
30 TUGboat, Volume 39 (2018), No. 1

TEXing in Emacs

Marcin Borkowski

Abstract

In this paper I describe how I use GNU Emacs to
work with LATEX. It is not a comprehensive survey
of what can be done, but rather a subjective story
about my personal usage.

In 2017, I gave a presentation [1] during the joint
GUST/TUG conference at Bachotek. I talked about
my experiences typesetting a journal (Wiadomości
Matematyczne, a journal of the Polish Mathematical
Society), and how I utilized LATEX and GNU Emacs
in my workflow. After submitting my paper to the
proceedings issue of TUGboat, Karl Berry asked me
whether I’d like to prepare a paper about using
Emacs with LATEX.

Well, I jumped at the proposal. I am a great
fan of Emacs, and I’ve been using it for nearly two
decades now. So, here is my Emacs/TEX story.

I decided to divide this tale in four parts. The
zeroth one is a very brief explanation of how I got
where I am with respect to Emacs. The first one is
a very short introduction to the main concepts and
terminology of Emacs. Then, I talk about various
Emacs packages I use in my day-to-day (LA)TEX work.
Finally, for the brave souls who would like to go
deeper into the Emacs rabbit hole, I present a few
example snippets I wrote to make Emacs suit my
personal needs.

0 The beginnings

GNU Emacs is an ancient piece of software, started
by the famous Richard M. Stallman, and used right
through today. (Interestingly, one of the reasons
Stallman started the GNU project, which GNU Emacs
soon became part of, was ethical rather than techni-
cal. He has a very distinct set of moral beliefs, one of
which is that everyone should have certain freedoms
with respect to the software they use, and sticks to
them without compromise. Disclaimer: while I share
some, but not all of his views, I still admire his
perseverance and his strong conviction about the
objectivity of moral principles — even if he gets some
of these wrong.)

When I started using Emacs (note: I will not
say “GNU Emacs” each time; nowadays, there are
essentially no other Emacsen, since the last “competi-
tor”, XEmacs, seems to have died a few years ago),
I needed just a text editor for TEX (I was using plain
TEX at the time). When I switched from DOS and
MS Windows 3.11 to a GNU/Linux system, I heard
that there are two editors, and had to choose one of

them. I used a simple criterion: Emacs had a nice
tutorial, and Vim apparently did not (at that time).

I wince at the very thought I might have chosen
wrong!

And so it went. I started with reading the
manual [8]. As a student, I had a lot of free time
on my hands, so I basically read most of it. (I still
recommend that to people who want to use Emacs
seriously.) I noticed that Emacs had a nice TEX
mode built-in, but also remembered from one of
the BachoTEXs that other people had put together
something called AUCTEX, which was a TEX-mode
on steroids.

In the previous paragraph, I mentioned modes.
In order to understand what an Emacs mode is, let
me explain what this whole Emacs thing is about.

1 Basics of Emacs

It is actually easy to understand Emacs. (Do not
confuse “understand” with “master”, by the way.)
There are many ways of explaining the phenomenon
of a piece of software which has existed for about four
decades and is still relevant today. A popular view
(and a subject of jokes) is that Emacs is an operating
system disguised as an editor. This is surprisingly
close to the truth, but this metaphor does not help
with talking about how Emacs interacts with (LA)TEX.
Another known aphorism is that Emacs is not a text
editor, but a DIY kit for creating your own editor,
suited to your needs. This is also true, and I will
come back to it later. However, I think that in
order to explain Emacs, I should describe the core
concepts which make it what it is. For those, I choose
three basic Emacs notions of buffers, commands and
keybindings, and a fourth one which, well, binds them
together: modes.

Just as in Unix “everything is a file”, in Emacs
“everything is a buffer”. Interestingly, an Emacs buf-
fer is an entity which is quite close to a Unix file. It
is identified by name, and it consists of characters.
(There’s more to it than that, but let’s keep things
simple.) If you visit a file in Emacs (this is what
most other editors call “opening” a file), a buffer
with a name corresponding to the name of the file is
created and filled with the characters read from that
file. From now on, Emacs does not care about a phys-
ical file on the disk (or somewhere else — Emacs can
also open files located “in the cloud”, i.e., on other
people’s computers), at least not until we want to
save the buffer to the file again.

In most (LA)TEX editors (and most other applica-
tions, for that matter), we have things such as dialog
windows, non-editable text areas with the compila-
tion log, file-selecting widgets, etc. Not in Emacs:

Marcin Borkowski



TUGboat, Volume 39 (2018), No. 1 31

here, all these are buffers (some of them read-only, of
course). Here is an example: if you press C-x d RET

(in Emacs parlance, this means pressing Control-X,
then D and then Enter), you will see a Dired buffer,
which contains a listing of files in the current direc-
tory, much like the output of the Unix ls command.
It is not normally editable, but you can use various
keybindings to move point (i.e., the cursor), and per-
form various actions on the listed files, like visiting
them (f or RET), copying them somewhere else (C,
i.e., Shift-C), diffing them with other files (=), etc.

Let us now talk about commands. They are
pieces of code (usually in Emacs Lisp, or Elisp, the
language the majority of Emacs is written in) which
perform various tasks you would expect from a text
editor (and more). For instance, there is a com-
mand called find-file, which asks the user for
a file name and visits it in an Emacs buffer. Another,
called save-buffer, saves the contents of the cur-
rent buffer to a file. Yet another, called pong, is an
implementation of the old arcade classic.

It is important to understand that basically any
action you perform in Emacs is a result of running
some command. If you press some key (or key com-
bination), Emacs checks the binding of that key,
which says what command is bound to that key, and
runs that command. This works even for very ba-
sic things, like the command forward-char (usually
bound to C-f and <right>, that is, the right-arrow
key), or keys with printable characters, which are
usually bound to self-insert-command. A com-
mand need not be bound to a key — you can also
call it by its name (for instance, the pong command
is usually run by M-x pong, which means pressing
Alt-X, then typing pong— the name of the com-
mand — then pressing Enter).

The last piece of this puzzle are modes, which
tell Emacs the bindings of keys to commands in any
particular buffer. (Each buffer has its associated
mode, so switching buffers changes keybindings dy-
namically. Of course, there are also global bindings,
which work everywhere, like C-x C-c, which exits
Emacs.) For instance, in TEX mode, C-c C-c is
bound to a command which does the “next logical
thing”, like compiling the file, running BibTEX or
launching a PDF viewer. The same key combination,
C-c C-c, sends a message in a mode designed to
write emails.

Finally, any introduction like this one would be
incomplete without mentioning the self-documenting
nature of Emacs. If you are in a buffer with some
Emacs Lisp code, you can press C-h f when the
point is on a function name, or C-h v when it is
on a variable name, and immediately see the doc-

string for that function or variable, or even jump to
the place in the source where it is defined. This is
extremely useful, and there are specialized Emacs
packages which streamline this even further (like
showing the docstring in a tool-tip-like fashion, or
finding all places where a function is called). Also,
when you are in the middle of a function expression,
Emacs shows the list of parameters of the current
function at the bottom, with the parameter the point
is on set in boldface. Finally, there is the whole set
of apropos commands, which show all functions or
variables matching the given regex — and “matching”
can mean matching the name, the docstring, or even
the value in case of variables. At any time, you can
press C-h C-h to see the extensive list of Emacs help
subsystems.

2 Emacs packages and features for
TEXnicians

In this section, I am going to describe a few well-
known (at least in the Emacs world) packages and
features Emacs has to offer for people dealing with
(LA)TEX. Note that this is not a comprehensive list —
these are just the ones I happen to use.

2.1 AUCTEX

Although Emacs has a TEX mode built-in (and there
are people using it), it is rather bare-bones. Happily,
there is AUCTEX, a well-known package which is
used by the majority of Emacsers who need to do
stuff in TEX and friends.

Of course, AUCTEX has all the things you would
expect, like auto-completing macro and environment
names (it even knows the syntax of many LATEX
commands and asks for the parameters, and parses
\newcommands to insert the proper number of braces
after user-defined macros), commands to compile the
file we are editing or syntax coloring (called “font-
lock” in the Emacs world). It also has, however,
some features which I believe are unique to it (al-
though I admit that I have not used other editors
extensively). AUCTEX has a very good manual (as
do many Emacs packages — documenting things for
users is emphasized a lot in the Emacs world), so
let me just mention my personal favorite feature.
You can select a portion of text and press C-c C-r.
AUCTEX then writes a temporary file consisting of
the preamble, the selection and \end{document},
compiles it and prepares the next viewing command
to show this PDF instead of the whole file. Imagine
a Beamer presentation with more than a thousand
pages and a lot of drawings, which compiles for a few
minutes in its entirety (true story!), and you can see
what a life-saver this can be.

TEXing in Emacs



32 TUGboat, Volume 39 (2018), No. 1

There is a lot more to AUCTEX than this. Let
me mention LATEX-Math mode, which makes the
key combinations starting with a backtick (‘) insert
many mathematical commands, so that you can get
\alpha by pressing ‘a or \emptyset by pressing ‘0.
Another feature of Emacs, which AUCTEX utilizes,
is prettify-symbols-mode, which displays things
like \alpha or \int using Unicode characters, which
renders the source of math formulas much easier to
read. (While at that, let me mention that despite
its age, Emacs has excellent Unicode support, but
can also handle some other, nowadays less popular
encodings.) Yet another thing AUCTEX leverages
is Emacs’ compilation-mode, which parses the log
buffer and allows you to, for instance, jump to the
next or previous error. Basically, you have all you
would expect from a good TEX editor. (One caveat
is that support for plain TEX and ConTEXt is rather
rudimentary.)

There is also a package called RefTEX, which is
part of AUCTEX, whose goal is to help with all the
references. One of its coolest features is showing the
bibliographic info about a reference when the point
is on the \cite macro. Unfortunately, RefTEX does
not work with AMSrefs, and hence I do not use it
personally (yet).

2.2 pdf-tools

There has been a PDF viewer in Emacs for a long
time, but it never worked too well: under the hood,
it just converted PDFs to bitmaps using Ghostscript
and displayed them. Not very impressive, and very
slow. Recently, however, another PDF viewer for
Emacs was written, called pdf-tools. It is a wonderful
piece of software, and even though it has its quirks
(it does not have “spread” or “continuous” modes,
for instance), it almost completely replaced Evince
for me. It supports the SyncTEX extensions, thus
allowing for jumping between the source and the PDF

with very good accuracy, and allows for incremental
search in a PDF (also with regexen). It also supports
an Emacs concept called occur, which asks the user
for a regex and displays a list of lines in the buffer
matching that regex, allowing to jump immediately
to any of these lines. You can also make Emacs watch
for changes in the PDF and refresh it automatically,
or issue a refresh when the compilation is finished.
Perhaps the killer feature of pdf-tools, however, is its
support for PDF annotations: it is possible to view
all annotations without moving your hands from the
keyboard.

This is also a good place to mention one of the
many ways Emacs is flexible. In many places in the
Emacs source code there are so-called hooks. They

are variables, usually empty by default, which contain
functions to be run at various moments. The pdf-
tools package has a hook which contains functions
run each time an annotation is shown. You can, for
instance, add a function which checks whether the
annotation is written in LATEX syntax, and if yes,
call LATEX and then dvipng to display a picture of
the typeset formula of something instead of the text
of the annotation. In fact, a function doing exactly
this is provided as an example, so I can actually
format my PDF annotations in LATEX and pdf-tools
just displays them correctly! There are about 150
hooks in stock Emacs, and many packages add their
own — my Emacs has more than 700.

2.3 Other useful Emacs features

What makes Emacs an even better (LA)TEX editor are
its features as a general text editor, applied to the
particular case of (LA)TEX. I have already mentioned
compilation-mode and prettify-symbols-mode;
there is also a spell-checker (delegating its job to
external tools, but the integration is seamless) and
auto-fill-mode, which automatically wraps long
lines using hard newlines (which is an abomination
to many and a no-brainer for others). Emacs, how-
ever, is used by many people to edit texts in hu-
man languages (as opposed to computer programs),
and has really good support for that task. For in-
stance, while many editors have support for move-
ment by words, Emacs has also movement by sen-
tences. Another feature which is a real time-saver
is the series of transpose commands: for instance,
transpose-chars swaps the two characters on both
sides of the point. There is a whole chapter in the
Emacs manual describing commands for dealing with
text in human languages.

Another Emacs tool which is used by many
people is Yasnippet. It is a very useful tool for
creating and inserting snippets, i.e., templates with
placeholders for variable fragments. It is very easy
to define one’s own snippets. (Personally, I do not
use Yasnippet with AUCTEX very often, since the
latter can insert a lot of things for me, but I have
snippets for, e.g., preambles of some documents.)

Last but not least, let me mention the Avy pack-
age. It solves the problem of quickly navigating to
any place on the screen without using any pointing
device (many Emacs users have an aversion to ro-
dents and prefer using their keyboards as much as
possible). The classical Emacs way has always been
isearch, or incremental search: you can press C-s

and start to type, and the point moves to the nearest
occurrence of the typed character sequence while you

Marcin Borkowski



TUGboat, Volume 39 (2018), No. 1 33

enter more and more characters (and Emacs high-
lights all occurrences thereof). Avy, which is based
on ace-jump (a previous implementation of the same
idea, which in turn was based on the EasyMotion
Vim plugin), implements a simple but powerful con-
cept. You can invoke the avy-goto-char command
(many people bind it to some convenient key), then
press a character key and all instances of this charac-
ter on the screen become highlighted with a letter or
a combination of letters. Pressing the letter (or a se-
quence of letters) moves the point to the respective
location. It is an extremely fast and very convenient
way of navigating, and also has many variants (like
only selecting letters at the beginning of words or
jumping to beginnings of lines).

2.4 Org-mode and LATEX

In recent years, a new invention took the Emacs world
by storm: Org-mode. Originally a note-taking mode
on steroids, it quickly gained more and more features
and is now a full-fledged application written on top
of Emacs. (What saves it from the usual symptoms
of featuritis is one of its design goals: advanced fea-
tures should never get in the way if you do not want
to use them.) It is difficult to describe Org-mode,
since it combines a notebook, a literate programming
environment (capable even of chaining pieces written
in different languages!), a todo-list, a spreadsheet,
a time-tracking tool and a few other things. What
is interesting for TEX users is that Org-mode (which
defines a markup syntax, quite similar to Markdown)
has something called an exporter, which can save the
document as a LATEX article (or book), a Beamer
presentation, an HTML page or even a LibreOffice
document (and a few other, more obscure formats).
Seasoned LATEX users might scoff at such an idea
and claim that one does not get the full power of
LATEX — and they would be right to some extent.
However, for many people Org-mode syntax is much
friendlier than LATEX’s, and most scientists do not
use advanced TEX features anyway. (Also, you can
embed arbitrary LATEX stuff in an Org-mode docu-
ment.) There is one place, however, where Org-mode
is clearly superior to LATEX: tables. Table editing
in LATEX is far from pleasant (although Emacs can
help with that with automatic alignment of the table
source on ampersand characters), and table sources
are not very legible. On the other hand, see figure 1
for a table written in Org-mode and what Org-mode
made with it when asked to export to LATEX. Note
that Org-mode has very good support for ASCII ta-
ble editing — it takes care for making columns wide
enough to accommodate the widest entry, for in-
stance. Also, please note the last line, which has two

| Product | Price | Quantity | Amount |

|---------+-------+----------+--------|

| Bread | 4.50 | 1 | 4.50 |

| Apples | 2.40 | 4 | 9.60 |

| Tea | 6.99 | 2 | 13.98 |

|---------+-------+----------+--------|

| | | Total | 28.08 |

#+TBLFM: $4=$-1*$-2;f2::@5$4=vsum(@I..@II);f2

\begin{center}

\begin{tabular}{lrrr}

Product & Price & Quantity & Amount\\

\hline

Bread & 4.50 & 1 & 4.50\\

Apples & 2.40 & 4 & 9.60\\

Tea & 6.99 & 2 & 13.98\\

\hline

& & Total & 28.08\\

\end{tabular}

\end{center}

Figure 1: Org-mode table and the result of LATEX
exporting

formulæ for totaling. While an Org-mode spread-
sheet does not feature automatic recalculation (it has
to be triggered by issuing a special command), it is
capable of performing quite advanced calculations —
Org-mode utilizes Calc, a scientific calculator written
in Elisp, for that.

3 Emacs customization

One of the most prominent features of Emacs is
its flexibility. (In the first sentence of the Emacs
manual it is called “the extensible, customizable,
self-documenting real-time display editor”.) There
are literally thousands of options even in stock Emacs
(without any packages loaded, Emacs has more than
2 000 variables; my Emacs has almost 15 000), and
most packages add their own share. All these options
can be set up using a nice and discoverable interface
or manually, by editing an initialization file. For
instance, AUCTEX by default asks the user whether
to save the (LA)TEX file before compilation. One can
set, however, the TeX-save-query variable to nil
(which is Elisp for “false”), and from then on the
saving would be automatic.

Where Emacs really shines, though, is not in its
customizability, but in its extensibility. Emacs has
a small core written in C, but the rest is written in
Elisp. In a properly configured Emacs, the source
code for any command is a few keystrokes away,
and you can modify its behavior within seconds. Of
course, this requires knowledge of Emacs Lisp — but
it is not a difficult language, and you can learn the
basics within a few afternoons. There is an excellent

TEXing in Emacs



34 TUGboat, Volume 39 (2018), No. 1

book [2], which is an introduction to Elisp for non-
programmers. There is also the book [3], which is
kind of a next step, although parts of it seem to be
pretty outdated.

For the rest of this article I am thus going to
talk about how you can mold Emacs to fit your needs.
It is a selection of snippets of code which show the
customizability and extensibility of Emacs.

I cannot resist to mention here that while writing
this very paper I was advised against spending more
time on coding one’s own little extensions to Emacs,
the argument being that few people actually do it.
While it is probably true that only a minority of
Emacs users learn enough Elisp to do it, I beg to
differ — I think many more people could benefit from
doing exactly this if only they knew how. There is
this lovely quotation from one of rms’ speeches [9],
however, which comments on the issue:

Multics Emacs proved to be a great success —
programming new editing commands was so
convenient that even the secretaries in his
office started learning how to use it. They
used a manual someone had written which
showed how to extend Emacs, but didn’t say it
was a programming [task]. So the secretaries,
who believed they couldn’t do programming,
weren’t scared off. They read the manual,
discovered they could do useful things and
they learned to program.

Please consider this section as a kind of teaser which
might hook you into Elisp programming.

3.1 Support for tildes

As a Polish TEX user, I tend to put a lot of tildes
(hard spaces) in my files. (A Polish tradition is not
to break a line after a one-letter word, and we have
a few one-letter prepositions and conjunctions.) Of
course, TEX has a solution to that: tildes (called
“ties” in The TEXbook). Typing them manually is
rather tedious, though. Happily, Emacs has you
covered: there is a (built-in) package called “tildify”,
which replaces spaces after one-letter words (or in
other places, since it is configurable). It is not even
restricted to TEX — it can insert &nbsp; in HTML

files, for example. It can do it dynamically while you
type or after the fact on some portion of the file.

This is, however, not enough. I find myself
editing other people’s files on a regular basis, and
oftentimes I need to insert a tie where a space was.
In a regular editor this means navigating to the right
place, deleting the space and inserting the tie. At one
point I asked myself a question: how often do I need
to have a tie next to a space? The answer is: never.
Thus I decided to bind the tilde to a command which

(defun smart-tie ()

"Delete any whitespace character(s),

then insert a tilde."

(interactive)

(delete-horizontal-space)

(insert "~"))

(eval-after-load ’tex

’(define-key TeX-mode-map "~" ’smart-tie))

Figure 2: The smart-tie Elisp source code

(add-hook ’TeX-mode-hook

(lambda ()

(font-lock-add-keywords nil

’(("~" . ’font-latex-sedate-face)))))

Figure 3: A snippet making ties gray

starts by deleting any whitespace around point and
only then inserting a tie (figure 2).

Emacs commands are just Elisp functions (de-
fined with defun), which contain an (interactive)

call at the beginning. (Notice that before that, there
is a docstring. While not mandatory, it is a good
practice to include it in all Elisp functions.) No-
tice that one of the reasons coding simple Emacs
commands like this is, well, simple, is that you can
just write down the things you press in order to
make a similar edit manually, then check what com-
mands are run by these key-presses, and just make
a function out of them. It is even possible to have
Emacs do it for you — you can record a so-called
keyboard macro, performing some editing functions
by hand, and let a suitable command generate an
Elisp function mimicking your actions.

(I am not going to explain Elisp syntax in this
article. I think much of it is pretty self-explanatory
for anyone into programming, and for those new to
it, the book [2] is a nice general introduction to both
programming and Emacs Lisp.)

One last thing connected with ties is legibility.
While I appreciate the fact that a (LA)TEX source file
is plain text and hence I can see exactly where a hard
space is, lots of them make the text less readable.
I would prefer if they were gray instead of black
(I use a dark-on-light default color theme). This is
not a problem for Emacs. I put the snippet from
figure 3 in my init file, and from now on all my tildes
are displayed in gray. Here you can see a hook in
action. TeX-mode-hook contains a list of functions
called when turning any TEX-like mode on. We add
to the hook an anonymous function (introduced with
the lambda macro) which adds the ~ character to the
“keywords” recognized by the font-locking machinery.

Marcin Borkowski



TUGboat, Volume 39 (2018), No. 1 35

(defun smart-self-insert-punct (count)

"If COUNT=1 and the point is after

a space, insert the relevant character

before any spaces."

(interactive "p")

(if (and (= count 1)

(eq (char-before) ?\s))

(save-excursion

(skip-chars-backward " ")

(self-insert-command 1))

(self-insert-command count)))

(eval-after-load

’tex

’(define-key TeX-mode-map

","

’smart-self-insert-punct))

Figure 4: The smart-self-insert-punct Elisp code

3.2 Smart commas

A common mistake is to forget a comma where it
is needed; a copyeditor has to insert a lot of these.
Since many navigation commands land the point at
the beginning of some word, I always had to press
the left arrow and then insert a comma. And then
it struck me that I virtually never need a comma
after a space between words, so why not automate
this? And thus I wrote a short command called
smart-self-insert-punct (see figure 4), which de-
tects whether the point is after a space, and if yes,
backs up first before entering the character used to
issue the command.

This code is more or less self-explanatory (at
least when you get accustomed to the Lisp prefix
notation — for instance, to check for equality of two
numbers a and b, you write (= a b)), but two things
are probably worth mentioning. First of all, the
(interactive "p") part performs some tricks so
that count is one unless the user presses something
like C-u 〈number〉 before issuing the above command.
This is called a prefix argument and serves as a repeat
count for many commands. Then, we have the very
useful save-excursion form, which remembers the
position of the point, performs the code given and
returns the point to its previous position. (You
usually do not expect the point to jump around
when Emacs does something, and Emacs can do
a lot of things — like spell-checking, for instance —
even without the user doing anything.)

3.3 Converting \cites

As an editor of Wiadomości Matematyczne I often
receive a paper with lots of citations done wrong.
Many times the author says something like

see papers~\cite{A} and~\cite[p.~12]{B}.

(defun skip-cite-at-point ()

"Move point to the end of the \\cite

at point."

(when (looking-at "\\\\cite")

(forward-char 5)

(cond ((= (char-after) ?\[)

(forward-sexp 2))

((= (char-after) ?\{)

(forward-sexp)

(when (and (not (eobp))

(= (char-after) ?*))

(forward-char)

(forward-sexp)))

(t (error

"Malformed \\cite")))))

(defun cites-to-citelist ()

"Convert region to a \\citelist command.

All \\cite’s are preserved and things

between them deleted. This command will

be fooled by things like \"\\\\cite\"."

(interactive)

(if (use-region-p)

(let

((end (copy-marker (region-end))))

(goto-char (region-beginning))

(insert "\\citelist{")

(while (< (point) end)

(skip-cite-at-point)

(delete-region

(point)

(if (search-forward "\\cite" end t)

((progn )

(backward-char 5)

(point))

end)))

(insert "}"))

(message "Region not active")))

Figure 5: The cites-to-citelist command

Since we use AMSrefs, this should be converted to
something along the lines of

see papers~\citelist{%

\cite{A}\cite{B}*{p.~12}}.

Hence I wrote another simple Elisp command, called
cites-to-citelist (see figure 5), which performs
the conversion for me. (It does not perform the whole
job, i.e., it leaves the optional argument in brackets.
This is not a huge problem, since I have another com-
mand to convert it to the AMSrefs syntax.) These
commands are actually more complicated. I will
not explain them in full, but let me highlight a few
key points. (If you are interested in learning the
details, you can use [4] and/or install Emacs and
look at the docstrings of all the functions called in

TEXing in Emacs



36 TUGboat, Volume 39 (2018), No. 1

the above code.) Again, let me emphasize that writ-
ing a skip-cite-at-point function is easier than
it might seem, since it mimics the operations you
(as a user) would perform to move the point past
the \cite LATEX macro: first, you check whether
you are actually on it, then move by five charac-
ters, then move forward past the part(s) enclosed in
brackets/braces. Also, in the cites-to-citelist

function, we utilize the region, which is the Emacs
term for the selection.

4 Conclusion

As you could hopefully see, Emacs works extremely
well as a (LA)TEX editor. There are three reasons for
that. First and foremost, it is an excellent general-
purpose editor, with a simple TEX mode included.
Secondly, there is the AUCTEX package, which is
a robust tool, still under active development, and
numerous other packages, like RefTEX, pdf-tools
and Org-mode, which make the experience even bet-
ter. The third reason is that Emacs truly delivers
on its promise to be extensible, customizable, self-
documenting, and automating repetitive tasks is fairly
easy. If you are currently using TEXworks or even
Vim (or any other TEX editor — there are so many of
them), do yourself a favor and try out Emacs. You
might stay in it for your whole life!

If you want to learn more about Emacs, you
can install it and start with the built-in tutorial and
proceed to at least skimming the manual. There is
also a reference card included in the distribution, and
others available on the Internet. A very good source
of tips for using (though not programming) Emacs is
Mickey Petersen’s book Mastering Emacs [6]. A good
source of useful information is Planet Emacsen [7],
an Emacs blog aggregator. You can ask all sorts
of Emacs-related questions on the official mailing
list [5]. If you want to start your own adventure
with Elisp, definitely start with Robert Chassell’s
An Introduction to Programming in Emacs Lisp [2].
Finally, let me mention a (now dormant) project
of mine of writing a modern sequel to Chassell’s
book, which I hope to revive this year; I will surely
post updates to it on my blog at http://mbork.pl/
Content_AND_Presentation.

Acknowledgments

I would like to thank my friends from the gust-l

and help-gnu-emacs mailing lists for their valuable
input and many suggestions, and I am indebted to
the editors for their excellent proofreading job.

Bibliography

[1] Marcin Borkowski, Ten years of work in Wiadomości
Matematyczne — an adventure with LATEX and

Emacs hacking, TUGboat 38 (2017), no. 2, 255–263.
https://tug.org/TUGboat/tb38-2/tb119borkowski.pdf.

[2] Robert J. Chassell, An Introduction to Programming
in Emacs Lisp, 3rd ed., GNU Press, 2006. Bundled
with Emacs source code and available in the Emacs
Info documentation system. https://www.gnu.org/
software/emacs/manual/eintr.

[3] Bob Glickstein, Writing GNU Emacs Extensions,
1st ed., O’Reilly Media, 1997.

[4] Bil Lewis et al., GNU Emacs Lisp Reference
Manual. Bundled with Emacs source code and
available in the Emacs Info documentation system.
https://www.gnu.org/software/emacs/manual/elisp.

[5] help-gnu-emacs: Users list for the GNU Emacs text
editor, https://lists.gnu.org/mailman/listinfo/
help-gnu-emacs.

[6] Mickey Petersen, Mastering Emacs, v2, 2016.
Available at https://www.masteringemacs.org/book.

[7] Planet Emacsen, http://planet.emacsen.org/.

[8] Richard M. Stallman et al., GNU Emacs Manual.
Bundled with Emacs source code and available
in the Emacs Info documentation system. https:
//www.gnu.org/software/emacs/manual/emacs.

[9] Richard M. Stallman, My Lisp Experiences and the
Development of GNU Emacs (2002), available at
https://www.gnu.org/gnu/rms-lisp.html.

� Marcin Borkowski
Faculty of Mathematics

and Computer Science
Adam Mickiewicz University
ul. Umultowska 87
61-614 Poznań, Poland
mbork (at) amu dot edu dot pl

http://mbork.pl

Editor’s note: As it happens, I (Karl), like Marcin, work in
Emacs, but my environment is set up completely differently
from his. After comparing notes, Marcin and I thought it
might be interesting to briefly describe mine as well, as an
example of Emacs’s extreme customizability and extensibility.
All my changes are done at the Elisp level.

Some 35 years ago when I started using Emacs, my basic
idea is to eradicate editing modes altogether. No tex-mode, no
c-mode, etc. Keystrokes mean the same thing no matter what’s
being edited. I eliminate all fontification and colorization.
Those are just distractions for me; I want to focus on the text.

I’ve also rebound nearly every key, and created hundreds
of new bindings and many simple functions, so that I can do
more things with less effort. For instance: save all buffers
and run (what’s normally) M-x compile with one keystroke.
I typically do this dozens of times a day (I use make for
essentially all building, e.g., running TEX). I read mail inside
Emacs, use shell buffers (inside Emacs) for working locally, ssh
buffers (inside Emacs) for working remotely, besides logging
in remotely . . . to run Emacs.

I primarily still use Emacs 21.[34], in terminal mode (not
X mode), because (a) the Unicode support in new releases
is painful for me when editing TUGboat papers in other
encodings (autorecognition of encodings doesn’t always work),
or which use characters not in my favorite font. Just give
me the bytes! (b) The changing of interfaces at every level,
with no easy way back to previous behavior, that the Emacs
developers have engaged in is too time-consuming for me to
keep up with, especially when there is no significant benefit
to the new versions in my environment. �

Marcin Borkowski


