
338 TUGboat, Volume 38 (2017), No. 3

Glisterings
Peter Wilson

Our stars must glister with new fire, or be
To daie extinct;

The Two Noble Kinsmen, John
Fletcher (and William Shakespeare?)

The aim of this column has been (see last sections) to
provide odd hints or small pieces of code that might
help in solving a problem or two while hopefully not
making things worse through any errors of mine.

And scribbled lines like fallen hopes
On backs of tattered envelopes.

Instead of a Poet, Francis Hope

1 Reading lines
The \input macro reads a complete file into TEX as
an atomic action. This was not what Lars Madsen
needed when he posted to ctt wanting to be able to
read a file that consisted of blocks of lines of text,
where a block was ended by a blank line, and then
do something with the last non-blank of the block(s).
The impetus for the following was Dan Luecking’s
posting [6], which was one of several responses.

The basis of a solution to Lars’ problem is the
TEX construct
\read 〈stream〉 to \mymacro
which reads one line from the file associated with
〈stream〉 and defines \mymacro to be the contents of
that line.

Let’s start with a file of the kind that Lars is
concerned with. Using the filecontents environ-
ment, putting the following in the preamble will, if it
does not already exist, create the file glines16.txt
which will start with four TEX comment lines written
by filecontents, stating how and when the file was
created; if the filecontents* environment is used
instead then the initial four comment lines are not
output, just the body of the environment as given [7].
\begin{filecontents}{glines16.txt}
This is the file glines16.txt
containing some text lines.

They come in blocks
with blank lines between.

This is the third block
consisting of
three lines.

\end{filecontents}

We need to set up a \read stream and associate it
with a file to be read, making sure that the file does
exist, along the lines of:
\newread\instream \openin\instream= qwr!?.tex
\ifeof\instream

\message{No file ‘qwr!?.tex’!^^J}
\textbf{File ‘qwr!?.tex’ not found!}

\else
\message{File ‘qwr!?.tex’ exists.^^J}
\textbf{File ‘qwr!?.tex’ exists.}
% do something with qwr!?.tex

\fi
\closein\instream

File ‘qwr!?.tex’ not found!

Dan’s statement was that:
If you

\def\ispar{par}
and then

\read <handle> to \myline
you will find that

\ifx\myline\ispar
will be true for a blank line and also true for a \read
taken after that last line of a file (when \ifeof is
also true).

Putting all this together, the next piece of code
produces the result shown afterwards.
\newcommand*{\ispar}{\par}
\newcommand*{\processfile}[1]{%

\openin\instream=#1\relax
\ifeof\instream

\message{No file ‘#1’!^^J}%
\textbf{File ‘#1’ not found!}%

\else
\message{File ‘#1’ exists.^^J}%
\textbf{File ‘#1’ exists!}%
\par\noindent
\loop

\let\lastline\aline
\read\instream to \aline

\ifeof\instream\else
\ifx\aline\empty (commentline) \\ \else

\ifx\aline\ispar
\ifx\lastline\ispar

(blankline) \\
\else

(lastline) \lastline (followed by)\\
(blankline) \\

\fi
\else

(aline) \aline\\
\fi

\fi
\repeat

\fi
\closein\instream}

\processfile{glines16.txt}

Peter Wilson

TUGboat, Volume 38 (2017), No. 3 339

File ‘glines16.txt’ exists.
(commentline)
(commentline)
(commentline)
(commentline)
(aline) This is the file glines16.txt
(aline) containing some text lines.
(lastline) containing some text lines. (followed by)
(blankline)
(aline) They come in blocks
(aline) with blank lines between.
(lastline) with blank lines between. (followed by)
(blankline)
(blankline)
(aline) This is the third block
(aline) consisting of
(aline) three lines.
(lastline) three lines. (followed by)
(blankline)

When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear times’ waste.

Sonnet 30, William Shakespeare

2 Paragraph endings
In earlier columns I described several aspects related
to the typesetting of paragraphs [9, 10] and here are
some additions to those.

2.1 Singletons
Andrei Alexandrescu wrote to ctt [1] that:
My publisher has the rule that a single word on a
line should not end a paragraph, as long as reflowing
wouldn’t make things really ugly otherwise. So I
defined this macro:
\newcommand\lastwords[2]{%

#1\leavevmode\penalty500\ \mbox{#2}}

and used it like this:
Lorem ipsum yadda \lastwords{amet}{dolor}.

The macro forces the last word never to be hy-
phenated, and imposes a penalty of 500 for inserting
a line break between the first-to-last and the last word.
My understanding is that 500 is the same penalty as
that of a hyphen (by default).

Things work pretty well, but it turns out quite
a lot of paragraphs need \lastwords—a whole 188
for a 500 page book . . .

Is there an automated means to enact the rule
above?

Suggestions ranged from ignoring the rule, to us-
ing existing code to make the last line at least 〈some
length〉 long (see [9]), to code based on a further sug-
gestion by Andrei and using \everypar that, subject
to many caveats, implements the requirement.

Peter Flynn [2] suggested the macro
\def\E #1 #2.{ \mbox{#1}~\mbox{#2}.}

which would be used like:
Lorem ipsum yadda \E amet dolor.

He observed that it was faster to type and easier to
edit in than \lastword but noted that it might not
handle arguments with embedded commands, spaces,
curly braces, math, etc.

Dan Luecking [5] came up with corrections to
Andrei’s second suggestion, together with an exten-
sion to handle single-word paragraphs.
\usepackage{ifthen}
% handle (one word) paragraph, pass others on
\def\controlorphanword #1 #2\par{%

\ifthenelse{\equal{#2}{}}
{#1\par}% one word para
{\controlorphanwordtwo #1 #2\par}}

% to handle multi-word paragraph
\def\controlorphanwordtwo #1 #2 #3\par{%

\ifthenelse{\equal{#3}{}}
{#1\leavevmode\penalty500\ \mbox{#2}\par}
{#1 \controlorphanwordtwo #2 #3\par}}

Dan noted that these macros will not handle words
separated by ‘\space’ or ‘\’, nor will it work with
\obeyspaces in effect.1 He also commented that the
process seemed very inefficient.2 The code should be
called by using \everypar like:
\begin{document}
Normal paragraph. The macro
\cs{cs}\texttt{\{arg\}} will print \cs{arg}.

Another one, and introducing \cs{everypar}.

\everypar{\controlorphanword}
Almost every place I have ever read about
\cs{everypar} (or redefinition of
\cs{par} or changes to paragraph
parameters) there is this or similar caveat:

(La)TeX may have strange ideas what is
counted as a paragraph. Use at your
own risk, or turn it off in complicated
circumstances.

Turn off orphan word control by putting
\everypar{}
here.

1 For instance, using \verb when \controlorphanword is
in effect will cause LATEX to hiccup violently.

2 The macros would be called for each word in a paragraph.

Glisterings

340 TUGboat, Volume 38 (2017), No. 3

Turn it back on:

\everypar{\controlorphanword}
Sentence.

There was a general consensus among the re-
spondents that the publisher’s requirement was not
particularly sensible, one going so far as to call it
‘crazy’.

(Although not a solution to the problem as
stated, too-short last lines can be mostly avoided in
an entirely different way: \parfillskip=.75\hsize
plus.06\hsize minus.75\hsize, with the numbers
tweaked as desired, and with the usual caveats about
packages resetting this primitive, etc.)

2.2 All is not what it seems
On rare occasions it may be desirable to either fake
the end of a paragraph or to insert an invisible end
of paragraph.

Faking the end is simple:
\newcommand*{\fakepar}{\\[\parskip]%

\hspace*{\parindent}}

and it can be used as:
\ldots the end of a sentence.\fakepar
A new sentence looking as though it starts
a new paragraph\ldots

which will be typeset as:

. . . the end of a sentence.
A new sentence looking as though it starts a

new paragraph. . .

Sometimes it is useful to nudge TEX into break-
ing a page, which it is inclined to do at the end of a
paragraph while keeping the appearance of unbroken
text. From The TEXbook [4, Ex. 14.15] and [12] the
\parnopar macro accomplishes this:
\newcommand*{\parnopar}{{%

\parfillskip=0pt\par\parskip=0pt\noindent}}

TEX typesets paragraph by paragraph, initially
taking no account of any page break. Only after the
text has been set in lines does TEX consider if there
should be a page break within the paragraph. If you
need something different about the setting on the
two pages, then the original paragraph must be split
at the page break.

One application is when using the changepage
package [11] to temporarily change the width or
location of the textblock (e.g., like the quote envi-
ronment). If you are trying to extend the textwidth
into, say, the outer margin, which in two-sided docu-
ments is the left margin on even pages and the right
margin on odd pages and there is a page break in the

shifted text then the results are not what you hoped
for. This can be manually fixed using \parnopar,
and splitting the adjustment into two.
\usepackage{changepage}
...
% move text 4em into outer margin
\begin{adjustwidth*}{0em}{-4em}
... first part of paragraph with the natural
page break at this point\parnopar
\end{adjustwidth*}%
\begin{adjustwidth*}{0em}{-4em}
but the sentence continues on the
following page ...
\end{adjustwidth*}

2.3 Paraddendum
Selon Stan posted to texhax, asking [8]:
Is there a way to fill the last line of a paragraph
with leaders that extend a fixed width beyond the edge
of the paragraph, with right-aligned numbers on the
right? I am trying . . .

Paul Isambert [3] replied with code that I have
cast into the following form:
\def\parend#1{%

\leaders\hbox{\,.\,}\hfill #1\par}
Here’s a sentence.\parend{1}
Here’s a sentence \\
on two lines.\parend{291}

Here’s a sentence. 1
Here’s a sentence

on two lines. 291

The shades of night were falling fast,
The rain was falling faster

When through an Alpine village passed
An Alpine village pastor;

A youth who bore mid snow and ice
With nary a sign of fluster

A banner with a strange device—
‘Glisterings glister with lustre’.

The Shades of Night, A.E.
Housman & Peter Wilson

3 In conclusion
Some years ago, at Barbara Beeton’s suggestion, I
agreed to take over Jeremy Gibbons’ Hey—It works!
column which was published between 1993 and 2000
in, firstly, TEX and TUG News, and then later in
TUGboat. He provided many useful tips for solv-
ing LATEX typesetting problems. Between 2000 and
2011 I managed to write some 15 columns, titled
Glisterings as in ‘All that glisters is not gold’ car-
rying on Jeremy’s work but then found that my
circumstances had changed and I could no longer

Peter Wilson

TUGboat, Volume 38 (2017), No. 3 341

produce a column on a regular basis. Also, the
comp.text.tex newsgroup from which I got most of
my inspiration seemed to be fading away, being re-
placed by tex.stackexchange.com which appealed
to the younger generation but not to a GOM3 like me
where many questions were directed towards prob-
lems with tikz graphics, the beamer package and
‘How do I produce this’.

I wrote a final 16th column trying to wrap ev-
erything up, but the wrapping ended up being so
extensive that it would have taken up most of a
TUGboat issue, so Karl decided that it would be
best to split it up into several pieces and publish
these over the coming years.4

You load sixteen tons and what do you get?
Another day older and deeper in debt.
Say brother, don’ you call me ’cause I can’t go
I owe my soul to the company store.

Sixteen Tons, Merle Travis

4 Sixteen
For what I thought would be that final 16th Glis-
terings column I wrote the following, which perhaps
might still be a suitable closing.

Sixteen is a rather remarkable number in that
it can be expressed in many striking ways.
• In binary sixteen is: 10000
• In octal sixteen is: 20
• In decimal sixteen is: 16
• In hexadecimal sixteen is: 10

In decimal notation, which is the one most peo-
ple are familiar with, there are quite a few ways in
which sixteen can be represented. Among the more
eye-catching ones are:
Powers

• 42 = 16
• 24 = 16
• 222 = 16

Additions
• sum of the first

√
16 odd numbers:

1 + 3 + 5 + 7 = 16
• sum of adjacent numbers:

1 + 2 + 3 + 4 + 3 + 2 + 1 = 16
which can also be expressed as:
1 + 4 + 6 + 4 + 1 = 16

Among other properties sixteen is the smallest
number with exactly 5 divisors—1, 2, 4, 8 and 16.
It is also the only number that is expressible as both
mn and nm, with m 6= n.

3 Grumpy Old Man
4 I don’t think that either of us thought that ‘coming’

would turn out to be ‘next six’. [Editor’s note: So true.]

5 Acknowledgements
Glisterings would not have been possible without the
support and input of many others. In particular I
thank Jeremy Gibbons for his Hey—It works! and
Barbara Beeton and Karl Berry for their enthusiasm
and editorial improvements to the column. There
are many others who also contributed, often unknow-
ingly, by asking questions on the various TEX related
mailing lists and to those who answered. With my
grateful thanks to all of you.

References
[1] Andrei Alexandrescu. Single word on a line at

end of paragraph. comp.text.tex, 26 April
2010.

[2] Peter Flynn. Re: Single word on a line at end
of paragraph. comp.text.tex, 1 May 2010.

[3] Paul Isambert. Re: [texhax] leaders protruding
a fixed width from end of paragraph? texhax
mailing list, 17 March 2011.

[4] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0-201-13448-9.

[5] Dan Luecking. Re: Single word on a line at
end of paragraph. comp.text.tex, 28 April
2010.

[6] Dan Luecking. Re: package for processing text
from external files. comp.text.tex, 23 May
2011.

[7] Scott Pakin. The filecontents package, 2009.
ctan.org/pkg/filecontents.

[8] Selon Stan. [texhax] leaders protruding a fixed
width from end of paragraph? texhax mailing
list, 17 March 2011.

[9] Peter Wilson. Glisterings: Paragraphs
regular, paragraphs particular, paragraphs
Russian. TUGboat, 28(2):229–232, 2007.
tug.org/TUGboat/tb28-2/tb89glister.pdf.

[10] Peter Wilson. Glisterings: More on paragraphs
regular, LATEX’s defining triumvirate, TEX’s
dictator. TUGboat, 29(2):324–327, 2008.
tug.org/TUGboat/tb29-2/tb92glister.pdf.

[11] Peter Wilson. The changepage package, 2009.
ctan.org/pkg/changepage.

[12] Peter Wilson. The memoir class for
configurable typesetting, 2016. ctan.org/pkg/
memoir.

� Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ, UK
herries dot press (at)

earthlink dot net

Glisterings

