems
vague. The problem of spaces touches a general

GUST e-foundry font projects

328 TUGboat, Volume 37 (2016), No. 3

problem of the relation between the Unicode stan-
dard and typography. We discuss this topic in more
detail in the next section.

The next two pages show the representative sub-
set (for LM Math and TG Termes Math) of the reper-
toire we adopted as the GUST e-foundry “private
standard”; gray squares denote zero-width charac-
ters. As one can see, the repertoires are very similar.
One can assume that the difference in the repertoire
will be imperceptible in practical applications.

6.4 Unicode: the typographer’s friend

or enemy?

An important subject, closely related to the con-
tents and repertoire issues, is briefly mentioned in
Sections 4.2, 6.1, and 6.3: the problem of the char-
acter set defined by the Unicode standard [35], and
specified for math fonts in Unicode Technical Report

#25 [37].
The Unicode Consortium claims that “the Uni-

code standard follows a set of fundamental princi-
ples” and gives, among others, the following “princi-
ple”: characters, not glyphs and semantics. We are
not able to reconcile these principles with the cases
discussed in this section.

It should be emphasized that not all glyphs used
extensively in typography, in particular, in or out of
math formulas, are assigned Unicode numbers. Ex-
amples of such glyphs are small caps and old style
numerals. Nothing in these two classes of glyphs
has received Unicode numbers, although there are
codes for much more narrowly used double struck
characters or monospaced and sans-serif digits.

Another example of “unicodeless” glyphs are
the pieces used for assembling extensible characters
(cf. Section 6.1, Figures 5 and 6).

It is not so bad if whole blocks of characters
are included or excluded. The worse situation is an
inconsistency of including only some glyphs. The
abovementioned double struck glyphs are a good ex-
ample of such a situation. Here is the group of dou-
ble struck glyphs assigned Unicode slots, without
apparent rhyme or reason:
2102 DOUBLE-STRUCK CAPITAL C

210D DOUBLE-STRUCK CAPITAL H

2115 DOUBLE-STRUCK CAPITAL N

2119 DOUBLE-STRUCK CAPITAL P

211A DOUBLE-STRUCK CAPITAL Q

211D DOUBLE-STRUCK CAPITAL R

2124 DOUBLE-STRUCK CAPITAL Z

213C DOUBLE-STRUCK SMALL PI

213D DOUBLE-STRUCK SMALL GAMMA

213E DOUBLE-STRUCK CAPITAL GAMMA

213F DOUBLE-STRUCK CAPITAL PI

2140 DOUBLE-STRUCK N-ARY SUMMATION

2145 DOUBLE-STRUCK ITALIC CAPITAL D

2146 DOUBLE-STRUCK ITALIC SMALL D

2147 DOUBLE-STRUCK ITALIC SMALL E

2148 DOUBLE-STRUCK ITALIC SMALL I

2149 DOUBLE-STRUCK ITALIC SMALL J

The remaining letters of the alphabet (upper and
lower case) and digits received mathematical codes
(1D538–1D56B), with gaps at the glyphs above.

Another notable example are sub- and super-
scripts, theoretically not needed in math fonts, be-
cause the sub- and superscript characters (“unicode-
less”) are accessed there by the OTF feature mecha-
nism (the ssty feature, cf. Section 6.1). In practice,
for legacy reasons, sub- and superscript glyphs are
expected to be present in a text font, and, conse-
quently, in the basic (plain) charset of a math font
too — see Table 1. The Unicode standard [35] enu-
merates the following Latin letters in this context:
1D62 LATIN SUBSCRIPT SMALL LETTER I

1D63 LATIN SUBSCRIPT SMALL LETTER R

1D64 LATIN SUBSCRIPT SMALL LETTER U

1D65 LATIN SUBSCRIPT SMALL LETTER V

2090 LATIN SUBSCRIPT SMALL LETTER A

2091 LATIN SUBSCRIPT SMALL LETTER E

2092 LATIN SUBSCRIPT SMALL LETTER O

2093 LATIN SUBSCRIPT SMALL LETTER X

2094 LATIN SUBSCRIPT SMALL LETTER SCHWA

2095 LATIN SUBSCRIPT SMALL LETTER H

2096 LATIN SUBSCRIPT SMALL LETTER K

2097 LATIN SUBSCRIPT SMALL LETTER L

2098 LATIN SUBSCRIPT SMALL LETTER M

2099 LATIN SUBSCRIPT SMALL LETTER N

209A LATIN SUBSCRIPT SMALL LETTER P

209B LATIN SUBSCRIPT SMALL LETTER S

209C LATIN SUBSCRIPT SMALL LETTER T

2C7C LATIN SUBSCRIPT SMALL LETTER J

2071 SUPERSCRIPT LATIN SMALL LETTER I

207F SUPERSCRIPT LATIN SMALL LETTER N

Besides the somewhat surprising presence of the
‘schwa’ character and the striking asymmetry be-
tween the number of sub- and superscripts, most
questionable here is the incompleteness of the Latin
alphabet. So far, we have not included these glyphs
in neither text nor math fonts.

Another example concerns math italic symbols.
The Unicode standard reads:

1D44E MATHEMATICAL ITALIC SMALL A

1D44F MATHEMATICAL ITALIC SMALL B

1D450 MATHEMATICAL ITALIC SMALL C

1D451 MATHEMATICAL ITALIC SMALL D

1D452 MATHEMATICAL ITALIC SMALL E

1D453 MATHEMATICAL ITALIC SMALL F

1D454 MATHEMATICAL ITALIC SMALL G
⇐?

1D456 MATHEMATICAL ITALIC SMALL I

1D457 MATHEMATICAL ITALIC SMALL J

1D458 MATHEMATICAL ITALIC SMALL K

1D459 MATHEMATICAL ITALIC SMALL L

1D45A MATHEMATICAL ITALIC SMALL M

1D45B MATHEMATICAL ITALIC SMALL N

1D45C MATHEMATICAL ITALIC SMALL O

1D45D MATHEMATICAL ITALIC SMALL P

1D45E MATHEMATICAL ITALIC SMALL Q

1D45F MATHEMATICAL ITALIC SMALL R

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 329

GUST e-foundry font projects

330 TUGboat, Volume 37 (2016), No. 3

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 331

1D460 MATHEMATICAL ITALIC SMALL S

1D461 MATHEMATICAL ITALIC SMALL T

1D462 MATHEMATICAL ITALIC SMALL U

1D463 MATHEMATICAL ITALIC SMALL V

1D464 MATHEMATICAL ITALIC SMALL W

1D465 MATHEMATICAL ITALIC SMALL X

1D466 MATHEMATICAL ITALIC SMALL Y

1D467 MATHEMATICAL ITALIC SMALL Z

Math italic ‘h’ is apparently missing. In fact,
the Unicode Consortium decided to leave the slot
1D455 unused forever and “inflate” the meaning of
the slot formerly assigned to the Planck constant:
210E PLANCK CONSTANT

= height, specific enthalpy, ...
* simply a mathematical italic h;

this character’s name results
from legacy usage

More on Unicode’s ambiguities, inconsistencies,
riddles, curiosities, etc. concerning typography appli-
cations, especially math typesetting, can be found in
Piotr Strzelczyk’s ruminations [23].

From the typographer’s point of view, the enu-
meration of all signs used in the world does not seem
to be a good idea. Therefore, it should be no surprise
that it turned out to be impossible to create a math
OTF font that has an internally logical and coherent
structure and, at the same time, is practically use-
ful. Conforming rigorously to the mentioned spec-
ifications does not help too much — it would lead,
in our opinion, to fonts containing mostly seldom
used glyphs. Needless to say, research examining
which characters from the Unicode repertoire are ac-
tually used in practice, would be welcome. Lacking
such empirical data, we adopted Cambria Math as
our “reference point”. Cambria Math contains circa
6500 glyphs; we decided to reduce this number to
at most 4500 for the TEX Gyre series of math fonts.
We can reluctantly consider proposals for suitable
extensions, if truly needed.

6.5 Compatibility issues

We already explained why 100-percent compatibil-
ity of the LM text fonts with the parent Computer
Modern fonts is unfeasible; thereby, the same ap-
plies, even to a greater extent, to the LM Math font
(cf. the case of horizontal extensible braces in Sec-
tion 6.1).

Recall that we used an alternative calligraphic
alphabet in LM Math (Section 6.1). This incompat-
ibility can be relatively easily patched, by including
two calligraphic scripts in the font and using OTF

‘stylistic sets’ features, implemented as the OTF fea-
tures ss01–ss20 (see [33]).

There is, however, a flaw shared by both Com-
puter Modern and Euler calligraphic alphabets and
thus inherited by the Latin Modern Math: the lack

of a corresponding lower case alphabet. The Uni-
code specification assigns slots to lower case mathe-
matical calligraphic letters, implying that they are
expected to be present in math fonts.

We could not find a calligraphic font with a
proper license optically matching Euler or Computer
Modern upper case calligraphic letters, and we gave
up in advance the idea of designing the respective
matching lower case letters ourselves. Instead, we
began to consider the inclusion of yet another stylis-
tic set, a “home-made” calligraphic font inspired by
(but not based on) the original Computer Modern
calligraphic script. Although we would never dare
to make a text calligraphic font without close co-
operation by a professional type designer, we took
a chance and attempted to prepare a symbol calli-
graphic font for TG DejaVu Math.

There was an additional reason for doing our
own calligraphic script. Anticipating future work
(see Section 7 below), we looked for a calligraphic
script matching a sans-serif font. Having not found
any, we decided to prepare our own. Because our
calligraphic alphabet for TG DejaVu Math was, of
course, defined by a parametric MetaType 1 pro-
gram, it was possible to prepare a sans-serif (linear)
variant of the calligraphic script with reasonable ef-
fort. A tentative, experimental linear calligraphic al-
phabet is shown in Figure 9: the calligraphic script
used in TG DejaVu Math (top) and its linear variant
to be used in a sans-serif math font (bottom).

F
ig

u
re

9

Fortunately, there is no issue of compatibility
regarding the TG math fonts, as there are no prede-
cessors. The only question is the similarity of reper-
toire between the LM and TG math fonts. As ex-
plained in Section 6.3, the repertoires are bound to
differ slightly, for the usual legacy reasons.

GUST e-foundry font projects

332 TUGboat, Volume 37 (2016), No. 3

For the same reasons, some technical details of
the font structure also cannot be implemented simi-
larly. Worthy of mentioning in this context is a pe-
culiar difference between the LM and TG math fonts
related to integrals; namely, the TG math fonts con-
tain extensible integrals, which are definable within
the OTF math format — but we are not aware of any
typesetting engine that can take advantage of this
possibility.

7 Plans for the future

7.1 Testing and maintenance

Tasks that are important today and will be forever
important in the future are maintenance and test-
ing. There is, of course, neither a single tool for
testing nor a unique maintenance procedure. Each
case demands a specific approach.

It is Piotr Pianowski who is responsible for test-
ing fonts and preparing adequate tools. Tests re-
fer to both the appearance of the fonts and their
internal structure. In particular, the intermediate
PostScript Type 1 code needs checking. The follow-
ing example shows a case where the inspection of
the code revealed an error in the parenright.ex

procedure (describing an extender of the extensible
right parenthesis, which should be just a rectangle),
probably due to the wrong rounding procedure: the
number ‘1’ means that the line drawn by the com-
mand rlineto is not strictly vertical. The left col-
umn contains the correct code for the corresponding
component of the extensible left parenthesis:

/parenleft.ex { /parenright.ex {
143 609 hsbw 338 609 hsbw
127 418 rmoveto 128 418 rmoveto
-127 hlineto -128 hlineto
-418 vlineto 1 -418 rlineto
127 hlineto 126 hlineto
closepath closepath
endchar endchar
} ND } ND

It is next to impossible to perceive such a tiny defor-
mity on a printout of glyph shapes, which does not
mean that the bug should not be fixed.

The next example, Figure 10, shows one of the
tests we use for checking a vexing problem regard-
ing Greek letter names. Some Greek letters have a
shape variant, and there is an unfortunate discrep-
ancy between TEXies and the rest of the world (the
rightmost two columns marked with asterisks) as
to which glyphs are considered “normal” and which
“variant”.

Almost every time we deal with the Greek al-
phabet, a mistake in variant names tries to creep in.
Without tests of this kind we would be lost.

F
ig

u
re

1
0

The last example concerning maintenance and
testing issues, Figure 11, shows a typical test of
the structure of extensible characters, “embellished”
horizontal arrows in this case: ‘vh 2’ means that
there are 2 size variants, ‘ch 3’ and ‘ch 5’ — that
there are 3 and 5 horizontal components of a given
glyph, respectively. Tests of this kind are essential
for maintaining uniformity across a font collection
as well as inside a single font.

F
ig

u
re

1
1

As a result of remarks to date from the users
of our fonts, we gathered a list of recommended
fixes and improvements — some trivial, like reports
on malformed glyphs or wrongly assigned Unicode
slots, some fairly difficult, like suggestions to imple-
ment anchors or math staircase kerns.

The latter two potential improvements are still
pending, mainly because of vague specification and
the question of practical application. Being unsure
whether all relevant typesetting programs would be
able to handle such improvements, we preferred to
linger till the engines would become stable. It seems
that the time is ripe to attempt these extensions,
especially as the staircase kerns were ultimately im-
plemented in X ETEX in the middle of 2014.

We are also not sure which OTF features should
be present in math fonts. At the moment, only math-
oriented OTF features are implemented. Perhaps we
should consider the inclusion of text-oriented OTF

features too, like the mentioned onum, lnum, pnum,

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 333

and tnum for switching between numeral variants,
or stylistic sets for switching between calligraphic
alphabets.

Also as suggested by users, we consider excerpt-
ing a number of glyphs, mostly geometrical shapes
and arrows but also selected math operators and re-
lational symbols, etc. (but excluding extensible and
subscript characters), from math fonts and transfer-
ring them into the respective text fonts. Such glyphs,
though prepared for math-oriented applications, can
also be fruitfully used in conventional fonts, that is,
those not equipped with the MATH table, for the
typesetting of technical documents. This, obviously,
requires a proper specification and careful selection
of the glyphs in question. This is, in fact, one of the
planned stages of work on new fonts.

Of course, MetaType 1 itself also requires main-
tenance: enhancing, modifying, fixing, etc. For ex-
ample, we had to extend the otherwise stable set of
MetaPost macros used in MetaType 1 in order to
handle the math extension of the OTF specification.

Commencing our works for the GUST e-foundry,
we underestimated the inexorable Hofstadter’s Law
(see footnote 7 on page 324) which apparently ap-
plies not only to time resources. We believed that
MetaType 1 could be kept simple: just MetaPost,
a few trivial Gawk scripts and a stand-alone, sta-
ble converter to PostScript Type 1 fonts, T1utils,
and that’s all. In accordance with Hofstadter’s Law,
the task has unavoidably turned out to be much
more complex than we expected and the implemen-
tation — too heterogeneous.

In order to remedy this, we intend to unify
MetaType1 by eliminating Gawk, Perl, T1utils, and,
as we mentioned in Section 3.1, AFDKO. We aim
at employing two basic “subengines”, namely, Meta-
Post (for generating outlines) and Python (for ar-
ranging the MetaPost output) plus one external, pos-
sibly replaceable, “subengine”, for now, the Font-
Forge Python library (for generating OTF fonts and
the theoretically obsolescent but still widely used
PostScript Type 1 fonts).

7.2 More GUST e-foundry fonts

In the nearest future, we would like to elaborate
and release three experimental math fonts, namely:
bold math, sans-serif math, and monospaced math.
These fonts fit neither the Microsoft nor Unicode
specifications ([29] and [37], respectively). There-
fore, we have to start by working out an altered
specification, adjusted to our purposes, for these
non-standard cases. For example, it is not at all
clear what to do with the sans-serif alphabet in a

sans-serif math font: should it be omitted, left in-
tact, or modified somehow (how?).

Bold math fonts can be used in titles containing
math formulas, as shown in Figure 12 (a tentative
version of TG Termes Bold Math is used).

F
ig

u
re

1
2

Nowadays, many documents are being typeset
in sans-serif, even schoolbooks. Computer presenta-
tions may serve as another example. For such appli-
cations sans-serif math seems plausible. An example
of such an application is shown in Figure 13 (a ten-
tative version of TG DejaVu Sans Math is used).

F
ig

u
re

1
3

TEX users are accustomed to the use of control
sequences for math-oriented glyphs such as \infty,
\sum or \pm. Some of these glyphs can be accessed
(typed in and displayed) directly in text editors, pro-
vided the font used by the editor contains the rele-
vant glyphs. The lion’s share of nominally math-
oriented glyphs can also be prepared as monospaced
glyphs, usable in text editors, provided they are as-
signed Unicode numbers. One can expect that it will

GUST e-foundry font projects

334 TUGboat, Volume 37 (2016), No. 3

improve the legibility of sources and, thereby, the ef-
ficiency of preparation of such documents — see Fig-
ure 14 (a tentative version of TG DejaVu Mono Math
is used).

F
ig

u
re

1
4

Note that treating subscripts incoherently by
the Unicode Standard (Section 6.4) may prove to
be a significant impediment in the latter case, that
is, for fonts without full subscript support. Perhaps
the defining of the complete set of subscripts and
superscripts (partially “unicodeless”) and accessing
them via stylistic set features (ss01–ss20) can be
a solution, provided a given text editor handles the
relevant OTF features.

7.3 Legal issues

The problem of copyrights and licenses has clung
to us like a leech from the very beginning and still
persists. We are not copyright experts and we do
not want to be. Being sick of trouble with releasing
our work due to discussions about legal aspects of
distributing free fonts, we coined a pun lice-sense.
Just one example: the release of TG DejaVu Math
was delayed by about a year because of doubts raised
concerning legal matters.

Having said this, we should emphasize that it
does not mean that there has been no activity from
the side of the GUST e-foundry regarding legal issues.
On the contrary, our magnificent liaison officer, Je-
rzy Ludwichowski, has made Herculean efforts in or-
der to provide appropriate licenses for GUST fonts.
In particular, he prepared a proposal of a license
for the URW fonts that would suit GUST e-foundry
needs, managed to contact in person the URW++

managing director, Dr. Peter Rosenfeld, and, after
long negotiations, received the gracious approval for
the additional license.

All the fonts released so far are licensed under
the GUST Font License (GFL; see [30]), except for
TG DejaVu Math which has a somewhat complex li-
cense (see [9], the Manifest file for TG DejaVu Math).
Recently, many fonts are being released under the
SIL Open Font License (OFL; see [34]); therefore,
we consider dual-licensing GUST fonts (GFL+OFL).

More details concerning legal matters relevant
to GUST e-foundry fonts can be found in a series
of publications by Jerzy Ludwichowski — see, for ex-
ample [18, 19, 20, 21].

7.4 Constraints of tradition vs. our dreams

We are not particularly enthusiastic about font tech-
nology nowadays, but we are not going to spit into
the wind, and try to make the best of what is avail-
able. This does not mean, however, that we are
going to relinquish dreams of a successor to the cur-
rently prevalent “Knuth–Gutenberg” model of type-
setting, that is, the model of stiff rectangles (types)
arranged within a larger rectangle (page; a series of
pages being called a document), deeply ingrained in
Johannes Gutenberg’s technology of movable type,
and transferred by Donald E. Knuth, among others,
to the realm of computers.

Computers facilitate some operations, such as
kerning and ligatures, thereby accelerating work on
documents. The ease of use of affine transforma-
tions is also considered an advantage of computers
by many graphic designers. We are inclined to con-
sider both these aspects as being of rather equivo-
cal benefit. Leaving aside these philosophical ques-
tions and a far-reaching yet obvious idea, in fact also
philosophical, that a font could be defined as a struc-
tured collection of general purpose object programs,
we confine ourselves to pointing out two examples
of aspects that might be improved within the frame-
work of the contemporary edifice of typesetting.

Shrinkable and stretchable spaces, as in TEX,
would supposedly be convenient also in OTF fonts
and seem not too hard to implement. This simple
problem touches on a fairly general and not in the
least trivial problem which could be called “the con-
flict of competence”: which “knowledge” should be
implemented in a font and which — in a typesetting
program.

Another improvement, this time hard to imple-
ment, is related to a naïve question: why must ad-
ditional alphabets be embedded into a single math
font? The answer is simple: operating systems are
poorly designed with regard to font management. In

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

TUGboat, Volume 37 (2016), No. 3 335

particular, a user is not allowed to define a “private”
family of fonts — the commonplace pattern “regu-
lar, regular italic, bold, bold italic” is very difficult
to dislodge. One can imagine other variants of this
idea, namely, borrowing components for extensible
characters or kerns from several fonts. As far as we
know, such an approach has not been implemented
in any typesetting program or any operating system.
TEX is no exception (unless virtual fonts are used);
note, for example, that changing fonts within a word
switches off the TEX hyphenation mechanism.

It should be emphasized that several such prob-
lems were tackled in LuaTEX by Hans Hagen and
team; it does not seem, however, as if amendments of
this kind are to be introduced worldwide in any near
future. This is understandable, as the constraints
of tradition and compatibility usually slow down
the innovative processes. For example, recently an-
nounced advancements in the OTF format specifi-
cation (see, e.g., [6]), can actually be considered a
step backward towards a previously abandoned idea,
temporarily as it turns out, of multiple master fonts.
Anyway, this announcement augurs both ill and well
for us: it means, on the one hand, that we will prob-
ably have to reimplement MetaType 1 in order to
keep pace with the surrounding world and, on the
other hand, that we still have something to do and
something to think about.

8 Acknowledgements

We are indebted to all the people and TEX groups
that have supported our font enterprises. Almost all
the GUST e-foundry projects have been kindly sup-
ported by the Czechoslovak TEX user group CSTUG,
the German-speaking TEX user group DANTE e.V.,
the Polish TEX Users Group GUST, the Dutch-speak-
ing TEX user group NTG, TUG India, UK-TUG, and,
last but not least, TUG. In a few cases, GUTenberg,
the French-speaking TEX Users Group, supported
us too.

We are very grateful to Karel Píška and Ulrik
Vieth, who performed extensive tests of our fonts
and inspired us with insightful comments, and to
Marcin Woliński, who provided the indispensable
LATEX support for our fonts.

The exceptional, personal thanks we owe to our
friends who kept our spirits up for many years and
tirelessly encouraged us to work on fonts: Hans Ha-
gen, Johannes Küster, Jurek Ludwichowski, Volker
RW Schaa, Jola Szelatyńska — hearty thanks!

All trademarks belong to their respective own-
ers and have been used here for informational pur-
poses only.

References

Presentations, publications and packages

[1] Lars Engebretsen, Almost European Fonts
https://ctan.org/pkg/ae

[2] Michael Everson, The Alphabets of Europe
http://www.evertype.com/alphabets/

[3] Lee Hetherington, Eddie Kohler, T1utils
http://www.lcdf.org/type/t1asm.1.html

http://www.lcdf.org/type/t1disasm.1.html

[4] John D. Hobby, MetaPost
https://ctan.org/pkg/metapost

[5] Donald E. Knuth, The TEXbook, TEX: The
Program, The Metafontbook, Metafont: The
Program, Computer Modern Typefaces,
Computers & Typesetting, vol. A–E,
Addison-Wesley, Reading, Massachusetts,
1986

[6] John Hudson, Introducing OpenType Variable
Fonts, 2016
https://medium.com/@tiro/

https-medium-com-tiro-introducing-

opentype-variable-fonts-12ba6cd2369

[7] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, Antykwa Półtawskiego: a parameterized
outline font, Proceedings of the EuroTEX
Conference, Heidelberg, Germany, 1999
article: http://www.staff.uni-giessen.de/

partosch/eurotex99/jackowski

download: http://www.gust.org.pl/projects/

e-foundry/poltawski

[8] Bogusław Jackowski, Marek Ryćko, Polish
extension of Computer Modern fonts
https://ctan.org/pkg/pl-mf

[9] Bogusław Jackowski, Piotr Strzelczyk, Piotr
Pianowski, GUST e-foundry math fonts
The Latin Modern Math (LM Math) font:
http://www.gust.org.pl/projects/e-foundry/

lm-math

The TEX Gyre (TG) Math Fonts:
http://www.gust.org.pl/projects/e-foundry/

tg-math

https://ctan.org/pkg/tex-gyre-math

[10] Bogusław Jackowski, Piotr Strzelczyk, How to
make more than one math OpenType font or the
Beasts of Fonts, DANTE 2011 Meeting, Bremen,
Germany, 2011
http://www.gust.org.pl/projects/e-foundry/

math/beasts05.pdf

[11] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, The Latin Modern (LM) Family of
Fonts
http://www.gust.org.pl/projects/e-foundry/

latin-modern

[12] Bogusław Jackowski, Janusz M. Nowacki,
Latin Modern fonts: how less means more
Proceedings of the EuroTEX conference,
Pont-à-Mousson, France, 2005
http://tug.org/TUGboat/tb27-0/jackowski.pdf

GUST e-foundry font projects

336 TUGboat, Volume 37 (2016), No. 3

[13] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, MetaType 1: a MetaPost-based engine
for generating Type 1 fonts, 2001
article: http://www.ntg.nl/maps/26/15.pdf

presentation: http://ntg.nl/eurotex/

JackowskiMT.pdf

download: https://ctan.org/pkg/metatype1

[14] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, The TEX Gyre (TG) Collection of Fonts
http://www.gust.org.pl/projects/e-foundry/

tex-gyre

[15] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, TEX Gyre Pagella Math or Misfortunes
of Math Typographer, BachoTEX XX, Bachotek,
Poland, 2012
http://www.gust.org.pl/projects/e-foundry/

math/misfortunes02.pdf

[16] Jörg Knappen, Norbert Schwarz, European
Computer Modern Fonts
https://ctan.org/pkg/ec

[17] Donald E. Knuth, Metafont and MetaPost logo
fonts. https://ctan.org/pkg/mflogo-font

[18] Jerzy B. Ludwichowski, GUST font licenses,
BachoTEX XIV, Bachotek, Poland, 2006
http://tug.org/fonts/licenses/gfl.pdf

[19] Jerzy B. Ludwichowski, Karl Berry, GUST Font
License: An application of the LATEX Project
Public License, XVII European TEX Conference
and BachoTEX XV, Bachotek, Poland, 2007;
TUGboat, Volume 29 (2008), No. 1
http://www.gust.org.pl/projects/e-foundry/

licenses/tb91Berry_Ludwichowski.pdf

[20] Jerzy B. Ludwichowski, Licensing of the TEX Gyre
family of fonts, XIX European TEX Conference
and 3rd International ConTEXt User Meeting, The
Hague, The Netherlands, 2009
https://www.ntg.nl/EuroTeX/2009/slides/

jerzy-slides.pdf

[21] Jerzy B. Ludwichowski, Is there life besides
licensing?, DANTE e.V. General Meeting, Bremen,
Germany, 2011
https://www.dante.de/events/Archiv/

dante2011/programm/vortraege/folien-jl.pdf

[22] Janusz M. Nowacki, Polish fonts
http://jmn.pl/en/

[23] Piotr Strzelczyk, Standard Unicode w typografii,
Acta Poligraphica nr 1/2013 (in Polish; to be
published also in English under the title Standard
Unicode in typography)
http://www.cobrpp.com.pl/actapoligraphica/

uploads/pdf/AP2013_01_Strzelczyk.pdf

see also: Piotr Strzelczyk, (uni)coding of math
fonts, BachoTEX XIX, Bachotek, Poland, 2011
http://www.gust.org.pl/bachotex/2011-en/

presentations/Strzelczyk_1_2011

[24] Ulrik Vieth, OpenType math illuminated,
TUGboat, Volume 30 (2009), No. 1
http://tug.org/TUGboat/tb30-1/tb94vieth.pdf

[25] George Williams and FontForge project
contributors, FontForge
http://fontforge.github.io/en-US/

General purpose documentation:

[26] Adobe Font Development Kit for OpenType
http://adobe.com/devnet/opentype/afdko.html

[27] Adobe base 35 fonts
Adobe original AFM files: ftp://ftp.adobe.com/

pub/adobe/type/win/all/afmfiles/base35/

URW replacement: https://ctan.org/pkg/

urw-base35

[28] Adobe Type 1 Font Format
https://partners.adobe.com/public/

developer/en/font/T1_SPEC.PDF

[29] MATH — The mathematical typesetting table
https://www.microsoft.com/typography/

OTSPEC/math.htm

[30] GUST Font License
http://www.gust.org.pl/fonts/licenses/

GUST-FONT-LICENSE.txt

http://tug.org/fonts/licenses/

GUST-FONT-LICENSE.txt

[31] OpenType specification (full)
http://www.microsoft.com/en-ph/download/

details.aspx?id=1144

[32] OpenType Feature File Specification
http://www.adobe.com/devnet/opentype/afdko/

topic_feature_file_syntax.html

[33] Registered features — definitions and
implementations (p–t)
https://www.microsoft.com/typography/

otspec/featuretags.htm

[34] SIL Open Font License
https://scripts.sil.org/OFL

[35] The Unicode Standard 9.0.0, 2016
http://unicode.org/versions/Unicode9.0.0

[36] The Unicode Standard: A Technical Introduction
http://unicode.org/standard/principles.html

[37] Barbara Beeton, Asmus Freytag, Murray
Sargent III, Unicode Technical Report #25.
Unicode Support for Mathematics
http://unicode.org/reports/tr25/

All links above were tentatively accessed
05.07.2015.

⋄ Bogusław Jackowski
Gdańsk, Poland
b_jackowski (at) gust dot org dot pl

⋄ Piotr Strzelczyk
Sopot, Poland
p.strzelczyk (at) gust dot org dot pl

⋄ Piotr Pianowski
Trąbki Wielkie, Poland
p.pianowski (at) gust dot org dot pl

Bogusław Jackowski, Piotr Strzelczyk and Piotr Pianowski

