
TUGboat, Volume 38 (2017), No. 3 369

Tricky fences
Hans Hagen

Occasionally one of my colleagues notices some sub-
optimal rendering and asks me to have a look at
it. Now, one can argue about “what is right” and
indeed there is not always a best answer to it. Such
questions can even be a nuisance; let’s think of the
following scenario. You have a project where TEX
is practically the only solution. Let it be an XML
rendering project, which means that there are some
boundary conditions. Speaking in 2017 we find that
in most cases a project starts out with the assump-
tion that everything is possible.

Often such a project starts with a folio in mind
and therefore by decent tagging to match the ed-
ucational and esthetic design. When rendering is
mostly automatic and concerns too many (variants)
to check all rendering, some safeguards are used (an
example will be given below). Then different au-
thors, editors and designers come into play and their
expectations, also about what is best, often conflict.
Add to that rendering for the web, and devices and
additional limitations show up: features get dropped
and even more cases need to be compensated (the
quality rules for paper are often much higher). But,
all that defeats the earlier attempts to do well be-
cause suddenly it has to match the lesser format.
This in turn makes investing in improving rendering
very inefficient (read: a bottomless pit because it
never gets paid and there is no way to gain back
the investment). Quite often it is spacing that trig-
gers discussions and questions what rendering is best.
And inconsistency dominates these questions.

So, in case you wonder why I bother with subtle
aspects of rendering as discussed below, the answer is
that it is not so much professional demand but users
(like my colleagues or those on the mailing lists) that
make me look into it and often something that looks
trivial takes days to sort out (even for someone who
knows his way around the macro language, fonts and
the inner working of the engine). And one can be
sure that more cases will pop up.

All this being said, let’s move on to a recent
example. In ConTEXt we support MathML although
in practice we’re forced to a mix of that standard
and ASCIIMATH. When we’re lucky, we even get a
mix with good old TEX-encoded math. One problem
with an automated flow and processing (other than
raw TEX) is that one can get anything and therefore
we need to play safe. This means for instance that
you can get input like this:
f(x) + f(1/x)

or in more structured TEX speak:
$f(x) + f(\frac{1}{x})$

Using TEX Gyre Pagella, this renders as: 𝑓 (𝑥) + 𝑓 (1
𝑥),

and when seeing this a TEX user will revert to:
$f(x) + f\left(\frac{1}{x}\right)$

which gives: 𝑓 (𝑥) + 𝑓 (1
𝑥). So, in order to be robust

we can always use the \left and \right commands,
can’t we?
$f(x) + f\left(x\right)$

which indeed gives 𝑓 (𝑥) + 𝑓 (𝑥), but let’s blow up this
result a bit showing some additional tracing from
left to right, now in Latin Modern:

𝑓(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)
just characters just characters just characters

𝑓 (𝑥) 𝑓 (𝑥) 𝑓HS:2.000(H__ 𝑥)H__H__

using delimiters using delimiters using delimiters

When we visualize the glyphs and kerns we see
that there’s a space instead of a kern when we use
delimiters. This is because the delimited sequence is
processed as a subformula and injected as a so-called
inner object and as such gets spaced according to the
ordinal (for the f) and inner (“fenced” with delim-
iters x) spacing rules. Such a difference normally will
go unnoticed but as we mentioned authors, editors
and designers being involved, there’s a good chance
that at some point one will magnify a PDF preview
and suddenly notice that the difference between the
f and (is a bit on the large side for simple unstacked
cases, something that in print is likely to go unno-
ticed. So, even when we don’t know how to solve
this, we do need to have an answer ready.

When I was confronted by this example of ren-
dering I started wondering if there was a way out. It
makes no sense to hard code a negative space before
a fenced subformula because sometimes you don’t
want that, especially not when there’s nothing be-
fore it. So, after some messing around I decided to
have a look at the engine instead. I wondered if we
could just give the non-scaled fence case the same
treatment as the character sequence.

Unfortunately here we run into the somewhat
complex way the rendering takes place. Keep in
mind that it is quite natural from the perspective
of TEX because normally a user will explicitly use
\left and \right as needed, while in our case the

Tricky fences

370 TUGboat, Volume 38 (2017), No. 3

fact that we automate and therefore want a generic
solution interferes (as usual in such cases).

Once read in the sequence f(x) can be repre-
sented as a list:
list = {
{
id = "noad", subtype = "ord", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00066",

},
},

},
{
id = "noad", subtype = "open", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00028",

},
},

},
{
id = "noad", subtype = "ord", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00078",

},
},

},
{
id = "noad", subtype = "close", nucleus = {
{
id = "mathchar", fam = 0, char = "U+00029",

},
},

},
}

The sequence f \left(x \right) is also a list
but now it is a tree (we leave out some unset keys):
list = {
{
id = "noad", subtype = "ord", nucleus = {
{ id = "mathchar", fam = 0,

char = "U+00066",},
},

},
{
id = "noad", subtype = "inner", nucleus = {
{
id = "submlist", head = {
{
id = "fence", subtype = "left",
delim = { { id = "delim", small_fam = 0,

small_char = "U+00028", },
},

},
{
id = "noad", subtype = "ord",
nucleus = { { id = "mathchar", fam = 0,

char = "U+00078", },
},

},
{
id = "fence", subtype = "right",
delim = { { id = "delim", small_fam = 0,

small_char = "U+00029", },
},

},
},

},
},

},
}

So, the formula f(x) is just four characters
and stays that way, but with some inter-character
spacing applied according to the rules of TEX math.
The sequence f \left(x \right) however becomes
two components: the f is an ordinal noad,1 and
\left(x \right) becomes an inner noad with a list
as a nucleus, which gets processed independently.
The way the code is written this is what (roughly)
happens:

• A formula starts; normally this is triggered by
one or two dollar signs.

• The f becomes an ordinal noad and TEX goes on.
• A fence is seen with a left delimiter and an inner

noad is injected.
• That noad has a sub-math list that takes the

left delimiter up to a matching right one.
• When all is scanned a routine is called that turns

a list of math noads into a list of nodes.
• So, we start at the beginning, the ordinal f.
• Before moving on a check happens if this char-

acter needs to be kerned with another (but here
we have an ordinal–inner combination).

• Then we encounter the subformula (including
fences) which triggers a nested call to the math
typesetter.

• The result eventually gets packaged into a hlist
and we’re back one level up (here after the ordi-
nal f).

• Processing a list happens in two passes and, to
cut it short, it’s the second pass that deals with
choosing fences and spacing.

• Each time when a (sub)list is processed a second
pass over that list happens.

• So, now TEX will inject the right spaces between
pairs of noads.

• In our case that is between an ordinal and an
inner noad, which is quite different from a se-
quence of ordinals.

1 Noads are the mathematical building blocks. Eventually
they become nodes, the building blocks of paragraphs and
boxed material.

Hans Hagen

TUGboat, Volume 38 (2017), No. 3 371

It’s these fences that demand a two-pass ap-
proach because we need to know the height and
depth of the subformula. Anyway, do you see the
complication? In our inner formula the fences are
not scaled, but this is not communicated back in the
sense that the inner noad can become an ordinal one,
as in the simple f(pair. The information is not only
lost, it is not even considered useful and the only way
to somehow bubble it up in the processing so that
it can be used in the spacing requires an extension.
And even then we have a problem: the kerning that
we see between f(is also lost. It must be noted
that this kerning is optional and triggered by setting
\mathitalicsmode=1. One reason for this is that
fonts approach italic correction differently, and cheat
with the combination of natural width and italic
correction.

Now, because such a workaround is definitely
conflicting with the inner workings of TEX, our ex-
perimenting demands another variable be created:
\mathdelimitersmode. It might be a prelude to
more manipulations but for now we stick to this one
case. How messy it really is can be demonstrated
when we render our example with Cambria.

𝑓(𝑥) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

)
just characters just characters just characters

𝑓 (𝑥) 𝑓 (𝑥
0.363

) 𝑓HS:2.000(H__ 𝑥
0.363

)H__H__

using delimiters using delimiters using delimiters

If you look closely you will notice that the paren-
thesis are moved up a bit. Also notice the more
accurate bounding boxes. Just to be sure we also
show Pagella:

𝑓 (𝑥) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)
just characters just characters just characters

𝑓 (𝑥) 𝑓 (𝑥
0.144

) 𝑓HS:2.000(H__ 𝑥
0.144

)H__H__

using delimiters using delimiters using delimiters

When we really want the unscaled variant to be
somewhat compatible with the fenced one we now
need to take into account:

• the optional axis-and-height/depth related shift
of the fence (bit 1)

• the optional kern between characters (bit 2)
• the optional space between math objects (bit 4)

Each option can be set (which is handy for
testing) but here we will set them all, so, when
\mathdelimitersmode=7, we want cambria to come
out as follows:

𝑓(𝑥) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

)
just characters just characters just characters

𝑓(𝑥) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(H__ 𝑥
0.363

)H__H__

using delimiters using delimiters using delimiters

When this mode is set the following happens:
• We keep track of the scaling and when we use

the normal size this is registered in the noad
(we had space in the data structure for that).

• This information is picked up by the caller of
the routine that does the subformula and stored
in the (parent) inner noad (again, we had space
for that).

• Kerns between a character (ordinal) and sub-
formula (inner) are kept, which can be bad for
other cases but probably less than what we try
to solve here.

• When the fences are unscaled the inner property
temporarily becomes an ordinal one when we
apply the inter-noad spacing.
Hopefully this is good enough but anything more

fancy would demand drastic changes in one of the
most sensitive mechanisms of TEX. It might not
always work out right, so for now I consider it an
experiment, which means that it can be kept around,
rejected or improved.

In case one wonders if such an extension is truly
needed, one should also take into account that auto-
mated typesetting (also of math) is probably one of
the areas where TEX can shine for a while. And while
we can deal with much by using Lua, this is one of
the cases where the interwoven and integrated pars-
ing, converting and rendering of the math machinery
makes it hard. It also fits into a further opening up
of the inner working by modes.

Another objection to such a solution can be that
we should not alter the engine too much. However,
fences already are an exception and treated specially
(tests and jumps in the program) so adding this fits
reasonably well into that part of the design.

Tricky fences

372 TUGboat, Volume 38 (2017), No. 3

In the following examples we demonstrate the
results for Latin Modern, Cambria and Pagella when
\mathdelimitersmode is set to zero or one. First we
show the case where \mathitalicsmode is disabled:

𝑓
1.080

(𝑥) 𝑓 (𝑥) 𝑓
1.080

(𝑥) 𝑓(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

modern

𝑓
0.352

(𝑥
0.363

) 𝑓 (𝑥) 𝑓
0.352

(𝑥
0.363

) 𝑓(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

cambria

𝑓
1.956

(𝑥
0.144

) 𝑓 (𝑥) 𝑓
1.956

(𝑥
0.144

) 𝑓(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

pagella

When we enable \mathitalicsmode we get:

𝑓
1.080

(𝑥) 𝑓 (𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)
\mathdelimitersmode =0 \mathdelimitersmode =7

modern

𝑓
0.352

(𝑥
0.363

) 𝑓 (𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

)
\mathdelimitersmode =0 \mathdelimitersmode =7

cambria

𝑓
1.956

(𝑥
0.144

) 𝑓 (𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)
\mathdelimitersmode =0 \mathdelimitersmode =7

pagella

So is this all worth the effort? I don’t know,
but at least I got the picture and hopefully now you
have too. It might also lead to some more modes in
future versions of LuaTEX.

In ConTEXt, a regular document can specify
\setupmathfences [method=auto], but in MathML
or ASCIIMATH this feature is enabled by default (so
that we can test it).

We end with a summary of all the modes (as-
suming italics mode is enabled) in the table below.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)
𝑓 (𝑥) 𝑓 (𝑥) 𝑓

1.080

(𝑥) 𝑓
1.080

(𝑥) 𝑓(𝑥) 𝑓(𝑥) 𝑓
1.080

(𝑥) 𝑓
1.080

(𝑥)
ns it ns it or ns or it or ns it or

modern

𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

)

𝑓 (𝑥
0.363

) 𝑓 (𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓(𝑥
0.363

) 𝑓(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

) 𝑓
0.352

(𝑥
0.363

)
ns it ns it or ns or it or ns it or

cambria

𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)
𝑓 (𝑥

0.144

) 𝑓 (𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓(𝑥
0.144

) 𝑓(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

) 𝑓
1.956

(𝑥
0.144

)
ns it ns it or ns or it or ns it or

pagella

Hans Hagen

