
TUGboat, Volume 37 (2016), No. 3 281

When (image) size matters

Peter Willadt

Abstract

For space and performance reasons, scaling of images
to be included into a PDF document down to a
certain resolution is often desirable. This article
describes a halfway automatic method to achieve
this goal with pdfTEX.

1 Basics

TEX output is by default device independent, and
this is fine. In ancient implementations, adoption
to different previewers or printing devices resulted
from the work of DVI processing software, in recent
years TEX has been widely replaced by pdfTEX and
other software that produces PDF output which can
be processed by a wide range of devices (the P in
PDF stands for portable, after all).

With scalable fonts and scalable inline graphics
produced by software packages like TikZ or META-
POST, still everything is fine. Problems arise when
raster graphics are embedded into a PDF file. pdfTEX
includes raster graphics at their natural size. Espe-
cially with the megapixel mania of digital cameras
this leads to bloated files. Download time and pro-
cessing effort at the printing device increase; perhaps
your printer will give up with an out-of-memory error
for rendering a stamp-sized photograph.

Rescaling bitmap images to a size that suffices
for usual post-processing help keep file size and pro-
cessing complexity small while retaining expected
image quality. The most important question is: what
resolution will suffice? There are two answers: With
pure black-and-white pictures (‘line art’), the print-
ing devices’ native resolution (e.g. 1200 dpi) is fine.
With grayscale or color pictures, a resolution of 1/4
of that will easily do. The reason is that colored
‘pixels’ are formed by combining several dots.1 For
16 distinct gray tones, one ‘pixel’ consists in theory
of a 4×4 matrix of black or white pixels. In practice,
the real resolution may be even coarser, as effects like
bleeding of ink or surface roughness of paper have
also to be considered. With professional printing
equipment, true output resolution is measured in lpi
(lines per inch) and grayscale or color images scaled
to their dpi equal to the printing devices’ lpi should
be fine. If you read this article in the print version of
TUGboat, figure 1 gives you the chance to see what

1 It does not matter if the device does halftoning by ras-
tering or dithering. Special printing devices which are capable
of producing ink drops of varying size or using thermal subli-
mation are not covered by these thoughts.

2500 dpi, 900 kB 500 dpi, 58 kB

375 dpi, 42 kB 250 dpi, 24 kB

200 dpi, 20 kB 100 dpi, 10 kB

Figure 1: The same photograph in several resolutions.
See for yourself where quality degradation becomes
perceptible.

professional printing equipment can achieve on plain
paper. Printing this page on your own device will
probably be even more sobering: On my 1200 dpi
laser printer, I can’t see any difference among the im-
ages. With special paper and techniques like duotone
printing, there is room at the top.

For online viewing, one pixel of an image corre-
sponds to one pixel on screen. If you zoom in even
more pixels may be needed. Considering high-res
devices and moderate zooming, 300 dpi will probably
suffice for the next few years.

2 Looking outside the box

In the early times of desktop publishing, when disk
space was costly and memory size and local network
bandwidth were seriously limited, layout designers
often worked with low-resolution preview pictures
and final images would be inserted on the way to the
imagesetter. There even existed a standard called
open prepress interface (OPI) [1] for automatic image
replacement in PostScript files.

Adobe software (at least InDesign and Distiller)
will rescale images during PDF production to an ap-
propriate resolution chosen for the intended target
you choose (e.g. print or web). OpenOffice and Libre-
Office leave images untouched, while Microsoft Word
treats pictures, without any chance to intervene, in
a way that causes considerable grief to people in
printing offices.

When (image) size matters



282 TUGboat, Volume 37 (2016), No. 3

3 Including pictures for different output
devices into a single PDF file

Probably for purposes similar to OPI, the PDF spec-
ification allows the inclusion of different images for
viewing on screen and printing. Unfortunately, there
are several restrictions and drawbacks:

• both images have to have the same dimensions

• both images should have the same resolution

• both images will be included within the PDF

file, so file size gets bloated.

• Software support is rare.

Alternative print images are enabled as an exper-
imental feature in pdftex.def and can be used with
the graphicx package out of the box. You just say

\includegraphics

[print=imgPrint.jpg,...]{imgView}

instead of

\includegraphics[...]{myimgView}

and you’re done.
It only works with bitmap graphics and you

have to specify the full filename. Another drawback
is that image reuse does not work with this option
for screen images, so your file gets bloated even more.
With Adobe Acrobat, I have been able to use it,
but most other PDF processing software fails. On
my GNU/Linux system, I ended up with a file I
could view but not print. Considering all this, I can
unfortunately see no good use for this technology
apart from playing pranks.

4 Ways of attack

There are three possible hooks to scale images: before
the pdfTEX run; while pdfTEX is processing pictures;
and as a postprocessor on the finished PDF.

Googling for the problems aforementioned, you
will find a postprocessing solution using Ghostscript
on the final PDF file [2] and another one using a
Python tool [3].

There also exists a LATEX package and corre-
sponding ConTEXt module, both called degrade [4],
which shrink image files on the fly using ImageMagick
in the background. Both of these packages require a
Unix-ish operating system and \write18 has to be
enabled.

Beyond downscaling, there are other ways of
getting smaller image files. For one, increasing JPEG

compression allows drastic reductions in space. This
can be done when there will be no further image
processing involved, but it requires careful visual
checking for compression artifacts.

Also, color depth can be decreased (by “posteri-
zation” or grayscale conversion). The author believes

that this technique is best carried out with interactive
software and visual checks for the results. Unfortu-
nately, reducing color depth does not yield large gains
in space,2 but it might be useful to do gray-scale
conversion for material to be printed in black and
white to get fine control over the results. Gamma
correction and adjustment of black and white levels
are often helpful to get better printing results, but
for file size there is no benefit.

5 Proposal for a perfect solution

A presumably perfect solution would scale pictures
on the fly while producing PDF, ideally triggered
by a command like \pdfFinalResolution=300 or
\destination=web in the document preamble. This
command would probably be supported by some
bookkeeping to avoid unnecessary computations on
already downscaled images. If black-and-white out-
put was intended, all images might be converted to
grayscale, also keyword-driven. Of course, when im-
ages were to be clipped, only the visible part of these
images would be included.

I guess that this could be done with LuaTEX
almost out of the box, and as it has now (Sept. 2016)
reached a stable state, there should be no obstacles
to implementing it.

6 Implementation (less than perfect)
and usage

I have resorted to external software that reads a
TEX log file to scan for filenames of images and re-
quired target resolutions and then builds up scaled
images. As you can specify paths for graphic inclu-
sion with the graphicx LATEX package, you get a
comparatively easy solution if you adopt to some
conventions. You should avoid giving path names
on individual \includegraphics commands and in-
stead use the \graphicspath directive. In a first
run you will comment the path to the final images
out, having generated the downscaled pictures you
will comment the original file path out.

\graphicspath{{my/hires/images/}}

%\graphicspath{{printimg/}}

% move comment up for final pdfLaTeX run

You will have to repeat this procedure as you
change image sizes or as you add new images, so it
is probably best to start generating scaled pictures
when your document is almost done. Really fast
previewing can — as you probably know — be done by
specifying the draft option to the graphics package,

2 With the example picture, only ten percent reduction of
disk space was achieved by grayscale conversion.

Peter Willadt



TUGboat, Volume 37 (2016), No. 3 283

where you get only frames instead of pictures in your
PDF file.

So, your workflow will look like this:

• Run LATEX on your file, with \graphicspath

pointing to the original files.

• Run pdflatexpicscale on your LATEX project.

• Run LATEX on your file, with \graphicspath

pointing to your optimized files.

• Repeat if you change picture sizes, add new
pictures, or choose a different target resolution.

If you cannot produce PDF files directly, the
only change to the workflow will be that you have
to additionally call your PDF producing software.

pdflatexpicscale3 is a Perl script. It depends
on some standard Perl packages and the presence of
ImageMagick software. As these prerequisites are
quite common, it should run with your system. You
call the script with the name of your LATEX project
and optionally with the desired resolution and desired
picture directory. If you omit arguments, reasonable
defaults will be assumed. So a typical call would be:

pdflatexpicscale --printdpi=200 \

--destdir=medrespics myarticle

If your LATEX file is called myarticle.tex, you
have done a LATEX run, so that the log file exists, you
want 200 dpi output and the directory for the scaled
pictures is an existing subdirectory of the current
directory called medrespics, then you may copy the
above command verbatim.

The software can be downloaded from CTAN

[5], and is included in TEX Live. Documentation is
included. You may probably want to read it, as it is
not identical with this article.

7 Caveats, limitations and drawbacks

My PostScript printer prints some black-and-white
images inverted. I could have inverted them with an
image processor, but then they would look wrong
on screen. As a workaround I converted them to
grayscale. Some provision needs to be made to
keep pdflatexpicscale from scaling them down
like other halftone images. The easiest way is keep
them in a separate directory and to include this di-
rectory at the beginning of the \graphicspath list.

The target resolution you choose may not truly
meet the printing devices’ needs, especially if you do
not know who will print your document. Perhaps
the printing device has got fantastic image scaling
software that you replace by some inferior software
on your computer. Also you probably will not want

3 This name was chosen because Google found no hits in
July, 2016.

to recompile all of your documents just because you
bought a new printer.

pdflatexpicscale changes image size and tar-
get resolution. This has serious consequences if you
intend to use clipping, or to display pictures in a
size dependent on their resolution. Also, anisotropic
scaling is not supported.

When a file gets used several times at different
sizes, only the largest will be included. The software
reads the log file from beginning to the end and starts
rendering immediately, so when an image is included
at first in thumbnail size and then larger, it will be
rendered several times.

The Perl script uses ImageMagick’s convert

software for scaling pictures, so quality of resam-
pling and file compression (most important for lossy
compression formats like JPEG) depend upon Im-
ageMagick’s algorithms.

Security concerns: ImageMagick has had several
security flaws fixed in 2016. So it is probably not a
good idea to provide scaling services to anonymous
users that might upload a malicious image file.

The solution presented only deals with pure
raster graphics (JPEG and PNG). If you include
graphics in a mixed format like PDF, rasterization
might be beneficial or disadvantageous, depending on
the content. Rastering vector graphics is definitely
not what you want. Treating your PDF with one of
the postprocessing solutions mentioned might help.

A last remark: Having two projects share the
same images is a recipe for dissatisfaction. It is quite
common to keep, for instance, a presentation and
the corresponding handout in the same folder, but
graphic requirements are totally different. The best
solution is to keep downscaled pictures in separate
directories; pdflatexpicscale can easily cope with
this.

References

[1] http://wwwimages.adobe.com/www.

adobe.com/content/dam/Adobe/en/

devnet/postscript/pdfs/5660.OPI_2.0.pdf

[2] http://tex.stackexchange.com/questions/

14429/pdftex-reduce-pdf-size-reduce-

image-quality

[3] http://tex.stackexchange.com/questions/

2198/how-to-create-small-pdf-files-for-

the-internet

[4] http://ctan.org/pkg/degrade

[5] http://ctan.org/pkg/pdflatexpicscale

� Peter Willadt
willadt (at) t-online dot de

When (image) size matters


