
TUGBOAT

Volume 39, Number 1 / 2018

General Delivery 3 From the president / Boris Veytsman

4 Editorial comments / Barbara Beeton

Birthdays: Donald E. Knuth, Gudrun Zapf von Hesse;
Staszek Wawrykiewicz, RIP;
Goodbye Glisterings, hello Duckboat;
A new “dual” typeface: visible and touchable;
40 years ago . . . ; Hyphens, UK style

5 Hyphenation exception log / Barbara Beeton

7 In memoriam: Staszek Wawrykiewicz (1953–2018) / Norbert Preining

8 TEX as a path, a talk given at Donald Knuth’s 80th birthday celebration
symposium / Yannis Haralambous

16 TUG is TEX users helping each other / Jonathan Fine

16 LATEX and Jupyter, TikZ and Vega / Jonathan Fine

Typography 17 Typographers’ Inn / Peter Flynn

19 Type designer Nina Stössinger speaks at 3rd Annual Updike Prize event /

David Walden

Resources 20 CTAN quiz / Gerd Neugebauer

Tutorials 21 The DuckBoat—News from TEX.SE: The Morse code of TikZ / Carla Maggi

Cartoon 27 Prefixation / John Atkinson

Software & Tools 27 From Lua 5.2 to 5.3 / Hans Hagen

30 TEXing in Emacs / Marcin Borkowski

37 Tutorial: Using external C libraries with the LuaTEX FFI / Henri Menke

41 Executing TEX in Lua: Coroutines / Hans Hagen

LATEX 44 New rules for reporting bugs in the LATEX core software (as maintained by the
LATEX Project) / Frank Mittelbach and the LATEX Project Team

48 LATEX news, issue 28, April 2018 / LATEX Project Team

51 TEX.StackExchange cherry picking: expl3 / Enrico Gregorio

Graphics 60 Three-dimensional graphics with TikZ/PSTricks and the help of Geogebra /

Luciano Battaia

69 ConTEXt nodes: commutative diagrams and related graphics /

Alan Braslau, Idris Hamid, Hans Hagen

Methods 81 TEX’s “additional demerits” parameters / Udo Wermuth

Hints & Tricks 88 The treasure chest / Karl Berry

Abstracts 90 Die TEXnische Komödie: Contents of issues 4/2017–1/2018

91 Zpravodaj : Contents of issues 2017/1–4

TUG Business 2 TUGboat editorial information

2 TUG institutional members

92 TUG financial statements for 2017 / Karl Berry

Advertisements 93 TEX consulting and production services

News 94 Production notes / Karl Berry

95 TUG 2018 announcement

96 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2018 dues for individual members are as follows:

Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members also have the op-
tion to receive TUGboat and other benefits electron-
ically, at a discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2018 is $110.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see tug.org/instmem.html or contact the TUG of-
fice.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: May 2018]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Taco Hoekwater
Klaus Höppner
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2018 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included.

Mathematics can make typesetting better, and

beautiful typesetting makes mathematics much better

Geoffrey Shallit

All I Really Needed to Know

I Learned from Donald Knuth,

slides, Knuth80, January 8–10, Pite̊a

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 39, NUMBER 1, 2018

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 39, No. 1) is the first issue of
the 2018 volume year. The second issue is planned to be
the proceedings of the annual conference, and the third
another regular issue.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed up to one year after print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board
Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager
Robin Laakso, Office Manager
Boris Veytsman, Associate Editor, Book Reviews

Production team
William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Clarissa Littler,
Steve Peter, Michael Sofka, Christina Thiele

2 TUGboat, Volume 39 (2018), No. 1

TUGboat advertising
For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

Submitting items for publication
Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The submission deadline for the first 2018 issue is
March 16.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications
TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG
Institutional
Members

TUG institutional members
receive a discount on multiple
memberships, site-wide electronic
access, and other benefits:
tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,
Providence, Rhode Island

Association for Computing
Machinery, New York, New York

Center for Computing Sciences,
Bowie, Maryland

CSTUG, Praha, Czech Republic

Harris Space and Intelligence
Systems, Melbourne, Floida

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

Nagwa Limited, Windsor, UK

New York University,
Academic Computing Facility,
New York, New York

Overleaf, London, UK

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg,
Heidelberg, Germany

StackExchange,
New York City, New York

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

University College, Cork,
Computer Centre,
Cork, Ireland

Université Laval,
Ste-Foy, Québec, Canada

University of Ontario,
Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

TUGboat, Volume 39 (2018), No. 1 3

From the president

Boris Veytsman

2018 is promising to be an interesting year for us.
The upcoming conferences: April 28–May 2 is Ba-
choTEX in Bachotek, Poland; June 25–27 is PracTEX
in Troy, NY, USA; July 20–22 is TUG18 in Rio de
Janeiro, Brazil; and September 2–8 is the 12th Con-
TEXt meeting in Prague-Sibřina. Please do not pro-
crastinate and take advantage of the early bird regis-
tration discounts! I would also like to mention that
the TUG Annual General Meeting will be held at
TUG18.

Broadly speaking, there are two kinds of confer-
ences in science and technology: field-oriented and
tool-oriented. The difference is between a confer-
ence on breast cancer (how can we tackle this dis-
ease?) and a conference on MRI applications (what
problems can we solve using this device?). While
our conferences are mostly tool-oriented (we have a
great tool—TEX!), they have also always attracted
talks about things only tangentially related to TEX,
but interesting in themselves: fonts, typography,
printing history, and many others. The last TUG

meeting, at Bachotek, had a bookbinding workshop
and a talk about musical notation in old paintings,
accompanied by a concert of recovered music. Thus
our conferences become somewhat field-oriented, the
field being fine & scientific typography in the mod-
ern world. I think it is a good feature. So if you have
an interesting talk in mind, but are in doubt whether
it is TEX-related, consider submitting it anyway.

On the software front, TEX Live 2018 is moving
up its schedule this year. Hopefully it will be re-
leased before this issue of TUGboat is finished. Also,
the TEX Development fund made its first award for
2018, for LuaTEX support for the bidi package, by
Vafa Khalighi. Development fund applications are
always welcome; see tug.org/tc/devfund.

We are now discussing ways to help with fund-
ing the TEX accessibility project, which will make
the creation of tagged PDFs easier. This is a very
important development for blind and visually im-
paired scientists and engineers. It is also necessary
if we want TEX to stay relevant: many governments
are going to require compliance with accessibility
standards from publishers: either those who receive
government money, or, eventually, all major pub-
lishers. This means that anybody who uses TEX in
professional activities is interested in making TEX-
produced output compliant. Thus we as stewards of
TEX must find ways to fund and steer this develop-
ment effort.

One of the ways to do this is to organize a con-
sortium of publishers and other stakeholders such as
the Unicode consortium and PDF association. This
organization, affiliated with TUG, would raise funds
for the development and steer the development. If
this is the path to take, we need to write down
the charter of the new organization, establish the
dues levels for institutional and individual member-
ship and set up the structure of the consortium. If
you want to help with this work, or have contacts
among potential stakeholders, please write me or the
Board (president@tug.org or board@tug.org re-
spectively). We also have a mailing list for these
discussions, lists.tug.org/accessibility, and a
Web page with links to relevant standards and pa-
pers, tug.org/twg/accessibility.

Another project important for the relevance of
TEX into the future is an educational initiative. We
have some interested teachers on our mailing list,
lists.tug.org/edutex, and have collected infor-
mation about lesson plans and courses at tug.org/
twg/edutex. Among the ideas discussed on the list
has been the organization of summer TEX camps for
school students. If you want to take part in this or
any education-related activities, please get in touch!

Of course, these projects, conferences, publica-
tions require money. We are grateful to all mem-
bers and donors who make this work possible with
their dues and generous donations. Our ranks in-
clude both individual and institutional members;
I’m glad to welcome a new institutional member:
Harris Space and Intelligence Systems.

We started several experiments to increase the
ranks of individual members as well. First, there
is a trial option (new users only): a year of full
TUG membership for just $20. We offer it at a loss:
these dues are lower than the physical cost of ship-
ping TUGboat and the TEX Collection DVD. If you
choose this option and decide TUG membership is
valuable enough, please consider a (tax deductible
in the US) donation. And, of course, we hope you
will renew in 2019. Second, all new members in 2018
will get a letterpress-printed postcard and will par-
ticipate (unless declined) in a lottery for a book by
Jerry Kelly and Martin Hutner, A Century for the

Century: Fine Printed Books from 1900 to 1999.

So, if you are a member and want to help either
by volunteering or by donating—or if you are not
yet a member, but are TUG-curious—we are always
glad to welcome any help!

Happy TEXing!

⋄ Boris Veytsman
president (at) tug dot org

4 TUGboat, Volume 39 (2018), No. 1

Editorial comments

Barbara Beeton

Birthdays

Donald E. Knuth, 10 January 1938

In celebration of Don’s 80th birthday, Knuth80, in
two parts: a conference and an organ concert, was
held in Pite̊a, Sweden. The concert was the pre-
miere of Don’s composition Fantasia Apocalyptica,
an interpretation in music and video of the book of
Revelation.

An adapted version of the talk by Yannis Hara-
lambous, one of the invited speakers, appears later
in this issue. The program and other highlights of
the celebration are online at knuth80.elfbrink.se.

Gudrun Zapf von Hesse, 2 January 1918

It took 70 years for it to happen: Gudrun Zapf’s first
typeface—Hesse Antiqua—was released in digital
form on her 100th birthday.

This typeface was not originally intended for
print, but instead to be used for stamping title let-
tering on leather book covers and spines. Her first
skilled craft was bookbinding, to which was added let-
tering, punchcutting, and typeface design. The story
of the transformation of the design to digital type
is told by the craftsman who accomplished it, Fer-
dinand Ulrich, at fontshop.com/content/hesse-

antiqua. What a wonderful 100th birthday present!

Staszek Wawrykiewicz, RIP

On February 7, the TEX world lost a staunch sup-
porter. Staszek, a founding member of GUST, the
Polish TEX users group, was a well loved attendee
at BachoTEX as well as an active member of the
TEXLive team.

Staszek was a dependable and welcome presence
at BachoTEX and other TEX meetings in Poland—
I first met him at EuroTEX’94 in Gdańsk. An avid
musician, he and his guitar could be counted on
to lead the other participants in song around the
bonfire. He will be greatly missed.

A personal remembrance by Norbert Preining
appears later in this issue.

Goodbye Glisterings, hello Duckboat

As he announced in our previous issue, Peter Wilson
is retiring from his position as compiler of the Glister-
ings column, after a run of 17 years. (The first of the
series appeared in TUGboat 22:4, in 2001.) We have
been treated to an abundance of useful TEXniques,
ideas for making documents more visually attractive,
and pithy sayings. Let’s take this opportunity to

thank Peter for his contribution, and wish him well
as he continues TEXing at his Herries Press.

Actually, Peter would like to share a few last
words. His column has always included the word-
ing “. . . hopefully not making things worse through
any errors of mine.” In the last column there was
a bit about using the changepage package (section
2.2, All is not what it seems). He apologises, but
the start of this example code should have included
“\strictpagecheck” like this:

\usepackage{changepage}

\strictpagecheck

...

For more information about this command please
read the changepage manual (texdoc changepage).

Appearing for the first time, also in our previous
issue, is the new column, the Duckboat, by Professor
Paulinho van Duck, co-conspirator with Carla Maggi.
Inspired by the plethora of interesting questions and
answers at tex.stackexchange.com, and taking its
sub-theme from that forum’s inordinate fondness
for ducks,1 the column will carry on the TUGboat

tradition of collecting and sharing useful TEXtual
tidbits, using tex.sx as its source, and providing
hints on how one can make best use of that resource.

A new “dual” typeface:
visible and touchable

An announcement of an interesting new typeface has
appeared on the web, although it hasn’t been made
available to TEX, and it’s not clear that it would be
possible to do so.

This typeface—Braille Neue—merges a visible
alphabet with Braille, and is intended for use in
signage. The designer, Kosuke Takahashi, began
with the Braille dots, which cannot be moved, and
shaped the letters of the Latin alphabet around them.
(He first attempted to overlay Japanese characters,
but this proved incompatible owing to the complex
character shapes.) He hopes that Braille Neue will
be used somewhere at the 2020 Tokyo Olympics and
Paralympics.

Images of the font are shown on the designer’s
website (kosuke.tk/work-rattt.html) and in an
article about the project.2

1 The tikzducks package, new to TEXLive this year,
provides ample evidence of this syndrome. If you have any
doubt, look at codegolf.stackexchange.com/questions/

159567/blue-duck-red-duck-gray-duck/159718#159718

for a demonstration.
2 fastcodesign.com/90166173/this-new-typeface-

merges-braille-you-can-touch-with-letters-you-can-

see

TUGboat, Volume 39 (2018), No. 1 5

40 years ago. . .

I’ve recently received the newsletter from the Mu-
seum of Printing, in Haverhill, Massachusetts. This
issue unfolds into a strip 13 inches tall by 40 inches
wide, and contains a timeline of print history. The
oldest entry (3100 bce) reads

Cuneiform, one of the earliest known writ-
ing systems developed in Sumer (modern day
Iraq). Wedge-shaped marks were made on
clay tablets by a blunt stylus cut from a reed.

(Peter Wilson, in his keynote at TUG 2007 in San
Diego, passed around some exhibits, one of which
was a cuneiform tablet. This method of recording
text is possibly the most durable, as observed in the
title page quote for TUGboat 33:1.)

But the year 1978 is the one with the most
appeal to the present audience:

Last New York Times set by Linotype; fea-
tured in documentary film Farewell, Etaoin
Shrdlu.

TeX typesetting system developed by Donald
Knuth. It revolutionized the composition and
publication of technical books and journals.

Friends of Museum of Printing founded in
Massachusetts.

Many other years mark interesting events, but none
quite as notable to us as this one.

This timeline is similar, but not identical, to
one that appears on a page of the American Printing
History Association’s website.3

Hyphens, UK style

British hyphenation practice has been “evolving”, at
least according to Oxford University Press, whose
most recent spelling dictionary shows considerable
variation from the 1986 edition used to develop the
patterns now in use by (LA)TEX. A spirited discussion
has been taking place on the tex-hyphen list,4 along
with correspondence arising from the effort to try
to bring the patterns into current practice. What a
kerfuffle (a delightful word)!

Dominik Wujastyk, who was involved in creat-
ing the original patterns, is spearheading the effort.
Here’s hoping that it succeeds.

⋄ Barbara Beeton
https://tug.org/TUGboat

tugboat (at) tug dot org

3 printinghistory.org/timeline/
4 lists.tug.org/tex-hyphen

Hyphenation exception log

Barbara Beeton

This is the periodic update of the list of words that
TEX fails to hyphenate properly for U.S. English.
The full list last appeared in TUGboat 16:1, start-
ing on page 12, with periodic updates in TUGboat,
most recently in 36:1, p. 7.

In the list below, the first column gives results
from plain TEX’s \showhyphens{...}. The entries
in the second column are suitable for inclusion in a
\hyphenation{...} list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{...} list if they occur
in your document. The full list of exceptions, as a
TEX-readable file, and the scripts used to create it,
appears at https://ctan.org/pkg/hyphenex.

Like the full list, this update is in two parts:
English words, and names and non-English words
that occur in English texts.

Thanks to all who have submitted entries for
the list. As a reminder of one of the idiosyncrasies
of TEX’s hyphenation algorithm: hyphens will not
be inserted before the number of letters specified
by \lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454.) This
particular rule is violated in some of the words listed;
however, if a word is hyphenated correctly by TEX
except for “missing” hyphens at the beginning or
end, it has not been included here.

Some other permissible hyphens have been omit-
ted for reasons of style or clarity. While this is at
least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more breakpoint in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated in
the same way regardless of usage.

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
unabridged.

The list—English words

adamant ad-a-mant
analect an-a-lect
anonymity an-o-nym-i-ty
anony-mous(ly) anon-y-mous(ly)
an-tibi-otic anti-bi-ot-ic
an-tipodes an-tip-o-des
awestruck awe-struck
backpedal(s,ing) back-pedal(s,-ing)
bioin-for-mat-ics bio-in-for-mat-ics

biomass bio-mass
chameleon cha-me-leon

chaotic cha-ot-ic
cognoscenti co-gno-scen-ti
columbine col-um-bine
colum-nar col-um-nar
con-tractable con-tract-able
cor-ti-cos-teroid cor-ti-co-steroid
cuisines cui-sines
cus-tomer cus-tom-er
democ-racy de-moc-ra-cy

demo-crat dem-o-crat
demo-cratic dem-o-crat-ic

demon-strabl(e,y) de-mon-stra-bl(e,y)
demon-strate dem-on-strate
demon-strat-ing dem-on-stra-ting
demon-stra-tion dem-on-stra-tion
di-alect dia-lect
di-alec-tal di-a-lec-tal
di-alec-ti-cal di-a-lec-ti-cal

di-atom di-a-tom
di-atoma-ceous di-a-to-ma-ceous

dilemma di-lem-ma
dis-tribut-ing dis-trib-ut-ing
disu-til-ity dis-util-ity
endgame end-game
ex-plicit ex-pli-cit
ex-plic-itly ex-pli-cit-ly
fidu-ciary(ies) fi-du-ciary(-ies)
fontenc font-enc

fragility fra-gil-i-ty

freesia free-sia
het-eroin-t-er-face het-ero-in-ter-face
homonym hom-o-nym
homonymic hom-o-nym-ic
homony-mous ho-mon-y-mous
homonymy ho-mon-y-my
ho-mo-phone ho-mo-phone
ho-mo-phonic ho-mo-phonic
ho-mophonous ho-moph-o-nous
ho-mophony ho-moph-o-ny
id-io-gram id-io-gram

id-i-olect id-i-o-lect
in-signif-i-cant in-sig-nif-i-cant

in-tractable in-trac-ta-ble
in-tractabil-ity in-trac-ta-bil-ity
ju-nior jun-ior
labyrinth lab-y-rinth
labyrinthian lab-y-rin-thi-an
labyrinthine lab-y-rin-thine
ma-l-in-vest-ment mal-invest-ment

men-sch mensch

6 TUGboat, Volume 39 (2018), No. 1

nu-cle-osyn-the-sis nu-cleo-syn-the-sis
pe-nal-ize pen-al-ize
perispom-ena(on) peri-spome-na(on)
physics phys-ics

polypep-tide poly-pep-tide
predilec-tion predi-lec-tion

pseudon-um-ber pseu-do-num-ber
ragged rag-ged

roundish round-ish
roundish-ness round-ish-ness
runnable run-nable
scalar sca-lar
SIu-nits SI-units
spec-troscopy spec-tros-co-py
stretch-a-bil-ity stretch-abil-ity

sub-s-e-lect sub-se-lect
sub-s-e-lected sub-se-lected
sub-s-e-lec-tion sub-se-lec-tion

su-perel-lipse super-el-lipse
su-perel-lip-ti-cal super-ellip-ti-cal

su-perel-lip-ti-cally super-ellip-ti-cally
su-perel-lip-ti-cal-ness super-ellip-ti-cal-ness
supraor-di-nate su-pra-ordi-nate
syn-chronic-ity syn-chro-ni-city
syn-onym syn-o-nym
syn-ony-mous syn-on-y-mous
syn-onymy syn-on-y-my
tableau tab-leau

ther-moe-las-tic-ity ther-mo-elas-tic-ity
ther-mome-ter ther-mom-eter
ther-monu-clear ther-mo-nu-clear
ti-tanate ti-ta-nate
tractable trac-ta-ble
uber-men-sch uber-mensch
un-pre-dictabl(e,y) un-pre-dict-a-bl(e,y)

Names and non-English words
used in English text

Alexan-der Alex-an-der
Alexan-drine Alex-an-drine

Bigelow Big-elow
Bringhurst Bring-hurst

Carnegie Car-ne-gie
Columbian Co-lum-bi-an
com-para-i-son com-pa-rai-son
Ge-of-frey Geof-frey
Har-alam-bous Hara-lam-bous
Knuthian Knuth-ian
Kun-stakademie Kunst-aka-de-mie

Mesopotamia Mes-o-po-ta-mia
Mo-jca Moj-ca

QW-ERTY QWERTY
Rochester Ro-ches-ter
Sin-ga-pore Singa-pore
Sin-ga-porean Singa-po-re-an
Wikipedia Wiki-pe-dia

⋄ Barbara Beeton
http://tug.org/TUGboat

TUGboat (at) tug dot org

TUGboat, Volume 39 (2018), No. 1 7

In memoriam: Staszek Wawrykiewicz
(1953–2018)

Norbert Preining

We have lost a dear member of our community,
Staszek Wawrykiewicz. I got notice that our friend
died in an accident the other day. My heart stopped
for an instant when I read the news, it cannot be—
one of the most friendly, open, heart-warming friends
has passed.

Staszek was an active member of the Polish
TEX community, and an incredibly valuable TEX
Live team member. His insistence and perseverance
have saved TEX Live from many disasters and bugs.
Although I have been in contact with Staszek over
the TEX Live mailing lists for many years, I met him
in person for the first time at my first ever BachoTEX,
the EuroBachoTEX 2007. His friendliness, openness
to all new things, his inquisitiveness, all took a great
place in my heart.

I dearly remember the evenings with Staszek
and our Polish friends, in one of the Bachotek huts
or around the bonfire, him playing the guitar and
singing traditional and not-so-traditional Polish mu-
sic, inviting everyone to join and enjoy together.
Rarely have technical and social abilities found such
a nice combination as in Staszek.

Despite his age he often felt like someone in his
twenties, always ready for a joke, always ready to
party, always ready to have fun. It is this kind of
attitude I would like to carry with me when I get
older. Thanks for giving me a great example.

The few times I managed to come to BachoTEX
from far Japan, Staszek was always welcoming— it
is the feeling of close friends that even if you haven’t
seen each other for long time, the moment you meet
it feels like it was just yesterday. And wherever you
go during a BachoTEX conference, his traces and
humor were always present.

It is a very sad loss for all of those who knew
Staszek. If I could I would like to board the plane
just now and join the final service to a great man, a
great friend.

Staszek, we will miss you. BachoTEX will miss
you, TEX Live will miss you, I will miss you badly. A
good friend has passed away. May you rest in peace.

⋄ Norbert Preining
Komatsu, Ishikawa, Japan
https://www.preining.info/

[Editor’s note: Originally written as a blog post:
preining.info/blog/2018/02/in-memoriam-

staszek-wawrykiewicz. More about Staszek, in
Polish, is on the Polish Wikipedia: pl.wikipedia.
org/wiki/Stanis%C5%82aw_Wawrykiewicz.

Photos are courtesy Andrzej Odyniec, released
by him to the public domain.]

8 TUGboat, Volume 39 (2018), No. 1

TEX as a Path, a Talk Given at Donald

Knuth’s 80th Birthday Celebration

Symposium

Yannis Haralambous

Donald E. Knuth’s 80th birthday celebration on Jan-
uary 10th, 2018, in Pite̊a (northern Sweden), was
organized as a double event: (a) a scientific sympo-
sium1 where colleagues, former students and friends
were invited to give presentations in the fields of
algorithmics and combinatorics, and (b) the world
première of his multimedia work Fantasia Apocalyp-
tica for pipe organ and three video tracks.

The symposium was the opportunity to attend
talks by renowned scientists, such as, to mention
just a few (in alphabetical order): Persi Diaconis
(Stanford), Ron Graham (UC San Diego), Dick Karp
(UC Berkeley), Bob Sedgewick (Princeton), Bob Tar-
jan (Princeton), Andrew Yao (Tsinghua University),
. . . I didn’t count the exact number of Turing prizes,
but there must have been four or five, at least.

Fantasia Apocalyptica was a stimulating and
intense experience: during an hour and a half we lis-
tened to Don’s “program” music played on one of the
best pipe organs in the world, while (1) reading the
unabridged text of John’s Revelation in Greek and
English, (2) reading the score as it was played and
(3) looking at specially drawn Duane Bibby drawings
. . . the whole in perfect synchronization,2 and in a
beautiful wooden concert room: the Acusticum of
Pite̊a’s Higher School of Music and Dance.

For this unique event, I was invited to give a
talk about Don’s work in typography. A vast subject,
which I had to fit in only 30 minutes. I spent the six
months of preparation of this talk constantly alter-
nating between visionary joy (“I will at last be able
to express my gratitude and admiration to Don!”)
and paralyzing anxiety (“will I ever find something
to say that Don doesn’t know already?!?”). After
the symposium, I wanted to share the result with

1 I like the word ‘symposium’ because it stems from the
Greek word symposion, meaning “drinking together”!

2 Experiencing Fantasia Apocalyptica reminded me of lit-
erate programming and specifically of reading volume E of
Computers & Typesetting: the volume on Computer Modern
fonts where you have annotated glyph images, METAFONT

code and comments on facing pages. Of course in the case
of Fantasia the experience was much stronger since the act
of reading the Biblical text(s) and the score had to follow
the pace of music, while (a different?) part of the brain was
cognitively processing the incoming music. It is characteristic
of Don to provide the experiencer with many simultaneous
levels and modalities of information—so much information,
indeed, that selecting a small part of it that your mind can
humanly capture and process, is a creative process per se.

TUGboat readers, through this paper.3 What follows
is an edited and corrected transcription of my talk,
with several additional explanations and references.

1 TEX as a Path

It is a big honor for me to give this talk about TEX
and typography in front of Don, because TEX literally
changed my life. The main keyword of this talk is
‘gratitude’, even though the word doesn’t appear
explicitly in it.

Duane Bibby, the famous creator of the lion and
lioness characters, has kindly prepared a drawing
especially for this occasion:

In it you can see the lion of TEX together with
the lioness of METAFONT and the coffee-drinking
happy humanoid computer, walking on a path paved
by bits. The path starts from a temple with Don’s
initials and heads to the setting sun. Our two beloved
leonine creatures are dwelling on this path and smil-
ing at us, while we read on a road sign: “Happy 80th
birthday Don.”

You may be wondering why I chose to talk about
paths? Well, a path is, of course (Merriam–Webster)
a trodden way, a track specially constructed for a par-
ticular use — which is also the case of TEX — but also,
most importantly, a way of life, a way of conduct, a
way of thought.

There is this famous poem by Cavafy [4, p. 36]:

Σ� βγε´v στ¿ν πηγαιµ¿ γι� τ�ν LΙ��κη,
ν� εÑχεσαι ν�ναι µακρÌv Á δρ¾µοv,
γεµ�τοv περιπ�τειεv, γεµ�τοv γνÞσειv.

3 The slides are on the symposium’s Web site http://

knuth80.elfbrink.se/talks/ and you can also watch the
talk on YouTube: https://youtu.be/P1AxaFQzfT4.

Yannis Haralambous

TUGboat, Volume 39 (2018), No. 1 9

When you set out on the journey to Ithaca,
pray that road be long,
full of adventures, full of knowledge.

where the “path”, the “way of life”, is given a name:
‘Ithaca’. Don had many Ithacas in his life and he
attained them all, but according to Cavafy, what
is important is not attaining the destination but
rather the journey, a journey full of adventures, full
of knowledge.

2 The Outline of the Talk

This is the moment where the speaker traditionally
gives the outline of eir4 talk. This was a difficult
task for me because the first idea of an outline that
came to my mind was this:

Photo credit: Zabair Khan, CC BY-NC 2.0.

It is the Grand Canyon. I remember somebody
saying once that “talking about TEX is like trying
to describe the Grand Canyon in a postcard”. You
may wonder “Why the Grand Canyon?” It happens
that when you look at TEX you sometimes feel like
contemplating pure beauty:

4 I’m using Michael Spivak’s gender-neutral pronouns [21,
p. xv].

Photo credit: Helari Hellenurm, CC BY-NC-ND 2.0.

and sometimes you feel rather like rafting in a heavy
stream:

Photo credit: Andrew Peacock, used by permission.

which is another aspect of the Grand Canyon, and
of TEX. . .

In fact, my real outline is shown in the figure
at the bottom of the page, namely a graph whose
vertices are the various topics I want to address,
and edges represent semantic relatedness above a
given threshold between the topics. Once you have

TEX as a Path

A Path in Time

A Path to a New Model of Writing

A Path to a New Model of Document

A Path to Formalization of Esthetics

A Path to Disseminating Scientific Knowledge

A Path to Social Networks

A Path in Obfuscation Land
A Path to its Creator’s Perfectionism

A Path to its Creator’s Humor

A Path to its Creator’s Humanity and Values

A Path to the End of this Talk

A Path to Strange Creatures
A Path in the History of Typography

A Path to Personal Development

A Path to Personal Enhancement

A Path to Make a Living

TEX as a Path, a Talk Given at Donald Knuth’s 80th Birthday Celebration Symposium

10 TUGboat, Volume 39 (2018), No. 1

this semantic graph, a narrative thread can be ob-
tained algorithmically as a shortest Hamiltonian path
(Hamiltonian since we want to visit all vertices ex-
actly once, and shortest since we want to keep the
talk as coherent as possible). In fact, instead of apply-
ing shortest Hamiltonian algorithms I did something
easier: I detected communities of vertices (the sec-
tions of this talk) and I drew a path joining them in
the most sensible way.

3 History

First of all, TEX is a path in time. You may say that
it starts in 1942 with a 4-year old Milwaukee boy
[18, p. 1] going to the local library to read “Babar
the King”, and ending up in the local newspaper as
the youngest member of the local Book Worm Club.
But actually the first real milestone was the first
book ever typeset in TEX: “Lena Bernice” [9, 15],
typeset in 1978 and printed in 100 copies. And
then of course, another important milestone was The

TEXbook (1984), as the main entrance to TEX for
most of us old-timers, and finally, in 1990, Don’s
decision to freeze TEX [17].

TEX is also a path in the history of typography.
We all know that Gutenberg modeled writing by in-
venting movable metal type-based typography. Don
has dematerialized Gutenberg’s model using boxes
and glue. Also, many people in the Renaissance
attempted to mathematically model letter shapes,
Pacioli being one of them. Don, once again, has
provided a solution to the problem by devising the
programming language METAFONT. In a previous
talk [20] Martin Ruckert has extensively talked about
the letter ‘S’ and the difficulties this letter caused
for Don (see also [14] and [12]). The creative path
from Gutenberg and Pacioli to Don is a well-known
one, but that’s not all. In fact, we can consider that
TEX and METAFONT are much more than that since
Don’s work has introduced two new models: a model
of writing and a model of documents.

4 A Model of Writing

In 1968, in their foundational work “The Sound
Pattern of English” [5], Chomsky and Halle describe
a language’s phonological structure — be it English or
any other language — through what they call “sound
rules”. For them, word forms we use in speech can be
obtained from “abstract forms”, after some (mostly
standard) transformations. For example, the French
article <le> /l@/ (note that we use angle brackets
for the written word and slashes for pronunciation
represented in the IPA) becomes <les> /le/ in the
plural, so if we look only at the surface there is /l@/
for the singular and /le/ for the plural. But when

the plural form is followed by a noun starting with a
vowel, as in <les ans> /lezÃ/, a /z/ sound appears
out of nowhere (in French this is called liaison).
Chomsky and Halle say that there is an “abstract
sound” /z/ which corresponds to the plural suffix
and the sound rule will send it to nothing (= will
keep it mute) unless a noun starting with a vowel
follows the article.

This will come as no surprise since that “abstract
plural suffix” has existed in the French language for
many centuries, well before Chomsky and Halle. But
it exists not in speech but in the written modality,
where it is represented by an <s>.

We can schematize Chomsky and Halle’s ap-
proach by:

abstract sounds
sound rules

// pronunciation.

What is of interest to computer scientists is that
these “sound rules” are in fact production rules of
a context-sensitive formal grammar (and this was
the very reason why Chomsky introduced the formal
grammar concept in the first place).

Richard Sproat [22], inspired by Anneke Nunn
[19], has extended this to graphemes. Graphemes
are the basic elements of writing in the same way
that phonemes are the basic elements of spoken lan-
guage. You can define graphemes by the method
of minimal pairs: if two “drawings” in the same
context give rise to different semantics, then they
are different graphemes. For example, every English
reader recognizes the words <hat> and <cat> as
having different semantics, therefore <h> and <c>
are different English language graphemes. On the
other hand, <cAt> and <cat> represent the same
semantics for the average reader of English, so <A>

and <a> represent the same grapheme of English
language; we call them allographs.

Sproat [22] proposes the following diagram:

abstract sounds
sound rules

//

phoneme to grapheme conversion

��

pronunciation

abstract spelling
autonomous spelling rules

// spelling,

where all arrows represent rules that can be de-
scribed by means of regular languages. In the case
of graphemes the regular language is of a special
kind; he calls it a planar language and it has not
one but five concatenation operators, corresponding
to five relative placements of character pairs: “over”
↑
·, “under”

↓
·, “on the left”

←
· , “on the right”

→
· , and

“surrounding” ⊙. So, for example, the Chinese char-
acter <鳞> can be described as the formal word

<鱼
→
· [米

↓
·[夕

→
·㐄]]> if we consider the “components”

Yannis Haralambous

TUGboat, Volume 39 (2018), No. 1 11

appearing in this decomposition as the alphabet of
our formal language (notice that we also need brack-
ets since this kind of planar concatenation is not
associative).

It is time now to return to TEX. The reader
may find a strong similarity between graphemes and
Unicode characters. Let’s understand well that there
is an important difference: the former are language-
specific (since they are defined by minimal pairs in a
given language) and the latter strive for universality.
But we can also consider a grapheme as an equiv-
alence class of drawings, and a Unicode character
as an equivalence class of glyphs. It is also note-
worthy that Sproat’s five concatenation operators
have their analogs (even though only intended for
Chinese Han characters) in Unicode: the Ideographic
description characters U+2ff0-2ffb, which are not 5
but 12. And still, in my humble opinion, these are
not enough: consider for example the Vietnamese
acute accent which has to sit on the right side of the
circumflex accent: this is much subtler than simply
saying that the former “lies above” the latter. It
should be clear by now that some precise way of
describing grapheme/Unicode character interaction
is still needed. I claim that

Claim 1. The ideal tool for describing grapheme
interaction is TEX!

Indeed, our beloved TEX, besides being a pro-
gram and a programming language, is also an algo-
rithmic transformation from tokens (tokens can repre-
sent abstract phonemes or abstract graphemes) into
DVI command sequences (which again can represent
graphemes, as well as their geometric interactions).

One may argue that to obtain DVI one needs
also fonts (or, at least, font metric information).
But don’t you always need them? When we want
to precisely describe the interaction between two
graphemes, we need information on their shapes.

And this raises a second issue: when studying a
(written) language at some point you need to describe
its glyphs/allographs. And since these can vary,
while representing the same character/grapheme,
you need some flexible way of describing them. You
need a meta-description. I claim that

Claim 2. METAFONT is the ideal tool for describing
glyphs (a.k.a. allographs) and equivalence classes of
glyphs (a.k.a. graphemes).

Take for example the description of the Euro
symbol as given in [7]. This description uses precise
geometrical properties but takes into account neither
stroke width variation, nor special techniques for

diagonal junction lightening,5 which are necessary
for real-world typography. METAFONT can easily
model the precise equations of [7], and still allow for
metaness and typographic performance.

To resume, I claim that

Claim 3. TEX+METAFONT can be considered as a
very efficient new model of the written form of (any)
language, whether for studying it (as does linguistics)
or to produce contents in it.

And hence I propose an extension of the diagram
above to:

abstract sounds
sound rules

//

phoneme to grapheme conversion

��

pronunciation

abstract spelling
autonomous spelling rules

// spelling

TEX

��

DVI + METAFONT.

5 A Document Model

Conventional document models, such as XML (with
XSL-FO and SVG) or PDF, or the many word proces-
sor file formats, contain a mixture of characters and
glyphs, the former mostly from the user’s input and
the latter after processing and applying properties.
For example, XML contains only characters, but SVG

allows the user to describe glyphs (in a very rudimen-
tary way) and to use them in an XSL-FO context.
PDF contains only glyphs, but when the user goes
through the GUI for operations such as copying or
searching, PDF reader software will either use the
font encoding to obtain characters corresponding to
glyphs or a special command called ActualText [1,
§14.9.4] to attach a Unicode string to some part of
the document, for example to a sequence of glyphs.
A document in one of these formats contains a static
textual content, either in glyphs or in characters, or
in some weak correspondence between the two.

TEX has introduced a new, infinitely more pow-
erful document model, by providing not only the
source and the result but also the complete process
of document creation. In TEX you know when every
transformation is applied and for what reason. Take
for example the <fl> ligature and the French <œ>

digraph. In the DVI file they are both single glyphs,
but if you look at the TEX process you will realize
that <œ> was there from the beginning (either as a
Unicode character in TEX versions supporting Uni-
code, or as an \oe macro), while <fl> has appeared
in the node list when the typesetting process met the

5 See the apex corr and notch cut parameters in Computer
Modern fonts.

TEX as a Path, a Talk Given at Donald Knuth’s 80th Birthday Celebration Symposium

12 TUGboat, Volume 39 (2018), No. 1

font and got information from it about availability
(and necessity) of the ligature in the specific font.
And, of course, in a German setting where the letters
<f> and <l> belong to different morphemes — such
as in the word <Auflage> — the ligature will not be
applied.

Accessing the whole process from source to out-
put gives you the five Ws: who, when, why, what
and how of every part of your document. To give
an analogy, suppose you have to talk about a great
(wo)man: you will talk not only about what e left,
but about eir entire life. Life is a transformation of
projects into memories—take this conference: six
months before, it was a project, a dream; then it
became an event; six months later, it will become a
memory. You don’t want to keep only memories, you
want to access the whole of it. In our analogy, TEX
and METAFONT source is your project, DVI+PK is
your memory, what is important is how you obtain it.
A similar analogy is music: you can have a score (the
source) and you can have a recording (the result).
But the most important part is neither of them, it
is the music making process per se.

For all these reasons I claim that

Claim 4. TEX and METAFONT can be used to de-
scribe the input of a document, its output, as well as
the complete process of obtaining the output from the
input. This is a new way to model documents, and
certainly the most powerful I can imagine.

6 TEX and Esthetics

When Gutenberg printed his Bible, he actually com-
mitted a fraud: he sold Bibles to wealthy monks
pretending they were handwritten, and got paid ac-
cordingly. Therefore the esthetic of that first printed
book was rather the one of manuscripts of its time.
But once printing technology emigrated to Italy, im-
mensely talented artists such as Aldus Manutius
or Francesco Griffo created a new esthetic for the
printed book. This esthetic canon has evolved dur-
ing centuries but has never really been formalized.
There have been manuals and methods, but never a
formal specification.

Don has done this formal specification algorith-
mically and included the algorithm into TEX. When
he defined badness, demerits, penalties and the like
[16], he was in fact formalizing notions and rules that
have existed for centuries as part of a craftsman’s
skills. And speaking about TEX innards, here is an-
other opportunity to mention a path: the solution
to the problem of the most pleasant paragraph is
indeed a shortest path in a directed acyclic graph,
and TEX managed to be operational in very small
systems (as were operating systems in the late sev-

enties) precisely because the algorithm for finding
a shortest path in a directed acyclic graph is of no
more than linear complexity.

7 Disseminating Scientific Knowledge

After having discussed what a marvelous achievement
TEX has been as part of the history of writing, of
documents and of typographical esthetics, let us turn
to the impact of TEX on humans, be it universally,
or individually, or for specific communities.

Firt of all, let us give some figures:

• There are currently 1,344,162 papers on the
arXiv.org archive, out of which 1,230,793 (that
is 92%) are written in TEX6;

• for those needing help, there are 147,645 bril-
liantly and multiply answered questions on the
tex.stackexchange.com platform7;

• for those needing extra power, there are 5,411
LATEX packages on CTAN written by 2,472 au-
thors8;

• the collaborative online LATEX platform Overleaf
has 2,169,037 accounts and hosts the astonishing
number of 17,256,112 TEX documents9;

• all presentations of the Knuth80 symposium
were prepared in TEX!10

These figures show that, thanks to TEX, nowadays
anyone with access to a computer can freely and
efficiently produce scientific and scholarly documents
with high quality presentation standards.

8 TEX’s Impact on Individuals

When you use TEX you become humble, patient,
hardened.

Debugging a TEX document is experiencing

διL �λ�ου κα φ¾àου περα¬νουσα
τ�ν τéν τοιοËτων πα�ηµ�των κ��αρσιν

through pity and fear effecting
the proper purgation of such emotions.

This quote is part of Aristotle’s definition of tragedy
[3]. TEX users experiencing κ��αρσιv (cathartic emo-
tions) do it because the result is worth the pain.
There is beauty emerging from the innards of the

6 As of January 5, 2018 (personal communication with
Jim Entwood).

7 As of January 5, 2018 (information available on the Web
site).

8 As of November 1st, 2017 (personal communication with
Gerd Neugebauer).

9 As of January 6, 2018 (personal communication with
John Hammersley).

10 This is notoriously and shamelessly FAKE NEWS as the
reader visiting the symposium’s Web site can easily verify by
downloading the PDF files of the talks. But all other figures
in this paragraph are entirely true!

Yannis Haralambous

TUGboat, Volume 39 (2018), No. 1 13

machine. And the important point is that the TEX
user can always obtain the result e needs, because
e has total control on eir tools. This enhances qual-
ity of life, and provides confidence, self-esteem and
dignity. (And not frustration like other programs,
which are fatally bound by limits.)

Besides personal development TEX also leads to
personal enhancement. Take for example the Preface
of the METAFONTbook, where Don gives a warning:

Warning: Type design can be hazardous to your other
interests. Once you get hooked, you will develop intense
feelings about letterforms; the medium will intrude on
the messages that you read. And you will perpetually
be thinking of improvements to the fonts that you see
everywhere, especially those of your own design.

I.e., if you read that book you will change, you will
evolve. And indeed, being exposed to TEX and META-
FONT extensively alters your senses and produces
extra sensitivity to form. And this extra sensitivity
to form enhances understanding of content since it
is through form that we access content.

Meanwhile, TEXers are easily recognizable by
the common symptoms they present:

• facial spasms when witnessing club lines;

• nightmares populated by overfull boxes;

• a smile when discovering other people’s typo-
graphical blunders, such as mixing up ‘ß ’ and
‘β’, or ‘�’ (number) and ‘v’ (letter), or using an
ASCII apostrophe ‘'’ instead of a typographic
apostrophe ‘’’ in text, or omitting an ‘œ’ digraph
in French words like ‘cœur’;

• euphoria when in presence of a beautiful font;

• visionary ecstasy when in front of an Aldine
Press volume;

• olfactory excitation when smelling paper and
ink;

• a mood of “home sweet home” when unexpect-
edly recognizing Computer Modern fonts in a
library or bookstore.

There are also people using TEX to earn a living
and feed themselves and their families working at it
with all their heart [Col. 3.23]. Again TEX is the ideal
tool for this purpose because it gives the professional
user total control of eir typesetting activities and
document aspects. E don’t have to learn it anew on
every new version (since there is no new version) but
e can capitalize on eir knowledge.

And then, you have communities of people, peo-
ple who share their experiences and pleasure, but
above all, their creativity. In TEX user groups (or
{TEX Users}, as Michael Spivak [21, App. H] calls
them) there are neither social, nor racial, nor ge-
ographic, nor gender-related, nor age-related, nor

computer proficiency-related barriers. TEX-induced
friendships last a lifetime.

9 Small Mystery Interlude

TEX may lead you to the encounter of strange crea-
tures like this one:

or this one:

or this one:

These creatures live in tribes:

O��Y
ObY�ÚR��R�d ��_��6bQV\>[L!J���aeb�Y�� Öb�
�"����"�_�id�T!�&_��a&8�R �RPj
[O�aJ��R"��_�
>�«S��� Öb�adObY=�h1a]\�"i
Ô��a×3O��e�d �
�_�aidObYFe_��>b«��ai�SXai�"a*�«�!d�>��8V'�KyV�2e�
¬���� d�V�dObYÜai
ObY#«�«��ai�$J�ai�+���ai>;;�aiJ/��
ai:��� Ya^]� *e�°id�V\
G�Ó�Ö?3_�a
�SeW_�>[��`"�_�
>��`S�a�Z_�
ObY��d����"dObY�R �V�VbZ��_� Y�a�d��Jbg
V\
SP�� Nb!�	

and their tribes sometimes meet:

and when their tribes meet then the characters be-
come messengers of peace and hope among humans.

10 TEX in Obfuscation Land

TEX is also the ideal tool for obfuscation. In a pre-
vious talk [6], Erik Demaine was referring to songs

TEX as a Path, a Talk Given at Donald Knuth’s 80th Birthday Celebration Symposium

14 TUGboat, Volume 39 (2018), No. 1

with small complexity [13, p. 20]. Here is one of
those songs (“On the first day of Christmas, my true
love gave me. . . ”) written in obfuscated TEX code
by David Carlisle [2]:

\let~\catcode~‘76~‘A13~‘F1~‘j00~‘P2jdefA71F~‘7113jdefPALLF

PA’’FwPA;;FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP;A$$FevP

A@@FfPARR717273F737271P;ADDFRgniPAWW71FPATTFvePA**FstRsamP

AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi

Fjfi71PAVVFjbigskipRPWGAUU71727374 75,76Fjpar71727375Djifx

:76jelse&U76jfiPLAKK7172F71l7271PAXX71FVLnOSeL71SLRyadR@oL

RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73.jelse

B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRsreLPAI

I71Fo71dPA!!FRgiePBt’el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;

;Lql.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ.ilk,%

s$;z zLqs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G

LcYlaDLbJsW,SWXJW ree @rzchLhzsW,;WERcesInW qt.’oL.Rtrul;e

doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,:jbye

This is indeed very efficient obfuscation and it
works because TEX has a primitive command called
\catcode which operates in a “transfigurative” way
and changes the essence of any character. TEX can
follow these transfigurations seamlessly while the
human mind is totally unable to read past the first
line (at least that is my case).

11 TEX’s Creator

The path of this talk has allowed us to wander
through many aspects of TEX. We left the most
important for last: TEX’s creator.

C&T, a.k.a. Computers and Typesetting, a five-
volume book of 2,704 pages, is a closed universe. The
books have a logical structure, they are produced
by programs which have their own logical structure
(the two structures being different according to the
rules of literate programming). The programs are
described by text, which has paragraphs, lines and
characters. Characters are also described by pro-
grams, which again are described by text.

Take a long breath and think of the complexity
of this œuvre.

And then consider the fact that even the tiniest
character needs the full power of the system. To
obtain a humble little comma you need all of META-
FONT and TEX, as in oriental theories of the universe
[11]:

Every atom reflects the whole Universe. How
can it be otherwise, since every atom is Pri-
mordial Substance?

Every comma reflects the whole of TEX and
METAFONT. So you have a whole universe in front
of you, and you can delve inside it. In its center you
will encounter its creator.

12 Don’s Humor

Don’s humor is proverbial, irreverent, unrestrainable
and ubiquitous.

Take the following sentences from The TEXbook.
The first one appears very early, in the Preface:

Another noteworthy characteristic of this book
is that it doesn’t always tell the truth.

This is hardly expected in a serious book by one of
the greatest computer scientists of the 20th century.
But it gets even better when the reader arrives at
the very last exercise:

Final exercise: Find all of the lies in this book,
and all of the jokes.

Then there are Duane Bibby’s beautiful, ma-
liciously funny and funnily malicious drawings like
this one, from the “Dirty tricks” chapter:

And last, but not least, The TEXbook is full of
awesome quotations, like the following (one of my
favorites):

. . . according to legend, an RCA Marketing Man-

ager received a phone call from a disturbed cus-

tomer. His 301 had just hyphenated “God.” [10]

13 Don’s Humanity and Values

When we read Don’s books we learn things. But we
also learn how to learn, and by learning how to learn,
we learn how to teach, how to make the dullest sub-
ject interesting and noteworthy, and that, in return,
provides us with a feeling of gratifying creativity.
Don cares about every single reader whether e is an
expert or a novice, and this is a permanent source
of inspiration for us.

The following quote is not from Don but is in
The TEXbook and represents for me the very essence
of teaching :

Pretend that you are explaining the subject to a

friend on a long walk in the woods. [8]

Yannis Haralambous

TUGboat, Volume 39 (2018), No. 1 15

14 Conclusion

With this “long walk in the woods” (which is yet
another path), we arrive at the end of this talk.

Cavafy’s Ithaca asserts that the voyage is more
important than the destination:

HΗ LΙ��κη σL �δωσε τ¿ äρα´ο ταξε¬δι.
Χωρv αÍτ�ν δ�ν ��àγαινεv στ¿ν δρ¾µο.

Ithaca gave you the wondrous voyage:
without her you’d never have set out.

Without Don, without his Ithacas, we wouldn’t
have TEX, we would not have this wondrous voyage,
without him we would not have set out.

So on this occasion I would like to wish Don a
Happy Eightieth Birthday, and solemnly tell him, in
the name of all TEX users, past, present and yet to
come,

Thank you Don, from the bottom of our hearts!

References

[1] Adobe Systems Inc. Document management —
Portable Document Format — Part 1: PDF 1.7,
2008. adobe.com/devnet/pdf/pdf_reference.
html.

[2] Anonymous. Pearls of TEX programming. TUG-
boat, 26(3):256–263, 2005. tug.org/TUGboat/

tb26-3/tb84pearls.pdf.

[3] S. H. Butcher, editor. The Poetics of Aristotle.
Macmillan and Co., London, 1895.

[4] Constantinos Cavafy. Ithaca. In The Collected
Poems. Oxford University Press, 2007. Trans-
lated by Evangelos Sachperoglou.

[5] Noam Chomsky and Morris Halle. The Sound
Pattern of English. Harper & Row, 1968.

[6] Erik Demaine. Fun and games meet computer
science, 2018. Talk given at Knuth80. knuth80.
elfbrink.se/talks/.

[7] European Commission. The design of the euro,
2002. perma.cc/4NEE-HFBQ.

[8] P. R. Halmos et al. How to Write Mathematics.
American Mathematical Society, 1973.

[9] Elisabeth Ann James. Lena Bernice: Her Christ-
mas in Wood County, 1895. Rainshine Press,
Columbus, Ohio, 1978. With illustrations by
Jill Carter Knuth.

[10] P. E. Justus. There is more to typesetting than
setting type. IEEE Transactions on Professional
Communication, PC-15(1):13–16, 1972.

[11] William Kingsland. The Physics of the Secret
Doctrine. The Theosophical Publishing Society,
London, 1910.

[12] Donald E. Knuth. 32 years of METAFONT. Talk
given at the San Francisco Public Library on
Sept. 20, 2016. youtu.be/0LR_lBEy7qU.

[13] Donald E. Knuth. The complexity of songs.
SIGACT News, 9:17–24, 1977.

[14] Donald E. Knuth. The letter S. The Mathemat-
ical Intelligencer, 2:114–122, 1980.

[15] Donald E. Knuth. TEX incunabula. TUGboat,
5(1):4–11, 1984.
tug.org/TUGboat/tb05-1/tb09knut.pdf.

[16] Donald E. Knuth. Computers & Typesetting.
Addison Wesley, 1984–1986. 5 vols.

[17] Donald E. Knuth. The future of TEX and META-
FONT. TUGboat, 11(4):489, 1990. tug.org/

TUGboat/tb11-4/tb30knut.pdf.

[18] Donald E. Knuth. Digital Typography, volume 78
of CSLI Lecture Notes. CSLI Publications, 1999.

[19] Anneke Nunn. Dutch Orthography: A System-
atic Investigation of the Spelling of Dutch Words,
volume 6 of LOT International Series. Holland
Academic Graphics, 1998.

[20] Martin Ruckert. Programming as an art, 2018.
Talk given at Knuth80. knuth80.elfbrink.se/
talks/.

[21] Michael Spivak. The Joy of TEX. A Gourmet
Guide to Typesetting with the AMS-TEX macro
package. American Mathematical Society, Prov-
idence, Rhode Island, 2nd edition, 1990.

[22] Richard Sproat. A Computational Theory of
Writing Systems. Studies in Natural Language
Processing. Cambridge University Press, 2006.

⋄ Yannis Haralambous
IMT Atlantique, UMR CNRS 6285

Lab-STICC
Technopôle Brest Iroise CS 83818,

29238 Brest Cedex 3, France
yannis.haralambous (at)

imt-atlantique dot fr

TEX as a Path, a Talk Given at Donald Knuth’s 80th Birthday Celebration Symposium

16 TUGboat, Volume 39 (2018), No. 1

TUG is TEX users helping each other

Jonathan Fine

1 What is a user group?

If you are reading this, then you are most likely a
TEX user, and a member of the TEX Users Group.
The essence of TUG is TEX users helping each other.

For this to happen, we must ask for and offer
help to each other. TUGboat articles mostly offer
useful information. Online forums allow questions to
be asked and answered, sometimes in close to real
time.

2 The rise and fall of TUG

TUG was founded around 1982. Membership grew
rapidly until about 1992. Since then it has declined,
with a clear temporary reversal between 1998 and
2003, and a few minor ups and downs. TUG mem-
bership is now at its lowest point since about 1985,
about 1/3 its peak.

3 TUG’s finances

All figures are in thousands, rounded. In 2016 TUG’s
income was $104. Running the office cost $75, and
producing TUGboat $25. Legal fees were $14. There
were other expenses. At year’s end, there was a loss
of $21, reducing TUG’s assets to $195.

4 Communication is the essence

The essence of TUG is helpful communication be-
tween TEX users. Here, of course, Board members
have a special responsibility. I ask the Board to do
more to encourage and participate in helpful member-
to-member communication.

5 The TUG members mailing list

There’s already a mailing list for this: http://tug.
org/mailman/listinfo/members. Sadly, it’s close
to dead. In 2017 there were just 2 threads, and 3
solitary messages. Earlier years are similar.

6 You and the revival of TUG

Without helpful open communication between mem-
bers, TUG will continue to decline. And with helpful
open communication, we’ll make the best of what
there is. Please, if you’re a TUG member, email
postmaster@tug.org and ask to be placed on the
TUG members list. And then a future will be possi-
ble.

⋄ Jonathan Fine
Milton Keynes
England
jfine2358@gmail.com

LATEX and Jupyter, TikZ and Vega

Jonathan Fine

1 Then and now

When Don Knuth created TEX in the 1970s and 80s,
publishing was mostly on paper. TEX was created to
solve the problem of computer typesetting, particu-
larly for technical content. The portable computers,
including the mobile phone, have changed publishing.
Many people prefer laptop and notebook computers
to paper books.

2 Laboratory and scientific notebooks

The great experimental physicist Michael Faraday
(1791–1867) kept a lab diary. Today we might do
this on a computer, as a private blog, or a scientific
notebook, such as Jupyter.

TEX and LATEX solved the problem of typeset-
ting, for printing on paper. Today, Project Jupyter
develops “open-source software, open standards, and
services for interactive and reproducible computing”.

3 Jupyter and LATEX

In many ways, Jupyter is now what LATEX was in the
1980s. It’s got a growing and well-funded community,
and making steady and rapid progress. It is a major
and well-respected force.

4 PGF/TikZ and D3/Vega

PGF/TikZ is a deservedly popular TEX-based techni-
cal drawing package. In it, PGF/TikZ is a low-level/
high-level language pair.

In the parallel universe of scientific web publish-
ing, D3/Vega is a similar language pair, based not
on TEX but on HTML5.

Many would benefit from a bridge between TikZ
and Vega, particularly those who want high-quality
visualisation in both PDF and interactive HTML5.

5 Further reading (and browsing)

In January 2018 Nature published a Toolbox article
Data visualization tools drive interactivity and repro-

ducibility in online publishing. The URL is https://
www.nature.com/articles/d41586-018-01322-9.

Inspired by this Nature article, I gave a talk
at the March 2018 London PyData meetup. The
URL is https://jfine2358.github.io/slides/

2018-nature-jupyter-altair-vega-binder.

html.

⋄ Jonathan Fine
Milton Keynes
England
jfine2358@gmail.com

TUGboat, Volume 39 (2018), No. 1 17

Typographers’ Inn

Peter Flynn

Fonts and faces and families

I suppose we’ve all but given up the unequal strug-
gle to distinguish between a family, a face, and a
font. I still use the terms separately, out of force of
habit, but some work we were doing recently (see
‘X ELATEX’ below) allowed me to identify many good
examples. One family I installed recently (following
its announcement on comp.text.tex) was IBM Plex,
which is composed of these faces:

1. Plex Serif

2. Plex Serif ExtraLight

3. Plex Serif Light

4. Plex Serif Medium

5. Plex Serif SemiBold

6. Plex Serif Text

7. Plex Serif Thin

8. Plex Sans

9. Plex Sans ExtraLight

10. Plex Sans Light

11. Plex Sans Medium

12. Plex Sans SemiBold

13. Plex Sans Text

14. Plex Sans Thin

15. Plex Mono

16. Plex Mono ExtraLight

17. Plex Mono Light

18. Plex Mono Medium

19. Plex Mono SemiBold

20. Plex Mono Text

21. Plex Mono Thin

I numbered them on a slide for a training course
so that the students could see the seven serif, seven
sans, and seven monospace components—and with
luck, understand the distinction — before explaining
that each one came in the four standard font variants:
regular, bold, italic, and bold-italic; making 84 in all.

(Incidentally, Plex looks likely to be an excellent
choice for documentation, as it is relatively compact
for its large x-height, only about 10% wider than
CM. Its overall colour is much darker due to the
less marked difference between thick and thin strokes
(Figure 1), which improves readability, although in
long measures it needs a little more leading.)

What I was trying to convey was that, bearing
in mind that there are many larger font families such
as Univers or Gotham, picking ‘a font’ is a much
more demanding task than it appears. I have men-
tioned elsewhere [3, p 95] John Lewis’ story about
designing examples illustrating the choice of type-
faces; delicate little script fonts for cosmetic adverts,
classical, formal, respectable roman faces for banks,
big chunky sans-serif fonts for engineering, and so on;
only to discover after a while that he could ‘change
the typefaces around at will and with ever increasing
effect’ [4, p 52].

In display material such as advertising or pub-
licity, pretty much anything goes, because the im-
portant thing is the visual impact. But in the
three classic document classes (books, articles, re-

Figure 1: IBM Plex in action

ports. . . maybe four if we include theses) it’s usually
much more important that the choice of typeface
remains unnoticed. It’s not that the choice is unim-
portant, but that it’s more subtle than just choosing
a ‘font’ that you like the look of, although that is
obviously part of the decision.

In the days of metal type, even the largest print-
ers would have had only a tiny fraction of the type-
faces available to the average computer user today:
a designer specifying a face not on hand would have
had to cost-justify the rental of the matrices needed
to cast it, or (in smaller houses) buying sorts in
cases cast to order. Nowadays the choice is vast,
and there are hundreds of websites providing a range
of methodologies for choosing suitable typefaces for
different applications.

Commercial typefaces remain expensive— last
time I checked, a full set of Gotham was about €600
per user—but the range and quality of free type-
faces grows daily, as the selection available with TEX
shows. Even the phrase ‘available with TEX’ is now
becoming less significant as X ELATEX lets you use all
your existing TrueType and OpenType font files as
I showed in an earlier column [1]. Perhaps what we
need now is a font-selection methodology adaptable
to the kind of documents TEX users typically create.

X ELATEX

Moving our own workflows into X ELATEX raised a
number of questions, as I mentioned above. As with
most platform changes, there are pros and cons, but
the decision was made on the basis of the ‘normal’
documents we process — that is, continuous text with
the traditional document features I mentioned in the
last column [2].

Typographers’ Inn

18 TUGboat, Volume 39 (2018), No. 1

We don’t specialize in mathematical work, so we
don’t have the restrictions of math font choice. What
does come up regularly, though, is checking the avail-
ability of all the accented letters for Latin-alphabet
languages, the range of publishers’ symbols, and how
closely a given (often free) typeface resembles one
(often commercial) selected by a client’s previous
designer.

Overlock

Oct
′0 ′1 ′2 ′3 ′4 ′5 ′6 ′7 Hex

′00x ′′
0x

′01x
′02x ′′

1x
′03x ! " # $ % & '
′04x () * + , - . / ′′

2x
′05x 0 1 2 3 4 5 6 7
′06x 8 9 : ; < = > ? ′′

3x
′07x @ A B C D E F G
′10x H I J K L M N O ′′

4x
′11x P Q R S T U V W
′12x X Y Z [\] ^ _ ′′

5x
′13x ` a b c d e f g
′14x h i j k l m n o ′′

6x
′15x p q r s t u v w
′16x x y z { | } ~ ′′

7x
′17x
′20x ′′

8x
′21x
′22x ′′

9x
′23x ¡ ¢ £ ¥ ¦ §
′24x ¨ © ª « ¬ ® ¯ ′′

Ax
′25x ° ± ² ³ ´ µ ¶ ·
′26x ¸ ¹ º » ¼ ½ ¾ ¿ ′′

Bx
′27x À Á Â Ã Ä Å Æ Ç
′30x È É Ê Ë Ì Í Î Ï ′′

Cx
′31x Ð Ñ Ò Ó Ô Õ Ö ×
′32x Ø Ù Ú Û Ü Ý Þ ß ′′

Dx
′33x à á â ã ä å æ ç
′34x è é ê ë ì í î ï ′′

Ex
′35x ð ñ ò ó ô õ ö ÷
′36x ø ù ú û ü ý þ ÿ ′′

Fx
′37x

"8 "9 "A "B "C "D "E "F

Typographia ars artium omnium conservatrix
2018-03-27 LATEX

Figure 2: Revised table output for 256-character font
display

Many years ago there was a file called allfnt8.

tex which created an 8×16 grid to display all 128
possible character positions in a font file (at the time).
This was later expanded to show a 32-line table for
256 character positions. I still have a copy but I have
failed to find it anywhere else, even on CTAN, and
it’s for Plain TEX only.

Fairly obviously, an upgrade to LATEX code and
X ELATEX compatibility was needed, so we have a new
version which is being cast as a document class called
fontable. It does the same thing as allfnt8.tex but
it takes the full font name or the .ttf/.otf file
name which X ELATEX uses. It labels the output with
the font name, hex and octal character numbers, the
sample sentence as shown in Figure 2, and the date,

so that users referencing the output can know when
it was last tested.

The last step was to remake the font cache as de-
scribed earlier [1], and then extract all the font names
in a form suitable for automating the production of
the grids on demand. That revealed a number of
things: the size of font families mentioned earlier; the
villainous state of the metadata in the font files; and
the amount of duplication, at least on our font server.

The duplication was easy to fix, if tedious. We
really didn’t need six identical copies of Nimbus
Mono or Lobster Two — and TEX is by no means the
only application to install lots of font files. The meta-
data is a mess, though: inconsistently-abbreviated
font names, with or without spaces, with or without
hyphens, sometimes capitalized, sometimes all low-
ercase or all uppercase, and sometimes even camel-
Case—and who thought it would be good to name
their font Vietnamese\\040Computer\\040Modern.
The font variants are better: Regular, Medium, Bold,
and Italic are fine, but others suffer the same prob-
lems as the font names.

It would of course be possible to edit the font
binaries and fix the problems, but at the cost of
potential incompatibility with code that has been
hard-wired to expect or reference the broken strings.
It’s just something we need to live with: the benefits
of using X ELATEX far outweigh the costs.

Afterthought

Has anyone written a web application using the Font-
config tools, so that users (and clients) can view
resident font libraries?

References

[1] Peter Flynn. Typographers’ Inn—X ELATEX.
TUGboat, 37(3):266, Dec 2016. http://tug.org/

TUGboat/tb37-3/tb117inn.pdf.

[2] Peter Flynn. Typographers’ Inn—Layouts.
TUGboat, 38(1):17, Jan 2017. http://tug.org/

TUGboat/tb38-1/tb118inn.pdf.

[3] Peter Flynn. Digital Typography. In Kent Norman
and Jurek Kirakowski, editors, Handbook of

Human-Computer Interaction, pages 89–108. Wiley,
Hoboken, NJ, Jan 2018.

[4] John Lewis. Typography: Basic principles: Influences

and trends since the 19th century. Studio Books,
London, Jan 1963.

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

Peter Flynn

TUGboat, Volume 39 (2018), No. 1 19

Type designer Nina Stössinger speaks
at 3rd Annual Updike Prize event

David Walden

The Providence Public Library (PPL) held its 3rd
third annual Updike Prize for Student Type Design1

award ceremony on October 23, 2017. This year’s
finalists, announced by PPL Special Collections Li-
brarian Jordan Goffin, were Joseph Allegro for his
Meadows typeface and Erica Carras for her Raleigh
Condensed typeface, with Carras being the winner.
The three judges were New England graphic and
type designers. The regional Paperworks company
provided cash prizes. Carras also received a trophy
made from a composing stick.

The actual award ceremony is a small part of the
event and came between a presentation by a guest
speaker, who is a professional from the type design
world, and a question-and-answer session between
the audience and the guest presenter. This year’s
guest presentation was by Nina Stössinger.2

The title of Stössinger’s presentation was “Look-
ing & Making & Questioning”, those words being
the subtitles for the three parts of her presentation.

Looking. Stössinger showed lots of photographs
of all sorts of different letters seen in everyday life—
on the sides of trucks, on buildings, on posters, in
store windows, etc., and in all stages of freshness
from just printed/painted to seriously decayed, and
across the spectrum from formal to vernacular. She
is always looking at lettering as she goes through life
(she showed a photo of a sign in the Providence train
station taken as she was just arriving that day in
Providence from New York City). What she sees may
help her in unforeseen ways for future type design
projects. She recommends looking.

Making. Stössinger told how she spent three
years designing her FF Ernestine typeface.3 Won-
dering what to do next, she avoided starting the
long process to design and perfect another typeface
and instead spent several months doing daily type
design exercises. She took these exercises from the
website typecooker.com, drew them by hand, and
published them daily online. She explored design
decisions quickly, resisting polishing her drawings;
and she didn’t draw words but rather experimented
with odd or useful combinations of letters. She rec-
ommends cultivating such making.

Questioning. Stössinger compared typefaces
that have the vertical parts of letters being wider

1 provlib.org/updikeprize
2 ninastoessinger.com
3 ernestinefont.com

than the horizontal parts of them, as is common with
Latin fonts, with typefaces that have the horizontal
parts wider than the vertical parts, as in Hebrew let-
ters. She noted that Latin letters in some “Wanted”
or circus posters have wider horizontal parts, but
this is not typical for letters for everyday reading.
She set for herself the project of creating a “serif face
with stressed horizontals” that was “nice to read”,
wondering “could this work”. The result was her
Nordvest typeface as used here:4

Of type design, Stössinger noted that “some rules re-
ally make sense” while “others are just conventions”.
She encouraged questioning—“think of something
new”.

Nina Stössinger is employed by Frere-Jones Type
of Brooklyn where she also programs “scripts” to
help with the repetition in type design. Some of
these have developed into tools which she has posted
at github.com/ninastoessinger.

Prior type designers who have spoken in the
PPL’s Updike Prize series have been Matthew Carter
(who spoke at the time the competition was kicked
off, a year before the first prize was awarded),5 To-
bias Frere-Jones (who spoke at the first award cere-
mony),6 and Fiona Ross (who spoke at the second
award ceremony).7 Stössinger is perhaps the least
well established of these speakers, but her abundant
enthusiasm was surely inspirational to the student
type designers in the audience.

A video of the 2017 Updike Prize event including
Nina Stössinger’s presentation should eventually be
posted at youtube.com/user/provlib.

“Updike” in the prize name comes from the
PPL’s Daniel Berkeley Updike Collection on the His-
tory Printing.8 Updike, founder of the renowned
Merrymount Press and author of the classic Print-

ing Types: Their History, Forms and Use, over many
years encouraged the PPL to acquire books and other
historic materials and gave the collection much ma-
terial of his own. To qualify for the Updike Prize,
student competitors must visit the Updike collection
at least once, in additional to submitting their new
type design and an essay about it.

⋄ David Walden
walden-family.com/texland

4 ninastoessinger.com/typefaces/nordvest/
5 tug.org/TUGboat/tb35-1/tb109beet.pdf
6 tug.org/TUGboat/tb36-1/tb112beet.pdf, p. 4
7 tug.org/TUGboat/tb37-3/tb117beet.pdf, p. 257
8 provlib.org/exhibitions/

daniel-berkeley-updike-collection-history-printing

Type designer Nina Stössinger speaks at 3rd Annual Updike Prize event

20 TUGboat, Volume 39 (2018), No. 1

CTAN Quiz

Gerd Neugebauer

Abstract

The portal of the ‘Comprehensive TEX Archive Net-
work’ (CTAN) contains a multitude of web pages.
In this quiz some features and pages are described.
As solution the associated url has to be completed
and entered into the prepared boxes. The number of
boxes can serve as an additional hint. Remember, a
url may contain not only letters but also some other
special characters.

You can understand this quiz as a chance to
explore the depth of the CTAN portal. It can be fun
to scan the pages in search of the described features.

1. On this page you can filter the topics cloud:
https://ctan.org/→֒

2. Here the lion is wagging its tail:
https://ctan.org/→֒

3. On this page a fanfare horn is blown (in a proper
browser and with activated speakers):
https://ctan.org/→֒

4. On this page the supported browsers are listed:
https://ctan.org/→֒

5. Here you can see on a map of the world:
https://ctan.org/→֒

6. On this page you can register a mirror server:
https://ctan.org/→֒

7. On this page packages are marching past:
https://ctan.org/→֒

8. Here you can find authors sorted by number of
contributed packages:
https://ctan.org/→֒

9. On this page you can find the latest announce-
ments about changes of packages:
https://ctan.org/→֒

10. Here you can initiate a search targeted at topics:
https://ctan.org/→֒

11. This page allows you to share your package with
the world:
https://ctan.org/→֒

12. Here you can find a description for uploading of
packages with JSON:
https://ctan.org/→֒

13. Here you can give the CTAN portal a wooden
appearance:
https://ctan.org/→֒

14. On this page all the packages of Donald Knuth
are listed:
https://ctan.org/→֒

15. There you can find a description for querying
CTAN with JSON:
https://ctan.org/→֒

16. Here you arrive at the complete directory tree
of the TEX archive:
https://ctan.org/→֒

17. Here you can see your own package ratings and
more:
https://ctan.org/→֒

18. On this page you can see how others liked the
portal:
https://ctan.org/→֒

19. Here you can see which TEX user groups you
can join and how to contact them:
https://ctan.org/→֒

20. On this page, brand new packages are listed
which have not even been published yet in the
archive:
https://ctan.org/→֒

Answers can be found on page 27.

⋄ Gerd Neugebauer
Im Lerchelsböhl 5
64521 Groß-Gerau (Germany)
gene (at) gerd-neugebauer (dot) de

www.gerd-neugebauer.de

Gerd Neugebauer

TUGboat, Volume 39 (2018), No. 1 21

The DuckBoat—News from TEX.SE:
The Morse code of TikZ

Herr Professor Paulinho van Duck

Abstract

For this installment, Prof. van Duck would like to
tell you how the duck mania began and infected
many TEX.SE users. In the second Quack Guide, you
will find a beginner’s approach to TikZ, a powerful
package to draw your graphics directly in LATEX.

1 Here I am, again!

Hi, (LA)TEX friends!
If you missed the last issue, I am Prof. van Duck,

and I enjoy helping beginners like me!
First of all, let me celebrate a very significant

date, and thank our Jedi Master Prof. Knuth for
creating the best typesetting system in the world!

Happy Birthday, Prof. DEK!

TEX.SE

80 TEX

Secondly, I would like to thank all the TEX.SE

friends who warmly appreciated the first DuckBoat.
Some of them also used a link to it in their comments,
to explain to new users how to ask.

Peter Wilson himself wrote to me suggesting
a new topic (something like: How to add code and

images to TEX.SE posts?), which will be treated in
one of the next Quack Guides.

Prof. Enrico Gregorio was so kind to take me
with him on stage during his talk at last October’s
conference of the Italian TEX User Group, the annual
guItmeeting (I thank him also for his editing and
suggestions about this article).

By the way:

\begin{advertising}

Are you an Italian (LA)TEX user?

Join the guIt!
http://www.guitex.org

\end{advertising}

I am very proud of all that, quack!

Start

Input

N

Is N a

nonnegative

integer?

Error

Message

I = 1

F = 1

I ≥ N?

Print

N ! = F
I = I + 1

F = F ∗ I
Stop

Yes

No

Yes No

Figure 1: Case study: a flowchart to compute the fac-
torial of a number.

Last time I talked about the just-do-it-for-me

questions. Since a lot of them refer to TikZ, learning
some tips and tricks could be useful.

I will show you some of them drawing the flow-
chart in Figure 1. I chose it because I often see
questions about similar diagrams on TEX.SE.

Of course, as always in LATEX, there are many
ways to skin a duck, er, to make such a diagram.
Some of them are even more efficient and fun than
the one I will show here, for example with a matrix
or a chain (how many topics I do have for the next
issues, quack!). But I would like to proceed one step
at a time. I also will not be very rigorous, I hope
the experts will forgive me.

Anyway, I thank all the users whose answers
helped me to build the example. They are too many
to list them all here, quack!

2 Origin and evolution of the duck mania

I would like to tell you a story which is both moving
and funny; it concerns the origin of the duck mania.
The protagonist is, of course, Paulo Cereda. I will

The DuckBoat—News from TEX.SE: The Morse code of TikZ

22 TUGboat, Volume 39 (2018), No. 1

just report (more or less exactly) what he said in
chat about it.

It happened that, one day, he was in a conference
and saw a lone girl in the corner of the auditorium.
He decided at once to talk to her (he never loses an
opportunity to make new friends). But when he said
“Hi!”, she did not reply; she seemed not even to notice
his presence. When he came near her, she looked
at him, saying no words, and wrote in a piece of
paper that she was hearing impaired. Of course, this
was not a problem for Paulo, who promptly used his
notebook to write sentences which she could read.

To impress her, he mentioned that he studied
ASL (American Sign Language), even if he remem-
bered almost nothing. When she asked him to try a
sentence for her, he got stuck because the only words
he could remember were: I love you and, of course,
duck.

Since saying “I love you” to a girl you have
known for just a few minutes is not very appropri-
ate, he chose— in his own words—the second best
sentence ever known to mankind: “I love ducks”.

Eventually, after much gesticulation, the girl,
obviously, started laughing a lot!

This good memory is the reason why Paulo
began spreading the duck mania all over the world.

One way to infect other people was to offer a
hand puppet duck as a prize in a TEX.SE (Meta)
contest. I moved to Milan, to my friend Carla’s, on
that occasion (she won the contest).

Images or words related to ducks have been
used in TEX.SE posts for years; some users have a
duck as their avatar. The peak of the infection was
reached with the creation of tikzducks,1 and since
the package is growing bigger and bigger, the duck
joke will last for many years to come.

3 Quack Guide No. 2
The Morse code of TikZ

At first sight, TikZ may scare newbies due to its
huge package documentation [1], but its usage is not
so difficult as it may seem.

Its logic is simple: like the Morse code uses dots
and dashes to translate any text, TikZ uses nodes

and paths to draw any picture!
If you look at Figure 1, you will see some geomet-

ric shapes, connected by lines (in this case arrows):
the former are nodes, the latter are paths. Are you
looking forward to learning how to draw them? Just
load the tikz package, add a tikzpicture environ-
ment to your document, and start!

1 https://ctan.org/pkg/tikzducks.

3.1 Nodes

The syntax of the node command is more or less:

\node[〈options〉] (〈name〉) at (〈coord〉) {〈text〉};

Only {〈text〉}, i.e., the text within the node, is
mandatory, although it can be empty: {}.

〈name〉 is the identifier by which the node will
be referenced in your tikzpicture; it can also be
set with the option name=〈name〉.

The coordinates where it will be located are
(〈coord〉), they can be Cartesian, polar or spherical;
the default is (0,0).

As for 〈options〉, you can play around setting
dimensions, aspect, positioning, labels, you name it.
Of course, I cannot list all of them in these few pages,
I will only highlight the ones who surprised me when
I first met them, quack!

Figure 2 shows the options for setting the node
dimensions. All of these are followed by the actual
desired value, e.g., inner sep=〈dimension〉 and they
are not mandatory; if not explicitly set, they assume
a default value.

For instance, the default value for text width
is the natural width of your node text; let us call the
latter w, for convenience. If your node does not have
an explicit text width, it is set to w, as in the first
node of the following example. If a text width less
than w is indicated, your text will be broken onto
more than one line, as in the second node. If it is
greater than w, the remaining space will be filled
with spaces, as in the third node.

\begin{tikzpicture}[every node/.style={draw}]

\node {We love ducks};

\node[text width=4em] at (3,0)

{We love ducks};

\node[text width=10em] at (1.5,-1)

{We love ducks};

\end{tikzpicture}

pvd
inner sep

inner ysep

text height

text dept

text width inner sep

inner xsep

minimum width

minimum

height

Figure 2: Node dimensions. The dotted line is the base-
line; the text has a gray background to better highlight its
dimensions. For the border style see Figure 5. (The first
one who guesses what pvd means wins a rubber duck.)

Herr Professor Paulinho van Duck

TUGboat, Volume 39 (2018), No. 1 23

We love ducks
We love
ducks

We love ducks

The first strangeness you might notice in Fig-
ure 2 is that there are minimum width/height but
not the corresponding maximum. Indeed, if you
consider a node border with no thickness, the node
width is the sum of the text width and the double
of the inner xsep, whereas the node height is the
sum of text height, text depth and the double
of the inner ysep. Hence, for instance, you will
usually act on the text width to set a maximum
width.

The text height is the piece of text above the
baseline; the text depth is the one below.

The inner sep is the gap between the text and
the node border. You can set the horizontal/vertical
value separately with inner xsep/inner ysep.

If the border has a thickness, half of its thick-
ness will be inside the shape and half outside, so to
compute precisely the total node width/height you
should also add the line width of the border.

Have you got a headache yet? Don’t worry,
quack! Let me show you an example:

\begin{tikzpicture}[

every node/.style={draw, font=\ttfamily}

]

\node {1};

\node[inner xsep=0em] at (1,0) {2};

\node[inner ysep=0em] at (2,0) {3};

\node[inner sep=0em] at (3,0) {4};

\node at (0,-.5) {};

\node[inner xsep=0pt] at (1,-.5) {};

\node[inner ysep=0pt] at (2,-.5) {};

\node[inner sep=0pt] at (3,-.5) {};

\end{tikzpicture}

1 2 3 4

The nodes in the first column have the standard
inner sep dimension (which is .3333em), with and
without text. As you can see, even if there is no
text, the node has a width and a height, due to the
inner sep. In the second and third columns, there are
nodes respectively with no horizontal and no vertical
gaps between the text and the border, whereas, in
the last column, there are no gaps at all. To have a
point with no dimensions, you have to nullify also
the inner sep, as in the last node (if you only need
an actual geometric point, you can use \coordinate,
but I will not talk about it this time).

Did you notice the options of the tikzpicture
environment? draw means that you want the node

borders visible, and you can set the font used for the
node text with font=〈font commands〉.

Imagine that you have a picture with a lot of
nodes—writing these options for every node could
be boring! But LATEX is fun; it is made to avoid
code repetition, quack! The TikZ way to do this is
to create a style. You can make the style valid for
all the nodes, as in the previous example, or only for
some of them, giving your own name to the style. In
our case study, for instance, we will create a style for
the terminal blocks, one for the instructions, another
for the tests, and so on.

If you specify them, like in the previous example,
as options of your tikzpicture environment, you
can use them only locally. To make them valid for all
the pictures of our document, you can use \tikzset,
and write them in our preamble or anywhere before
using them:

\tikzset{〈style name〉/.style={〈options〉},...}

Another example is a handy application of text
height and text depth: alignment of texts in dif-
ferent nodes.

Look at this code snippet and its output (for
now, do not worry about the \draw commands, I
will explain them in Section 3.2):

\begin{tikzpicture}[

mylabel/.style={font=\small, align=center},

mynode/.style={draw, font=\large,

minimum height=4.5ex},

mynodeok/.style={draw, font=\large,

text height=1.75ex,

text depth=.5ex,

minimum height=4.5ex}]

\node[mynode] (p) {p};

\node[mynode] (vd) at (1,0) {vd};

\draw[dashed] (p.base) +(-1,0)

node[mylabel, left] {‘‘p’’ \\ baseline}

-- +(1.5,0);

\draw[dashed] (vd.base) +(-1.5,0) -- +(1,0)

node[mylabel, right] {‘‘vd’’ \\ baseline};

\node[mynodeok] (pok) at (0,-1) {p};

\node[mynodeok] at (1,-1) {vd};

\draw[dashed] (pok.base) +(-1,0)

node[mylabel, left] {same \\ baseline}

-- +(2,0);

\end{tikzpicture}

p vd“p”
baseline

“vd”
baseline

p vdsame
baseline

It is evident that the nodes of the first row have
different baselines, but adding the appropriate text
height and depth, you get two nodes with a perfectly
aligned text (second row).

The DuckBoat—News from TEX.SE: The Morse code of TikZ

24 TUGboat, Volume 39 (2018), No. 1

Node A
right=2pt

of A

below=4pt

of A

left=2pt

of A

above=4pt

of A

below right=4pt

and 2pt of A

below left=4pt

and 2pt of A

above right=4pt

and 2pt of A

above left=4pt

and 2pt of A

Figure 3: Node locating with TikZ library positioning.
See Section 17.5 of [1].

The option align=〈alignment option〉, which I
used for the side descriptions, sets up the alignment
for multi-line text inside a node.

So far I have explicitly set the coordinates to
locate the nodes. With a complex picture, it could
be not only dull, but you may also be obliged to
recalculate the coordinates of many nodes for a small
change to your image, even if their relative positions,
with respect to other nodes, remain the same.

In such cases, the TikZ library positioning

could be your friend!
What is a TikZ library? You know that TikZ is

a huge package, but usually you do not need all its
possible features; a TikZ library allows you to load
some specific additional ones. Just add

\usetikzlibrary{〈list of libraries〉}

after loading TikZ to use them.
Figure 3 shows some options you can use with

positioning. The locating options (above/below,
right/left and their combinations) are followed
by a 〈shifting part〉 and an 〈of-part〉, and they are
both optional. Please note that the equal sign must
be located before the 〈of-part〉, even if the 〈shifting
part〉 is not present.

In the 〈shifting part〉, you can indicate, for in-
stance, a 〈dimension〉, which represents the distance
between the borders of the nodes you would like to
set. For the options like above left, you can also
differentiate between the vertical and horizontal dis-
tances, writing 〈vdimension〉 and 〈hdimension〉. If
they are the same for all your nodes, you could add
a single option to your environment:

node distance=〈shifting part〉

In the 〈of-part〉, you can tell TikZ with respect
to which node or coordinate your node should be
placed.

To tell the truth, you could use above & Co. also
without any library, and you can also use anchors
(see below) to locate nodes. However, I still advise

quack!
north

south

eastwest

south east

north east

south west

north west

basetext
center

Figure 4: The main anchors of a rectangular node. For
further details and other shapes see Section 67 of [1].

using positioning because it is simpler and has
more features.

Figure 4 shows the main anchors of a rectangular
shape. Other shapes may have other, possibly non-
intuitive, anchors. Anchors could be used for node
positioning (see the following example). In our case
study, I will use one also as a starting point of a
path. Indeed, anchors are genuine coordinates; you
can refer to them with 〈node name〉.〈anchor〉.
\usetikzlibrary{positioning}

...

\begin{tikzpicture}[node distance=2pt,

every node/.style={draw,

align=center, font=\scriptsize}]

\node (a) {Quack!};

\node[right=of a] {default\\ anchoring};

\node[right=7em of a] (b) {Quack!};

\node[right=of b, font=\scriptsize\ttfamily,

anchor=north west] {anchor=\\ north west};

\node[right=of b, font=\scriptsize\ttfamily,

anchor=south west] {anchor=\\ south west};

\end{tikzpicture}

Quack!
default

anchoring
Quack!

anchor=
north west

anchor=
south west

With positioning, the default anchor for a node
positioned to the right of another one is west (see the
left side of the above picture), but you can change
this behavior, setting an anchor option explicitly (as
on the right side).

TikZ offers countless node shapes; rectangular
is the default one. To draw our flowchart you also
need a circle, which does not require any addi-
tional library, a rounded rectangle, for which you
need shapes.misc, and, lastly, a diamond and a
trapezium of shapes.geometric.

Some shapes may have additional options. For
example, in our case study, we will modify the stan-
dard trapezium side angles; for the diamond, we will
change the ratio between its width and height with
aspect=〈number〉 (if the option is not present, it is
set to 1).

Herr Professor Paulinho van Duck

TUGboat, Volume 39 (2018), No. 1 25

Let us see some options to color our nodes:
text=〈color〉 colors the text, draw=〈color〉 colors the
borders, simply 〈color〉 colors both, whereas for the
background there is fill=〈color〉.

In the following example I am using lightgray

for editorial reasons, but, of course, you can use any
color you prefer.

\begin{tikzpicture}[every node/.style={draw,

font=\scriptsize}]

\node[text=lightgray] (a) {Quack!};

\node[right=of a, draw=lightgray](b){Quack!};

\node[right=of b, lightgray] (c) {Quack!};

\node[right=of c, fill=lightgray] {Quack!};

\end{tikzpicture}

Quack! Quack! Quack! Quack!

3.2 Paths

Having created and located our nodes, let us learn
the command to link them:

\path[〈option〉] 〈path specification〉;

Since almost all paths are drawn, there is also the
abbreviation \draw for \path[draw].

For 〈option〉, again, you can put whatever you
like for changing the aspect of the line. There are
also a lot of path specifications. Here I will show
only the ones used in our case study.

The simplest one is:

\draw (〈starting point〉) -- (〈target〉);

which produces a straight line; the 〈starting point〉
and the 〈target〉 could be nodes or coordinates, and
it is also possible to add other points to the path.

If you use |- or -|, instead of a straight line you
will have a line with a 90° angle, respectively starting
vertically and going on horizontally, or vice-versa;
see the following example:

\begin{tikzpicture}[every node/.style=draw,

node distance=4pt]

\node (a) {A};

\node[below left=of a] (b) {B};

\node[below right=of a] (c) {C};

\draw (a) -| (b) -- (c) |- (a);

\end{tikzpicture}

A

B C

The line thickness and its pattern can be cus-
tomized extensively; you will find some examples in
Figure 5. If your desired thickness is not among the
predefined ones, you can set it to any value you like
with line width=〈dimension〉.

A useful feature is the possibility of indicating a
coordinate of the path relative to another point, with

ultra thin solid (default)
very thin dashed

thin (default) dotted

thick densely dotted

very thick loosely dotted

ultra thick dash dot

rounded corners

Figure 5: Examples of path thicknesses and patterns.
The same options are valid for node borders. See Sec-
tion 15.3 of [1] for more details.

-> -Latex

-Triangle -{Latex[open]}
-Kite -Stealth

-Straight Barb -{Stealth[round]}

Figure 6: Arrow tips, see Section 16.5 of [1] for a com-
plete list and options.

+(〈shift〉) and ++(〈shift〉). The difference between
the two notations is that ++ updates the current
point while + does not. The current point is the one
from which the 〈shift〉 will be applied; of course, it
could be either positive or negative, and any kind of
dimension or coordinates can be used. Let us look
at an example:

\begin{tikzpicture}

\draw (0,0) -- ++(1,-2) -- +(2,1);

\draw[dashed] (0,0) -- +(1,-2) -- +(2,1);

\end{tikzpicture}

The first segments coincide because the second vertex
is (0,0)+(1,-2)=(1,-2) for both the solid and the
dashed paths; whereas the second segments differ:
indeed, the last vertex is (1,-2)+(2,1)=(3,-1) for
the solid path whereas (0,0)+(2,1)=(2,1) for the
dashed one.

In our case study, however, there are not sim-
ple lines but arrows. The TikZ library arrow.meta

provides many different arrow tips, which are then
further customizable.

In our flowchart, I used a triangular tip with a
smaller width: -{Triangle[width=5pt]}. You will
find some other examples in Figure 6. To create an
arrow path it is enough to put the kind of arrow tip
you like in one of these ways: -〈arrow tip〉, 〈arrow
tip〉-, or 〈arrow tip〉-〈arrow tip〉, depending on if
you need the tip at the beginning of your path, at
the end of it or both.

Eventually, it may be useful to put some nodes
along the path; see, for instance, the “Yes” and
“No” exits of the tests of our flowchart. It can be
done easily by putting a node (without the backslash

The DuckBoat—News from TEX.SE: The Morse code of TikZ

26 TUGboat, Volume 39 (2018), No. 1

because it is not a macro but a path option) in an
appropriate position. Note also where the semicolon
is positioned in the following example:

\begin{tikzpicture}[

every node/.style={font=\scriptsize\ttfamily}

]

\draw (0,0) -- +(5.5,0)

node[at start, left] {at start}

node[near start, below] {near start}

node[midway, above] {midway}

node[near end, below] {near end}

node[at end, right] {at end};

\end{tikzpicture}

at start
near start

midway

near end
at end

3.3 Let us put them together

Now you have all the tools needed to understand the
complete code of our case study.

\documentclass[tikz]{standalone}

\usetikzlibrary{positioning,

shapes.geometric, shapes.misc, arrows.meta}

\begin{document}

\begin{tikzpicture}[

every path/.style={gray, very thick,

rounded corners,-{Triangle[width=5pt]}},

basenode/.style={draw, sharp corners,

text=black},

terminator/.style={basenode,font=\LARGE,

rounded rectangle,minimum height=6ex,

text width=5em,text height=2.25ex,

text depth=.25ex,

fill=lightgray!30,align=center,},

inout/.style={basenode,font=\LARGE,

text width=5.8em,minimum height=11ex,

align=center,trapezium,trapezium stretches,

trapezium left angle=60,

trapezium right angle=120,},

block/.style={basenode,font=\LARGE,

text width=9em,minimum height=9ex,

rounded corners,inner sep=0pt,

align=center,},

decision/.style={basenode,diamond,

align=flush center,aspect=2,font=\LARGE,

minimum height=15ex,minimum width=30ex,

inner sep=0pt,},

joining/.style={basenode,circle,

inner sep=2pt,},

yesno/.style={font=\Large,near start,black},

]

% nodes

\node[terminator](start) {Start};

\node[inout, below=of start](input)

{Input\\ N};

\node[decision, below=of input,

font=\Large](dqtest)

{Is N a\\ nonnegative \\ integer?};

\node[inout, left=4.5em of dqtest](error)

{Error Message};

\node[block, below=of dqtest,

minimum height=11ex](setvar)

{$I = 1$\\$F = 1$};

\node[joining, below=of setvar](join1){};

\node[decision, below=of join1](looptest)

{$I \ge N$?};

\node[inout,

below left=10ex and 7em of looptest,

anchor=center](output){Print\\ $N! = F$};

\node[block,

below right= 10ex and 7em of looptest,

anchor=center](increase){$I = I + 1$};

\node[joining, below=of output](join2){};

\node[block, below=of increase](multiply)

{$F = F \ast I$};

\node[terminator, below=of join2](stop)

{Stop};

% paths

\draw (start) -- (input) -- (dqtest);

\draw (dqtest) -- node[yesno, right] {Yes}

(setvar);

\draw (dqtest) -- node[yesno, above] {No}

(error);

\draw (setvar) -- (join1) -- (looptest);

\draw (looptest) -| node[yesno, above] {Yes}

(output);

\draw (looptest) -| node[yesno, above] {No}

(increase);

\draw (output) -- (join2) -- (stop);

\draw (error) |- (join2);

\draw (increase) -- (multiply);

\draw (multiply.east) -- +(.5,0) |- (join1);

\end{tikzpicture}

\end{document}

4 Conclusions

I hope you liked my explanation, and if you have
trouble in using TikZ, remember:

A duck makes you laugh!

References

[1] Till Tantau. The TikZ and PGF packages.
http://mirrors.ctan.org/graphics/pgf/

base/doc/pgfmanual.pdf. Package page:
https://ctan.org/pkg/pgf.

⋄ Herr Professor Paulinho van Duck
Quack University Campus
Sempione Park Pond, Milano
Italy
paulinho dot vanduck (at) gmail

dot com

Herr Professor Paulinho van Duck

TUGboat, Volume 39 (2018), No. 1 27

Solutions for the CTAN quiz (on p. 18)

1. https://ctan.org/topics/cloud

2. https://ctan.org/lion

3. https://ctan.org/credits

4. https://ctan.org/help/supported-browsers

5. https://ctan.org/mirrors

6. https://ctan.org/mirrors/register

7. https://ctan.org/pkg

8. https://ctan.org/author

9. https://ctan.org/ctan-ann

10. https://ctan.org/search?ext=new

11. https://ctan.org/upload

12. https://ctan.org/help/submit

13. https://ctan.org/user/settings

14. https://ctan.org/author/knuth

15. https://ctan.org/help/json

16. https://ctan.org/tex-archive

17. https://ctan.org/home

18. https://ctan.org/guestbook

19. https://ctan.org/lugs

20. https://ctan.org/incoming

Comic by John Atkinson (http://wronghands1.com).

From Lua 5.2 to 5.3

Hans Hagen

When we started with LuaTEX we used Lua 5.1
and moved to 5.2 when that became available. We
didn’t run into issues then because there were no
fundamental changes that could not be dealt with.
However, when Lua 5.3 was announced in 2015 we
were not sure if we should make the move. The main
reason was that we’d chosen Lua because of its clean
design which meant that we had only one number
type: double. In 5.3 on the other hand, deep down a
number can be either an integer or a floating point
quantity.

Internally TEX is mostly (up to) 32-bit integers
and when we go from Lua to TEX we round num-
bers. Nonetheless one can expect some benefits in
using integers. Performance-wise we didn’t expect
much, and memory consumption would be the same
too. So, the main question then was: can we get
the same output and not run into trouble due to
possible differences in serializing numbers; after all
TEX is about stability. The serialization aspect is
for instance important when we compare quantities
and/or use numbers in hashes.

Apart from this change in number model, which
comes with a few extra helpers, another extension
in 5.3 was that bit-wise operations are now part of
the language. The lpeg library is still not part of
stock Lua. There is some minimal UTF8 support,
but less than we provide in LuaTEX already. So,
looking at these changes, we were not in a hurry to
update. Also, it made sense to wait till this important
number-related change was stable.

But, a few years later, we still had it on our
agenda to test, and after the ConTEXt 2017 meeting
we decided to give it a try; here are some observa-
tions. A quick test was just dropping in the new Lua
code and seeing if we could make a ConTEXt format.
Indeed that was no big deal but a test run failed
because at some point a (for instance) 1 became a
1.0. It turned out that serializing has some side
effects. And with some ad hoc prints for tracing (in
the LuaTEX source) I could figure out what went
on. How numbers are seen can (to some extent) be
deduced from the string.format function, which
is in Lua a combination of parsing, splitting and
concatenation combined with piping to the C code
sprintf function.1

1 Actually, at some point I decided to write my own for-
matter on top of format and I ended up with splitting as well.
It’s only now that I realize why this is working out so well
(in terms of performance): simple format (single items) are
passed more or less directly to sprintf and as Lua itself is

From Lua 5.2 to 5.3

28 TUGboat, Volume 39 (2018), No. 1

local a = 2 * (1/2) print(string.format("%s", a),math.type(x))

local b = 2 * (1/2) print(string.format("%d", b),math.type(x))

local c = 2 print(string.format("%d", c),math.type(x))

local d = -2 print(string.format("%d", d),math.type(x))

local e = 2 * (1/2) print(string.format("%i", e),math.type(x))

local f = 2.1 print(string.format("%.0f",f),math.type(x))

local g = 2.0 print(string.format("%.0f",g),math.type(x))

local h = 2.1 print(string.format("%G", h),math.type(x))

local i = 2.0 print(string.format("%G", i),math.type(x))

local j = 2 print(string.format("%.0f",j),math.type(x))

local k = -2 print(string.format("%.0f",k),math.type(x))

number fmt out type
2 * (1/2) s 1.0 float

2 * (1/2) d 1 float

2 d 2 integer

−2 d 2 integer

2 * (1/2) i 1 float

2.1 .0f 2 float

2.0 .0f 2 float

2.1 G 2.1 float

2.0 G 2 float

2 .0f 2 integer

−2 .0f 2 integer

Figure 1: Various number representation in Lua 5.3: code at left, summary and output at right.

Figure 1 gives many examples, demonstrating
that we have to be careful when we need these num-
bers represented as strings. In ConTEXt the number
of places where we had to check for that was not
that large; in fact, only some hashing related to font
sizes had to be done using explicit rounding.

Another surprising side effect is the following.
Instead of:

local n = 2^6

we now need to use:

local n = 0x40

or just:

local n = 64

because we don’t want this to be serialized to 64.0

which is due to the fact that a power results in a
float. One can wonder if this makes sense when we
apply it to an integer.

At any rate, once we could process a file, two
documents were chosen for a performance test. Some
experiments with loops and casts had demonstrated
that we could expect a small performance hit and
indeed, this was the case. Processing the LuaTEX
manual takes 10.7 seconds with 5.2 on my 5-year-old
laptop and 11.6 seconds with 5.3. If we consider
that ConTEXt spends 50% of its time in Lua, then
we see a 20% performance penalty. Processing the
Metafun manual (which has lots of MetaPost images)
went from less than 20 seconds (LuaJITTEX does it
in 16 seconds) up to more than 27 seconds. So
there we lose more than 50% on the Lua end. When
we observed these kinds of differences, Luigi and I
immediately got into debugging mode, partly out of
curiosity, but also because consistent performance is
important to us.

fast, due to some caching, the overhead is small compared to
the built-in splitter method. And the ConTEXt formatter has
many more options and is extensible.

Because these numbers made no sense, we traced
different sub-mechanisms and eventually it became
clear that the reason for the speed penalty was that
the core string.format function was behaving quite
badly in the mingw cross-compiled binary, as seen by
this test:

local t = os.clock()

for i=1,1000*1000 do

-- local a = string.format("%.3f",1.23)

-- local b = string.format("%i",123)

local c = string.format("%s",123)

end

print(os.clock()-t)

lua 5.3 lua 5.2 texlua 5.3 texlua 5.2
a 0.43 0.54 3.71 (0.47) 0.53
b 0.18 0.24 3.78 (0.17) 0.22
c 0.26 0.68 3.67 (0.29) 0.66

The 5.2 binaries perform the same but the 5.3
Lua binary greatly outperforms LuaTEX, and so we
had to figure out why. After all, all this integer
optimization could bring some gain! It took us a
while to figure this out. The numbers in parentheses
are the results after fixing this.

Because font internals are specified in integers
one would expect a gain in running:

mtxrun --script font --reload force

and indeed that is the case. On my machine a scan
results in 2561 registered fonts from 4906 read files
and with 5.2 that takes 9.1 seconds while 5.3 needs
a bit less: 8.6 seconds (with the bad format perfor-
mance) and even less once that was fixed. For a
test:

\setupbodyfont[modern] \tf \bf \it \bs

\setupbodyfont[pagella] \tf \bf \it \bs

\setupbodyfont[dejavu] \tf \bf \it \bs

\setupbodyfont[termes] \tf \bf \it \bs

\setupbodyfont[cambria] \tf \bf \it \bs

\starttext \stoptext

Hans Hagen

TUGboat, Volume 39 (2018), No. 1 29

This code needs 30% more runtime so the ques-
tion is: how often do we call string.format there?
A first run (when we wipe the font cache) needs some
715,000 calls while successive runs need 115,000 calls
so that slow down definitely comes from the bad han-
dling of string.format. When we drop in a Lua
update or whatever other dependency we don’t want
this kind of impact. In fact, when one uses external
libraries that are or can be compiled under the TEX
Live infrastructure and the impact would be such,
it’s bad advertising, especially when one considers
the occasional complaint about LuaTEX being slower
than other engines.

The good news is that eventually Luigi was able
to nail down this issue and we got a binary that per-
formed well. It looks like Lua 5.3.4 (cross)compiles
badly with GCC 5.3.0 and 6.3.0.

So in the end caching the fonts takes:

caching running
5.2 stock 8.3 1.2
5.3 bugged 12.6 2.1
5.3 fixed 6.3 1.0

So indeed it looks like 5.3 is able to speed up
LuaTEX a bit, given that one integrates it in the
right way! Using a recent compiler is needed too,
although one can wonder when a bad case will show
up again. One can also wonder why such a slow down
can mostly go unnoticed, because for sure LuaTEX
is not the only compiled program.

The next examples are some edge cases that
show you need to be aware that 1) an integer has its
limits, 2) that hexadecimal numbers are integers and
3) that Lua and LuaJIT can be different in details.

print(0xFFFFFFFFFFFFFFFF)

lua 5.2 1.844674407371e+019
luajit 1.844674407371e+19
lua 5.3 −1

print(0x7FFFFFFFFFFFFFFF)

lua 5.2 9.2233720368548e+018
luajit 9.2233720368548e+18
lua 5.3 9223372036854775807

So, to summarize the process. A quick test was
relatively easy: move 5.3 into the code base, adapt
a little bit of internals (there were some LuaTEX
interfacing bits where explicit rounding was needed),
run tests and eventually fix some issues related to
the Makefile (compatibility) and C code obscurities
(the slow sprintf). Adapting ConTEXt was also not
much work, and the test suite uncovered some nasty
side effects. For instance, the valid 5.2 solution:

local s = string.format("02X",u/1024)

local s = string.char (u/1024)

now has to become (both 5.2 and 5.3):

local s = string.format("02X",math.floor(u/1024))

local s = string.char (math.floor(u/1024))

or (both 5.2 and (emulated or real) 5.3):

local s = string.format("02X",bit32.rshift(u,10))

local s = string.char (bit32.rshift(u,10))

or (only 5.3):

local s = string.format("02X",u >> 10))

local s = string.char (u >> 10)

or (only 5.3):

local s = string.format("02X",u//1024)

local s = string.char (u//1024)

A conditional section like:

if LUAVERSION >= 5.3 then

local s = string.format("02X",u >> 10))

local s = string.char (u >> 10)

else

local s = string.format("02X",

bit32.rshift(u,10))

local s = string.char (bit32.rshift(u,10))

end

will fail because (of course) the 5.2 parser doesn’t
like that. In ConTEXt we have some experimental
solutions for that but that is beyond this summary.

In the process a few UTF helpers were added to
the string library so that we have a common set for
LuaJIT and Lua (the utf8 library that was added
to 5.3 is not that important for LuaTEX). For now
we keep the bit32 library on board. Of course we’ll
not mention all the details here.

When we consider a gain in speed of 5-10%
with 5.3 that also means that the gain of LuaJITTEX
compared to 5.2 becomes less. For instance in font
processing both engines now perform closer to the
same.

As I write this, we’ve just entered 2018 and
after a few months of testing LuaTEX with Lua 5.3
we’re confident that we can move the code to the
experimental branch. This means that we will use
this version in the ConTEXt distribution and likely
will ship this version as 1.10 in 2019, where it becomes
the default. The 2018 version of TEX Live will have
1.07 with Lua 5.2 while intermediate versions of the
Lua 5.3 binary will end up on the ConTEXt garden,
probably with number 1.08 and 1.09 (who knows
what else we will add or change in the meantime).

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

From Lua 5.2 to 5.3

30 TUGboat, Volume 39 (2018), No. 1

TEXing in Emacs

Marcin Borkowski

Abstract

In this paper I describe how I use GNU Emacs to
work with LATEX. It is not a comprehensive survey
of what can be done, but rather a subjective story
about my personal usage.

In 2017, I gave a presentation [1] during the joint
GUST/TUG conference at Bachotek. I talked about
my experiences typesetting a journal (Wiadomości

Matematyczne, a journal of the Polish Mathematical
Society), and how I utilized LATEX and GNU Emacs
in my workflow. After submitting my paper to the
proceedings issue of TUGboat, Karl Berry asked me
whether I’d like to prepare a paper about using
Emacs with LATEX.

Well, I jumped at the proposal. I am a great
fan of Emacs, and I’ve been using it for nearly two
decades now. So, here is my Emacs/TEX story.

I decided to divide this tale in four parts. The
zeroth one is a very brief explanation of how I got
where I am with respect to Emacs. The first one is
a very short introduction to the main concepts and
terminology of Emacs. Then, I talk about various
Emacs packages I use in my day-to-day (LA)TEX work.
Finally, for the brave souls who would like to go
deeper into the Emacs rabbit hole, I present a few
example snippets I wrote to make Emacs suit my
personal needs.

0 The beginnings

GNU Emacs is an ancient piece of software, started
by the famous Richard M. Stallman, and used right
through today. (Interestingly, one of the reasons
Stallman started the GNU project, which GNU Emacs
soon became part of, was ethical rather than techni-
cal. He has a very distinct set of moral beliefs, one of
which is that everyone should have certain freedoms
with respect to the software they use, and sticks to
them without compromise. Disclaimer: while I share
some, but not all of his views, I still admire his
perseverance and his strong conviction about the
objectivity of moral principles—even if he gets some
of these wrong.)

When I started using Emacs (note: I will not
say “GNU Emacs” each time; nowadays, there are
essentially no other Emacsen, since the last “competi-
tor”, XEmacs, seems to have died a few years ago),
I needed just a text editor for TEX (I was using plain
TEX at the time). When I switched from DOS and
MS Windows 3.11 to a GNU/Linux system, I heard
that there are two editors, and had to choose one of

them. I used a simple criterion: Emacs had a nice
tutorial, and Vim apparently did not (at that time).

I wince at the very thought I might have chosen
wrong!

And so it went. I started with reading the
manual [8]. As a student, I had a lot of free time
on my hands, so I basically read most of it. (I still
recommend that to people who want to use Emacs
seriously.) I noticed that Emacs had a nice TEX
mode built-in, but also remembered from one of
the BachoTEXs that other people had put together
something called AUCTEX, which was a TEX-mode
on steroids.

In the previous paragraph, I mentioned modes.
In order to understand what an Emacs mode is, let
me explain what this whole Emacs thing is about.

1 Basics of Emacs

It is actually easy to understand Emacs. (Do not
confuse “understand” with “master”, by the way.)
There are many ways of explaining the phenomenon
of a piece of software which has existed for about four
decades and is still relevant today. A popular view
(and a subject of jokes) is that Emacs is an operating
system disguised as an editor. This is surprisingly
close to the truth, but this metaphor does not help
with talking about how Emacs interacts with (LA)TEX.
Another known aphorism is that Emacs is not a text
editor, but a DIY kit for creating your own editor,
suited to your needs. This is also true, and I will
come back to it later. However, I think that in
order to explain Emacs, I should describe the core
concepts which make it what it is. For those, I choose
three basic Emacs notions of buffers, commands and
keybindings, and a fourth one which, well, binds them
together: modes.

Just as in Unix “everything is a file”, in Emacs
“everything is a buffer”. Interestingly, an Emacs buf-
fer is an entity which is quite close to a Unix file. It
is identified by name, and it consists of characters.
(There’s more to it than that, but let’s keep things
simple.) If you visit a file in Emacs (this is what
most other editors call “opening” a file), a buffer
with a name corresponding to the name of the file is
created and filled with the characters read from that
file. From now on, Emacs does not care about a phys-
ical file on the disk (or somewhere else—Emacs can
also open files located “in the cloud”, i.e., on other
people’s computers), at least not until we want to
save the buffer to the file again.

In most (LA)TEX editors (and most other applica-
tions, for that matter), we have things such as dialog
windows, non-editable text areas with the compila-
tion log, file-selecting widgets, etc. Not in Emacs:

Marcin Borkowski

TUGboat, Volume 39 (2018), No. 1 31

here, all these are buffers (some of them read-only, of
course). Here is an example: if you press C-x d RET

(in Emacs parlance, this means pressing Control-X,
then D and then Enter), you will see a Dired buffer,
which contains a listing of files in the current direc-
tory, much like the output of the Unix ls command.
It is not normally editable, but you can use various
keybindings to move point (i.e., the cursor), and per-
form various actions on the listed files, like visiting
them (f or RET), copying them somewhere else (C,
i.e., Shift-C), diffing them with other files (=), etc.

Let us now talk about commands. They are
pieces of code (usually in Emacs Lisp, or Elisp, the
language the majority of Emacs is written in) which
perform various tasks you would expect from a text
editor (and more). For instance, there is a com-
mand called find-file, which asks the user for
a file name and visits it in an Emacs buffer. Another,
called save-buffer, saves the contents of the cur-
rent buffer to a file. Yet another, called pong, is an
implementation of the old arcade classic.

It is important to understand that basically any

action you perform in Emacs is a result of running
some command. If you press some key (or key com-
bination), Emacs checks the binding of that key,
which says what command is bound to that key, and
runs that command. This works even for very ba-
sic things, like the command forward-char (usually
bound to C-f and <right>, that is, the right-arrow
key), or keys with printable characters, which are
usually bound to self-insert-command. A com-
mand need not be bound to a key—you can also
call it by its name (for instance, the pong command
is usually run by M-x pong, which means pressing
Alt-X, then typing pong—the name of the com-
mand—then pressing Enter).

The last piece of this puzzle are modes, which
tell Emacs the bindings of keys to commands in any
particular buffer. (Each buffer has its associated
mode, so switching buffers changes keybindings dy-
namically. Of course, there are also global bindings,
which work everywhere, like C-x C-c, which exits
Emacs.) For instance, in TEX mode, C-c C-c is
bound to a command which does the “next logical
thing”, like compiling the file, running BibTEX or
launching a PDF viewer. The same key combination,
C-c C-c, sends a message in a mode designed to
write emails.

Finally, any introduction like this one would be
incomplete without mentioning the self-documenting
nature of Emacs. If you are in a buffer with some
Emacs Lisp code, you can press C-h f when the
point is on a function name, or C-h v when it is
on a variable name, and immediately see the doc-

string for that function or variable, or even jump to
the place in the source where it is defined. This is
extremely useful, and there are specialized Emacs
packages which streamline this even further (like
showing the docstring in a tool-tip-like fashion, or
finding all places where a function is called). Also,
when you are in the middle of a function expression,
Emacs shows the list of parameters of the current
function at the bottom, with the parameter the point
is on set in boldface. Finally, there is the whole set
of apropos commands, which show all functions or
variables matching the given regex—and “matching”
can mean matching the name, the docstring, or even
the value in case of variables. At any time, you can
press C-h C-h to see the extensive list of Emacs help
subsystems.

2 Emacs packages and features for
TEXnicians

In this section, I am going to describe a few well-
known (at least in the Emacs world) packages and
features Emacs has to offer for people dealing with
(LA)TEX. Note that this is not a comprehensive list—
these are just the ones I happen to use.

2.1 AUCTEX

Although Emacs has a TEX mode built-in (and there
are people using it), it is rather bare-bones. Happily,
there is AUCTEX, a well-known package which is
used by the majority of Emacsers who need to do
stuff in TEX and friends.

Of course, AUCTEX has all the things you would
expect, like auto-completing macro and environment
names (it even knows the syntax of many LATEX
commands and asks for the parameters, and parses
\newcommands to insert the proper number of braces
after user-defined macros), commands to compile the
file we are editing or syntax coloring (called “font-
lock” in the Emacs world). It also has, however,
some features which I believe are unique to it (al-
though I admit that I have not used other editors
extensively). AUCTEX has a very good manual (as
do many Emacs packages—documenting things for
users is emphasized a lot in the Emacs world), so
let me just mention my personal favorite feature.
You can select a portion of text and press C-c C-r.
AUCTEX then writes a temporary file consisting of
the preamble, the selection and \end{document},
compiles it and prepares the next viewing command
to show this PDF instead of the whole file. Imagine
a Beamer presentation with more than a thousand
pages and a lot of drawings, which compiles for a few
minutes in its entirety (true story!), and you can see
what a life-saver this can be.

TEXing in Emacs

32 TUGboat, Volume 39 (2018), No. 1

There is a lot more to AUCTEX than this. Let
me mention LATEX-Math mode, which makes the
key combinations starting with a backtick (‘) insert
many mathematical commands, so that you can get
\alpha by pressing ‘a or \emptyset by pressing ‘0.
Another feature of Emacs, which AUCTEX utilizes,
is prettify-symbols-mode, which displays things
like \alpha or \int using Unicode characters, which
renders the source of math formulas much easier to
read. (While at that, let me mention that despite
its age, Emacs has excellent Unicode support, but
can also handle some other, nowadays less popular
encodings.) Yet another thing AUCTEX leverages
is Emacs’ compilation-mode, which parses the log
buffer and allows you to, for instance, jump to the
next or previous error. Basically, you have all you
would expect from a good TEX editor. (One caveat
is that support for plain TEX and ConTEXt is rather
rudimentary.)

There is also a package called RefTEX, which is
part of AUCTEX, whose goal is to help with all the
references. One of its coolest features is showing the
bibliographic info about a reference when the point
is on the \cite macro. Unfortunately, RefTEX does
not work with AMSrefs, and hence I do not use it
personally (yet).

2.2 pdf-tools

There has been a PDF viewer in Emacs for a long
time, but it never worked too well: under the hood,
it just converted PDFs to bitmaps using Ghostscript
and displayed them. Not very impressive, and very
slow. Recently, however, another PDF viewer for
Emacs was written, called pdf-tools. It is a wonderful
piece of software, and even though it has its quirks
(it does not have “spread” or “continuous” modes,
for instance), it almost completely replaced Evince
for me. It supports the SyncTEX extensions, thus
allowing for jumping between the source and the PDF

with very good accuracy, and allows for incremental
search in a PDF (also with regexen). It also supports
an Emacs concept called occur, which asks the user
for a regex and displays a list of lines in the buffer
matching that regex, allowing to jump immediately
to any of these lines. You can also make Emacs watch
for changes in the PDF and refresh it automatically,
or issue a refresh when the compilation is finished.
Perhaps the killer feature of pdf-tools, however, is its
support for PDF annotations: it is possible to view
all annotations without moving your hands from the
keyboard.

This is also a good place to mention one of the
many ways Emacs is flexible. In many places in the
Emacs source code there are so-called hooks. They

are variables, usually empty by default, which contain
functions to be run at various moments. The pdf-
tools package has a hook which contains functions
run each time an annotation is shown. You can, for
instance, add a function which checks whether the
annotation is written in LATEX syntax, and if yes,
call LATEX and then dvipng to display a picture of
the typeset formula of something instead of the text
of the annotation. In fact, a function doing exactly
this is provided as an example, so I can actually
format my PDF annotations in LATEX and pdf-tools
just displays them correctly! There are about 150
hooks in stock Emacs, and many packages add their
own—my Emacs has more than 700.

2.3 Other useful Emacs features

What makes Emacs an even better (LA)TEX editor are
its features as a general text editor, applied to the
particular case of (LA)TEX. I have already mentioned
compilation-mode and prettify-symbols-mode;
there is also a spell-checker (delegating its job to
external tools, but the integration is seamless) and
auto-fill-mode, which automatically wraps long
lines using hard newlines (which is an abomination
to many and a no-brainer for others). Emacs, how-
ever, is used by many people to edit texts in hu-
man languages (as opposed to computer programs),
and has really good support for that task. For in-
stance, while many editors have support for move-
ment by words, Emacs has also movement by sen-
tences. Another feature which is a real time-saver
is the series of transpose commands: for instance,
transpose-chars swaps the two characters on both
sides of the point. There is a whole chapter in the
Emacs manual describing commands for dealing with
text in human languages.

Another Emacs tool which is used by many
people is Yasnippet. It is a very useful tool for
creating and inserting snippets, i.e., templates with
placeholders for variable fragments. It is very easy
to define one’s own snippets. (Personally, I do not
use Yasnippet with AUCTEX very often, since the
latter can insert a lot of things for me, but I have
snippets for, e.g., preambles of some documents.)

Last but not least, let me mention the Avy pack-
age. It solves the problem of quickly navigating to
any place on the screen without using any pointing
device (many Emacs users have an aversion to ro-
dents and prefer using their keyboards as much as
possible). The classical Emacs way has always been
isearch, or incremental search: you can press C-s

and start to type, and the point moves to the nearest
occurrence of the typed character sequence while you

Marcin Borkowski

TUGboat, Volume 39 (2018), No. 1 33

enter more and more characters (and Emacs high-
lights all occurrences thereof). Avy, which is based
on ace-jump (a previous implementation of the same
idea, which in turn was based on the EasyMotion

Vim plugin), implements a simple but powerful con-
cept. You can invoke the avy-goto-char command
(many people bind it to some convenient key), then
press a character key and all instances of this charac-
ter on the screen become highlighted with a letter or
a combination of letters. Pressing the letter (or a se-
quence of letters) moves the point to the respective
location. It is an extremely fast and very convenient
way of navigating, and also has many variants (like
only selecting letters at the beginning of words or
jumping to beginnings of lines).

2.4 Org-mode and LATEX

In recent years, a new invention took the Emacs world
by storm: Org-mode. Originally a note-taking mode
on steroids, it quickly gained more and more features
and is now a full-fledged application written on top
of Emacs. (What saves it from the usual symptoms
of featuritis is one of its design goals: advanced fea-
tures should never get in the way if you do not want
to use them.) It is difficult to describe Org-mode,
since it combines a notebook, a literate programming
environment (capable even of chaining pieces written
in different languages!), a todo-list, a spreadsheet,
a time-tracking tool and a few other things. What
is interesting for TEX users is that Org-mode (which
defines a markup syntax, quite similar to Markdown)
has something called an exporter, which can save the
document as a LATEX article (or book), a Beamer
presentation, an HTML page or even a LibreOffice
document (and a few other, more obscure formats).
Seasoned LATEX users might scoff at such an idea
and claim that one does not get the full power of
LATEX—and they would be right to some extent.
However, for many people Org-mode syntax is much
friendlier than LATEX’s, and most scientists do not
use advanced TEX features anyway. (Also, you can
embed arbitrary LATEX stuff in an Org-mode docu-
ment.) There is one place, however, where Org-mode
is clearly superior to LATEX: tables. Table editing
in LATEX is far from pleasant (although Emacs can
help with that with automatic alignment of the table
source on ampersand characters), and table sources
are not very legible. On the other hand, see figure 1
for a table written in Org-mode and what Org-mode
made with it when asked to export to LATEX. Note
that Org-mode has very good support for ASCII ta-
ble editing— it takes care for making columns wide
enough to accommodate the widest entry, for in-
stance. Also, please note the last line, which has two

| Product | Price | Quantity | Amount |

|---------+-------+----------+--------|

| Bread | 4.50 | 1 | 4.50 |

| Apples | 2.40 | 4 | 9.60 |

| Tea | 6.99 | 2 | 13.98 |

|---------+-------+----------+--------|

| | | Total | 28.08 |

#+TBLFM: $4=$-1*$-2;f2::@5$4=vsum(@I..@II);f2

\begin{center}

\begin{tabular}{lrrr}

Product & Price & Quantity & Amount\\

\hline

Bread & 4.50 & 1 & 4.50\\

Apples & 2.40 & 4 & 9.60\\

Tea & 6.99 & 2 & 13.98\\

\hline

& & Total & 28.08\\

\end{tabular}

\end{center}

Figure 1: Org-mode table and the result of LATEX
exporting

formulæ for totaling. While an Org-mode spread-
sheet does not feature automatic recalculation (it has
to be triggered by issuing a special command), it is
capable of performing quite advanced calculations—
Org-mode utilizes Calc, a scientific calculator written
in Elisp, for that.

3 Emacs customization

One of the most prominent features of Emacs is
its flexibility. (In the first sentence of the Emacs
manual it is called “the extensible, customizable,
self-documenting real-time display editor”.) There
are literally thousands of options even in stock Emacs
(without any packages loaded, Emacs has more than
2 000 variables; my Emacs has almost 15 000), and
most packages add their own share. All these options
can be set up using a nice and discoverable interface
or manually, by editing an initialization file. For
instance, AUCTEX by default asks the user whether
to save the (LA)TEX file before compilation. One can
set, however, the TeX-save-query variable to nil
(which is Elisp for “false”), and from then on the
saving would be automatic.

Where Emacs really shines, though, is not in its
customizability, but in its extensibility. Emacs has
a small core written in C, but the rest is written in
Elisp. In a properly configured Emacs, the source
code for any command is a few keystrokes away,
and you can modify its behavior within seconds. Of
course, this requires knowledge of Emacs Lisp—but
it is not a difficult language, and you can learn the
basics within a few afternoons. There is an excellent

TEXing in Emacs

34 TUGboat, Volume 39 (2018), No. 1

book [2], which is an introduction to Elisp for non-
programmers. There is also the book [3], which is
kind of a next step, although parts of it seem to be
pretty outdated.

For the rest of this article I am thus going to
talk about how you can mold Emacs to fit your needs.
It is a selection of snippets of code which show the
customizability and extensibility of Emacs.

I cannot resist to mention here that while writing
this very paper I was advised against spending more
time on coding one’s own little extensions to Emacs,
the argument being that few people actually do it.
While it is probably true that only a minority of
Emacs users learn enough Elisp to do it, I beg to
differ— I think many more people could benefit from
doing exactly this if only they knew how. There is
this lovely quotation from one of rms’ speeches [9],
however, which comments on the issue:

Multics Emacs proved to be a great success—
programming new editing commands was so
convenient that even the secretaries in his
office started learning how to use it. They
used a manual someone had written which
showed how to extend Emacs, but didn’t say it
was a programming [task]. So the secretaries,
who believed they couldn’t do programming,
weren’t scared off. They read the manual,
discovered they could do useful things and
they learned to program.

Please consider this section as a kind of teaser which
might hook you into Elisp programming.

3.1 Support for tildes

As a Polish TEX user, I tend to put a lot of tildes
(hard spaces) in my files. (A Polish tradition is not
to break a line after a one-letter word, and we have
a few one-letter prepositions and conjunctions.) Of
course, TEX has a solution to that: tildes (called
“ties” in The TEXbook). Typing them manually is
rather tedious, though. Happily, Emacs has you
covered: there is a (built-in) package called “tildify”,
which replaces spaces after one-letter words (or in
other places, since it is configurable). It is not even
restricted to TEX—it can insert in HTML

files, for example. It can do it dynamically while you
type or after the fact on some portion of the file.

This is, however, not enough. I find myself
editing other people’s files on a regular basis, and
oftentimes I need to insert a tie where a space was.
In a regular editor this means navigating to the right
place, deleting the space and inserting the tie. At one
point I asked myself a question: how often do I need
to have a tie next to a space? The answer is: never.
Thus I decided to bind the tilde to a command which

(defun smart-tie ()

"Delete any whitespace character(s),

then insert a tilde."

(interactive)

(delete-horizontal-space)

(insert "~"))

(eval-after-load ’tex

’(define-key TeX-mode-map "~" ’smart-tie))

Figure 2: The smart-tie Elisp source code

(add-hook ’TeX-mode-hook

(lambda ()

(font-lock-add-keywords nil

’(("~" . ’font-latex-sedate-face)))))

Figure 3: A snippet making ties gray

starts by deleting any whitespace around point and
only then inserting a tie (figure 2).

Emacs commands are just Elisp functions (de-
fined with defun), which contain an (interactive)

call at the beginning. (Notice that before that, there
is a docstring. While not mandatory, it is a good
practice to include it in all Elisp functions.) No-
tice that one of the reasons coding simple Emacs
commands like this is, well, simple, is that you can
just write down the things you press in order to
make a similar edit manually, then check what com-
mands are run by these key-presses, and just make
a function out of them. It is even possible to have
Emacs do it for you—you can record a so-called
keyboard macro, performing some editing functions
by hand, and let a suitable command generate an
Elisp function mimicking your actions.

(I am not going to explain Elisp syntax in this
article. I think much of it is pretty self-explanatory
for anyone into programming, and for those new to
it, the book [2] is a nice general introduction to both
programming and Emacs Lisp.)

One last thing connected with ties is legibility.
While I appreciate the fact that a (LA)TEX source file
is plain text and hence I can see exactly where a hard
space is, lots of them make the text less readable.
I would prefer if they were gray instead of black
(I use a dark-on-light default color theme). This is
not a problem for Emacs. I put the snippet from
figure 3 in my init file, and from now on all my tildes
are displayed in gray. Here you can see a hook in
action. TeX-mode-hook contains a list of functions
called when turning any TEX-like mode on. We add
to the hook an anonymous function (introduced with
the lambda macro) which adds the ~ character to the
“keywords” recognized by the font-locking machinery.

Marcin Borkowski

TUGboat, Volume 39 (2018), No. 1 35

(defun smart-self-insert-punct (count)

"If COUNT=1 and the point is after

a space, insert the relevant character

before any spaces."

(interactive "p")

(if (and (= count 1)

(eq (char-before) ?\s))

(save-excursion

(skip-chars-backward " ")

(self-insert-command 1))

(self-insert-command count)))

(eval-after-load

’tex

’(define-key TeX-mode-map

","

’smart-self-insert-punct))

Figure 4: The smart-self-insert-punct Elisp code

3.2 Smart commas

A common mistake is to forget a comma where it
is needed; a copyeditor has to insert a lot of these.
Since many navigation commands land the point at
the beginning of some word, I always had to press
the left arrow and then insert a comma. And then
it struck me that I virtually never need a comma
after a space between words, so why not automate
this? And thus I wrote a short command called
smart-self-insert-punct (see figure 4), which de-
tects whether the point is after a space, and if yes,
backs up first before entering the character used to
issue the command.

This code is more or less self-explanatory (at
least when you get accustomed to the Lisp prefix
notation— for instance, to check for equality of two
numbers a and b, you write (= a b)), but two things
are probably worth mentioning. First of all, the
(interactive "p") part performs some tricks so
that count is one unless the user presses something
like C-u 〈number〉 before issuing the above command.
This is called a prefix argument and serves as a repeat
count for many commands. Then, we have the very
useful save-excursion form, which remembers the
position of the point, performs the code given and
returns the point to its previous position. (You
usually do not expect the point to jump around
when Emacs does something, and Emacs can do
a lot of things— like spell-checking, for instance—
even without the user doing anything.)

3.3 Converting \cites

As an editor of Wiadomości Matematyczne I often
receive a paper with lots of citations done wrong.
Many times the author says something like

see papers~\cite{A} and~\cite[p.~12]{B}.

(defun skip-cite-at-point ()

"Move point to the end of the \\cite

at point."

(when (looking-at "\\\\cite")

(forward-char 5)

(cond ((= (char-after) ?\[)

(forward-sexp 2))

((= (char-after) ?\{)

(forward-sexp)

(when (and (not (eobp))

(= (char-after) ?*))

(forward-char)

(forward-sexp)))

(t (error

"Malformed \\cite")))))

(defun cites-to-citelist ()

"Convert region to a \\citelist command.

All \\cite’s are preserved and things

between them deleted. This command will

be fooled by things like \"\\\\cite\"."

(interactive)

(if (use-region-p)

(let

((end (copy-marker (region-end))))

(goto-char (region-beginning))

(insert "\\citelist{")

(while (< (point) end)

(skip-cite-at-point)

(delete-region

(point)

(if (search-forward "\\cite" end t)

((progn)

(backward-char 5)

(point))

end)))

(insert "}"))

(message "Region not active")))

Figure 5: The cites-to-citelist command

Since we use AMSrefs, this should be converted to
something along the lines of

see papers~\citelist{%

\cite{A}\cite{B}*{p.~12}}.

Hence I wrote another simple Elisp command, called
cites-to-citelist (see figure 5), which performs
the conversion for me. (It does not perform the whole
job, i.e., it leaves the optional argument in brackets.
This is not a huge problem, since I have another com-
mand to convert it to the AMSrefs syntax.) These
commands are actually more complicated. I will
not explain them in full, but let me highlight a few
key points. (If you are interested in learning the
details, you can use [4] and/or install Emacs and
look at the docstrings of all the functions called in

TEXing in Emacs

36 TUGboat, Volume 39 (2018), No. 1

the above code.) Again, let me emphasize that writ-
ing a skip-cite-at-point function is easier than
it might seem, since it mimics the operations you
(as a user) would perform to move the point past
the \cite LATEX macro: first, you check whether
you are actually on it, then move by five charac-
ters, then move forward past the part(s) enclosed in
brackets/braces. Also, in the cites-to-citelist

function, we utilize the region, which is the Emacs
term for the selection.

4 Conclusion

As you could hopefully see, Emacs works extremely
well as a (LA)TEX editor. There are three reasons for
that. First and foremost, it is an excellent general-
purpose editor, with a simple TEX mode included.
Secondly, there is the AUCTEX package, which is
a robust tool, still under active development, and
numerous other packages, like RefTEX, pdf-tools
and Org-mode, which make the experience even bet-
ter. The third reason is that Emacs truly delivers
on its promise to be extensible, customizable, self-

documenting, and automating repetitive tasks is fairly
easy. If you are currently using TEXworks or even
Vim (or any other TEX editor— there are so many of
them), do yourself a favor and try out Emacs. You
might stay in it for your whole life!

If you want to learn more about Emacs, you
can install it and start with the built-in tutorial and
proceed to at least skimming the manual. There is
also a reference card included in the distribution, and
others available on the Internet. A very good source
of tips for using (though not programming) Emacs is
Mickey Petersen’s bookMastering Emacs [6]. A good
source of useful information is Planet Emacsen [7],
an Emacs blog aggregator. You can ask all sorts
of Emacs-related questions on the official mailing
list [5]. If you want to start your own adventure
with Elisp, definitely start with Robert Chassell’s
An Introduction to Programming in Emacs Lisp [2].
Finally, let me mention a (now dormant) project
of mine of writing a modern sequel to Chassell’s
book, which I hope to revive this year; I will surely
post updates to it on my blog at http://mbork.pl/
Content_AND_Presentation.

Acknowledgments

I would like to thank my friends from the gust-l

and help-gnu-emacs mailing lists for their valuable
input and many suggestions, and I am indebted to
the editors for their excellent proofreading job.

Bibliography

[1] Marcin Borkowski, Ten years of work in Wiadomości

Matematyczne—an adventure with LATEX and

Emacs hacking, TUGboat 38 (2017), no. 2, 255–263.
https://tug.org/TUGboat/tb38-2/tb119borkowski.pdf.

[2] Robert J. Chassell, An Introduction to Programming

in Emacs Lisp, 3rd ed., GNU Press, 2006. Bundled
with Emacs source code and available in the Emacs
Info documentation system. https://www.gnu.org/
software/emacs/manual/eintr.

[3] Bob Glickstein, Writing GNU Emacs Extensions,
1st ed., O’Reilly Media, 1997.

[4] Bil Lewis et al., GNU Emacs Lisp Reference

Manual. Bundled with Emacs source code and
available in the Emacs Info documentation system.
https://www.gnu.org/software/emacs/manual/elisp.

[5] help-gnu-emacs: Users list for the GNU Emacs text

editor, https://lists.gnu.org/mailman/listinfo/
help-gnu-emacs.

[6] Mickey Petersen, Mastering Emacs, v2, 2016.
Available at https://www.masteringemacs.org/book.

[7] Planet Emacsen, http://planet.emacsen.org/.

[8] Richard M. Stallman et al., GNU Emacs Manual.
Bundled with Emacs source code and available
in the Emacs Info documentation system. https:
//www.gnu.org/software/emacs/manual/emacs.

[9] Richard M. Stallman, My Lisp Experiences and the

Development of GNU Emacs (2002), available at
https://www.gnu.org/gnu/rms-lisp.html.

⋄ Marcin Borkowski
Faculty of Mathematics

and Computer Science
Adam Mickiewicz University
ul. Umultowska 87
61-614 Poznań, Poland
mbork (at) amu dot edu dot pl

http://mbork.pl

Editor’s note: As it happens, I (Karl), like Marcin, work in
Emacs, but my environment is set up completely differently
from his. After comparing notes, Marcin and I thought it
might be interesting to briefly describe mine as well, as an
example of Emacs’s extreme customizability and extensibility.
All my changes are done at the Elisp level.

Some 35 years ago when I started using Emacs, my basic
idea is to eradicate editing modes altogether. No tex-mode, no
c-mode, etc. Keystrokes mean the same thing no matter what’s
being edited. I eliminate all fontification and colorization.
Those are just distractions for me; I want to focus on the text.

I’ve also rebound nearly every key, and created hundreds
of new bindings and many simple functions, so that I can do
more things with less effort. For instance: save all buffers
and run (what’s normally) M-x compile with one keystroke.
I typically do this dozens of times a day (I use make for
essentially all building, e.g., running TEX). I read mail inside
Emacs, use shell buffers (inside Emacs) for working locally, ssh
buffers (inside Emacs) for working remotely, besides logging
in remotely . . . to run Emacs.

I primarily still use Emacs 21.[34], in terminal mode (not
X mode), because (a) the Unicode support in new releases
is painful for me when editing TUGboat papers in other
encodings (autorecognition of encodings doesn’t always work),
or which use characters not in my favorite font. Just give
me the bytes! (b) The changing of interfaces at every level,
with no easy way back to previous behavior, that the Emacs
developers have engaged in is too time-consuming for me to
keep up with, especially when there is no significant benefit
to the new versions in my environment. ⋄

Marcin Borkowski

TUGboat, Volume 39 (2018), No. 1 37

Tutorial: Using external C libraries
with the LuaTEX FFI

Henri Menke

Abstract

The recent 1.0.3 release of LuaTEX introduced an
FFI library (Foreign Function Interface) with the
same interface as the one included by default in
the LuaJIT interpreter. This allows for interfacing
with any external library which adheres to the C
calling convention for functions, which is pretty much
everything. In this tutorial I will present how to
interface with the GNU Scientific Library (GSL) to
calculate integrals numerically. As a showcase I
will plot a complete Fermi-Dirac integral using the
pgfplots package. To understand this article, the
reader should have good knowledge of the Lua and C
programming languages and a basic understanding
of the C memory model.

1 The FFI library

Lua is known for its rich C API which allows interfac-
ing with system libraries in a straightforward fashion.
The workflow for that is always the same: Write a
function in C which fetches the arguments from the
stack of the Lua interpreter and converts them into
fixed C types. Using the fixed-type variables call
the library function and receive a result, either as a
return value or as an output argument. The result
has to be converted back to a Lua type and pushed
onto the stack of the Lua interpreter. Then hand
the control back to the interpreter.

As we can already see, this recipe involves writ-
ing a lot of code, most of which is pure boilerplate.
Wouldn’t it be great if there was something which
would just do all the type conversion work for us?
And indeed there is, the FFI [3, 5, 8]. The concept
of a Foreign Function Interface is not exclusive to
Lua and also exists in other languages, e.g. with the
ctypes library for Python.

Different FFIs have different ways of binding
library functions. The Lua FFI chooses to parse plain
C declarations. The advantage of this is that when
interfacing with C libraries, you can copy and paste
function prototypes from corresponding header files.
Of course, the disadvantage is that for non-C libraries
you have to come up with those prototypes yourself,
which is not always an easy task. The FORTRAN

language, for example, does not use the C-style call

by value convention but always uses call by reference;
that is to say, all types from a C function prototype
would have to be converted to pointer types.

Thanks to Hans Hagen for very useful discussions.

2 The GNU Scientific Library

The GNU Scientific Library (GSL) [2] is a software li-
brary for scientific computing, implementing a broad
range of algorithms. A complete list of algorithms
is far too long to be presented here, and beyond the
scope of this tutorial. We will only deal with the
numerical integration routines here.

The numerical integration routines in the GSL

are based on algorithms from the QUADPACK [9]
package for adaptive Gauss-Legendre integration. In
essence, each of the functions computes the integral

I =

∫ b

a

f(x)w(x) dx (1)

where w(x) is a weight function. We will be focussing
only on the case where the weight function w(x) =
1. Since an integral cannot be solved exactly by a
computer, the user has to provide error bounds to
indicate convergence.

3 Interfacing with the GSL

The first thing to do when we want to interface
with an external library is load the FFI Lua module
and use it to load the shared library of interest into
memory.

local ffi = require("ffi")

local gsl = ffi.load("gsl")

3.1 C declarations

Next we have to add all the C declarations which are
important for us. Let us first have a look over the
code and then discuss why I wrote things the way
they are.

ffi.cdef[[

typedef double(*gsl_cb)(double x, void *);

typedef struct {

gsl_cb F;

void *params;

} gsl_function;

typedef void gsl_integration_workspace;

gsl_integration_workspace *

gsl_integration_workspace_alloc(size_t n);

void gsl_integration_workspace_free(

gsl_integration_workspace * w);

int gsl_integration_qagiu(

gsl_function *f,

double a, double epsabs, double epsrel,

size_t limit,

gsl_integration_workspace *workspace,

double *result, double *abserr);

]]

Tutorial: Using external C libraries with the LuaTEX FFI

38 TUGboat, Volume 39 (2018), No. 1

The first declaration introduces a new type,
which I call gsl_cb, which stands for GSL callback.
It is a pointer to a function which takes a floating
point number and a void pointer and returns an-
other floating point number. In reality, this function
pointer will point to a Lua function representing the
integrand, i.e. f(x) in Eq. 1. We can ignore the un-
named second argument (void *) here because this
is only relevant for the C interface of the GSL but
we still have to declare it.

The next declaration is another type declara-
tion, this time with the name gsl_function. It is
a structure containing two values; the first is the
function pointer to the integrand F, the second a
pointer to some memory where parameters could
be located. In our case we will not use the params

field but we nevertheless have to declare it. What is
very important is that the order of the fields in the
structure is exactly the same as in the C header file.
Otherwise the memory alignment of the field will be
off and a segmentation fault will occur.

The last type declaration is for the identifier
gsl_integration_workspace, which I simply make
it an alias for void. Looking in the C header file of
the GSL, we find that gsl_integration_workspace
is defined as a structure with several fields, so why
do we not declare those fields? The reason is sim-
ple: we don’t care. As you will see we do not ac-
cess any fields of gsl_integration_workspace from
the Lua level and the GSL library already knows
what the fields are. Therefore I decided to make
gsl_integration_workspace opaque.

The next three declarations are all function dec-
larations which are straight copies from the header
file: gsl_integration_workspace_alloc allocates
enough memory to perform integration using n subin-
tervals; gsl_integration_workspace_free releases
that memory back to the system; and the third func-
tion declaration, gsl_integration_qagiu, is the
actual integration routine. It computes the inte-
gral of the function f over the semi-infinite interval
from a to ∞ with the desired absolute and relative
error limits epsabs and epsrel using at most limit
subintervals which have been previously allocated in
workspace. The final approximation and the corre-
sponding absolute error are returned in result and
abserr [10].

3.2 Lua interface

Now that we’ve declared all of the library functions
it is time that we integrate this with Lua. To this
end we write a function which nicely encapsulates
all the lower level structure. The function is named
gsl_qagiu and takes as parameters a (Lua) func-

tion f (which takes one argument), the lower limit
of the integral a, and three optional arguments, the
absolute error epsabs, the relative error epsrel, and
the maximum number of subintervals N.

local gsl_f = ffi.new("gsl_function")

local result = ffi.new("double[1]")

local abserr = ffi.new("double[1]")

function gsl_qagiu(f,a,epsabs,epsrel,N)

local N = N or 50

local epsabs = epsabs or 1e-8

local epsrel = epsrel or 1e-8

gsl_f.F = ffi.cast("gsl_cb",f)

gsl_f.params = nil

local w =

gsl.gsl_integration_workspace_alloc(N)

gsl.gsl_integration_qagiu(gsl_f, a,

epsabs, epsrel, N,

w, result, abserr)

gsl.gsl_integration_workspace_free(w)

gsl_f.F:free()

return result[0]

end

We start by defining some local variables outside
the function for better performance. We instantiate
a new value of type gsl_function and two arrays
of length one using the ffi.new method.

After processing the optional arguments, we set
the fields F and params. This is where it gets interest-
ing. Recall that the type of the field F is a pointer to
a function which takes two arguments. Even though
the Lua function f only takes one argument we can
use it directly, because of the way Lua deals with
optional arguments. If the number of arguments is
less than the number of parameters passed to the
function call, all the additional parameters are sim-
ply dropped. The only problem that we have left is
that this is a Lua function, not a C function. To this
end we use ffi.cast to cast the Lua function into
a C function. It can also be converted implicitly by
simply assigning f, but then it is less clear what is
going on. At this point it is very important that the
types of the arguments and the return value match,
otherwise we will run into memory problems. Be-
cause the field params is unused we simply set it to
the null pointer by assigning nil. (We could proba-
bly leave it unset but that is bad practice. Always
initialize your variables!)

The result and the absolute error of the integra-
tion are returned as output arguments from the GSL

Henri Menke

TUGboat, Volume 39 (2018), No. 1 39

function, i.e. the variables have to have pointer type.
The easiest way to create a pointer to a value is by
creating an array of length one of the desired type,
which we already did outside the function. Arrays
can be implicitly cast into pointers but at the same
time live on the stack, so we do not have to worry
about heap allocation and deallocation.

Next we use the previously declared functions
to first allocate a workspace structure of sufficient
size, then call the integration function with all of our
arguments, releasing the workspace memory back
to the system. You might notice that not all of
the variables in the call to the integration routine
have been created using ffi.new. This is indeed not
necessary because the FFI will try to convert Lua
values to native C types for you implicitly. Roughly
speaking, you only have to use ffi.new for non-
fundamental types or arrays.

There is one last subtlety to take care of. The
library function to which we passed the function
pointer is allowed to store that pointer for later use.
Therefore this pointer will not decrease its reference
count after exiting the function and therefore can
never be garbage collected. We are probably not
going to call this function so many times that this
memory leak will have a huge impact but it is cer-
tainly good practice to release resources on exit, so
we indicate to the garbage collector that this pointer
can be cleaned up by calling its free() method.

Finally we return the result which is stored in
the first element of the array. Note that C uses
zero-based indexing.

3.3 Usage in pgfplots

So far we have only been implementing some kind of
abstract skeleton for numerical integration. Now it
is definitely time to actually use it. To this end we
will plot the following complete Fermi-Dirac integral:

F1/2(t) =

∫

∞

0

x1/2

ex−t + 1
dx. (2)

What we will do now is call the gsl_qagiu routine
with the integrand as the first argument and the
lower limit as the second argument. Because we
want to obtain the result of the integration in TEX
we do not return the result of the integration but
feed it back to TEX using tex.sprint.

function F_one_half(t)

tex.sprint(gsl_qagiu(function(x)

return math.sqrt(x)/(math.exp(x-t)+1)

end, 0))

end

The last thing to do is plot this function using
pgfplots. In the following I use ConTEXt syntax but

the TEX and LATEX syntax is very similar. It should
be noted though, that for FFI to work in LATEX, the
--shell-escape option has to be enabled, because
these operations are considered unsafe. First of all
we need to tell TikZ about the Lua function. We
do this using declare function and simply calling
the Lua function with the argument. (A LATEX user
would use \directlua instead of \ctxlua.) There is
still a slight problem. The pgfplots package uses its
own representation for floating point numbers, called
fpu [1], which is not compatible with Lua. There
are ways to work around this (see the Appendix),
but the simplest solution for the moment is simply
turning off the fpu for this plot.

\starttikzpicture

[declare function={

F_one_half(\t) = \ctxlua{F_one_half(\t)};

}]

\startaxis[

use fpu=false, % very important!

width=6cm,

no marks,

samples=101,

xlabel={t},

ylabel={$F_{1/2}(t)$},

]

\addplot{F_one_half(x)};

\stopaxis

\stoptikzpicture

4 Conclusion

The availability of FFI in LuaTEX takes document
processing to a completely new level. The possi-
bility to interface with native C libraries allows for
tasks which were previously intractable, such as the
numerical integration in this tutorial. This article
was inspired by a question asked on Stack Exchange,
where a minimal working example of the techniques
presented here can be found [7].

Another example would be the conversion of an
image from SVG format to PDF without the gener-
ation of intermediate files, as I demonstrated in [6]
using the Cairo and Rsvg-2 libraries.

Finally, Aditya Mahajan published an article
on his ConTEXt blog on how to interface the Julia
programming language with LuaTEX via the FFI [4].

5 Appendix

During the preparation of this manuscript I was made
aware, by Aditya Mahajan, that the approach of
turning off the fpu is not always a viable workaround;
it can fail, for instance when trying to plot in logscale.
Therefore one has to convert the function argument
from fpu float to Lua number and the result from

Tutorial: Using external C libraries with the LuaTEX FFI

40 TUGboat, Volume 39 (2018), No. 1

Lua number to fpu float. Fortunately PGF provides
macros to facilitate this conversion. Using those
one can declare the function from the main text as
follows:

\pgfmathdeclarefunction{F_one_half}{1}{%

\pgfmathfloatparsenumber{%

\ctxlua{

F_one_half(\pgfmathfloatvalueof{#1})

}%

}%

}

One does not necessarily have to rely on the
macro level here. As of version 3, the PGF package
comes with a Lua backend for function evaluations
which provides parser functions for fpu types. With
this, one could adapt the Lua function from the main
text as follows:

local plf = require"pgf.luamath.functions"

function F_one_half(t)

local t = plf.tonumber(t)

local result = gsl_qagiu(function(x)

return math.sqrt(x)/(math.exp(x-t)+1)

end, 0))

tex.sprint(plf.toTeXstring(result))

end

References

[1] Christian Feuersänger. Floating point unit library.
https://ctan.org/pkg/pgf, 2015.

[2] M. Galassi et al. GNU Scientific Library Reference
Manual. Network Theory Ltd., third edition, 2009.

[3] Hans Hagen, Luigi Scarso, and Taco Hoekwater.
LuaTeX 1.0.3 announcement. https://tug.org/

pipermail/luatex/2017-February/006345.html,
2017.

[4] Aditya Mahajan. Interfacing LuaTEX with Julia.
https://adityam.github.io/context-blog/

post/interfacing-with-julia/, 2017.

[5] James R. McKaskill. LuaFFI.
https://github.com/jmckaskill/luaffi,
2010–2013.

[6] Henri Menke. Answer to ‘How to include
SVG diagrams in LaTeX?’ https://tex.

stackexchange.com/a/408014, 2017.

[7] Henri Menke. Answer to ‘Plot complete
Fermi-Dirac integral in Lualatex’. https:

//tex.stackexchange.com/a/403794, 2017.

[8] Mike Pall. LuaJIT: FFI library.
http://luajit.org/ext_ffi.html, 2005–2017.

[9] R. Piessens, E. de Doncker-Kapenga,
C.W. Überhuber, and D.K. Kahaner.
Quadpack: A Subroutine Package for Automatic
Integration. Springer, 1983.

[10] The GSL Team. GNU Scientific Library:
Numerical integration. https://www.gnu.org/

software/gsl/doc/html/integration.html,
1996–2017.

⋄ Henri Menke
9016 Dunedin
New Zealand
henrimenke (at) gmail dot com

Henri Menke

TUGboat, Volume 39 (2018), No. 1 41

Executing TEX in Lua: Coroutines

Hans Hagen

Much of the Lua code in ConTEXt originates from
experiments. When it survives in the source code
it is probably used, waiting to be used or kept for
educational purposes. The functionality that we
describe here has already been present for a while in
ConTEXt, but improved a little starting with LuaTEX
1.08 due to an extra helper. The code shown here is
generic and not used in ConTEXt as such.

Say that we have this code:

for i=1,10000 do

tex.sprint("1")

tex.sprint("2")

for i=1,3 do

tex.sprint("3");tex.sprint("4")

tex.sprint("5")

end

tex.sprint("\\space")

end

When we call \directlua with this snippet we
get some 30 pages of 12345345345. The printed
text is saved till the end of the Lua call, so basically
we pipe some 170.000 characters to TEX that get
interpreted as one paragraph.

Now imagine this:

\setbox0\hbox{xxxxxxxxxxx} \number\wd0

which gives 4461336. If we check the box in Lua:

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.sprint(tex.box[0].width)

the result is 4461336 4461336, which is not what
you would expect at first sight. However, if you
consider that we just pipe to a TEX buffer that gets
parsed after the Lua call, it will be clear that the
reported width is the width that we started with. It
will work all right if we say:

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.sprint("\\directlua{\

tex.sprint(tex.box[0].width)}")

because now we get: 4461336 443625. It’s not that
complex to write some support code that makes this
more convenient. This can work out quite well but
there is a drawback. If we use this code:

print(status.input_ptr)

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.sprint("\\directlua{print(status.input_ptr)\

tex.sprint(tex.box[0].width)}")

Here we get 6 and 7 reported. You can imagine that
when a lot of nested \directlua calls happen, we
can get an overflow of the input level or (depending
on what we do) the input stack size. Ideally we want
to do a Lua call, temporarily go to TEX, return to
Lua, etc. without needing to worry about nesting
and possible crashes due to Lua itself running into
problems. One charming solution is to use so-called
coroutines: independent Lua threads that one can
switch between—you jump out from the current
routine to another and from there back to the current
one. However, when we use \directlua for that, we
still have this nesting issue and what is worse, we keep
nesting function calls too. This can be compared to:

\def\whatever{\ifdone\whatever\fi}

where at some point \ifdone is false so we quit.
But we keep nesting when the condition is met, so
eventually we can end up with some nesting related
overflow. The following:

\def\whatever{\ifdone\expandafter\whatever\fi}

is less likely to overflow because there we have tail
recursion which basically boils down to not nesting
but continuing. Do we have something similar in
LuaTEX for Lua? Yes, we do. We can register a
function, for instance

lua.get_functions_table()[1]

= function() print("Hi there!") end

and call that one with:

\luafunction 1

This is a bit faster than calling a function like:

\directlua{HiThere()}

which can also be achieved by

\directlua{print("Hi there!")}

which sometimes can be more convenient. Anyway,
a function call is what we can use for our purpose
as it doesn’t involve interpretation and effectively
behaves like a tail call. The following snippet shows
what we have in mind:

tex.routine(function()

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.yield()

tex.sprint(tex.box[0].width)

end)

We start a routine, jump out to TEX in the
middle, come back when we’re done and continue.
This gives us: 4461336 218508, which is what we
expect.

This mechanism permits efficient (nested) loops
like:

Executing TEX in Lua: Coroutines

42 TUGboat, Volume 39 (2018), No. 1

tex.routine(function()

for i=1,10000 do

tex.sprint("1")

tex.yield()

tex.sprint("2")

tex.routine(function()

for i=1,3 do

tex.sprint("3")

tex.yield()

tex.sprint("4")

tex.yield()

tex.sprint("5")

end

end)

tex.sprint("\\space")

tex.yield()

end

end)

We do create coroutines, go back and forwards
between Lua and TEX, but avoid memory being
filled up with printed content. If we flush paragraphs
(instead of e.g. the space) then the main difference is
that instead of a small delay due to the loop unfolding
in a large set of prints and accumulated content, we
now get a steady flushing and processing.

However, we can still have an overflow of input
buffers because we still nest them: the limitation at
the TEX end has moved to a limitation at the Lua
end. How come? Here is the code that we use:

local stepper = nil

local stack = { }

local fid = 0xFFFFFF

local goback = "\\luafunction"..fid.."\\relax"

function tex.resume()

if coroutine.status(stepper) == "dead" then

stepper = table.remove(stack)

end

if stepper then

coroutine.resume(stepper)

end

end

lua.get_functions_table()[fid] = tex.resume

function tex.yield()

tex.sprint(goback)

coroutine.yield()

texio.closeinput()

end

function tex.routine(f)

table.insert(stack,stepper)

stepper = coroutine.create(f)

tex.sprint(goback)

end

The routine creates a coroutine, and yield

gives control to TEX. The resume is done at the TEX
end when we’re finished there. In practice this works
fine and when you permit enough nesting and levels
in TEX then you will not easily overflow.

When I picked up this side project and wondered
how to get around it, it suddenly struck me that if we
could just quit the current input level then nesting
would not be a problem. Adding a simple helper to
the engine made that possible (of course figuring it
out took a while):

local stepper = nil

local stack = { }

local fid = 0xFFFFFF

local goback = "\\luafunction"..fid.."\\relax"

function tex.resume()

if coroutine.status(stepper) == "dead" then

stepper = table.remove(stack)

end

if stepper then

coroutine.resume(stepper)

end

end

lua.get_functions_table()[fid] = tex.resume

if texio.closeinput then

function tex.yield()

tex.sprint(goback)

coroutine.yield()

texio.closeinput()

end

else

function tex.yield()

tex.sprint(goback)

coroutine.yield()

end

end

function tex.routine(f)

table.insert(stack,stepper)

stepper = coroutine.create(f)

tex.sprint(goback)

end

The trick is in texio.closeinput, a recent
helper and one that should be used with care. We
assume that the user knows what she or he is do-
ing. On an old laptop with a i7-3840QM processor
running Windows 10 the following snippet takes less
than 0.35 seconds with LuaTEX and 0.26 seconds
with LuaJITTEX.

tex.routine(function()

for i=1,10000 do

tex.sprint("\\setbox0\\hpack{x}")

tex.yield()

Hans Hagen

TUGboat, Volume 39 (2018), No. 1 43

tex.sprint(tex.box[0].width)

tex.routine(function()

for i=1,3 do

tex.sprint("\\setbox0\\hpack{xx}")

tex.yield()

tex.sprint(tex.box[0].width)

end

end)

end

end)

Say that we run the bad snippet:

for i=1,10000 do

tex.sprint("\\setbox0\\hpack{x}")

tex.sprint(tex.box[0].width)

for i=1,3 do

tex.sprint("\\setbox0\\hpack{xx}")

tex.sprint(tex.box[0].width)

end

end

This time we need 0.12 seconds in both engines.
So what if we run this:

\dorecurse{10000}{%

\setbox0\hpack{x}

\number\wd0

\dorecurse{3}{%

\setbox0\hpack{xx}

\number\wd0

}%

}

Pure TEX needs 0.30 seconds for both engines
but there we lose 0.13 seconds on the loop code.
In the Lua example where we yield, the loop code
takes hardly any time. As we need only 0.05 seconds
more it demonstrates that when we use the power of
Lua the performance hit of the switch is quite small:
we yield 40,000 times! In general, such differences
are far exceeded by the overhead: the time needed
to typeset the content (which \hpack doesn’t do),
breaking paragraphs into lines, constructing pages
and other overhead involved in the run. In ConTEXt
we use a slightly different variant which has 0.30
seconds more overhead, but that is probably true for
all Lua usage in ConTEXt, but again, it disappears
in other runtime.

Here is another example:

\def\TestWord#1%

{\directlua{

tex.routine(function()

tex.sprint("\\setbox0\\hbox{\\tttf #1}")

tex.yield()

tex.sprint(math.round

(100 * tex.box[0].width/tex.hsize))

tex.sprint(" percent of the hsize: ")

tex.sprint("\\box0")

end)

}}

The width of next word is \TestWord {inline}!

The width of next word is 9 percent of the hsize:
inline!

Now, in order to stay realistic, this macro can
also be defined as:

\def\TestWord#1%

{\setbox0\hbox{\tttf #1}%

\directlua{

tex.sprint(math.round(

100 * tex.box[0].width/tex.hsize))

} %

percent of the hsize: \box0\relax}

We get the same result: “The width of next word is
9 percent of the hsize: inline!”.

We have been using a Lua–TEX mix for over
a decade now in ConTEXt, and have never really
needed this mixed model. There are a few places
where we could (have) benefitted from it and we
might use it in a few places, but so far we have done
fine without it. In fact, in most cases typesetting
can be done fine at the TEX end. It’s all a matter of
imagination.

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

Executing TEX in Lua: Coroutines

44 TUGboat, Volume 39 (2018), No. 1

New rules for reporting bugs in the
LATEX core software

(as maintained by the LATEX Project)

Frank Mittelbach and The LATEX Project Team

Abstract

Software has bugs and LATEX unfortunately is no
exception. If somebody encounters a bug then it
helps if that bug gets reported to the right people
so that the bug can be resolved (or a workaround
documented or whatever is most appropriate). The
problem is to know to whom to report the bug. For
this the latexbug package has been developed to
help in addressing the right group of maintainers.

The LATEX Project Team maintains a bug data-
base for its own code base (which consists of the
LATEX kernel and some packages that have been writ-
ten by people in the LATEX Project Team).

In this article we describe how to report bugs
in the core LATEX software or search through already
known issue reports in that database. The article
also explains where to find the development version
of LATEX if that ever becomes necessary.

Thank you for taking the time to report a bug

and prepare a test file showing it!

Contents

1 The LATEX kernel sources 44
1.1 A note on Git pull requests 44

2 Policy on layout and interface deficiencies 44

3 The LATEX bug database 45

4 The latexbug package 45
4.1 The user interface 45
4.2 Bugs in latexbug itself 46

5 Important links 46

1 The LATEX kernel sources

LATEX (or more precisely LATEX2ε, the current stan-
dard) is part of every major TEX distribution, e.g.,
TEX Live, MiKTEX, or MacTEX to name a few. The
official releases of LATEX are all published on CTAN

(the Comprehensive TEX Archive Network) where
they can be downloaded if necessary and from there
they usually find their way into the major distribu-
tions within a few days.

Until recently the LATEX Project Team has main-
tained the development version of LATEX2ε in an SVN

(Subversion) repository with read-only access for the
public from the LATEX Project website. We have now
switched to a Git repository1 located at

https://github.com/latex3/latex2e

and from that browser page you can explore the files
in the development version.

If necessary, the most recent (unreleased) devel-
opment version can be downloaded from there in a
.zip archive (roughly 25Mb) by using the appropri-
ate button. If you are familiar with Git or SVN you
can also clone the repository using the command line
or your favorite Git frontend tool or alternatively do
a checkout using an SVN tool.

1.1 A note on Git pull requests

Git repositories (somewhat in contrast to SVN ones)
support widely distributed development and allow
people to provide change sets that are made available
through so-called pull requests, so that the maintain-
ers of a program can “pull the suggested changes”
into the main repository.

While we appreciate contributions, we think
that for the core LATEX software pull requests are
usually not a good approach (unless the change has
been previously discussed and agreed upon).

The stability of LATEX is very important and this
means that changes to the kernel are necessarily very
conservative. It also means that a lot of discussion
has to happen before any changes are made. So if
you do decide to post a pull request, please bear this
in mind: we do appreciate ideas, but cannot always
integrate them into the kernel and it is quite likely
that we will have to reject updates made in this way.

If you want to discuss a possible contribution
before (or instead of) making a pull request, we
suggest you raise the topic first on the LATEX-L list
(see links below) or drop a line to the team.

2 Policy on layout and interface
deficiencies

Up front we should probably stress that “deficien-
cies” in the design of the standard document classes
(article, report and book) as well as questionable
but long established interface behavior of commands
are things that we will normally not change, even if
we can all agree that a different behavior or a dif-
ferent layout would have been a better choice. You
are, of course, welcome to report issues in these ar-
eas, using the procedure explained below, but in all
likelihood such reports will get suspended.

1 Please note, that if you have previously bookmarked the
old SVN repository you should update that bookmark to the
new Git repository as the SVN repository is frozen and no
longer up-to-date and will soon vanish!

Frank Mittelbach and The LATEX Project Team

TUGboat, Volume 39 (2018), No. 1 45

The reason is that the kernel interfaces and the
document classes have been used for many years in
essentially all documents (even documents using dif-
ferent classes; these are often built upon the standard
classes in the background) and thus such changes
would break or at a minimum noticeably change
nearly all existing documents.

3 The bug database for the LATEX kernel
and core packages

Throughout the last two decades the LATEX Project
Team has maintained a bug database using GNATS,
a free software system from the FSF. While this
has served us well in the past, it has its problems
and with our move to Git-based source control its
workflow no longer fits. We have therefore decided
to switch to a new tracking system and the natural
choice was to use the one already provided as part of
the GitHub setup (the place where the sources are
now hosted), namely the Issue Tracker.

Unfortunately, it is not possible for a number of
reasons to automatically transfer the old bug reports
to the new system so we are in a slightly awkward
position that we have old bugs in one system and
the new ones in another. Thus for searching through
already reported bugs it is necessary to search two
systems:

• GNATS for bugs reported before 2018;

• The Github Issue Tracker for LATEX2ε for bugs
reported in 2018 and later.

Over time we hope that the bugs listed in GNATS

will all be only of historical interest, but right now it
is probably helpful to look in both places (see links
below)—sorry for that.

4 The latexbug package

So far we have talked about where to find the core
LATEX software and how to report issues with it. How-
ever, the LATEX universe consists of several thousand
contributed packages maintained by individuals all
over the world. And if a bug happens in one of those
packages it doesn’t help anybody if it is dumped at
the LATEX Project’s doorstep.

For one, we can’t actually change other people’s
code even if we are able to identify the issue. Fur-
thermore we are only a few people and simply do
not have the bandwidth to analyze bugs in other
people’s work.

We have therefore written this little package
called latexbug that should help in identifying the
rightful addressee for a bug report. We ask that it
be loaded in any test file intended to be sent to the
LATEX bug database as part of a bug report.

The package will determine if the test file is in
a suitable state to be sent to us or if it should be
modified first or if it should be sent to somebody
else because the bug is (likely) to be in code not
maintained by the LATEX Project Team.

Bug reports sent to the LATEX bug database
without that prior verification are likely to get closed
without being looked at at our end in the future.

4.1 The user interface

The interface is simple: the package has no options
and doesn’t define any new commands to be used.

All that is required is that the package be loaded
as the very first step in the test file that shows
the bug— in other words, before the line loading
the \documentclass. For that reason it must be
loaded using \RequirePackage instead of the usual
\usepackage declaration that is used in the preamble
of a document.
Thus, a bug report test file should look like this:

\RequirePackage{latexbug}

\documentclass{article}

% preamble as necessary

% (drop anything not needed, please)

\begin{document}

% example showing the bug

% (as short and concise as possible)

\end{document}

Of course, instead of article you may need to load
a different standard class, but do not load a third-
party class as we can’t accept a bug that manifests
itself only when using a class we don’t maintain.

If the test file runs through (showing the bug)
without any complaints for latexbug then the test
file is ready to be sent to the LATEX bug database.
The procedure for uploading and the location is doc-
umented at

https://www.latex-project.org/bugs/

If latexbug does generate an error, however, then
this error needs to be addressed first and then, de-
pending on the resolution, the bug report may have
to be sent to somebody else.

An error is generated if the test file makes use of
third-party code that is not maintained by the LATEX
Project Team. For example, if your test document
loads array, geometry, footmisc and hyperref you
would see the following:

Package latexbug Error: Third-party file(s)

This test file uses third-party file(s)

==============

geometry.sty -> Hideo Umeki

New rules for reporting bugs in the LATEX core software (as maintained by the LATEX Project)

46 TUGboat, Volume 39 (2018), No. 1

<latexgeometry [at] gmail [dot] com>

footmisc.sty

hyperref.sty -> Heiko Oberdiek

https://github.com/ho-tex/hyperref/issues

==============

The array package is accepted as it is one of the core
packages maintained by the LATEX Project team but
the other three are not. For geometry and hyperref

we have maintainer info available, so we provide that,
whereas for footmisc this information is missing.
Thus, in that case you have to search for it yourself,
if it turns out that the bug is related to that package.

The latexbug package then continues with ad-
vice to remove such third-party code from the file:

So you should contact the authors

of these files, not the LaTeX Team!

(Or remove the packages that load

them, if they are not necessary to

exhibit the problem).

If that is not possible, because the bug goes away
if a package is removed, then the problem is (most
likely) with this package and the bug report should
be sent to the maintainer of that package and not to
the LATEX bug database.

To make life somewhat easier, latexbug will tell
you the name of the maintainer (if we know it and
have added it) and if possible also the canonical bug
address for the package (as in the cases of geometry
and hyperref). If we don’t have that information,
you need to find it out for yourself by looking at the
package documentation.

There may be cases where third-party code is
essential to exhibit a bug in core LATEX code main-
tained by the LATEX Team. The error text therefore
finishes off with the following sentence:

If you think the bug is in core LaTeX

(as maintained by the LaTeX Team) but

these files are needed to demonstrate

the problem, please continue and mention

this explicitly in your bug report.

Please explain in detail your reasoning why you think
this is the case as part of the bug report.

4.2 Bugs in latexbug itself

When a document is run through LATEX it will load
a number of files, and bug reports that are to be
sent to the LATEX Team should only load files that
we maintain and not third-party packages. Testing
this and giving some appropriate advice is the main
task of the latexbug package.

The database inside latexbug, if you want to
call it that, is simply a comma separated key value
list consisting of file names = maintainer info. Most
of the time the maintainer info is us (meaning we
maintain it, so the file is fine) or us* (meaning it is an
expl3 package we maintain, so fine too, but should
be reported in a different issue tracker) or ignore
(meaning we do not maintain it, but it is a file that
is likely to appear for one or the other reason and we
should accept such a bug report nonetheless). We
allow, for example, the use of lipsum or blindtext
to help in making up a test file with a suitable amount
of text. Also often useful is the package etoolbox,
thus that is also silently accepted (aka ignored).

Any other file loaded in the bug report but not
listed in the database will show up in the error listing
flagged as “third-party” code that should be removed
as explained above.

For a small number of popular third-party pack-
ages we have collected the name of the external main-
tainer and if available to us some extra information
so that it is easier to send to the rightful addressee
if you encounter a bug in such a third-party package.
But to keep this manageable this is only done for a
very small number of the 5000+ packages out there
(though we might add a few more over time).

It is however not impossible that we missed
one or another file that should have been listed as
“maintained by us” but isn’t and thus incorrectly
generates an error. Another potential problem area
is with the maintainer info we provide, as that might
become invalid without being noticed.

If you run into one of those problems or notice
an omission of that sort, please send us a bug report
by opening an issue at the GitHub source of the
package which is located at:

https://github.com/latex3/latexbug

Please note that the fact that a particular package is
written by one of the members of the LATEX Project
team does not automatically mean that latexbug
will classify it as a core LATEX package. Many such
packages will show up as “third-party” with the
request to report the bug with the respective main-
tainer directly.

For example, fontspec, written by Will Robert-
son, has its own repository, so issues involving that
package should normally be reported there and not
with the LATEX kernel, and latexbug will point you
in the right direction.

5 Important links

https://www.latex-project.org

Website of the LATEX Project (official site for
LATEX and LATEX3 development).

Frank Mittelbach and The LATEX Project Team

TUGboat, Volume 39 (2018), No. 1 47

https://www.latex-project.org/bugs

Page describing how to submit a bug report
for core LATEX. This should always contain the
correct up-to-date links, etc.

https://www.latex-project.org/latex3/ ←֓
code/#discussing-it

Page describing how to join the LATEX Project
discussion list and how to retrieve old posts.

https://www.latex-project.org/cgi-bin/ ←֓
ltxbugs2html

Place to look for bugs reported prior to 2018.

https://github.com/latex3/latex2e/issues

Place to search through bug reports from 2018
onwards and to open a new bug report (“New
Issue”) for core LATEX2ε.

https://github.com/latex3/latex3/issues

Place to open a bug report for issues involving
LATEX3 or expl3 packages.

https://github.com/latex3/latexbug

Home repository for the sources of the latexbug
package. Also contains the ready-to-use package
in case it is not in your distribution.

https://ctan.org/pkg/latex-base

The LATEX kernel sources on CTAN.

https://ctan.org/pkg/required

CTAN home of LATEX core packages that are
required to be present in any distribution.

⋄ Frank Mittelbach
Mainz, Germany
frank.mittelbach (at)

latex-project (dot) org

https://www.latex-project.org

⋄ The LATEX Project Team
latex-team (at) latex-project

(dot) org

https://www.latex-project.org

New rules for reporting bugs in the LATEX core software (as maintained by the LATEX Project)

48 TUGboat, Volume 39 (2018), No. 1

LATEX News
Issue 28, April 2018

Contents

A new home for LATEX 2ε sources 1

Bug reports for core LATEX 2ε 1

UTF-8: the new default input encoding 1
The new default 2
Compatibility 2
BOM: byte order mark handling 2

A general rollback concept 2

Integration of remreset and chngcntr packages 3

Testing for undefined commands 3

Changes to packages in the tools category 3
LATEX table columns with fixed widths 3
Obscure overprinting with multicol fixed 3

Changes to packages in the amsmath category 3
Updated user’s guide 3

A new home for LATEX 2ε sources

In the past the development version of the LATEX 2ε

source files has been managed in a Subversion source
control system with read access for the public. This way
it was possible to download in an emergency the latest
version even before it was released to CTAN and made
its way into the various distributions.

We have recently changed this setup and now manage
the sources using Git and placed the master sources on
GitHub at

https://github.com/latex3/latex2e

where we already store the sources for expl3 and other
work. As before, direct write access is restricted to
LATEX Project Team members, but everything is publicly
accessible including the ability to download, clone (using
Git) or checkout (using SVN). More details are given
in [1].

Bug reports for core LATEX 2ε

For more than two decades we used GNATS, an open
source bug tracking system developed by the FSF. While
that has served us well in the past it started to show
its age more and more. So as part of this move we also
decided to finally retire the old LATEX bug database and

replace it with the standard “Issue Tracker” available at
Github.

The requirements and the workflow for reporting a
bug in the core LATEX software is documented at

https://www.latex-project.org/bugs/

and with further details also discussed in [1].

UTF-8: the new default input encoding

The first TEX implementations only supported reading
7-bit ascii files—any accented or otherwise “special”
character had to be entered using commands, if it could
be represented at all. For example to obtain an “ä” one
would enter \"a, and to typeset a “ß” the command
\ss. Furthermore fonts at that time had 128 glyphs
inside, holding the ascii characters, some accents to
build composite glyphs from a letter and an accent, and
a few special symbols such as parentheses, etc.

With 8-bit TEX engines such as pdfTEX this situation
changed somewhat: it was now possible to process 8-bit
files, i.e., files that could encode 256 different characters.
However, 256 is still a fairly small number and with this
limitation it is only possible to encode a few languages
and for other languages one would need to change the
encoding (i.e., interpret the character positions 0–255
in a different way). The first code points 0–127 were
essentially normed (corresponding to ascii) while the
second half 128–255 would vary by holding different
accented characters to support a certain set of languages.

Each computer used one of these encodings when
storing or interpreting files and as long as two computers
used the same encoding it was (easily) possible to
exchange files between them and have them interpreted
and processed correctly.

But different computers may have used different
encodings and given that a computer file is simply a
sequence of bytes with no indication for which encoding
is intended, chaos could easily happen and has happened.
For example, the German word “Größe” (height) entered
on a German keyboard could show up as “GrŤàe” on a
different computer using a different encoding by default.

So in summmary the situation wasn’t at all good and
it was clear in the early nineties that LATEX 2ε (that was
being developed to provide a LATEX version usable across
the world) had to provide a solution to this issue.

The LATEX 2ε answer was the introduction of the
inputenc package [2] through which it is possible to

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2018, all rights reserved.

LATEX News #28

TUGboat, Volume 39 (2018), No. 1 49

provide support for multiple encodings. It also allows
to correctly process a file written in one encoding on a
computer using a different encoding and even supports
documents where the encoding changes midway.

Since the first release of LATEX 2ε in 1994, LATEX
documents that used any characters outside ascii in
the source (i.e. any characters in the range of 128–255)
were supposed to load inputenc and specify in which
file encoding they were written and stored. If the
inputenc package was not loaded then LATEX used a
“raw” encoding which essentially took each byte from
the input file and typeset the glyph that happened to
be in that position in the current font—something that
sometimes produces the right result but often enough
will not.

In 1992 Ken Thompson and Rob Pike developed the
UTF-8 encoding scheme which enables the encoding
of all Unicode characters within 8-bit sequences. Over
time this encoding has gradually taken over the world,
replacing the legacy 8-bit encodings used before. These
days all major computer operating systems use UTF-8
to store their files and it requires some effort to explicitly
store files in one of the legacy encodings.

As a result, whenever LATEX users want to use any
accented characters from their keyboard (instead of
resorting to \"a and the like) they always have to use

\usepackage[utf8]{inputenc}

in the preamble of their documents as otherwise LATEX
will produce gibberish.

The new default

With this release, the default encoding for LATEX files
has been changed from the “fall through raw” encoding
to UTF-8 if used with classic TEX or pdfTEX. The
implementation is essentially the same as the existing
UTF-8 support from \usepackage[utf8]{inputenc}.

The LuaTEX and X ETEX engines always supported
the UTF-8 encoding as their native input encoding, so
with these engines inputenc was always a no-op.

This means that with new documents one can assume
UTF-8 input and it is no longer required to always
specify \usepackage[utf8]{inputenc}. But if this line
is present it will not hurt either.

Compatibility

For most existing documents this change will be
transparent:

• documents using only ascii in the input file and
accessing accented characters via commands;

• documents that specified the encoding of their file
via an option to the inputenc package and then
used 8-bit characters in that encoding;

• documents that already had been stored in UTF-8
(whether or not specifying this via inputenc).

Only documents that have been stored in a legacy
encoding and used accented letters from the keyboard
without loading inputenc (relying on the similarities
between the input used and the T1 font encoding) are
affected.

These documents will now generate an error that
they contain invalid UTF-8 sequences. However, such
documents may be easily processed by adding the new
command \UseRawInputEncoding as the first line of the
file. This will re-instate the previous “raw” encoding
default.

\UseRawInputEncoding may also be used on the
command line to process existing files without requiring
the file to be edited

pdflatex ’\UseRawInputEncoding \input’ file

will process the file using the previous default encoding.
Possible alternatives are reencoding the file to UTF-8

using a tool (such as recode or iconv or an editor) or
adding the line

\usepackage[〈encoding〉]{inputenc}

to the preamble specifying the 〈encoding〉 that fits the
file encoding. In many cases this will be latin1 or
cp1252. For other encoding names and their meaning
see the inputenc documentation.

As usual, this change may also be reverted via
the more general latexrelease package mechanism, by
speciying a release date earlier than this release.

BOM: byte order mark handling

When using Unicode the first bytes of a file may be a, so
called, BOM character (byte order mark) to indicate the
byte oder used in the file. While this is not required with
UTF-8 encoded files (where the byte order is known) it
is nevertheless allowed by the standard and some editors
add that byte sequence to the beginning of a file. In the
past such files would have generated a “Missing begin
document” error or displayed strange characters when
loaded at a later stage.

With the addition of UTF-8 support to the kernel it is
now possible to identify and ignore such BOM characters
even before \documentclass so that these issues will no
longer be showing up.

A general rollback concept for packages and

classes

In 2015 a rollback concept for the LATEX kernel was
introduced. Providing this feature allowed us to make
corrections to the software (which more or less didn’t
happen for nearly two decades) while continuing to
maintain backward compatibility to the highest degree.

In this release we have now extended this concept to
the world of packages and classes which was not covered
initially. As the classes and the extension packages

LATEX News #28

50 TUGboat, Volume 39 (2018), No. 1

have different requirements compared to the kernel,
the approach is different (and simplified). This should
make it easy for package developers to apply it to their
packages and authors to use when necessary.

The documentation of this new feature is given in an
article submitted to TUGboat and also available from
our website [3].

Integration of remreset and chngcntr packages

into the kernel

With the optional argument to \newcounter LATEX
offers to automatically reset counters when some counter
is stepped, e.g., stepping a chapter counter resets the
section counter (and recursively all other heading
counters). However, what was until now missing was a
way to undo such a link between counters or to link two
counters after they have been defined.

This can be now be done with \counterwithin

and \counterwithout, respectively. In the past one
had to load the chngcntr package for this. For the
programming level we also added \@removefromreset

as the counterpart of the already existing \@addtoreset

command. Up to now this was offered by the remreset

package.

Testing for undefined commands

LATEX packages often use a test \@ifundefined to test
if a command is defined. Unfortunately this had the
side effect of defining the command to \relax in the
case that it had no definition. The new release uses
a modified definition (using extra testing possibilities
available in ε-TEX). The new definition is more natural,
however code that was relying on the side effect of the
command being tested being defined if it was previously
undefined may have to add \let\〈command〉\relax.

Changes to packages in the tools category

LATEX table columns with fixed widths

Frank published a short paper in TUGboat [4] on
producing tables that have columns with fixed widths.
The outlined approach using column specifiers “w” and
“W” has now been integrated into the array package.

Obscure overprinting with multicol fixed

A rather peculiar bug was reported on StackExchange
for multicol. If the column/page breaking was fully
controlled by the user (through \columnbreak) instead
of letting the environment do its job and if then more
\columnbreak commands showed up on the last page
then the balancing algorithm was thrown off track. As a
result some parts of the columns overprinted each other.

The fix required a redesign of the output routines
used by multicol and while it “should” be transparent in
other cases (and all tests in the regession test suite came
out fine) there is the off-chance that code that hooked
into the internals of multicol needs adjustment.

Changes to packages in the amsmath category

With this release of LATEX a few minor issues with
amsmath have been corrected.

Updated user’s guide

Furthermore, amsldoc.pdf, the AMS user’s guide
for the amsmath package [5], has been updated from
version 2.0 to 2.1 to incorporate changes and corrections
made between 2016 and 2018.

References

[1] Frank Mittelbach: New rules for reporting bugs in

the LATEX core software. In: TUGboat, 39#1, 2018.
https://www.latex-project.org/publications/

[2] Frank Mittelbach: LATEX 2ε Encoding

Interface — Purpose, concepts, and Open

Problems. Talk given in Brno June 1995.
https://www.latex-project.org/publications/

[3] Frank Mittelbach: A rollback concept for packages

and classes. Submitted to TUGboat.
https://www.latex-project.org/publications/

[4] Frank Mittelbach: LATEX table columns with fixed

widths. In: TUGboat, 38#2, 2017.
https://www.latex-project.org/publications/

[5] American Mathematical Society and The LATEX3
Project: User’s Guide for the amsmath package

(Version 2.1). April 2018. Available from
https://www.ctan.org and distributed as part of
every LATEX distribution.

LATEX News #28

TUGboat, Volume 39 (2018), No. 1 51

TEX.StackExchange cherry picking: expl3

Enrico Gregorio

Abstract

We present some examples of macros built with
expl3 in answer to users’ problems presented on
tex.stackexchange.com to give a flavor of the lan-
guage and describe its possibilities. Topics include
list printing, string manipulation, macro creation,
and graphics.

1 Introduction

My first answer on TEX.SX using expl3, the program-
ming language for the future LATEX3, appeared in
November, 2011 and a month later I issued the first
version of kantlipsum. As every regular of TEX.SX
knows, I like to use expl3 code for solving problems,
because I firmly believe in its advantages over tradi-
tional TEX and LATEX programming.

I’ll present some selected answers I have given
(sometimes with modified code), also making some
comparisons with traditional coding. Some objec-
tions to expl3 may be justified: it’s verbose, it needs
to load a few thousand lines of code. Yes, it’s verbose
and in my opinion this is one of its strengths: I don’t
think that \hb@xt@ is clearer and easier to interpret
than \hbox_to_wd:nn. Loading a few thousand lines
of code is done almost instantly on modern machines.

Using expl3 doesn’t free the user from knowing
something about macro expansion, because this is
how TEX works to begin with, but a big advantage
is that commonly used and often misunderstood
\expandafter tricks are (almost) never needed.

Some acquaintance with the language is needed
for reading this paper, but I think that having the
interface3 manual at hand would be sufficient for
removing most doubts.

2 List printing

Our first toy problem is to define a macro \ocamllist
that prints a list of items in the style of OCaml. Thus
we want \ocamllist{} to print opening and clos-
ing brackets with a thin space in between, while
\ocamllist{aa,bb} should print [aa; bb].1

Such a command should be flexible enough to
allow recursive calls. There are several possible solu-
tion and the one by Petr Oľsák is, as usual, brilliant:

\def\ocamllist#1{\ocamllistA #1,,}

\def\ocamllistA#1,{[#1\ocamllistB}

\def\ocamllistB#1,{%

\ifx,#1,#1]%

\else

;#1\expandafter\ocamllistB

1 https://tex.stackexchange.com/questions/360958/

\fi

}

$\ocamllist{}$\par

\ocamllist{aa}\par

$\ocamllist{aa,bb}$\par

$\ocamllist{aa,\ocamllist{bb,cc},dd}$

\end

If we try it, the output is almost as required; it only
lacks the thin space:

[]
[aa]
[aa; bb]
[aa; [bb; cc]; dd]

Writing such code, however, requires mastery of the
low-level TEX language. Can we do it without having
to define three macros for doing such a thing? And,
most important, using a more natural language?
This is, of course, where expl3 comes into the picture.

\ExplSyntaxOn

\NewDocumentCommand{\ocamllist}{m}

{

[

\clist_set:Nn \l_hongxu_ocamllist_clist {#1}

\clist_if_empty:NTF \l_hongxu_ocamllist_clist

{ \, }

{ \clist_use:Nn \l_hongxu_ocamllist_clist {;} }

]

}

\clist_new:N \l_hongxu_ocamllist_clist

\ExplSyntaxOff

Yes, one needs to learn a bunch of new names for the
basic functions, but there are several advantages. For
instance, suppose we want to extend the macro so it
accepts a star variant for automatically sized fences
and an optional command for manually choosing the
size of the brackets. Very easy with expl3:

\ExplSyntaxOn

\NewDocumentCommand{\ocamllist}{sO{}m}

{

\IfBooleanTF{#1}{\left[}{\mathopen{#2[}}

\clist_set:Nn \l_hongxu_ocamllist_clist {#1}

\clist_if_empty:NTF \l_hongxu_ocamllist_clist

{ \, }

{ \clist_use:Nn \l_hongxu_ocamllist_clist {;} }

\IfBooleanTF{#1}{\right]}{\mathclose{#2]}}

}

\clist_new:N \l_hongxu_ocamllist_clist

\ExplSyntaxOff

Now the (silly) input

$\ocamllist{}$\par

\ocamllist{aa}\par

$\ocamllist[\Big]{aa,bb}$\par

$\ocamllist*{\sum\limits_{i=1}^n a_i,bb,cc}$\par

$\ocamllist[\big]{aa,\ocamllist{bb,cc},dd}$

will produce

TEX.StackExchange cherry picking: expl3

52 TUGboat, Volume 39 (2018), No. 1

[]
[aa]
[

aa; bb
]

[

n
∑

i=1

ai; bb; cc

]

[

aa; [bb; cc]; dd
]

What’s happening? In the extended macro, s
stands for an optional *, whose presence can be tested
with \IfBooleanTF which does the necessary branch-
ing. The O{} bit specifies an optional argument with
empty default value.

Now let’s analyze the bulk of the macro. With
\clist_set:Nn we set a variable (of type clist) to
the specified argument. This is not just the same
as doing a standard \def, because the input is ‘nor-
malized’; for instance, leading and trailing spaces in
the items are removed. This would not be a prob-
lem here, as the macro is called in math mode, but
it could be for macros called in text mode. With
\clist_use:Nn the contents of the clist is deliv-
ered with the specified separator between items. Not
adding a semicolon after the last item is cleverly done
by the plain TEX macros above, while with expl3 we
need not worry about it. It should also be clear that
\clist_if_empty:NTF checks whether the variable
contains an empty list or not.

For those readers who are unacquainted with
expl3 syntax, let’s recall the main facts. A function

in the language has a name consisting of three parts:

1. a module name, here hongxu, that acts as a sort
of “name space” indicator;

2. a proper name, which consists of any string of
characters describing the function’s action, with
parts separated by underscores;

3. a signature, after the mandatory colon, that
specifies the arguments the function expects.

When reading expl3 code, one can immediately parse
the arguments to a function, because of the signature.
The main argument types are

• N, for arguments consisting of a single token,
usually a control sequence, but also a character;

• n, for standard braced arguments;

• T and F, for the true and false branch of a con-
ditional function, but they’re syntactically the
same as n, so the actual arguments should be
braced.

There are others, and we’ll see some of them in
action.

Names of variables follow a similar scheme; a
name consists of

1. a prefix, which should be l (local), g (global) or
c (constant);

2. a module name as with functions;

3. a proper name;

4. the variable’s type.

Sticking to this convention helps in reading and de-
bugging code.

A slightly different approach for this problem
would be with

\seq_set_split:Nnn \l_hongxu_ocamllist_seq { , } {#1}

\seq_if_empty:NTF \l_hongxu_ocamllist_seq

{ \, }

{ \seq_use:Nn \l_hongxu_ocamllist_seq {;} }

Here we use another data type, namely seq (se-
quence); the first command splits the input at com-
mas, removing leading and trailing spaces from the
items. An input such as \ocamllist{,} would be
treated differently by the two versions: with clist

it would produce an empty clist because of nor-
malization; with seq the sequence would have two
items. The choice depends on the needs at hand.

2.1 Two-row matrix input

A similar problem is typesetting a two-row matrix
with the entries specified as comma-separated pairs
firstrow/secondrow,2 so the input 1/5, 2/6 means
the matrix 1 2

5 6
. Cleverly written recursive macros

are possible, but here I’ll present an expl3 version.

\documentclass{article}

\usepackage{amsmath}

\usepackage{xparse}

\setcounter{MaxMatrixCols}{20} % or maybe more

\ExplSyntaxOn

\NewDocumentCommand{\twolinematrix}{O{}m}

{

\twoline_matrix:nn { #1 } { #2 }

}

\seq_new:N \l__twoline_i_seq

\seq_new:N \l__twoline_ii_seq

\cs_new_protected:Nn \twoline_matrix:nn

{

\seq_clear:N \l__twoline_i_seq

\seq_clear:N \l__twoline_ii_seq

\clist_map_function:nN { #2 } \twoline_add:n

\begin{#1matrix}

\seq_use:Nn \l__twoline_i_seq { & }

\\

\seq_use:Nn \l__twoline_ii_seq { & }

\end{#1matrix}

}

\cs_new:Nn \twoline_add:n

{

__twoline_add:w #1 \q_stop

}

\cs_new_protected:Npn __twoline_add:w #1/#2 \q_stop

{

\seq_put_right:Nn \l__twoline_i_seq { #1 }

\seq_put_right:Nn \l__twoline_ii_seq { #2 }

2 https://tex.stackexchange.com/questions/393053/

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 53

}

\ExplSyntaxOff

\begin{document}

\[

\twolinematrix{1/6, 2/7, 3/8, 4/9, 5/10}

\qquad

\twolinematrix[b]{

1/6, 2/7, 3/8, 4/9, 5/10,

6/11, 7/12, 8/13, 9/14, 10/15

}

\]

\end{document}

It is recommended to transfer action to an expl3

command as soon as the code is more than a few
lines, as we do here. The optional argument defaults
to empty; this exploits the uniform syntax of the
matrix-like environments of amsmath, so we can use
b for brackets or p for parentheses and so on.

The main function clears two seq variables and
proceeds to repopulate them. Since the argument
is a comma-separated list, it’s convenient to use
\clist_map_function:nN that passes each item to
the specified function, in this case \twoline_add:n,
which will add the parts to the two sequences. The
function separates the two parts by using an auxil-
iary function __twoline_add:w, whose definition
is clear: the first argument is whatever precedes the
slash, the second argument is what’s behind it. The
“quark” \q_stop is customary here, the analog of
\@nil in the LATEX kernel.

After having populated the two sequences, we
can deliver them to form the two rows of the ma-
trix. Since \seq_use:Nn delivers its output in one
swoop, there’s no problem of already being in an
alignment: typesetting will only start when the ac-
tion of \seq_use:Nn has ended.

You might wonder why the functions are de-
fined with the protected variant of \cs_new. It’s
because these functions perform assignments, in this
case adding items to sequences, so they should not
be expanded in a full expansion context. The un-
adorned \cs_new:Nn function should only be used
for functions that can be fully expanded. This helps
in avoiding the ever-loved fragile commands.

Another point is the declaration of function pa-
rameters: \cs_new_protected:Nn can deduce the
parameter text from the function name being defined.
On the other hand, \cs_new_protected:Npn needs
the parameter text to be fully spelled out. In the
case of __twoline_add:w it is necessary because
we use delimited arguments; the signature is thus w,
for weird.

It would take too long to fully explain the double
underscores; the idea is that functions or variables
whose names start with a double underscore are pri-

vate, whereas the others are public. For personal

macros the distinction is a bit foggy, but it becomes
important for package code: package writers are al-
lowed to use the public functions of another package,
but not the private ones, under the assumption that
the syntax and action of the public functions are
stable, whereas the private functions realizing the
actual implementation may vary with time.

If the first row always has a sequence of integers
in the natural order, we can simplify the input:

\NewDocumentCommand{\twolinematrix}{O{}m}

{

\twoline_matrix:nn { #1 } { #2 }

}

\clist_new:N \l__twoline_row_clist

\cs_new_protected:Nn \twoline_matrix:nn

{

\clist_set:Nn \l__twoline_row_clist { #2 }

\begin{#1matrix}

1 % start at 1

\use:x

{

\int_step_function:nnnN

{ 2 }

{ 1 }

{ \clist_count:N \l__twoline_row_clist }

__twoline_addindex:n

}

\\

\clist_use:Nn \l__twoline_row_clist { & }

\end{#1matrix}

}

\cs_new:Nn __twoline_addindex:n

{

& #1

}

\ExplSyntaxOff

The calls would then be like

\twolinematrix{6, 7, 8, 9, 10}

\twolinematrix[b]{

6, 7, 8, 9, 10,

11, 12, 13, 14, 15

}

Here we exploit the fact we can access the number of
items in a stored clist so we can easily generate the
tokens &2&3&...&n by fully expanding with \use:x

the function \int_step_function:nnnN. I leave fill-
ing in the details as an exercise to the reader. Time
to move on.

3 String manipulation

LATEX users sometimes have weird ideas like setting
the title of a document based on the file name.3 For
instance, from a file name such as

Chapter-Name_of_Section.tex

the document should be titled

Chapter: Name of Section

3 https://tex.stackexchange.com/questions/394489/

TEX.StackExchange cherry picking: expl3

54 TUGboat, Volume 39 (2018), No. 1

Not that I recommend such an approach, but at
least it provides an occasion for describing some
useful expl3 functions. We need to replace, in an
expandable way, the hyphen with a colon plus space,
and underscores with spaces.

expl3 defines \c_sys_jobname_str as its alias
for the TEX primitive \jobname; we now make our
acquaintance with another data type, namely str

(string). The tokens in a str variable are stored
‘literally’.4 We also see here an example of a constant,
that is, a variable whose value should never change.

Our approach is to examine the tokens in the
file name one by one and output a replacement if
needed:

\ExplSyntaxOn

\NewExpandableDocumentCommand{\massagedjobname}{}

{

\str_map_function:NN \c_sys_jobname_str

\ddas_jobname:n

}

\cs_new:Nn \ddas_jobname:n

{

\str_case:nnF { #1 }

{

{ - }{ :~ }

{ _ }{ ~ }

}

{ #1 }

}

\ExplSyntaxOff

Then one can do \title{\massagedjobname}. We
pass each token to \ddas_jobname:n, which does the
comparison: if the token is in the list in the second ar-
gument, then the corresponding replacement is done;
in case of no match, the F branch is followed and,
in this case the token itself is output. As all kernel
function with TF branching, also \str_case:nnTF

actually comes in four flavors

\str_case:nnTF

\str_case:nnT

\str_case:nnF

\str_case:nn

The true branch is followed when there is a match,
but here we don’t need it, so we can omit it using
the third variant.

Again, there are classical TEX methods, but
this has the big advantage of not requiring nested
conditionals which would become very cumbersome
when more than a couple of replacements are needed.

One might object that what we get doesn’t have
the correct category codes. Here’s a different ap-
proach that also resets letters to category code 11.

\ExplSyntaxOn

\str_new:N \g_ddas_jobname_str

\NewDocumentCommand{\computetitle}{m}

4 For TEX hackers: as characters with category code 12,
except for spaces that have their usual category code of 10.

{

\str_gset_eq:NN

\g_ddas_jobname_str

\c_sys_jobname_str

\str_greplace_all:Nnn

\g_ddas_jobname_str

{ - } { :~ }

\str_greplace_all:Nnn

\g_ddas_jobname_str

{ _ } { ~ }

\tl_gset_rescan:Nnx

#1

{ }

{ \str_use:N \g_ddas_jobname_str }

}

\ExplSyntaxOff

\computetitle{\massagedjobname}

This is not expandable, but that is not a problem
here, since what we need is a macro that holds the ti-
tle. We perform the replacements in a more efficient
fashion and then rescan the string so that the right
category codes are assigned. This has to be done
outside the scope of \ExplSyntaxOn, where the colon
is a letter and the space is ignored. Global assign-
ments are used, because the macro should be globally
available; it wouldn’t make a big difference here, but
following a scheme is always best. The working of
\str_greplace_all:Nnn should be clear from the
function’s name, and the syntax is as uniform as
possible: str refers to the ‘string’ module, greplace
stands for ‘global replace’; the first argument is the
str variable in which we want to do the replace-
ment, the second argument is the search string, and
the final one is the replacement string. There’s a
similar set of functions for tl variables. The sec-
ond argument to \tl_gset_rescan:Nnn is for local
assignments of category codes, but we need none.

Wait! Why is it \tl_gset_rescan:Nnx? This
is a great feature of expl3. We can define variants

of already existing functions. The argument type
x means: a normal braced argument that is fully
expanded before being passed to the main func-
tion. The expl3 kernel provides a definition for
\tl_gset_rescan:Nnn and then has

\cs_generate_variant:Nn \tl_gset_rescan:Nnn { Nnx }

Thus, suppose we have a macro \foo that takes
two arguments and we want to call it by first fully
expanding the second argument. The classical ap-
proach would be:

\newcommand{\fooexpii}[2]{%

\edef\@tempa{#2}%

\expandafter\fooexpii@aux\expandafter{\@tempa}{#1}%

}

\newcommand{\fooexpii@aux}[2]{%

\foo{#2}{#1}%

}

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 55

Indeed, the variant defined above does essentially
this, but the nice thing is that we don’t need to know
the details, just enjoy the result.

3.1 Colorizing capital letters

Another funny request is to change the color of capi-
tal letters in a given token list.5 For this a different
approach is needed, with regular expressions: expl3
has a powerful regular expression engine, tailored for
the special quirks of TEX.

\documentclass{article}

\usepackage{xparse}

\usepackage{xcolor}

\ExplSyntaxOn

\NewDocumentCommand{\colorcap}{ O{blue} m }

{

\sheljohn_colorcap:nn { #1 } { #2 }

}

\tl_new:N \l__sheljohn_colorcap_input_tl

\cs_new_protected:Npn \sheljohn_colorcap:nn #1 #2

{

% store the string in a variable

\tl_set:Nn \l__sheljohn_colorcap_input_tl { #2 }

\regex_replace_all:nnN

% search a capital letter (or more)

{ ([A-Z]+ | \cC.\{?[A-Z]+\}?) }

% replace the match with \textcolor{#1}{<match>}

{ \c{textcolor}\cB\{#1\cE\}\cB\{\1\cE\} }

\l__sheljohn_colorcap_input_tl

\tl_use:N \l__sheljohn_colorcap_input_tl

}

\ExplSyntaxOff

\begin{document}

\colorcap{\‘Once \r{U}pon a Time}

\colorcap[red]{Once Upon a Time}

\end{document}

We store the input in a tl (token list) variable and
then proceed to search for capital letters with [A-Z]+

(one or more) or sequences formed by

1. any control sequence, denoted by \cC.,

2. an optional open brace, \{?,

3. one or more capital letters, and

4. an optional close brace, \}?.

A match is replaced by \textcolor{#1}{〈match〉}.
The syntax of the replacement text is admittedly
peculiar, but it’s necessary for getting the correct
tokens with the likewise peculiar TEX properties.
Our output is:

Ònce Ůpon a Time
Once Upon a Time

Variables of type tl are simply containers of TEX
tokens.

5 https://tex.stackexchange.com/questions/173209/

While tokens in a tl variable are usually stored
with their category code, we can rescan them. An
example where this is useful is for splitting Windows-
style paths, which can use the backslash instead of
the slash of other operating systems.6

3.2 Menu sequences

We’d like to be able to say \menu{1,2,3,4} and
treat specially the first and last item, with provision
for a single item. The macro should be able to specify
a different separator, for cases such as

\menu[/]{C:/A/B/C}

\menu*{C:\A\B\C}

The *-variant will use the backslash as separator.
The code is rather longish, but instructive.

\documentclass{article}

\usepackage{xparse}

\ExplSyntaxOn

% user level commands

\NewDocumentCommand{\setmenuseparator}{ m }

{

\tobi_menu_setsep:n { #1 }

}

\NewDocumentCommand{\menu}{ s o m }

{

\group_begin:

\IfValueT{#2}{ \tobi_menu_setsep:n { #2 } }

\IfBooleanTF{#1}

{

\tobi_menu_process_rescan:n { #3 }

}

{

\tobi_menu_process:n { #3 }

}

\group_end:

}

% variables

\seq_new:N \l_tobi_menu_seq

\tl_new:N \l_tobi_menu_sep_tl

\tl_set:Nn \l_tobi_menu_sep_tl { , } % default

\tl_new:N \l_tobi_first_tl

\tl_new:N \l_tobi_last_tl

\tl_new:N \l_tobi_input_tl

% internal functions

\cs_new:Nn \tobi_menu_setsep:n

{

\tl_set:Nn \l_tobi_menu_sep_tl { #1 }

}

\cs_new:Npn \tobi_menu_process:n #1

{

\seq_set_split:NVn \l_tobi_menu_seq

\l_tobi_menu_sep_tl

{ #1 }

\tobi_premenu:

\int_case:nnF { \seq_count:N \l_tobi_menu_seq }

{

{ 0 } { EMPTY }

6 https://tex.stackexchange.com/questions/44961/

TEX.StackExchange cherry picking: expl3

56 TUGboat, Volume 39 (2018), No. 1

{ 1 } { \tobi_singlemenu:n { #1 } }

}

{

\seq_pop_left:NN \l_tobi_menu_seq \l_tobi_first_tl

\seq_pop_right:NN \l_tobi_menu_seq \l_tobi_last_tl

\tobi_firstmenu:V \l_tobi_first_tl

\seq_map_function:NN

\l_tobi_menu_seq

\tobi_midmenu:n

\tobi_lastmenu:V \l_tobi_last_tl

}

\tobi_postmenu:

}

\cs_new_protected:Npn \tobi_menu_process_rescan:n #1

{

\group_begin:

\tl_set_eq:NN \l_tobi_menu_sep_tl \c_backslash_str

\tl_set_rescan:Nnn \l_tobi_input_tl

{ \char_set_catcode_other:N \\ }

{ #1 }

\tobi_menu_process:V \l_tobi_input_tl

\group_end:

}

\cs_generate_variant:Nn \seq_set_split:Nnn { NV }

\cs_generate_variant:Nn \tobi_menu_process:n { V }

% customize to suit

\cs_new_protected:Nn \tobi_premenu:

{ \fbox{\strut pre} }

\cs_new_protected:Nn \tobi_postmenu:

{ \fbox{\strut post} }

\cs_new_protected:Nn \tobi_firstmenu:n

{ \fbox{\strut #1~(first)} }

\cs_generate_variant:Nn \tobi_firstmenu:n { V }

\cs_new_protected:Nn \tobi_midmenu:n

{ \fbox{\strut #1~(mid)} }

\cs_new_protected:Nn \tobi_lastmenu:n

{ \fbox{\strut #1~(last)} }

\cs_generate_variant:Nn \tobi_lastmenu:n { V }

\cs_new_protected:Nn \tobi_singlemenu:n

{ \fbox{\strut #1~(single)} }

\ExplSyntaxOff

\begin{document}

\menu{1,2,3,4}\par\medskip

\menu{Single Element}\par\medskip

\menu{A,B,C,D,E}\par\medskip

\menu[/]{A/B/C/D/E}\par\medskip

\setmenuseparator{/}

\menu{C:/A/B/C}\par\medskip

\menu*{C:\A\B\C}

\end{document}

We start off with an interesting application of
input splitting; we can set a seq variable to the
items we obtain from breaking the input at the
specified sequence of tokens. The function for this
is \seq_set_split:Nnn, whose second argument is
the chosen separator. However, in this application
the separator is variable, so we define a variant

\seq_set_split:NVn. The V argument type means
“brace the contents of the specified variable and pass
it as if it were a normal argument”. In classical terms
the action is similar to

\expandafter\foo\expandafter\xyz

\expandafter{\baz}{arg}

where \foo is the three-argument macro and \baz

is a container.
We then branch according to the number of

items in the sequence. When we have more than
one item, we separate off the first and the last to
receive special treatment: with \seq_pop_left:NN

we remove the leftmost item from the seq and store
it in a tl variable. Then we process the first item,
the middle items, and the last. Again, defining a
variant is handy for processing the special items: we
define a function for the explicit argument and then
a V variant thereof.

For the *-variant, the input is first rescanned,
making the backslash a printable character, and the
separator is set to \ using \c_backslash_str, a pre-
defined string. Then \tl_menu_process:V is used so
as to ‘recycle’ the standard function without having
to bother with \expandafter.

Everything is done in a group in order to allow
local setting of the separator, which can also be
set (conforming to the standard scoping rules) by
\setmenuseparator. Here’s the output:

pre 1 (first) 2 (mid) 3 (mid) 4 (last) post

pre Single Element (single) post

pre A (first) B (mid) C (mid) D (mid) E (last) post

pre A (first) B (mid) C (mid) D (mid) E (last) post

pre C: (first) A (mid) B (mid) C (last) post

pre C: (first) A (mid) B (mid) C (last) post

3.3 Doubling backslashes in auxiliary file

Another example of input manipulation is the re-
quest for writing to an auxiliary file, but doubling
all backslashes, for feeding to an external program.7

\documentclass{article}

\usepackage{xparse}

\ExplSyntaxOn

\NewDocumentCommand{\setupstream}{ O{default} m }

{

\iow_new:c { g_mblanc_dbswrite_#1_iow }

\iow_open:cn { g_mblanc_dbswrite_#1_iow } { #2 }

\AtEndDocument

{

7 https://tex.stackexchange.com/questions/402011/

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 57

\iow_close:c { g_mblanc_dbswrite_#1_iow }

}

}

\NewDocumentCommand{\dbswrite}{ s O{default} m }

{

\IfBooleanTF { #1 }

{% argument is a macro

\mblanc_dbswrite:nV { #2 } #3

}

{% argument is explicit

\mblanc_dbswrite:nn { #2 } { #3 }

}

}

\tl_new:N \l__mblanc_dbswrite_text_tl

\cs_new_protected:Nn \mblanc_dbswrite:nn

{

\tl_set:Nx

\l__mblanc_dbswrite_text_tl

{ \tl_to_str:n { #2 } }

\tl_replace_all:Nxx \l__mblanc_dbswrite_text_tl

{ \c_backslash_str }

{ \c_backslash_str \c_backslash_str }

\iow_now:cV

{ g_mblanc_dbswrite_#1_iow }

\l__mblanc_dbswrite_text_tl

}

\cs_generate_variant:Nn \mblanc_dbswrite:nn { nV }

\cs_generate_variant:Nn \tl_replace_all:Nnn { Nxx }

\cs_generate_variant:Nn \iow_now:Nn { cV }

\ExplSyntaxOff

\setupstream{\jobname.TESTFILE}

\setupstream[secondary]{\jobname.TESTFILESEC}

\newcommand{\test}{%

Here are my contents: \UndefinedMacro and \\%

}

\begin{document}

\dbswrite{%

Here are my contents:

\UndefinedMacro and \\

}

\dbswrite[secondary]{%

Here are my contents:

\UndefinedMacro and \\%

}

\dbswrite*{\test}

\dbswrite*[secondary]{\test}

\end{document}

We find here still another data type, iow (input/
output write). This is a good place to discuss a
nice feature of expl3 regarding input and output
streams. Since conventional TEX engines have a very
limited number of streams (16), a new stream is
allocated from a pool and when the stream is closed
that stream is available again, in contrast to what

happens in current LATEX (and plain TEX). Here
this is irrelevant, as the stream is only closed at the
end of the document, but it can be useful in other
applications.

With \iow_new:N we can allocate a new write
stream, but here we may need more than one, with
a symbolic name. Thus we use a variant with the c
type, so that the braced argument is turned into a
control sequence, the counterpart of the classical

\expandafter\foo\csname baz\endcsname

This way, we can easily use a variable name. The op-
tional argument defaults to default, but we can set
up as many as we want. Thus the macro \dbswrite

takes an optional argument for the symbolic name
of the stream, and also has a *-variant for the case
when we want to pass a tl argument (here a classical
parameterless macro).

The argument is first so-called “stringified” with
\tl_to_str:n, then backslashes are doubled with
\tl_replace_all:Nxx, and finally, the contents are
written out. The expl3 kernel doesn’t provide every
possible variant, so we need to do

\cs_generate_variant:Nn \tl_replace_all:Nnn {Nxx}

\cs_generate_variant:Nn \iow_now:Nn {cV}

It’s no problem if some other code, maybe from
a package we load, does the same, because an al-
ready existing variant will cause the code above to
do nothing and the variants are defined in a uni-
form way. Similarly we need \mblanc_dbswrite:nV

for the *-variant. Here we can see why we want
\NewDocumentCommand to generally do only “argu-
ment parsing and normalization” and then pass con-
trol to an internal public function: we just need to
concentrate on \mblanc_dbswrite:nn and a variant
will cope with the other case.

The generated files will be identical and contain

Here are my contents: \\UndefinedMacro and \\\\

Here are my contents: \\UndefinedMacro and \\\\

4 Macro factory

In several cases one has to build several macros fol-
lowing a certain scheme. The mapping facilities of
expl3 help in writing compact code.

The first example is about defining macros that
expand to the items in a given list.8 To begin, from
\DefinitionVariables{abc,def} we’d like to de-
fine \variableI and \variableII expanding to abc
and def respectively. Here’s the code:

\NewDocumentCommand{\DefinitionVariables}{m}

{

\int_zero:N \l_tmpa_int

\clist_map_inline:nn { #1 }

{

8 https://tex.stackexchange.com/questions/367335/

TEX.StackExchange cherry picking: expl3

58 TUGboat, Volume 39 (2018), No. 1

\int_incr:N \l_tmpa_int

\tl_clear_new:c

{

variable \int_to_Roman:n { \l_tmpa_int }

}

\tl_set:cn

{

variable \int_to_Roman:n { \l_tmpa_int }

}

{ ##1 }

}

}

Actually, we’re slightly abusing the language for
defining a ‘user level’ macro with (a variant of)
\tl_set:Nn.

The given list is mapped by passing each item
to the second argument, where the current item is
referred to as #1; here the hash mark needs to be
doubled because we’re in the body of a definition.
Compare this with the standard \@for cycle, where
the current item is stored in a macro, which typically
needs to be expanded, often in an awkward way.

We can avoid allocating a new int (integer)
variable and use the scratch one provided by the
kernel. An alternative way could be

\NewDocumentCommand{\DefinitionVariables}{m}

{

\int_step_inline:nnnn

{ 1 } % start

{ 1 } % step

{ \clist_count:n { #1 } } % end

{

\tl_clear_new:c

{

variable \int_to_Roman:n { ##1 }

}

\tl_set:cx

{

variable \int_to_Roman:n { ##1 }

}

{ \clist_item:nn { #1 } { ##1 } }

}

}

but this is less efficient because the clist needs to
be scanned at each step. However, this is a nice way
to show how we can do integer-based cycles.

4.1 Symbol abbreviation macro sets

A possibly better example of a macro factory is
the following: we want to define \CC to stand for
\mathbb{C} and also \cS to stand for \mathcal{S}.
Of course we’d like to add other similar symbols with
as little burden as possible.9

\ExplSyntaxOn

\NewDocumentCommand{\makeabbrev}{mmm}

{

\yoruk_makeabbrev:nnn { #1 } { #2 } { #3 }

}

\cs_new_protected:Nn \yoruk_makeabbrev:nnn

9 https://tex.stackexchange.com/questions/207985/

{

\clist_map_inline:nn { #3 }

{

\cs_new_protected:cpn { #2 } { #1 { ##1 } }

}

}

\ExplSyntaxOff

\makeabbrev{\mathbb}{#1#1}{C,N,Q,Z,D,R,T}

\makeabbrev{\mathcal}{c#1}{A,B,C,S}

Tricky code, isn’t it? If we try it, we’ll find that \CC
indeed expands to \mathbb{C}. The trick is that
when #2 is picked up, the hash marks are doubled
(this is a general TEX feature). When performing
each cycle in the first call of \makeabbrev, what TEX
sees is

\cs_new_protected:cpn { #1#1 } { \mathbb { #1 } }

(because double hash marks are reduced to single
during macro expansion) and, when the current item
is C, this becomes

\cs_new_protected:cpn { CC } { \mathbb{C} }

which is exactly what we need. Here we must use the
:cpn signature for \cs_new_protected because the
macro we’re defining has no signature itself, so the
(empty) parameter text is mandatory, as it cannot
be deduced. As before, c stands for ‘make a control
sequence out of the argument’.

What if we wanted to define \AA to \ZZ in one
fell swoop and maybe also \abf to \zbf to stand for
\mathbf{a} and so on? We can use the command
\int_step_inline:nnnn to populate a clist and
then do the same; a check whether we’re redefining
an existing control sequence is added as otherwise
we’d get errors for \AA and \SS.

\ExplSyntaxOn

\NewDocumentCommand{\makeabbreviations}{mmmm}

{% #1 = wrapper macro

% #2 = template

% #3 = starting letter

% #4 = ending letter

\clist_clear:N \l_tmpa_clist

\int_step_inline:nnnn

{ ‘#3 } % start

{ 1 } % step

{ ‘#4 } % end

{% populate a clist

\clist_put_right:Nx

\l_tmpa_clist

{ \char_generate:nn { ##1 } { 12 } }

}

\clist_map_inline:Nn \l_tmpa_clist

{

\cs_if_exist:cTF { #2 }

{

\msg_term:n

{

Not~redefining~\c_backslash_str#2

}

}

{

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 59

\cs_new_protected:cpn { #2 } { #1 { ##1 } }

}

}

}

\ExplSyntaxOff

\makeabbreviations{\mathbb}{#1#1}{A}{Z}

\makeabbreviations{\mathbf}{#1bf}{a}{z}

In the log file and on the console we’d see

* Not redefining \AA

* Not redefining \SS

5 Graphics

I’d like to end this showcase with some new fea-
tures of expl3 regarding graphic inclusion. The team
(primarily Joseph Wright) is currently working on a
set of APIs for the graphics driver meant to imple-
ment the same APIs as PGF, with different names,
of course.

Some basic calls are already provided by the
current kernel (release of 21 February, 2018, at this
writing).

A funny question about printing numbers in
the style required by the Soviet Union postal service
appeared in October 2017.10 These numerals look
like this:

The idea is to use another expl3 data type,
namely prop (property list). A property list is a
container where data is identified by a key, in this
case the digit. We can extract an item, typically
consisting of code, by using its key.

So we start with

\prop_new:N \g_torcli_sovietdigits_prop

\prop_gput:Nnn \g_torcli_sovietdigits_prop { 0 }

{

〈code for 0〉
}

and so on for the other digits. Then we define an
interface

\NewDocumentCommand{\postalcode}{O{}m}

{

\mbox

{

\keys_set:nn { torcli/sovietdigits } { #1 }

\torcli_sovietdigits_print:n { #2 }

}

}

10 https://tex.stackexchange.com/questions/394616/

and now it’s down to using the code for the various
digits stored in the prop. I’ll not go into the details
of the key-value interface, suffice it to say that the
code is defined in terms of some parameters, using
the new LATEX3 graphics commands to draw the
necessary lines.

In the fully expl3 version, the code for 0 and 6 is

\prop_gput:Nnn \g_sovietdigits_prop { 0 }

{

__sovietdigits_moveto:nn {0}{0}

__sovietdigits_lineto:nn {1}{0}

__sovietdigits_lineto:nn {1}{2}

__sovietdigits_lineto:nn {0}{2}

\driver_draw_closestroke:

}

\prop_gput:Nnn \g_sovietdigits_prop { 6 }

{

__sovietdigits_moveto:nn {1}{2}

__sovietdigits_lineto:nn {0}{1}

__sovietdigits_lineto:nn {0}{0}

__sovietdigits_lineto:nn {1}{0}

__sovietdigits_lineto:nn {1}{1}

__sovietdigits_lineto:nn {0}{1}

\driver_draw_stroke:

}

where the functions __sovietdigits_moveto:nn

and __sovietdigits_lineto:nn are simply syn-
tactic sugar around the basic calls:
% Syntactic sugar

\cs_new_protected:Nn __sovietdigits_moveto:nn

{

\driver_draw_moveto:nn

{ #1 \l_sovietdigits_width_dim }

{ #2 \l_sovietdigits_width_dim }

}

\cs_new_protected:Nn __sovietdigits_lineto:nn

{

\driver_draw_lineto:nn

{ #1 \l_sovietdigits_width_dim }

{ #2 \l_sovietdigits_width_dim }

}

Happy LATEX3ing!

⋄ Enrico Gregorio
Dipartimento di Informatica
Università di Verona
and
LATEX Team
enrico.gregorio@univr.it

TEX.StackExchange cherry picking: expl3

60 TUGboat, Volume 39 (2018), No. 1

Three-dimensional graphics with
TikZ/PSTricks and the help of GeoGebra

Luciano Battaia

Abstract

In this article we consider the opportunity of using
dynamic geometry software, such as GeoGebra, to
allow easy exporting of three-dimensional geometric
pictures, with subsequent 2D parallel projection, in
PGF/TikZ or PSTricks code. The help of software like
GeoGebra considerably simplifies the production of
very complex pictures in LATEX code, requiring only a
basic knowledge of PGF/TikZ or PSTricks languages
and taking advantage of a substantially mouse driven
program. All examples and sample code here are in
PGF/TikZ, but almost nothing changes if one prefers
PSTricks.

1 Introduction

LATEX users, particularly those writing scientific pa-
pers, have always had a need for high-quality vector
graphics, including labels, that fit the style of the
rest of their documents.

There is no special problem in the case of two-
dimensional graphics, and the two most widespread
tools PSTricks and PGF/TikZ (that from now on
will only be mentioned merely as TikZ), together
with their derived packages, solve almost every prob-
lem very well. As Claudio Beccari has shown [2],
LATEX’s basic picture environment is sufficient for
many situations.

Things change substantially if we are interested
in three-dimensional graphics. Plots of two-variable
functions and of various kinds of surfaces can easily
be handled using dedicated packages, for instance
pst3dplot or pgfplots. Also, for geometric figures
some very interesting packages are available, for ex-
ample pst-solides3d or pst-3d in the PSTricks family
or tikz-3dplot in the TikZ family, but in all cases a
rather deep knowledge of programming techniques
in PSTricks or TikZ is needed and, in our opinion,
this is not at all easy for the average user.

External programs that produce PSTricks or
TikZ codes can help, for instance Sketch by Eugene
Ressler (see for example [3]) and TEXgraph by Patrick
Fradin (texgraph.tuxfamily.org/). The last one
in particular is very powerful and can also produce
POV-Ray code, but, again, it is not within the reach
of most users. Almost the same remarks apply to
Asymptote, whose code can be directly included in a
LATEX source through the asymptote package.

An interesting and detailed introduction to the
problem of producing three-dimensional graphics

with TikZ can be found in an article by Keith Wol-
cott [5]. It was in fact the reading of this article
that led us to study the problem in order to find
a more accessible solution. Wolcott’s article ends
with a figure which shows only the partial solution of
what had been the main purpose of the project: the
drawing of two spheres and their circle of intersection.
The author himself points out that the figure needs
more work.

This is the reason why we begin this article
with figure 1, which exactly reaches Wolcott’s goal.
Explanations on how we obtain it will be given later,
but we immediately point out that our approach to
the problem is completely different from Wolcott’s.

Figure 1: The intersection of two spheres with the
circle of intersection

For the sake of completeness, we mention that
a slightly different version of this article, in Italian,
can be found in [1].

2 The coming of GeoGebra on the scene

For educational reasons we have been using GeoGebra

for a long time, both because its non-commercial use
is free and because its basic use is extremely simple.
With reference to the problem we are dealing with,
the interesting thing is the possibility of producing
complex two-dimensional figures and exporting them
in PSTricks or TikZ code, that can then be copied
and pasted directly into a LATEX source with only
very limited adaptations, mainly regarding correct
label positioning. The required knowledge of LATEX
packages is minimal and manageable for even in-
experienced users. In short, anyone can produce
even complex figures to be included in LATEX docu-
ments with a WYSIWYG technique and extensively
using the mouse. This seems far from what a LATEX
user normally does, but we think that in the case of
graphics this strategy is preferable for many users.
Of course one must know GeoGebra well enough,
but this does not require the study of long and com-
plex handbooks and, at any rate, dynamic geometry

Luciano Battaia

TUGboat, Volume 39 (2018), No. 1 61

software is of great help in experimenting with the
construction of technical figures. An example of a
complex 2D figure easily produced in GeoGebra and
exported into TikZ almost without intervention in
the generated code is shown in figure 2.

P0

0
U0

Time

Time Time

Time

∆x

U

Strain

Strain

ExcitationExcitation

Figure 2: A picture produced with GeoGebra and
exported into TikZ, used for a master’s degree thesis

GeoGebra can export figures into both PSTricks
and TikZ code (and even into Asymptote); in this
article we consider only the case of TikZ, with which
all the figures shown are realized. However, as men-
tioned above, substantially nothing changes if you
prefer PSTricks, because, apart from some adapta-
tions and some limited work to clean up the code,
everything is automatically produced. For this rea-
son also, only a few fragments of source code will be
included. In addition, it should be noted that the
generated code is not very interesting, as it consists
almost exclusively of \draw instructions; all needed
calculations have already been done by GeoGebra.

Some time ago a new version of GeoGebra (Geo-
gebra Classic 5.0) which supports three-dimensional
graphics was released. Unfortunately, for this 3D

version no export into a LATEX format has yet been
implemented and, in our opinion, this will not be pos-
sible, at least not in a reasonably short time. Because
of this limitation we decided to experiment with the
possibility of directly executing a 3D to 2D projec-
tion in GeoGebra and then exporting it into TikZ
code. Indeed, each 3D figure is just an appropriate
2D projection of a three-dimensional object.

Keeping this in mind, the first thing we tried to
reproduce is a sphere originally drawn by Tomasz M.
Trzeciak [4]; it was also reproduced by Keith Wolcott
in [5]. Please compare Trzeciak’s original (figure 3)
with ours (figure 4).

The two pictures are almost identical but the
TikZ codes are indeed completely different; you can
compare them in detail in the Italian version of this
article [1]. Here we only want to point out the fact

Figure 3: Sphere with meridians and parallels,
produced by Tomasz Trzeciak using PGF/TikZ

Figure 4: Sphere with meridians and parallels,
produced with code exported from GeoGebra

that Trzeciak’s code is much more concise and ele-
gant, but it requires a deep knowledge of PGF pro-
gramming. In fact you must first instruct PGF to
make the correct calculations for the visible and in-
visible parts of each latitude or longitude circle, using
appropriate PGF macros, and only after that you
can draw the circles. In our code all calculations are
made by GeoGebra, and only the drawing part is
left to TikZ.

3 Some maths behind the scene

GeoGebra is a very well structured and powerful pro-
gram for dynamic geometry. There are two different
windows for 2D graphics, a window for 3D graphics,
a fairly complete spreadsheet, a probability calcula-
tor and an algebra window where you can read the
coordinates of the points, the equations of the curves,
and so on. The very important feature is that all the
windows can interact with each other. Regarding our
problem, all that is obtained in the 3D window can
be appropriately transferred to the main 2D window

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra

62 TUGboat, Volume 39 (2018), No. 1

(and then exported into LATEX code). Moreover, it
is interesting to note that GeoGebra is in any case
“LATEX oriented”; all textual annotations are inserted
in the windows with LATEX code.

Let us consider a Cartesian orthogonal system
in three-dimensional space, that in GeoGebra is dis-
played in the 3D window, with an upward vertical
z-axis; call α a rotation around the vertical axis and
β a rotation around a horizontal axis. The paral-
lel projection of this Cartesian system in a plane
(that in our case will be the main 2D window of
GeoGebra), can be obtained, for instance, with the
following formulas:

~i =
(

− cos(α),− sin(α) sin(β)
)

~j =
(

sin(α),− cos(α) sin(β)
)

~k =
(

0, cos(β)
)

,

where~i, ~j, ~k are the vectors of the basis. If you set the
origin to the point O = (0, 0), which is preferable, you
must create two angle sliders with the names α and
β; afterwards the basis vectors can be constructed
with the following GeoGebra code:

i = Vector[O, (− cos(α),− sin(α) sin(β))]

j = Vector[O, (sin(α),− cos(α) sin(β))]

k = Vector[O, (0, cos(β))]

.

Now, if you consider a point P = (xP, yP, zP) in
the 3D window, its projection will be

P′ = xP
~i+ yP~j + zP ~k,

or, in the language of GeoGebra,

P′ = x(P) i + y(P) j + z(P) k.

If you consider instead a curve C with paramet-
ric equations (f(t), g(t), h(t)), with the parameter t
appropriately included between two extremes, its 2D

projection, always in the GeoGebra language, will
be

x′ = f(t)x(i) + g(t)x(j) + h(t)x(k)

y′ = f(t) y(i) + g(t) y(j) + h(t) y(k)
.

These formulas allow the 2D projection of every fig-
ure made in the 3D window of GeoGebra. After that
you can experiment to find the best view for the
figure by changing the angles α and β, working in
the 2D window; this is an important feature because
in general it is very difficult to find the appropriate
viewing angle, and only trying over and over again
can lead to the solution. Naturally not even Geo-
Gebra minimizes the problem of 3D graphics as it is
clear that those who need images of this type must
have a good mathematical preparation. Nothing is
obtained for free!

In light of these formulas let’s see in detail, as an
example, how the sphere of figure 4 can be obtained.

Begin by plotting the 3D sphere with center the origin
and radius r and its 2D projection that is simply
the circle with center the origin and again radius
r. Next draw the parallels and meridians simply
intersecting the sphere with appropriate planes. If,
for instance, you need five parallels they will be found
at the latitudes −60◦, −30◦, 0◦, 30◦, 60◦ and the
corresponding planes have the following equations

z = r sin(−60◦) ; z = −r
√
3/2

z = r sin(−30◦) ; z = −r/2
z = r sin(0◦) ; z = 0

z = r sin(30◦) ; z = r/2

z = r sin(60◦) ; z = r
√
3/2

.

These planes can be plotted simply by writing the
equations in the input bar. Now ask GeoGebra to
find the intersection circle of the planes with the
sphere and choose (for instance using the mouse)
five points on each circle. After projecting these
points on the 2D window, plot the conic through
them, using the specific Command; this will be the
projected parallel. Do the same for the meridians.
Now, after choosing the best viewing angle, highlight
the visible and invisible part of each ellipse. For the
invisible part you can decide if you want to show
it or not, you can choose a broken line, a reduced
thickness, and so on. When everything is perfectly
configured, export into TikZ (or PSTricks) and insert
the code in your LATEX document; it usually works
very well and only small adaptations are normally
needed, for instance regarding the position of the
labels or if you need special shading. The technique
that we have illustrated is absolutely basic; with a
little experience in the use of GeoGebra, everything
can be faster and further automated.

A point that deserves further attention from
what has been previously described is how to treat
the visible or invisible parts of the projected figure
in GeoGebra. The 3D window of the software can
automatically handle the visible or invisible parts,
as shown in the screen shot of figure 5.

The projection of this picture on the 2D window
produces an image where visible and invisible parts
are plotted in the same style, as shown in figure 6;
such a figure can’t be exported as it is.

Now, by comparing the side by side images of
the 3D and 2D windows, and using the Intersect
command of Geogebra, one can correctly highlight
the visible and invisible parts of each curve and
finally obtain the image ready to export. It is shown
in figure 7.

Regarding the intersection of two spheres, plot-
ted in figure 1, there are no further complications
since the intersection circle can be found directly by

Luciano Battaia

TUGboat, Volume 39 (2018), No. 1 63

Figure 5: Screenshot of the main 3D window of
GeoGebra for the production of the sphere of figure 4

Figure 6: Screenshot of the 2D projection in
Geogebra of the 3D window shown in figure 5

GeoGebra and then projected on the 2D window as
described. In this case we have chosen not to show
the overlapping parts of the spheres at all, in order
to obtain a more readable figure.

4 A spiral on a sphere

The following example requires a minimum of extra
mathematics, but no further work on the code. The
goal is to plot a complex spiral, with endless turns,
on a sphere, highlighting the property that the angle
between the meridians and the spiral remains con-
stant. The best way to solve the problem is to use

Figure 7: Screenshot of the main 2D window of
Geogebra ready to be exported for the production of
the sphere of figure 4

the following parametric equations of the spiral

x(t) =
r cos t√
1 + a2t2

y(t) =
r sin t√
1 + a2t2

z(t) =
−art√
1 + a2t2

,

where r is the radius of the sphere and a is a pa-
rameter. It is preferable to set up r and a with
sliders in GeoGebra and then choose the best values
after testing different ones. The tracing of the tan-
gent vectors and of the angles identified by them is
straightforward.

The only thing that needs special attention is
the fact that plots of lines such as the one needed
here can’t be drawn directly by TikZ and you need
external software, for instance GNUPLOT, but this
can be done in a straightforward way, and, in any
case, GeoGebra automatically handles this problem
in the export procedure! It should be noticed that
PSTricks handles directly these situations. The final
plot is shown in figure 8.

5 Polyhedra

One of the situations where GeoGebra’s interven-
tion is truly providential is the drawing of polyhedra
and their developments; there are special routines
to draw, in particular, Platonic solids and to show
dynamically their development. The 2D projection of
such figures is indeed very simple because you need
only to find the correct position of the projected
vertices, whose three-dimensional coordinates are au-
tomatically found by GeoGebra. Figure 9 shows the
dodecahedron, while figure 10 shows a step towards
its development in a plane.

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra

64 TUGboat, Volume 39 (2018), No. 1

A

B

C

α

αα

Figure 8: A spiral on a sphere

Figure 9: The regular dodecahedron

Figure 10: The regular dodecahedron: a step towards
its development in a plane

Don’t be fooled by the apparent simplicity of
these pictures. The hand calculation of the coor-
dinates of the vertices of the dodecahedron is not
easy at all, and, even worse, their position during
development!

Also, the drawing of the inscribed and circum-
scribed spheres is straightforward and you can see
an example concerning the octahedron in figure 11.

Figure 11: The regular octahedron and its inscribed
sphere. The meridians and the parallels through four
of the eight tangent points are highlighted

Even more important is the fact that the draw-
ing of the curves described by the vertices during
development is relatively straightforward. In Geo-
Gebra every vertex can leave a track during the de-
velopment and it is possible to project this track in
the 2D window; it is now very simple to plot, using a
GeoGebra macro, a Bezier curve, maybe at intervals,
that approximates this track. Exporting this Bezier
curve is a standard procedure. You can see an exam-
ple in figure 12; the curve Γ is a complex curve, while
all the others are simply circle arcs. It is in principle
possible to find the parametric equations of Γ, but
the use of GeoGebra capabilities makes everything
extremely simple, without any calculation.

A

B
C

O

Γ

Figure 12: One of the different plane developments of
the regular octahedron. The curves described by the
vertices during development are highlighted

Once you have built the outline of a dodeca-
hedron in the 3D window of GeoGebra, you can
also experiment with interesting derived figures. An
example is given in figure 13, where Leonardo’s Do-

decahedron Planum Vacuum is represented. Once
more the calculation of the position of the vertices

Luciano Battaia

TUGboat, Volume 39 (2018), No. 1 65

of this figure is almost straightforward in GeoGebra,
but it could be very difficult otherwise.

Figure 13: Dodecahedron Planum Vacuum, in
Leonardo’s style

6 The football

Once you have acquired familiarity with the Platonic
solids, you can experience the expansion of the tech-
nique to other solids, i.e., the Archimedean solids.
These can be obtained in various ways from the Pla-
tonics, for example by truncation starting from the
vertices. In figure 14 we show the case of the icosahe-
dron; given the Platonic solid, we consider, for each
vertex, a sphere centered at the vertex itself and
with variable radius. The intersection of this sphere
with the sides of the polyhedron gives rise to regular
pentagons and hexagons. The latter become regular
when the radius of the sphere is exactly 1/3 of the
side of the polyhedron and this situation corresponds
to the truncated icosahedron. Using GeoGebra it
is very easy again to document this process; simply
project the truncation at the desired stage and then
export it.

Figure 15 shows the final result. Nothing new
is required in GeoGebra to obtain this last figure.
It is exactly the same construction used for the pre-
vious figure 14, only with a different radius for the
truncating spheres.

As is well known, the football is simply the
projection of the truncated icosahedron on the cir-
cumscribed sphere. This can be achieved in different
ways. In our opinion the simplest one is to project
each side of the polyhedron onto the sphere by means
of a parametric equation and then again to project
the obtained arc in the 2D window. Following we de-
scribe the outline of this technique. Given a segment
AB with bounds (xA, yA, zA) and (xB, yB, zB), write
the standard parametric equations of the segment

Figure 14: Outline of the truncation of the
icosahedron starting from the vertices

Figure 15: The truncated icosahedron

itself:

P(t):

f(t) = xA + (xB − xA)t
g(t) = yA + (yB − yA)t
h(t) = zA + (zB − zA)t

, 0 ≤ t ≤ 1.

Then find the norm of P(t):

||P(t)|| =
√

f2(t) + g2(t) + h2(t).

The projection of the segment AB on the unit sphere
has the following parametric equations:

Q(t) =
P(t)

||P(t)|| .

At this point there is nothing to do but use the
already considered parallel projection form 3D to 2D

to obtain a 2D curve. The final result for the football
is shown in figure 16.

One last practical tip: the TikZ code of a figure
like figure 16 is very long and complex (about 250
rows!) and it is useful to export it from GeoGebra
one piece at a time, and not all together, especially if
you need to paint the different parts in different ways
(in our figure only black sphere pentagons and white
sphere hexagons). It will be simpler to correctly
fill the various parts of the figure, or to check if
everything works correctly.

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra

66 TUGboat, Volume 39 (2018), No. 1

Figure 16: The football obtained by the projection of
the truncated icosahedron on the circumscribed sphere

A simple but interesting application of this tech-
nique is shown in figure 17 where we have projected
on the circumscribed sphere the regular tetrahedron.
This figure solves an interesting problem: is it possi-
ble to cut an apple into four equivalent parts in an
uncommon way?

Figure 17: An apple cut in four parts in a non
standard way

Before ending this “sport” section of our arti-
cle we present a simple figure obtained from the
truncated icosahedron: the molecule of the Buck-

minsterfullerene. In this case we have simply re-
placed the segments that make up the sides of the
polyhedron by tubes and the vertices by shaded
spheres. The following code for the tubes is taken
from https://tex.stackexchange.com:

\newcommand{\Tube}[6][]%

{\colorlet{InColor}{#4}

\colorlet{OutColor}{#5}

\foreach \I in {1,...,#3}

{\pgfmathsetlengthmacro{\h}{(\I-1)/#3*#2}

\pgfmathsetlengthmacro{\r}{sqrt(pow(#2,2)

-pow(\h,2))}

\pgfmathsetmacro{\c}{(\I-0.5)/#3*100}

\draw[InColor!\c!OutColor, line width=\r,#1]

#6;

}

}

Figure 18: The molecule of Buckminsterfullerene

In a figure like this, in order to hide the invisible
parts you need only to plot the rear parts first. As
usual, you can easily locate them using the GeoGebra
figure.

7 Conic and spherical sections

A very relevant problem for people interested in 3D

graphics is the drawing of plots concerning conic
sections. We only show some examples without ex-
tended details; the technique to be used is now fa-
miliar because, naturally, the involved curves are
conics that GeoGebra can deal with using standard
commands.

Figure 19 illustrates the two series of circular
sections in an oblique cone; the sections parallel to
the basis and the subcontrary sections, as considered
by Apollonius. The complexity of this figure is due to
mathematical calculations; you must find the correct
angle for the plane that produces the subcontrary
section, and the best way to do this is the original
Apollonius description.

Figure 20 shows how to section a cone in order
to obtain a hyperbola. The technique to obtain such
a figure is simple in GeoGebra; after plotting the
entire cone and the hyperbola on the cone you can
hide, directly in GeoGebra, one of the two parts,
leaving only the remaining one. After exporting the
code you can shift, for instance, the right part using
the following very standard code:

Luciano Battaia

TUGboat, Volume 39 (2018), No. 1 67

Figure 19: The two series of circular sections that can
be obtained in an oblique cone

Figure 20: Section of a cone to obtain a hyperbola

\begin{scope}[xshift=2.4cm]

〈code of the second part〉
\end{scope}

The last figure of this section, figure 21, is some-
what more complicated, because GeoGebra can’t
handle directly (at least at the moment) the inter-
section between a cylinder and a sphere. Anyhow,
the intersection curve is a Vivianis’s window and
the parametric equations can be found easily in all
books of curves. The rest of the construction does
not require special attention; there are only parts of
a cylinder and of a sphere.

8 Some more advanced images

The technique based on exports from GeoGebra can
also handle more complicated figures, but, naturally,
a somewhat advanced knowledge of GeoGebra is re-
quired for this. In our opinion the effort is worth the
candle because what you can obtain is very interest-
ing. We give three images as examples.

Figure 21: Intersection between a cylinder and a
sphere

Figure 22: The compound of five tetrahedra

The first figure is the compound of five tetra-

hedra, which is one of the five regular polyhedral
compounds. It can be constructed by arranging five
tetrahedra inside a dodecahedron, having no com-
mon vertex. The correct construction of such a figure
requires full attention, in particular to understand
which are the actual sides and which instead are
only fake sides, that must not be highlighted in the
figure. Furthermore, in this case it is better to hide
completely the non-visible part of the figure.

The second and third figures are reproductions
of originals by Kepler, published in the 1596 in Mys-

terium Cosmographicum. They deal with a picture
concerning the solar system as known in those times
and consist of the five Platonic solids inscribed one
into the other, while the inscribed/circumscribed
spheres to each polyhedron contain the orbits of the
six planets, earth included, with the sun at the cen-
ter. As in the original by Kepler we propose both

Three-dimensional graphics with TikZ/PSTricks and the help of GeoGebra

68 TUGboat, Volume 39 (2018), No. 1

the set of all the Platonic solids and a detail of the
four interior spheres with the corresponding three
polyhedra.

Figure 23: Reproduction of the solar system, as
originally drawn by Kepler in 1596

Figure 24: Reproduction of the solar system
originally drawn by Kepler in 1596: detail of the
central part

As with figure 18, one of the secrets for drawing
correctly is to start from the back and to end by
drawing the front parts of the figure.

9 Conclusion

We believe that the proposed technique can be ad-
vantageously used for the production of a large part
of the geometric type figures required in a mathemat-
ical paper. This technique paired with pgf-plots or
the corresponding packages for the PSTricks family
allows the production of complex scientific books
using LATEX and without any external software.

As already mentioned, particularly when draw-
ing complex figures, a somewhat deep knowledge of
GeoGebra is required, but, in our experience, the
learning curve of GeoGebra is much flatter than that
of TikZ; the use of GeoGebra also offers the numerous
advantages we have described in this article.

Naturally there is no rose without thorns and it
is not possible to achieve the effects we have described
without hard work and experimentation.

References

[1] Luciano Battaia. Grafica 3D con Geogebra
e TikZ. ArsTEXnica, 22:50–63, 2016.
guitex.org/home/images/ArsTeXnica/AT022/

battaia.pdf.

[2] Claudio Beccari. The unknown picture
environment. ArsTEXnica, 11:57–64, 2011.
tug.org/TUGboat/tb33-1/tb103becc-picture.

pdf.

[3] Agostino De Marco. Illustrazioni tridimensionali
con Sketch/LATEX/PSTricks/TikZ nella
didattica della Dinamica del Volo. ArsTEXnica,
4:51–68, 2007. guitex.org/home/it/numero-4.

[4] Tomasz M. Trzeciak. texample.net/tikz/

examples/map-projections/, 2008.

[5] Keith Wolcott. Three-dimensional graphics
with PGF/TikZ. TUGboat, 33(1):102–113, 2012.
tug.org/TUGboat/tb33-1/tb103wolcott.pdf.

⋄ Luciano Battaia
Via Garibaldi 4
San Giorgio Richinvelda, PN 33095
Italy
luciano.battaia (at) unive dot it

http://www.batmath.it

Luciano Battaia

TUGboat, Volume 39 (2018), No. 1 69

A. Braslau, I. Hamid, and H. Hagen

ConTEXt nodes: commutative diagrams

and related graphics

A. Braslau, I. Hamid, and H. Hagen

Abstract

The graphical representation of node-based textual
diagrams is a very useful tool in the communication
of ideas. These are composed of graphical objects or
blocks of text or a combination of both, i.e. a deco-
rated label or text block, each attached to some point
(= the node). Additionally, such diagrams may dis-
play other such objects (such as a line segment, an
arrow, or other curve) connecting node points. The
set of nodes of a diagram will have some spatial rela-
tion between nodes. In this article we discuss a new
MetaPost module for handling node-based graphics,
as well as a derivative simplified ConTEXt module.

1 Introduction

The graphical representation of textual diagrams is
a very useful tool in the communication of ideas. In
category and topos theory, for example, many key
concepts, formulas, and theorems are expressed by
means of commutative diagrams; these involve ob-
jects and arrows between them. Certain concepts
discovered by category theory, such as natural trans-
formations, are becoming useful in areas outside of
mathematics and natural science, e.g., in philoso-
phy. To make category and topos methods usable by
both specialists and non-specialists, commutative di-
agrams are an indispensable tool. (For many exam-
ples of formal and informal commutative diagrams,
see [1].) The use of nodal diagrams is not limited to
category theory: they may represent a flow diagram
(of a process, for example), a chemical reaction se-
quence or pathways, phases and phase transitions, a
hierarchical structure (of anything), a timeline or se-
quence of events or dependencies, a family tree, etc.

The basic units of a node-based diagram include
node objects, each attached to some point (= the
node) in some spatial relationship. Note that a set
of objects might be associated with a single node.
Given a node, it also stands in a spatial relation to
some other node. The spatial relationship between
the set of nodes of a diagram need not be in a regu-
lar network, although it often is. Note that the spa-
tial relationship between nodes is graphical and may
represent, e.g., a temporal or logical relationship, or
a transformation of one object into another or into
others (one interesting example might be that rep-
resenting cell division or mitosis).

Given a spatial relation between any two nodes,
a node-based diagram often includes some path seg-

ment or segments (such as arrows or other curves)
between two given nodes that relate(s) them. Each
path segment may be augmented by some textual or
graphical label.

A simple example of a node diagram is shown
in Figure 1.

A B
Figure 1

More precisely, a node is a point of intersection or
branching of paths, often a point on a regular lat-
tice. (The nodes of the above diagram are the two
endpoints of a straight line segment.) Sometimes,
however, a node might be a single point as in an
identity map of category theory, referring to itself:

𭑂
Figure 2

The standard arrowhead in MetaPost is a sim-
ple triangle, whose length and angle can be ad-
justed. Metafun provides further options, allowing
this arrowhead to be barbed or dimpled. In the
present article, we use the settings ahlength:=10pt;

ahangle:=30; ahvariant:=1; ahdimple:=4/5;. The
loop-back arrow paths used here deviate from a
circular segment, becoming ellipsoidal, through
the value node_loopback_yscale:=.7;. These
are all set within a \startMPinitializations ...

\stopMPinitializations pair.

In this article we discuss a new MetaPost mod-
ule designed for handling node-based graphics as well
as a derivative simple ConTEXt interface. To illus-
trate, the code producing A B could be, in
MetaPost and the ConTEXt interface respectively:

− MetaPost:

draw node(0,"A") ;

draw node(1,"B") ;

drawarrow fromto(0,1) ;

The MetaPost code shown here has been sim-
plified, as will be seen further on.

− ConTEXt:

\startnodes [dx=1.5cm]

\placenode [0,0] {A}

\placenode [1,0] {B}

\connectnodes [0,1] [alternative=arrow]

\stopnodes

The ConTEXt interface has a limited set of
features, and will remain simple.

In each case, TEX is told to draw an arrow from A
to B (i.e., from node 0 to node 1).

For beginners, casual users of ConTEXt, or any

70 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

others who might be intimidated by MetaPost syn-
tax, the ability to construct simple diagrams by
means of standard ConTEXt syntax is helpful. For
those who have tried the ConTEXt interface and/or
want to draw more advanced diagrams, the Meta-
Post module is much more powerful and flexible.

2 MetaPost

MetaPost is a vector-graphics language which calls
upon TEX to typeset text (such as labels); in Con-
TEXt, furthermore, MetaPost is integrated natively
through the library MPlib as well as the macro pack-
age Metafun. The tight integration of ConTEXt and
MetaPost provides advantages over the use of other,
external graphics engines. These advantages include
ease of maintaining coherence of style, as well as ex-
tensive flexibility without bloat. MetaPost has fur-
ther advantages over most other graphics engines, in-
cluding a very high degree of precision as well as the
possibility to solve certain types of algebraic equa-
tions. This last feature is rarely used but should not
be overlooked.

It is quite natural in MetaPost to locate our
node objects along a path or on differing paths. This
is a much more powerful concept than merely locat-
ing a node at some pair of coordinates, e.g., on a
square or a rectangular lattice, for example (as in
a table). Furthermore, these paths may be in three
dimensions (or more); of course the printed page will
only involve some projection onto two dimensions.
Nor are the nodes restricted to a location on the
points defining a path: they may have, for an index,
any time along a given path p ranging from the first
defining point (𭑡 = 0) up to the last point of that
path (𭑡 ≤ 𭚕𭚎𭚗𭚐𭚝𭚑(𭚙)), the number of defining points
of a path. (Note that the time of a cyclic path is
taken modulo the length of the path, that is, 𭑡 out-
side of the range [𭟶, 𭚕𭚎𭚗𭚐𭚝𭚑(𭚙)] will return the first
or the last point of an open path, but will “wrap”
for a closed path.)

Given a path p, nodes are defined (implicitly)
as picture elements: picture p.pic[];. This is
a pseudo-array where the square brackets indicate a
set of numerical tokens, as in p.pic[0] or p.pic[i]

(for i=0), but also p.pic0. This number need not
be an integer, and p.pic[.5] or p.pic.5 (not to
be confused with p.pic5) are also valid. These pic-
ture elements are taken to be located relative to the
path p, with the index t corresponding to a time
along the path, as in

draw p.pic[t] shifted point t of p;

(although it is not necessary to draw them in this
way). This convention allows the nodes to be ori-

ented and offset with respect to the path in an arbi-
trary manner.

Note that a path can be defined, then nodes
placed relative to this path. Or the path may be de-
clared but remain undefined, to be determined only
after the nodes are declared. Yet another possibility
is that the path may be adjusted as needed, as a
function of whatever nodes are to be occupied. This
will be illustrated through examples further down.

3 Some simple examples

Let’s begin by illustrating a typical commutative di-
agram from category theory. Although it may ap-
pear trivial, this example helps to introduce Meta-
Post syntax. At the same time, a large part of the
idea behind this module is to facilitate use of this
system without having to learn much MetaPost.

\startMPcode

path p ; p := fullsquare scaled 3cm ;

draw p ;

for i=0 upto length p:

draw point i of p

withpen pencircle scaled 5pt ;

endfor ;

\stopMPcode

A path is drawn as well as the points defining the
path.

Figure 3

Given the named path nodepath, we can now define
and draw nodes as well as connections between them
(see Figure 4):

\startMPcode

clearnodepath ; nodepath = p ;

draw node(0,"\node{$G(X)$}") ;

draw node(1,"\node{$G(Y)$}") ;

draw node(2,"\node{$F(Y)$}") ;

draw node(3,"\node{$F(X)$}") ;

drawarrow fromto.bot(0,0,1,

"\nodeSmall{$G(f)$}") ;

drawarrow fromto.top(0,3,2,

"\nodeSmall{$F(f)$}") ;

drawarrow fromto.rt (0,2,1,

"\nodeSmall{η_Y}") ;

drawarrow fromto.lft(0,3,0,

"\nodeSmall{η_X}") ;

\stopMPcode

TUGboat, Volume 39 (2018), No. 1 71

A. Braslau, I. Hamid, and H. Hagen

𭐺(𭑋) 𭐺(𭑌)

𭐹(𭑌)𭐹(𭑋)

𭐺(𭑓)

𭐹(𭑓)

𭜂𭑌𭜂𭑋

Figure 4 Drawn using
the MetaPost interface.

In working with MetaPost, it is good practice to
reset or clear a variable using the directive save

for the suffix (or variable name) nodepath, as con-
tained in the directive clearnodepath (defined as
“save nodepath; path nodepath”). The macros
used here rely on the creation of certain internal vari-
ables and may not function correctly if the variable
structure is not cleared. Indeed, any node may con-
tain a combination of picture elements, added suc-
cessively, so it is crucial to save the variable, making
its use local rather than global. This point is par-
ticularly true with ConTEXt, where a single MPlib
instance is used and maintained over multiple runs.

The ConTEXt directives \startMPcode...\stopMPcode

include grouping (MetaPost begingroup;...endgroup;)
and the use of save (in clearnodepath) will make the
suffix nodepath local to this code block. In the code
for Figures 3 and 4, the path p itself is not declared
local (through the use of a save); it therefore remains
available for other MetaPost code blocks. We cannot
do this with the default suffix name nodepath without
undesirable consequences.

Note that one should not confuse the above
MetaPost function node() with the ConTEXt com-
mand \node{}, defined as follows:

\defineframed

[node]

[frame=off,

offset=1pt]

\defineframed

[nodeSmall]

[node]

[foregroundstyle=small]

\node{} places the text within a ConTEXt frame
(with the frame border turned off), whereas the
MetaPost function node(i,"...") sets and returns
a picture element associated with a point on path
nodepath indexed by its first argument. The second
argument here is a string that gets typeset by TEX.
(The use of \node{} adds an offset.)

By default, the MetaPost function fromto() re-
turns a path segment going between two points of
the path nodepath. The first argument (0 in the ex-
ample above) can be used as a displacement to skew
the path away from a straight line (by an amount in
units of the straight path length). The last argument
is a string to be typeset and placed at the midpoint
of the segment. The suffix appended to the function
name gives an offset around this halfway point. This
follows standard MetaPost conventions.

It is important to draw or declare the nodes
before drawing the connections, using fromto(), in
order to avoid overlapping symbols, as one notices
that the arrows drawn in the example above begin
and end on the border of the frame (or bounding
box) surrounding the node text. This would not be
possible if the arrow were to be drawn before this
text was known.

As will be seen further on, one can specify the
use of any defined path, without restriction to the
built-in name nodepath that is used by default. Fur-
thermore, a function fromtopaths() can be used to
draw segments connecting any two paths which may
be distinct. This too will be illustrated further on.

The ConTEXt syntax for the current example
looks like this:

\startnodes [dx=3cm,dy=3cm]

\placenode [0,0] {\node{$G(X)$}}

\placenode [1,0] {\node{$G(Y)$}}

\placenode [1,1] {\node{$F(Y)$}}

\placenode [0,1] {\node{$F(X)$}}

\connectnodes [0,1] [alternative=arrow,

label={\nodeSmall{$G(f)$}},position=bottom]

\connectnodes [3,2] [alternative=arrow,

label={\nodeSmall{$F(f)$}},position=top]

\connectnodes [2,1] [alternative=arrow,

label={\nodeSmall{η_Y}},position=right]

\connectnodes [3,0] [alternative=arrow,

label={\nodeSmall{η_X}},position=left]

\stopnodes

𭐺(𭑓)

𭐹(𭑓)

𭜂𭑌𭜂𭑋

𭐺(𭑋) 𭐺(𭑌)

𭐹(𭑌)𭐹(𭑋)

Figure 5 Drawn using
the ConTEXt interface.

72 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

This follows the more classic (and limited) approach
of placing nodes on the coordinates of a regular lat-
tice, here defined as a 3 cm square network. [The lat-
tice can be square (𭚍𭚡 = 𭚍𭚢), rectangular (𭚍𭚡 ≠ 𭚍𭚢),
or oblique (through 𭚛𭚘𭚝𭚊𭚝𭚒𭚘𭚗 ≠ 90).] The ar-
guments are then (𭑥, 𭑦) coordinates of this lattice
and the nodes are indexed 0, 1, 2, . . . in the or-
der in which they are drawn. These are used as
reference indices in the commands \connectnodes

(rather than requiring two pairs of coordinates); see
Figure 6.

0 1

3 2

2 1
3 0

(0,0) (1,0)

(1,1)(0,1)

Figure 6 Coordinates and indices. (For
variety, a rectangular oblique lattice is drawn.)

Connecting numbered nodes (in the order in which
they were declared) might seem a bit confusing at
first view, but it simplifies things in the end, really!

An identity map, as shown in Figure 2, earlier,
and, below, in Figure 7 is achieved by connecting a
node to itself.

myself

yourself

Me

You

Figure 7 Identity maps

\startnodes [dx=2cm,dy=.6cm]

\placenode [0,0] {\node{Me}}

\placenode [1,-1] {\node{You}}

\connectnodes [0,0] [alternative=arrow,

offset=.75cm,position=topright,

label=myself]

\connectnodes [1,1] [alternative=arrow,

offset=.75cm,position=bottomright,

label=yourself]

\stopnodes

The scale (diameter) of the circular loop-back
is set by the keyword offset= (normally used to
curve or bow-away a path connecting nodes from
the straight-line segment between them), and the
position= keyword sets its orientation.

Let us now consider the following code which il-
lustrates the Metafun operator crossingunder (see
Figure 8). The nodepath indices are put into vari-
ables A, B, C, and D, thus simplifying the code.

\startMPcode

clearnodepath ;

nodepath := fullsquare scaled 2cm ;

save A,B,C,D ;

A = 3 ; draw node(A,"\node{A}") ;

B = 2 ; draw node(B,"\node{B}") ;

C = 0 ; draw node(C,"\node{C}") ;

D = 1 ; draw node(D,"\node{D}") ;

drawarrow fromto(0,B,C) ;

drawarrow fromto(0,A,D)

crossingunder fromto(0,B,C) ;

\stopMPcode

A B

C D

Figure 8 A D under B C.

Given a path segment to be crossed, crossingunder

draws a path with a segment surrounding the in-
tersection with that path cut-out, resulting in two
(sub)path segments. This operator is of such general
use that it has been added to the Metafun base.

Figure 9 crossingunder

Another illustration of the crossingunder operator
in use is shown in figure 9. Because the diagrams are
all defined and drawn in MetaPost, one can easily
use the power of MetaPost to extend a simple node
drawing with any kind of graphical decoration.

This brings up an important point that has
limited the development of a full-featured Con-
TEXt node module up to now. A pure Meta-
Post interface affords much more flexibility than
can be conveniently reduced to a set of TEX
macros; the ConTEXt interface has been written
to provide only basic functionality. (One can use
\nodeMPcode{} to inject arbitrary MetaPost code
within a \startnode...\stopnode pair, although
in this example one is probably better off using the
straight MetaPost interface.)

TUGboat, Volume 39 (2018), No. 1 73

A. Braslau, I. Hamid, and H. Hagen

4 Cyclic diagrams

For a somewhat more complicated example, let us
consider the representation of a catalytic process
such as that given by Krebs [2]. The input is shown
coming into the cycle from the center of a circle; the
products of the cycle are spun off from the outside
of the circle. We start by defining a circular path
where each point corresponds to a step in the cyclic
process. Our example will use six steps.

We also want to define a second circular path
with the same number of points at the interior of this
first circle for the input, and a third circular path at
the exterior for the output (see Figure 10).

p0

1

2

3

4

5

6

p1

p2

Figure 10 The paths that we will use for the
anchoring of nodes.

The code is as follows:

\startMPcode

save p ; path p[] ;

% define a fullcircle path

% with nodes at 60° (rather than 45°)

p1 := (for i=0 step 60 until 300:

dir(90-i) .. endfor cycle)

scaled 1.8cm ;

p0 := p1 scaled .5 ;

p2 := p1 scaled 1.5 ;

for i=0 upto 2:

draw p[i] ;

for j=1 upto length p[i]:

draw point j of p[i]

withpen currentpen scaled 10 ;

if i=1:

label.autoalign(angle

point j of p[i])

(decimal j, point j of p[i]) ;

fi

endfor

label.bot("\bf p" & decimal i,

point 0 of p[i]) ;

endfor

\stopMPcode

(autoalign() is a feature defined within Metafun.)
Nodes will then be drawn on each of these three

circles and arrows will be used to connect the various
nodes, either on the same path or else between paths.

The MetaPost function fromto() is used to give
a path segment that points from one node to an-
other. It assumes the path named nodepath, and in
fact calls the function fromtopaths that explicitly
takes path names as arguments. That is, fromto

(d, i, j, ...) is equivalent to fromtopaths (d,

nodepath, i, nodepath, j, ...).
As stated above, this segment can be a straight

line, or a path can be bowed away from this straight
line by a transverse displacement given by the func-
tion’s first argument (given in units of the straight
segment length). When both nodes are located on
a single, defined path, this segment can be made to
lie on or follow this path, such as one of the circular
paths defined above. This behavior is obtained by
using any non-numeric value (such as true) in place
of the first argument. Of course, this cannot work if
the two nodes are not located on the same path.

In figure 11, the circular arc segments labeled
a–f are drawn using the following:

drawarrow fromtopaths.urt

(true,p1,0,p1,1,"\nodeGray{a}") ;

Here, \nodeGray is a frame that inherits from \node,
changing style and color:

\defineframed

[nodeGray]

[node]

[foregroundcolor=darkgray,

foregroundstyle=italic]

The bowed arrows feeding into the cyclic process
and leading out to the products — between different
paths, from the path p0 to the path p1 and from
the path p1 to the path p2, respectively — are drawn
using the deviations +3/10 and -1/10 (to and from
half-integer indices, thus mid-step, on path p1):

drawarrow fromtopaths(3/10,p0,0,p1,0.5)

withcolor .6white ;

drawarrow fromtopaths(-1/10,p1,0.5,p2,1)

withcolor .6white ;

4.1 A lesson in MetaPost

An ‘array’ of paths is declared through path p[]; it
is not a formal array, but rather a syntactic definition
of a collection of path variables p0, p1, . . . , each of
whose names is prefixed with the tag “p” followed by
any number, not necessarily an integer (e.g., p3.14

is a valid path name). The syntax allows enclosing
this “index” within square brackets, as in p[0] or,
more typically, p[i], where i would be a numeric

74 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

12C

13N

13C

14N

15O

15N

a

b

cd

e

f

1H

1H
1H

1H

4He

𭛾

e+ + 𭜈e

𭛾

𭛾

e+ + 𭜈e

Figure 11 The Bethe cycle for the energy production in
stars [3] in a Krebs representation of a catalytic process [2].

variable or the index of a loop. Note that the use
of brackets is required when using a negative index,
as in p[-1] (since p-1 is interpreted as three tokens,
representing a subtraction). Furthermore, the vari-
able p itself would here be a numeric (by default), so
p[p] would be a valid syntactic construction! One
could, additionally, declare a set of variables path

p[][]; and so forth, defining also p[0][0] (equiva-
lently, p0 0) for example as a valid path, coexisting
with yet different from the path p0.

MetaPost also admits variable names reminis-
cent of structured types in programming; for exam-
ple, the declaration picture p.pic[]; is used inter-
nally in the node macros, but this becomes picture

p[]pic[]; when using a path ‘array’ syntax. These
variable names are associated with the suffix p and
all become undefined by save p;.

5 Putting it together

What follows is an example of a natural transfor-
mation, discovered and articulated in the course of
a philosophical research project (by Idris Samawi
Hamid). Figure 12 represents what is called the
Croce Topos, named after the Italian philosopher
Benedetto Croce (1866–1952). We define it using
the ConTEXt interface to the node package:

\startnodes [dx=3cm,dy=3cm,alternative=arrow]

\placenode [0, 0] {\node{Practical}}

\placenode [1, 0] {\node{Economic}}

\placenode [3.5,0] {\node{Moral}}

\placenode [3.5,1] {\node{Conceptual}}

\placenode [1, 1] {\node{Aesthetic}}

\placenode [0, 1] {\node{Theoretical}}

\connectnodes [5,0] [offset=.1,

position=right,label={\node{γ}}]

\connectnodes [0,5] [offset=.1,

position=left, label={\node{γ'}}]

\connectnodes [4,1] [offset=.1,

position=right,label={\node{$F\gamma$}}]

\connectnodes [1,4] [offset=.1,

position=left, label={\node{$F\gamma'$}}]

\connectnodes [3,2] [offset=.1,

position=right,label={\node{$G\gamma$}}]

\connectnodes [2,3] [offset=.1,

position=left, label={\node{$G\gamma'$}}]

\connectnodes [4,3] [position=top,

label={\node{\it concretization$_1$}}]

\connectnodes [3,4] [position=bottom,

offset=.1,option=dashed,

label={\node{\it abstraction$_1$}}]

\connectnodes [1,2] [position=top,

label={\node{\it concretization$_2$}}]

\connectnodes [2,1] [position=bottom,

offset=.1,option=dashed,

label={\node{\it abstraction$_2$}}]

\stopnodes

6 Tree diagrams

The tree diagram shown in Figure 13 is drawn using
four paths, each one defining a row or generation in
the branching. The definition of the spacing of nodes
was crafted by hand and is somewhat arbitrary: 3.8,
1.7, and 1 for the first, second and third generations.
This might not be the best approach, but it is how I
(Alan) was thinking when I first created this figure.

Ultimately, one can do better by allowing Meta-
Post to solve the relevant equations and determine
this spacing automatically. Because this is a some-
what advanced procedure, this approach will be first
illustrated through a simple example of a diagram
where the nodes will be placed on a declared but un-
defined path:

save p ; % path p ;

The save p; assures that the path is undefined.
This path will later be defined based on the con-
tents of the nodes and a desired relative placement.

TUGboat, Volume 39 (2018), No. 1 75

A. Braslau, I. Hamid, and H. Hagen

𭛾𭛾′ 𭐹𭛾𭐹𭛾′ 𭐺𭛾𭐺𭛾′

concretization1

abstraction1

concretization2

abstraction2

Practical Economic Moral

ConceptualAestheticTheoretical

Figure 12 A representation of the Croce Topos.

DNA interactions with surfaces

repulsive: attractive: adsorption

confinement depletion,
macromolecular

crowding

chemisorption physisorption

immobilized mobile

Figure 13 An example tree diagram.

In fact, it is not even necessary to declare that the
suffix will be a path, as the path will be declared
and automatically built once the positions of all the
nodes are determined. To emphasize this point, the
path declaration above is commented out.

Warning: Solving equations in MetaPost can
be non-trivial for those who are less
mathematically inclined. One needs
to establish a coupled set of equa-
tions that is solvable: that is, fully
but not over-determined.

A few helper functions have been defined:
makenode() returns a suffix (variable name) corre-
sponding to the node’s position. The first such node
can be placed at any finite point, for example the
drawing’s origin. The following nodes can be placed
in relation to this first node:

save nodepath ;

save first, second, third, fourth ;

pair first, second, third, fourth ;

first.i = 0 ; second.i = 1 ;

third.i = 2 ; fourth.i = 3 ;

first = makenode(first.i, "\node{first}");

second = makenode(second.i,"\node{second}");

third = makenode(third.i, "\node{third}");

fourth = makenode(fourth.i,"\node{fourth}");

first = origin ;

second = first

+ betweennodes.urt(nodepath,first.i,

nodepath,second.i,

whatever) ;

third = second

+ betweennodes.lft(nodepath,second.i,

nodepath,third.i,

whatever) ;

fourth = third

+ betweennodes.bot(nodepath,fourth.i,

nodepath,first.i,

3ahlength) ;

The helper function betweennodes() returns a
vector pointing in a certain direction (here follow-
ing the standard MetaPost suffixes urt, lft, and
bot), that takes into account the bounding boxes of
the contents of each node, plus an (optional) addi-
tional distance (here given in units of the arrow-head
length, ahlength). Using the keyword whatever

76 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

tells MetaPost to adjust this distance as necessary.
The above set of equations is incomplete as written,
so a fifth and final relation needs to be added; the
fourth node is also to be located directly to the left
of the very first node:

fourth = first

+ betweennodes.lft(nodepath,fourth.i,

nodepath,first.i,

3ahlength) ;

(Equivalently, we could declare that the first
node located to the right of the fourth node:
first = fourth + betweennodes.rt (nodepath,

first.i, nodepath, fourth.i, 3ahlength);.)
Note that the helper function makenode() can

be used as many times as needed; if given no content,
it merely returns the node’s position. Additional
nodes can be added to this diagram along with ap-
propriate relational equations, keeping in mind that
the equations must, of course, be solvable. This last
issue is the one challenge that most users might face.

The function node(), used previously and re-
turning a picture element to be drawn, itself calls
the function makenode(), used here. The nodes have
not yet been drawn:

for i = first.i,second.i,third.i,fourth.i :

draw node(i) ;

drawarrow fromto(0,i,i+1) ;

endfor

This results in Figure 14. The path is now defined as
one running through the position of all of the defined
nodes, and is cyclic.

first

secondthird

fourth

Figure 14

Using this approach, that of defining but not draw-
ing the nodes until a complete set of equations defin-
ing their relative positions has been constructed, im-
poses several limitations. First, the nodes are ex-
pected to be numbered from 0 to 𭑛, continuously
and without any gaps for each defined path. This
is just an implicit, heuristic convention of the path
construction. Second, when ultimately defining all
the nodes and their positions, the path needs to be
constructed. A function, makenodepath(p) accom-
plishes this; it gets implicitly called (once) upon the
drawing of any node() or connecting fromto. Of
course, makenodepath() can always be called explic-
itly once the set of equations determining the node
positions is completely defined.

We once again stress that the writing of a solv-

able, yet not over-determined, set of equations can
be a common source of error for many MetaPost
users.

Another example is the construction of a simple
tree of descendance, a.k.a. a family tree. There are
many ways to draw such a tree; in Figure 15, we show
only three generations. We leave it as an exercise
to the reader to come up with the equations used to
determine this tree (or one can look at the source of
this document).

The requisite set of equations could be hidden
from users wishing to construct simple, pre-defined
types of diagrams. However, such cases would in-
volve a loss of generality and flexibility. Neverthe-
less, the ConTEXt-Nodes module could be extended
in the future to provide a few simple models. One
might be a branching tree structure, although even
the above example (as drawn) does not easily fit into
a simple, general model.

A user on the ConTEXt mailing list asked if
it is possible to make structure trees for English
sentences with categorical grammar, an example of
which is shown in Figure 16.

Here, I chose to define a series of parallel paths,
one per word, with one path terminating whenever
it joins another path (or paths) at a common parent.
Naturally, labeling each branch of the tree structure
requires a knowledge of the tree structure. The code
is not short, but hopefully it is mostly clear. Note
that diagrams such as those constructed here will
each be significantly different, making the writing
of a general mechanism rather complex. For exam-
ple, one might need to construct a tree branching up
rather than down, or to the right (or left), or even
following an arbitrary path, such as a random walk.
These can all be achieved individually in MetaPost
without too much difficulty.

\startMPcode

save p ; path p[] ;

save n ; n = 0 ;

% rather than parsing a string,

% we can use "suffixes":

forsuffixes $=People,from,the,country,

can,become,quite,lonely :

p[n] = makenode(p[n],0,

"\node{\it" & (str $) & "}")

= (n,0) ;

% we work first with unit paths.

n := n + 1 ;

endfor

save u ; u := MakeupWidth/n ;

% build upward tree

vardef makeparentnode(text t) =

TUGboat, Volume 39 (2018), No. 1 77

A. Braslau, I. Hamid, and H. Hagen

mother father

child1 spouse

grandchild1
spouse

grandchild2
spouse

child2 spouse

grandchild3
spouse

grandchild4
spouse

Figure 15 A tree of descendance.

People from the country can become quite lonely

H:N

Rel:Prep

Dr:Dv H:N M:Aux H:Mv M:Adv H:Adj

M:PP

Ax:NP P:VP PCs:AdjP

S:NP

Pred:PredP

Cl

Figure 16 A categorical grammar structure tree.

save i, xsum, xaverage, ymax ;

i = xsum = 0 ;

forsuffixes $ = t :

clearxy ; z = point infinity of $;

xsum := xsum + x ;

if unknown ymax : ymax = y ;

elseif y > ymax : ymax := y ; fi

i := i + 1 ;

endfor

xaverage = xsum / i ;

ymax := ymax + 1 ;

forsuffixes $ = t :

clearxy ;

z = point infinity of $;

$:= $ & z -- (x,ymax)

if i>1 : -- (xaverage,ymax) fi ;

endfor

enddef ;

makeparentnode(p2,p3) ;

makeparentnode(p4,p5) ;

makeparentnode(p6,p7) ;

makeparentnode(p1,p2) ;

makeparentnode(p0,p1) ;

makeparentnode(p4,p6) ;

makeparentnode(p0,p4) ;

makeparentnode(p0) ;

% the paths are all defined

% but need to be scaled.

for i=0 upto n-1 :

p[i] := p[i] xyscaled (u,.8u) ;

draw node(p[i],0) ;

endfor

save followpath ;

boolean followpath ; followpath = true ;

draw fromtopaths(followpath,p0,0,p0,1,

"\node{H:N}") ;

draw fromtopaths(followpath,p1,0,p1,1,

"\node{Rel:Prep}") ;

draw fromtopaths(followpath,p2,0,p2,1,

"\node{Dr:Dv}") ;

draw fromtopaths(followpath,p3,0,p3,1,

"\node{H:N}") ;

draw fromtopaths(followpath,p4,0,p4,1,

"\node{M:Aux}") ;

draw fromtopaths(followpath,p5,0,p5,1,

"\node{H:Mv}") ;

78 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

draw fromtopaths(followpath,p6,0,p6,1,

"\node{M:Adv}") ;

draw fromtopaths(followpath,p7,0,p7,1,

"\node{H:Adj}") ;

draw fromtopaths(followpath,p1,1,p1,2) ;

draw fromtopaths(followpath,p2,3,p2,4) ;

draw fromtopaths(followpath,p1,2,p1,3,

"\node{M:PP}") ;

draw fromtopaths(followpath,p2,1,p2,2) ;

draw fromtopaths(followpath,p3,1,p3,2) ;

draw fromtopaths(followpath,p2,2,p2,3,

"\node{Ax:NP}") ;

draw fromtopaths(followpath,p4,1,p4,2) ;

draw fromtopaths(followpath,p5,1,p5,2) ;

draw fromtopaths(followpath,p4,2,p4,3,

"\node{P:VP}") ;

draw fromtopaths(followpath,p6,1,p6,2) ;

draw fromtopaths(followpath,p7,1,p7,2) ;

draw fromtopaths(followpath,p6,2,p6,3,

"\node{PCs:AdjP}") ;

draw fromtopaths(followpath,p0,1,p0,2) ;

draw fromtopaths(followpath,p1,3,p1,4) ;

draw fromtopaths(followpath,p0,2,p0,3,

"\node{S:NP}") ;

draw fromtopaths(followpath,p4,3,p4,4) ;

draw fromtopaths(followpath,p6,3,p6,4) ;

draw fromtopaths(followpath,p4,4,p4,5,

"\node{Pred:PredP}") ;

draw node(p0,4.5,"\node{Cl}") ;

draw fromtopaths(followpath,p0,3,p0,4.5);

draw fromtopaths(followpath,p4,5,p4,6) ;

\stopMPcode

7 A 3D projection

Although MetaPost is a 2D drawing language, it can
be easily extended to work in 3D. Several attempts
have been made in the past ranging from simple to
complicated. Here, we will take a simple approach.

The MetaPost language includes a triplet vari-
able type, used to handle rgb colors (it also has
a quadruplet type used for cmyk colors). We will
use this triplet type to hold 3D coordinates.
There is a separate ConTEXt module, entitled three,
which creates a new MetaPost instance (also named
three), which loads a set of macros that can be used
to manipulate these triplet coordinates.

\usemodule [three]

\startMPcode{three}

...

\stopMPcode

For our purposes here, only one function is really
necessary: projection(), which maps a 3D coordi-
nate to a 2D projection on the page. This will not
be a perspective projection having a viewpoint and

a focus point, but rather a very simple oblique pro-
jection, useful for, e.g., pseudo-3D schematic draw-
ings. The Z coordinate is taken to be up and the
Y coordinate taken to be right, both in the plane
of the paper. The third coordinate X is an oblique
projection in a right-hand coordinate system.

Intended for schematic drawings, there is no au-
tomatic hidden-line removal nor effects like shading,
and line crossings need to be handled manually (us-
ing crossingunder introduced previously). In Fig-
ure 17 we draw a simple cubical commutative dia-
gram, with a node at each corner.

\startMPcode{three}

save nodepath ;

path nodepath ;

nodepath = (projection Origin --

projection (1,0,0) --

projection (1,1,0) --

projection (0,1,0) --

projection (0,1,1) --

projection (1,1,1) --

projection (1,0,1) --

projection (0,0,1) --

cycle) scaled 5cm ;

draw node(0, "\node

{${\cal C}_{i\cal P}^{\mathrm{nt}}$}");

draw node(1, "\node

{${\cal C}_{i\cal G}^{\mathrm{nt}}$}");

draw node(2, "\node

{${\cal C}_{j\cal P}^{\mathrm{nt}}$}");

draw node(3, "\node

{${\cal C}_{j\cal G}^{\mathrm{nt}}$}");

draw node(4,

"\node{${\cal C}_{j\cal G}$}") ;

draw node(5,

"\node{${\cal C}_{j\cal P}$}") ;

draw node(6,

"\node{${\cal C}_{i\cal G}$}") ;

draw node(7,

"\node{${\cal C}_{i\cal P}$}") ;

interim crossingscale := 30 ;

drawdoublearrows fromto(0,0,1) ;

drawdoublearrows fromto(0,1,2) ;

drawdoublearrows fromto(0,2,3) ;

drawdoublearrows fromto(0,3,0)

crossingunder fromto(0,2,5) ;

drawdoublearrows fromto(0,7,6) ;

drawdoublearrows fromto(0,6,5) ;

drawdoublearrows fromto.ulft(0,5,4,

"\node{τ_j~}") ;

drawdoublearrows fromto.top (0,7,4,

"\node{σ}") ;

drawdoublearrows fromto.lrt(0,0,7,

"\node{$Ψ^{\mathrm{nt}}$}")

crossingunder fromto(0,6,5) ;

TUGboat, Volume 39 (2018), No. 1 79

A. Braslau, I. Hamid, and H. Hagen

drawdoublearrows fromto(0,1,6) ;

drawdoublearrows fromto(0,2,5) ;

drawdoublearrows fromto(0,3,4) ;

\stopMPcode

𭒞nt
𭑖𭒫

𭒞nt
𭑖𭒢

𭒞nt
𭑗𭒫

𭒞nt
𭑗𭒢

𭒞𭑗𭒢

𭒞𭑗𭒫𭒞𭑖𭒢

𭒞𭑖𭒫

𭜏𭑗

𭜎

Ψnt

Figure 17

Note the use of drawdoublearrows, a new Metafun
command that is introduced here.

8 Two final examples

We end this paper with two examples of more ad-
vanced commutative diagrams. The following exam-
ple, shown in Figure 18, illustrates what in category
theory is called a pullback. It is inspired from an ex-
ample given in the TikZ CD (commutative diagrams)
package.

𭑝

𭑓𭑞

𭑔

(𭑥, 𭑦)

𭑥

𭑦 𭑋 ×𭑍 𭑌 𭑋

𭑍𭑌

𭑇

Figure 18

The arrow labeled “(𭑥, 𭑦)” is drawn dashed

withdots and illustrates how the line gets broken,
implicitly crossingunder its centered label.

\startnodes [dx=2.5cm,dy=2cm,

alternative=arrow]

\placenode [0, 0] {\node{$X\times_Z Y$}}

\placenode [1, 0] {\node{X}}

\placenode [1,-1] {\node{Z}}

\placenode [0,-1] {\node{Y}}

\placenode [-1,1] {\node{T}}

\connectnodes [0,1] [position=top,

label={\nodeSmall{p}}]

\connectnodes [1,2] [position=right,

label={\nodeSmall{f}}]

\connectnodes [0,3] [position=right,

label={\nodeSmall{q}}]

\connectnodes [3,2] [position=top,

label={\nodeSmall{g}}]

\connectnodes [4,0] [option=dotted,

rulethickness=1pt,

label={\nodeSmall{(x,y)}}]

\connectnodes [4,1] [offset=+.13,

position=top,

label={\nodeSmall{x}}]

\connectnodes [4,3] [offset=-.13,

position=topright,

label={\nodeSmall{y}}]

\stopnodes

The previous diagram was drawn using the Con-
TEXt interface. Our final example, shown in Fig-
ure 19, gives another “real-life” example of a categor-
ical pullback, also inspired by TikZ-CD, but this time
drawn through the MetaPost interface and solving
for positions.

\startMPcode

clearnodepath;

save l ; l = 5ahlength ;

save A, B, C, D, E ;

pair A, B, C, D, E ;

A.i = 0 ; B.i = 1 ; C.i = 2 ;

D.i = 3 ; E.i = 4 ;

A = makenode(A.i,"\node

{$\pi_1(U_1\cap U_2)$}") ;

B = makenode(B.i,"\node

{$\pi_1(U_1)\ast_{\pi_1(U_1\cap U_2)}

\pi_1(U_2)$}") ;

C = makenode(C.i,

"\node{$\pi_1(X)$}") ;

D = makenode(D.i,

"\node{$\pi_1(U_2)$}") ;

E = makenode(E.i,

"\node{$\pi_1(U_1)$}") ;

A = origin ;

B = A + betweennodes.rt(nodepath,A.i,

nodepath,B.i)

+ (l,0) ;

C = B + betweennodes.rt(nodepath,B.i,

nodepath,C.i)

+ (.7l,0) ;

D = .5[A,B] + (0,-.9l) ;

E = .5[A,B] + (0, .9l) ;

80 TUGboat, Volume 39 (2018), No. 1

ConTEXt nodes: commutative diagrams and related graphics

𭜋1(𭑈1 ∩ 𭑈2) 𭜋1(𭑈1) ∗𭜋
1
(𭑈

1
∩𭑈

2
) 𭜋1(𭑈2) 𭜋1(𭑋)

𭜋1(𭑈2)

𭜋1(𭑈1)

𭑖2

𭑖1

𭑗1

𭑗2

≃

Figure 19 A categorical pullback diagram, with MetaPost
finding the positions.

for i = A.i, B.i, C.i, D.i, E.i :

draw node(i) ;

endfor

drawarrow fromto.llft(0,A.i,D.i,

"\smallnode{i_2}") ;

drawarrow fromto.ulft(0,A.i,E.i,

"\smallnode{i_1}") ;

drawarrow fromto (0,D.i,B.i) ;

drawarrow fromto (0,E.i,B.i) ;

drawarrow fromto.urt(.1,E.i,C.i,

"\smallnode{j_1}") ;

drawarrow fromto.lrt(-.1,D.i,C.i,

"\smallnode{j_2}") ;

drawarrow fromto.top(0,B.i,C.i)

dashed evenly ;

draw textext.top("{\strut\simeq}")

shifted point .4 of fromto(0,B.i,C.i) ;

\stopMPcode

9 Conclusions

There was initial consensus at the 2017 ConTEXt
Meeting in Maibach, Germany, where a version of
this package was presented, that there was little use
of developing a purely ConTEXt interface. Rather,
the MetaPost package should be sufficiently acces-
sible. Since then, however, we decided that the de-
velopment of a derivative ConTEXt interface imple-
menting some basic functionality could indeed be
useful for many users, although it will necessarily
remain somewhat limited. Users are recommended
to turn to the pure MetaPost interface when more
sophisticated functionality is needed.

10 Acknowledgements

This module was inspired by a request made by
Idris Samawi Hamid to draw a natural transforma-
tion diagram in MetaPost (see Figure 4). The Meta-
Post macros that were then developed have bene-
fited from improvements suggested by Hans Hagen
as well as inspiration provided by Taco Hoekwater.

References

[1] F.W. Lawvere and S.H. Schanuel, Conceptual
Mathematics: A first introduction to categories
(2nd ed.), Cambridge University Press, Cam-
bridge, UK, 2009.

[2] H.A. Krebs, “Cyclic processes in living matter”,
Enzymologia 12, 88–100, 1946.

[3] H.A. Bethe, “Energy Production in Stars”, Phys-
ical Review 55, 103–103, 1939; H.A. Bethe, “En-
ergy Production in Stars”, Physical Review 55,
434–456, 1939.

⋄ A. Braslau, I. Hamid, and H. Hagen
The ConTEXt development team
braslau.list (at) comcast.net,

ishamid (at) colostate.edu,

pragma (at) wxs.nl

TEX’s “additional demerits” parameters

Udo Wermuth

Abstract

TEX has three integer parameters, \adjdemerits,
\finalhyphendemerits, \doublehyphendemerits,
which are added to the line demerits by the line-
breaking algorithm if certain conditions are met.
This article lists which lines of a paragraph can be
affected by these parameters and presents some sim-
ple techniques to avoid their extensive application in
a paragraph.

1 Introduction

The line-breaking procedure of TEX assigns to a set
of line breaks for a paragraph a numerical value
called its demerits; the higher this value the less
desirable it is for TEX to use this set of line breaks
to typeset the paragraph. The demerits of a para-
graph are the sum of the demerits of each line. The
calculation of these line demerits applies several con-
cepts: The non-negative badness of the line, which
is based on the width of the white spaces in the line,
a penalty value that is added to the badness values,
the penalty associated with the place at which the
line is broken, and visual characteristics involving
also the previous line. This last concept is realized
by adding the integer values of three parameters,
called the additional demerits.

The following formula calculates the line demer-
its, Λι, for line number ι:

Λι = (λ+ βι)
2 + sgn(πι)π

2
ι + δι (1)

where λ is the \linepenalty (which is a constant
for a single paragraph), βι stands for the badness of
the line, πι represents the penalty at the line break,
and δι is the sum of the applicable additional demer-
its. Penalties lie in the range −10000 ≤ π < 10000
and they keep their sign in (1) although the value is
squared. But the value −10000 is ignored in the cal-
culation of the line demerits. A detailed explanation
of how TEX breaks paragraphs into lines is given in
Chapter 14 of [2]; Section 2 of [6] contains a shorter
description that focuses on the parameters involved
and the formulas for the calculations.

Traces. TEX displays most of the values that are
used in formula (1) if \tracingparagraphs is pos-
itive. In this case the log file of the run contains
trace data written by the line-breaking algorithm.
Two types of lines of this trace are important to
understand this article:

TUGboat, Volume 39 (2018), No. 1 81

Break candidates signal a valid way to break a
line. Their trace lines start with a single @ and
they contain the values for βι, πι, and Λι. The
line number ι is not yet known. For example,

@\par via @@1 b=1 p=50 d=7621 (∗)
gives βι = 1, πι = 50, and Λι = 7621.

Feasible breakpoints, which follow one or more
break candidates, show the best way to break
the text up to this point. Their trace lines start
with @@ and contain a sequence number, the line
number, and a fitness class. For example, in

@@2: line 1.3- t=3125 -> @@0 (∗∗)
the sequence number is 2, the line number ι = 1,
and the fitness class 3. The reference -> @@0

shows that the previous feasible breakpoint for
this breakpoint has the sequence number 0.

The sequence numbers are needed to link the
feasible breakpoints to determine the above men-
tioned set of line breaks; the sequence number 0 is
used for the start of the paragraph. The fitness class
is a qualitative indicator of the way the white space
in the line is altered. There are four classes: very

loose, loose, decent, and tight which carry the num-
bers 0 to 3, resp., in the trace line of type (∗∗). See
pages 98–99 of [2] or Section 3 of [6] for a detailed
description of the trace data.

Note that the additional demerits, δι, are not
listed in the trace data. They must be computed
from the given values using equation (1) in the fol-
lowing form:

δι = Λι − (λ+ βι)
2 − sgn(πι)π

2
ι . (2)

Plain TEX sets λ = 10 [2, p. 98], so Λι in (∗) contains
the following amount of additional demerits:

δι = 7621− (10 + 1)2 −+502 = 5000.

Paths. Starting with the last feasible breakpoint
the line breaks can be found by going back through
the sequence of the linked previous feasible break-
points. If all feasible breakpoints appear in this se-
quence and all of them have only one associated
break candidate, TEX has only one way to typeset
the paragraph. But often several break candidates
are followed by several feasible breakpoints and then
many possibilities for the next breakpoint are avail-
able. TEX chooses—obeying the current setting of
\looseness—the set of line breaks, i.e., feasible
breakpoints, that has the lowest sum of line demer-
its, also called the total demerits of the paragraph.
(The current total demerits at a feasible breakpoint
is shown after the t= in lines of type (∗∗).) Each set
for the whole paragraph is called a path and its sum
of line demerits path demerits, Λp. The entirety of
all paths form a network (see [1, Fig. 13]).

TEX’s “additional demerits” parameters

Traces can get very long when TEX finds a lot
of feasible breakpoints, and then they document a
lot of paths in the network. Such paths are difficult
to compare when only the trace data is available.
This article shows only short traces and switches
to a table form for longer ones. This table form is
introduced and described in Section 5 of [7]. Both
TEX’s trace data and the table form are also briefly
explained in this article.

Additional demerits. The three additional de-
merit parameters fall into two groups: Two deal with
hyphens at the end of lines, the third with the visual
appearance of lines. The following three integer pa-
rameters hold the values of the additional demerits.

\finalhyphendemerits is used in the last line if
the penultimate line of the paragraph ends in a
hyphen.

\doublehyphendemerits is applied to the second
line of a pair of lines if both lines end in a hy-
phen. But it is not applied to the last line of
the paragraph.

\adjdemerits is charged to the second line of a pair
of lines if they are visually incompatible. This
means that the glue in the two lines is set quite
differently: In one line it is extremely stretched
compared to the other. (The first line of a para-
graph is compared to a line with decent spac-
ing.) In TEX’s view the fitness class numbers in
linked feasible breakpoints must differ by more
than 1 to add the value of this parameter.

Plain TEX assigns the values 5000, 10000, and
10000 to the three parameters [2, p. 98], resp. The
values of these parameters are named in this article
δf , δd, and δa, resp. Note that δd and δf are never
applied together in a line.

Implementation. In the section “More Bells and
Whistles” of [1] it is written that the parameter
\adjdemerits was added—with a high price paid
in the implementation through the introduction of
the fitness classes—as a more or less experimental
feature. The design and implementation was done in
the spring of 1980 (p. 143 of [5]); Chapter 11 in [4]
shows it as entry #461. As it is available today it
seems to be worth the price. Note that only the pa-
rameter \adjdemerits is likely to be used in the
first pass as hyphenated lines must use a (typically
rare) author-entered hyphen in this pass.

In the implementation of the line-breaking algo-
rithm the values of the integer parameters that rep-
resent the additional demerits are just one summand
in the calculation of the line demerits [3, §859]. But
the implementation uses \adjdemerits in a second

82 TUGboat, Volume 39 (2018), No. 1

place to keep the number of feasible breakpoints and
break candidates small [3, §836]. This means chang-
ing the values of these integer parameters might re-
sult in a different number of lines in the trace.

Of course, a path in the network created from
TEX’s default settings exists also as a valid set of
line breaks with changed values of the parameters.
But TEX does not follow a path to its end as soon as
it learns that this path cannot lead to the minimal
total demerits. The trace data often shows only the
beginning of paths. In the table form of the trace
data these partial paths are extended to a complete
path using the available feasible breakpoints; such
paths are described as “hidden in the trace data”.

Usage. The three parameters try to prevent TEX
from picking a path that contains undesirable con-
structions. The techniques of this article might turn
out to be useful for an author to handle situations in
which TEX chose unwanted line breaks. But almost
always it is better to rewrite a paragraph if it looks
bad than to adjust TEX’s line-breaking parameters.

In the following sections the three parameters
are discussed one by one. Note, however, that a
change to the parameters affects all following para-
graphs so that a changed value should be used inside
a group around a paragraph, which must end inside
this group, i.e., write an empty line or \par before
ending the group. TEX calculates with the values as-
signed to the parameters that it knows at the end
of a paragraph.

2 About \finalhyphendemerits

The effect of \finalhyphendemerits is probably
easier to understand than the effects of the other two
parameters. TEX charges δf to the last line of a path
if and only if its penultimate line ends in a hyphen
or a ligature in which the last character is a hyphen;
in the cm fonts the line must end with a hyphen,
an en-dash, or an em-dash. TEX has to look at only
a single line in contrast to the other two additional
demerits where TEX judges about pairs of lines.

Example 1: Description

Typeset a paragraph whose penultimate line ends in
an em-dash.

TEX input

The em-dash at the end of this line---this

one---adds {\tt\char92finalhyphendemerits\/}

to the last line.\par

TEX output

The em-dash at the end of this line—this one—
adds \finalhyphendemerits to the last line.

(Note: The symbol ‘ ’ marks the end of an example.)

Udo Wermuth

With \tracingparagraphs = 1 trace lines ap-
pear in the log file—here formatted to fit the col-
umn width and with line numbers for reference.

Example 1 continued: Log file contents

1. @firstpass

2. []\tenrm The em-dash at the end of this

line---this one---

3. @\discretionary via @@0 b=11 p=50 d=2941

4. @@1: line 1.2- t=2941 -> @@0

5. adds \tentt \finalhyphendemerits \tenrm to

the last line.

6. @\par via @@1 b=0 p=-10000 d=5100

7. @@2: line 2.2- t=8041 -> @@1

Lines 3 and 6 contain break candidates, lines 4
and 7 feasible breakpoints. As there is only one
break candidate per feasible breakpoint TEX has ex-
actly one path to typeset this paragraph. Lines 3
and 4 show a penalty for the first line; it states that
the \exhyphenpenalty is applied, i.e., the em-dash
is considered an author-entered hyphen. (Plain TEX
sets \hyphenpenalty and \exhyphenpenalty to 50
[2, p. 96].) The calculation using (2) shows for this
break candidate representing output line 1:

δ1 = 2941−(10+11)2−502 = 2941−441−2500 = 0.

The badness of the last line is 0; see trace lines 6
(and 7). As mentioned above a penalty of −10000
is ignored in the calculation of the line demerits.
Therefore (2) gives for the second line:

δ2 = 5100− (10 + 0)2 = 5100− 100 = 5000.

Thus, as expected, TEX has applied the value δf to
the last line.

Changing this parameter. If δf is applied to a
paragraph and if TEX’s line-breaking network con-
tains at least one path that avoids a hyphen at the
end of the second-last line a high enough value for
\finalhyphendemerits will select such a path.

Example 2: Description

Typeset a paragraph twice: First with TEX’s de-
fault values and a second time with a larger value of
\finalhyphendemerits.

TEX input

\noindent In this case \TeX’s network shows

2 paths for its line-breaking decision.\par

TEX output

In this case TEX’s network shows 2 paths for its line-
breaking decision.

This is the trace data:

Example 2 continued: Log file contents

1. @firstpass

2. \tenrm In this case T[]X’s network shows 2

paths for its

3. @ via @@0 b=96 p=0 d=11236

TUGboat, Volume 39 (2018), No. 1 83

4. @@1: line 1.1 t=11236 -> @@0

5. line-

6. @\discretionary via @@0 b=29 p=50 d=4021

7. @@2: line 1.3- t=4021 -> @@0

8. breaking decision.

9. @\par via @@1 b=0 p=-10000 d=100

10. @\par via @@2 b=0 p=-10000 d=5100

11. @@3: line 2.2- t=9121 -> @@2

The feasible breakpoint @@3 has two break can-
didates and TEX has a choice: Go via @@2 as sug-
gested in @@3 or use the break candidate in line 9
without the application of δf and link @@3 to @@1.

To select the path that uses the feasible break-
points @@1 and @@3 and thus avoids the hyphen in
the penultimate line the total demerits from the
path via @@2 and @@3, Λp[2,3], must become larger
than the path demerits of the requested path, Λp[1,3].
This can be done by increasing the value of δf . Let’s
mark its new value with a prime, then the inequality

Λp[2,3] + δ′f − δf > Λp[1,3]

must hold. Simple transformations give

δ′f > Λp[1,3] − Λp[2,3] + δf

δ′f > (11236 + 100)− 9121 + 5000 = 7215=⇒
and the value for \finalhyphendemerits should be
at least 7216. The first line then becomes loose with
a badness of 96 (see lines 3 and 4) instead of tight
with a badness of 29 (see lines 6 and 7). It is a trade-
off: To avoid the hyphen in the second-last line TEX
has to select a worse solution at other places. Here
it is a loose line.

Example 2 continued: TEX input

\finalhyphendemerits=7216

\noindent In this case \TeX’s network ...

TEX output

In this case TEX’s network shows 2 paths for its
line-breaking decision.

Of course, it is not necessary to calculate the
minimal δf ; it can be set to a high value like 7500
or 10000 or 100000 to get the desired result.

3 About \doublehyphendemerits

The parameter \doublehyphendemerits is applied
to the second line of a pair of lines if both lines end in
a hyphen and the second line is not the last line. This
restriction comes from the fact that TEX treats the
end of a paragraph as if it ends in a hyphen [3, §829].
An author-entered hyphen at the end of a paragraph
does not make a difference. (It is rare indeed to have
a hyphen at the end of a paragraph, so it is not
an important case.) Thus, in a paragraph all lines
except the first and the last might be charged with
δd, the value of this parameter.

TEX’s “additional demerits” parameters

Both explicit hyphens, which are entered by
the author, and implicit hyphens, which are inserted
by TEX’s hyphenation algorithm, are treated in the
same way by TEX when it determines if a line ends
in a hyphen.

Example 3: Description

Typeset a paragraph with a lot of hyphenated lines.

TEX input

In this paragraph \TeX\ must apply its

hyphenation procedure. And the last line ends

in an em-dash. Parameter

{\tt\char92doublehyphendemerits\/} is

applied twice in four lines---\par

TEX output

In this paragraph TEX must apply its hyphen-
ation procedure. And the last line ends in an em-
dash. Parameter \doublehyphendemerits is ap-
plied twice in four lines—

As always, useful information is found in the
trace data; the first line states that TEX uses the
second pass (lines from the first pass are not shown).

Example 3 continued: Log file contents

1. @secondpass

2. []\tenrm In this para-graph T[]X must

ap-ply its hy-phen-

3. @\discretionary via @@0 b=0 p=50 d=2600

4. @@1: line 1.2- t=2600 -> @@0

5. ation pro-ce-dure. And the last line ends

in an em-

6. @\discretionary via @@1 b=7 p=50 d=12789

7. @@2: line 2.2- t=15389 -> @@1

8. dash. Pa-ram-e-ter \tentt

\doublehyphendemerits \tenrm is ap-

9. @\discretionary via @@2 b=147 p=50 d=47149

10. @@3: line 3.0- t=62538 -> @@2

11. plied twice in four lines---

12. @\par via @@3 b=0 p=-10000 d=*

13. @@4: line 4.2- t=62538 -> @@3

Lines 6 and 9 show that δd was applied. In
line 12 TEX has not calculated the demerits and sets
them to 0; compare the values after t= in lines 10
and 13 of the trace. TEX does not calculate the de-
merits as the necessary feasible breakpoint at the
end of the paragraph follows a possible break after
the em-dash (see [3, §854]).
Remove a stack of hyphens. Note that there
is no way to prevent the three consecutive hyphen-
ated lines in example 3: TEX has no path in its
line-breaking network to avoid this stack of hyphens.
But if there is such a path a change of the value of
\doublehyphendemerits can trade in higher bad-
ness values and/or more penalties and/or more vi-
sually incompatible lines and/or more lines in the
paragraph to avoid such a stack of hyphens.

84 TUGboat, Volume 39 (2018), No. 1

Table 1: Badness, penalties, and additional demerits
of the line breaks for the paths of example 4

\par via @@ (* is typeset)
@@ Class *70 80 71 72 81

1 d 450 450 450 450 450
2 v 118a

3 d 0d50 0d50 0d50 0d50
4 l 51d50
(4) (d) 1a50
5 d 0d50 0d50
6 t 79
7 l 33
(7) (t) 15a 15
8 l 17a50
(8) (t) 98d50
9 d 0 0f 0 0 0f

lines = 5 5 5 5 5

Σ badness = 37 100 70 138 102
a/d/f = 0/2/0 1/1/1 1/2/0 2/0/0 0/3/1
Λp(10) = 29845 41546 42242 42426 57160

Example 4: Description

Typeset a paragraph twice: First with TEX’s de-
fault values and a second time with a larger value of
\doublehyphendemerits.

TEX input

Final remark: Values for the badness are

sometimes stated as {\tt*} which means that it

is {\sl infinite\/} according to \TeX’s rules.

For demerits such an asterisk means that the

calculation was not performed because of

certain forced conditions.\par

TEX output

Final remark: Values for the badness are some-
times stated as * which means that it is infinite ac-
cording to TEX’s rules. For demerits such an aster-
isk means that the calculation was not performed
because of certain forced conditions.

This time the data of the trace is shown in a
more compact form as there are several paths that
must be studied.

Table 1 summarizes the paths that can be iden-
tified in the trace data. The table shows in the first
two columns the information of the @@-lines, i.e., the
feasible breakpoints: the sequence number and the
fitness class abbreviated to the first letter of very
loose, loose, decent, or tight. The next two columns
present the explicitly shown \par-lines in the trace
(like line 12 in the trace of example 3). The head-
ing gives the sequence number after the “via @@”
marked with a subscript 0. The next three columns
are “hidden” paths in the trace that are not followed
to their end by TEX; such paths get subscripts larger
than 0. As these paths use @@-alternatives that are
not shown in the trace some sequence numbers and

Udo Wermuth

their fitness classes are placed in parentheses. The
column head of 70 contains an asterisk to indicate
that TEX has selected this path for typesetting.

The table entries are the badness values. A sub-
script signals that a penalty with the stated value
occurs at the break, a superscript of ‘f’, ‘d’, or ‘a’
that δf , δd, or δa, resp., is applied.

The last four rows state the number of lines, the
sum of the badness values of the path, the number of
lines with δa, δd, δf , and the path demerits Λp(10)
with the value 10 for \linepenalty. Most of these
values are not found in the trace data; they have
been computed from the information in the columns.

Column 70 (with the path that TEX uses) con-
tains two applications of δd but the path in column
72 none. Therefore, it is possible to typeset the para-
graph without three consecutive hyphens if the value
δd is changed. If the new value is named δ′d then

Λp[70] + 2δ′d − 2δd > Λp[72]

must hold. This means, the path demerits of the
path 70, which represent currently the total demer-
its of the paragraph, must get larger than the path
demerits of path 72. The calculation is

δ′d > (Λp[72] − Λp[70] + 2δd)/2

δ′d > (42426− 29845 + 20000)/2 = 16290.5.=⇒
Example 4 continued: TEX input

\doublehyphendemerits=16291

Final remark: Values for the badness are ...

TEX output

Final remark: Values for the badness are some-
times stated as * which means that it is infinite

according to TEX’s rules. For demerits such an as-
terisk means that the calculation was not performed
because of certain forced conditions.

The same technique can be tried to make TEX
select the path of column 80. This time both sides
list δ′d:

Λp[70] + 2δ′d − 2δd > Λp[80] + δ′d − δd.

Therefore

δ′d > Λp[80] − Λp[70] + δd

δ′d > 41546− 29845 + 10000 = 21701.=⇒
The computed value 21702 is larger than 16291 but
the latter value is sufficient to typeset path 72: TEX’s
second-best path with its default settings, path 80,
cannot be reached from 70 by increasing δd.

Changing the other parameters too. Instead of
changing only the parameter that is assigned to this
kind of trouble, the other parameters can also be
involved to select a specific path. To select path 72

in example 4 it is not necessary but in other cases

TUGboat, Volume 39 (2018), No. 1 85

it is the only way to make TEX typeset the desired
path.

In the inequality to go from path 70 to path 72,
only δd was changed. But as 72 applies δa, the in-
equality should better be written as

Λp[70] + 2δ′d − 2δd > Λp[72] + 2δ′a − 2δa.

This gives an inequality for the difference δ′d − δ′a
that must at least hold to typeset 72:

δ′d − δ′a > (Λp[72] − Λp[70])/2 + δd − δa = 6290.5.

That is, δ′d = 10000 and δ′a = 3709 typeset path 72

as well as δ′d = 13300 and δ′a = 7000.
Similar, to prefer path 80 to 70 the inequality is

Λp[70] + 2δ′d − 2δd > Λp[80] + δ′a + δ′d + δ′f

− δa − δd − δf

δ′d − δ′a − δ′f > Λp[80] − Λp[70] + δd − δa − δf=⇒
= 6701.

To get from 72 to 80, i.e., to avoid that 72 is chosen
by TEX instead of 80, the parameters must also fulfill

Λp[72] + 2δ′a − 2δa > Λp[80] + δ′a + δ′d + δ′f

− δa − δd − δf

δ′a − δ′d − δ′f > Λp[80] − Λp[72] + δa − δd − δf=⇒
= −5580.

The two inequalities give the criteria for how to
change the parameters to typeset path 80 instead
of path 70. For example, δ′d = 13300, δ′a = 7000, and
δ′f = −750 is one solution. (The additional demerits

are integers, so they can receive negative values.)

Example 4 continued: TEX input

\doublehyphendemerits=13300 \adjdemerits=7000

\finalhyphendemerits=-750

Final remark: Values for the badness are ...

TEX output

Final remark: Values for the badness are some-
times stated as * which means that it is infinite ac-
cording to TEX’s rules. For demerits such an asterisk
means that the calculation was not performed be-
cause of certain forced conditions.

But it is much simpler to set δ′f = −6702 in
order to make TEX typeset path 80. A single change
of δf helps to avoid the problem with a stack of
hyphens without touching δd or involving path 72.
The change suggests to TEX to trade a tolerable hy-
phen in the penultimate line against the unwanted
hyphen stack. For such a trade the integer parame-
ter \finalhyphendemerits is ideal as it applies to
only one line.

4 About \adjdemerits

The integer parameter \adjdemerits is applied to
the second line of a pair of lines if they are visu-

TEX’s “additional demerits” parameters

ally incompatible, i.e., if their fitness classes are not
adjacent in the sequence very loose, loose, decent,
and tight. The first line of a paragraph is compared
to the fitness class decent. That means that a very
loose first line receives the additional demerits δa.

Example 5: Description

Typeset a paragraph in which each line is charged
with \adjdemerits.

TEX input

So it is a v-loose line, oh, this line must be

{\sl very~loose\/} to charge the famous

‘‘adjacent demerits’’ in a {\sl first line\/}

and then follows a {\sl tight\/} line but it

forces that the very next line is {\sl loose\/}

again to charge these adjacent demerits a

third time; and then a repetition of this

tight/loose pattern makes the rest.\par

TEX output

So it is a v-loose line, oh, this line must be
very loose to charge the famous “adjacent demerits”
in a first line and then follows a tight line but it
forces that the very next line is loose again to charge
these adjacent demerits a third time; and then a
repetition of this tight/loose pattern makes the rest.

The log file contains the following trace data:

Example 5 continued: Log file contents

1. @firstpass

2. []\tenrm So it is a v-loose line, oh, this

line must be

3. @ via @@0 b=100 p=0 d=22100

4. @@1: line 1.0 t=22100 -> @@0

5. \tensl very loose \tenrm to charge the

famous ‘‘adjacent demerits’’

6. @ via @@1 b=22 p=0 d=11024

7. @@2: line 2.3 t=33124 -> @@1

8. in a \tensl first line \tenrm and then

follows a \tensl tight \tenrm line but it

9. @ via @@2 b=37 p=0 d=12209

10. @@3: line 3.1 t=45333 -> @@2

11. forces that the very next line is \tensl

loose \tenrm again to charge

12. @ via @@3 b=34 p=0 d=11936

13. @@4: line 4.3 t=57269 -> @@3

14. these adjacent demerits a third time; and

then a

15. @ via @@4 b=70 p=0 d=16400

16. @@5: line 5.1 t=73669 -> @@4

17. repetition of this tight/loose pattern

makes the rest.

18. @\par via @@5 b=16 p=-10000 d=10676

19. @@6: line 6.3- t=84345 -> @@5

That TEX assigns to every line the value of
\adjdemerits can happen only if the number of
lines in the paragraph is even. The first line must
be very loose and all other odd-numbered lines at

86 TUGboat, Volume 39 (2018), No. 1

least loose; all even-numbered lines are tight or de-
cent. As the last line of a paragraph cannot be loose
with the default setting of \parfillskip in plain
TEX an odd number of lines in the paragraph is not
able to charge \adjdemerits either to the last line
or to the first if the first line is not very loose.

The trace shows that TEX has no other path to
typeset the text. It has no material to trade in order
to reduce the number of lines that are charged with
δa. As there are tight lines the author can help TEX
by typing a discretionary hyphen, for example, by
entering ‘‘adjacent demer\-its’’, which yields:

Example 5 continued: TEX output

So it is a v-loose line, oh, this line must be
very loose to charge the famous “adjacent demer-
its” in a first line and then follows a tight line but
it forces that the very next line is loose again to
charge these adjacent demerits a third time; and
then a repetition of this tight/loose pattern makes
the rest.

The paragraph has now a hyphenated line and
is one line longer but, except for the unchanged first
line, no line is charged with δa.

Increase the number of paths. The inserted hy-
phenation point shows a way that TEX might be
able, without any help, to avoid at least some of
the visually incompatible lines: allow hyphenation.
More variation for line breaks is available if the sec-
ond pass is forced. Then hyphenation with penalties
and the other two additional demerits might appear.

Example 6: TEX input (Example 5 continued)

\pretolerance=-1 % suppress the first pass

So it is a v-loose line, oh, this ...

TEX output

So it is a v-loose line, oh, this line must be
very loose to charge the famous “adjacent demer-
its” in a first line and then follows a tight line but it
forces that the very next line is loose again to charge
these adjacent demerits a third time; and then a rep-
etition of this tight/loose pattern makes the rest.

In the second pass the trace gets much longer so
that the paths are best presented in the table form:
see Table 2. The path shown in column 91 is used
if the text is typeset in the first pass. In the second
pass this path is not followed to its end by TEX; it
has many more path demerits than any other set of
line breaks. The path of column 110 represents the
line breaks with the inserted discretionary hyphen.

But TEX finds a third solution. Table 2 shows
that the chosen path starts with stretched white
spaces in the first two lines and after a decent line
the white space has to shrink in two lines. The path

Udo Wermuth

Table 2: Badness, penalties, and additional demerits
of the line breaks for the paths of example 6

\par via @@ (* is typeset)
@@ Class 90 *100 110 91 101

1 v 100a 100a 100a 100a 100a

2 l 2750 2750 2750
3 t 22a 22a

4 d 1
5 d 8 8
(5) (l) 37a 37a

6 l 55
7 t 34 34 34a 34a

8 l 95
9 l 70a 70a

10 t 5650 5650
11 d 5
12 d 0f 0 0f

(12) (t) 16a 16a

lines = 6 6 7 6 6

Σbadness = 255 225 283 279 249
a/d/f = 3/0/0 1/0/1 1/0/0 6/0/0 4/0/1
Λp(10) = 55305 40185 41665 84345 69225

of 110 typesets the whole paragraph without tight
lines and its penultimate line does not end in a hy-
phen. Therefore in the forced second pass the setting
\finalhyphendemerits = 6481 > 41665− 40185 +
5000 suffices to get the path of column 110.

5 Summary

It is no surprise that in a paragraph with a hyphen
at the end of the penultimate line a larger value
of \finalhyphendemerits, δf , can make TEX se-
lect different line breaks which avoid this hyphen.
Neither is it a surprise that a larger value of the
parameter \doublehyphendemerits, δd, might pre-
vent TEX from typesetting several consecutive lines
that all end in a hyphen nor that a large enough
value of \adjdemerits, δa, might reduce the num-
ber of visually incompatible lines in a paragraph.

But to change only one parameter is not always
the best solution. For example, if a stack of three
hyphens can be avoided by a path with two stacks
of two hyphens this path gets the same amount of
additional demerits as the original path if only δd is
changed so TEX will never select this path. Only a
path with a smaller number of lines charging δd will
be eventually considered by TEX.

This article shows that it is not too difficult
to determine if the problematic situation can be re-
solved at all: The trace data that is written to the
log file if \tracingparagraphs = 1 must contain
choices for TEX for the feasible breakpoints of the
unwanted lines or the following line. On the other
hand the creation of the path tables involves manual

TUGboat, Volume 39 (2018), No. 1 87

work. So these tables are not created ad hoc and are
rarely used in typesetting projects.

As the value of \finalhyphendemerits is ap-
plied to only one line, a new value does not change
the order induced by the path demerits for paths
that apply δf . In this case TEX has always to select
the one which has the smallest path demerits with
the default value of this parameter. Therefore a low
enough negative value makes TEX pick this path:
In a paragraph with an unwanted construction but
without a hyphenated penultimate line the setting
\finalhyphendemerits =−10000 (or smaller) can
be tried. Or first the trace could be checked as the
existence of paths with an application of δf is read-
ily spotted. The result might not be one of the best
solutions but it is easy to produce and at least it
offers TEX the ability to trade the hyphen in the
second-last line with one application of δa or δd.

A forced second pass should be executed if a
problem with \adjdemerits occurs in the first pass
before other techniques are tried.

References

[1] Donald E. Knuth and Michael F. Plass, “Breaking
paragraphs into lines”, Software—Practice and

Experience 11 (1981), 1119–1184; reprinted with
an addendum as Chapter 3 in [5], 67–155.

[2] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[3] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[4] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992.

[5] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[6] Udo Wermuth, “Tracing paragraphs”, TUGboat

37:3 (2016), 358–373; Errata in [7], 414.
tug.org/TUGboat/tb37-3/tb117wermuth.pdf

[7] Udo Wermuth, “A note on \linepenalty”,
TUGboat 38:3 (2017), 400–414.
tug.org/TUGboat/tb38-3/tb120wermuth.pdf

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Errata for a previous article. In Table 1′ of [7] the
column 121 should have 0a in the row for feasible break-
point 17 as the previous line is very loose. This adds
10000 demerits to Λp(10) in this column. The values
−139 and −82 in the column of 121 of the diagonal ma-
trix after (18) become −207 and −164, resp.

TEX’s “additional demerits” parameters

88 TUGboat, Volume 39 (2018), No. 1

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from October 2017–April 2018,
with descriptions based on the announcements and
edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

biblio

gbt7714 in biblio/bibtex/contrib

Support for the Chinese bibliography standard
GB/T 7714-2015.

fonts

cmsrb in fonts

Computer Modern for Serbian and Macedonian.
fontawesome5 in fonts

Support for Font Awesome 5.
* gfsneohellenicmath in fonts

Hellenic-style math font supporting many languages.
morisawa in fonts

Selection of five standard Japanese fonts for pLATEX
with dvips.

* plex in fonts

TEX support for the IBM Plex typeface family.
plex-otf in fonts

(Lua,X E)TEX support for Plex as system fonts.
* stix2-otf in fonts

OpenType Unicode STIX Two fonts.
* stix2-type1 in fonts

STIX Two in Type 1 format.

graphics

adigraph in graphics/pgf/contrib

Augmenting directed graphs.
graph35 in graphics

Draw keys and screen items of Casio calculators.
pgfornament-han in graphics/pgf/contrib

Traditional Chinese motifs and patterns for PGF.

pixelart in graphics

TikZ package for single-color pixel-art pictures.
pst-antiprism in graphics/pstricks/contrib

An antiprism in PSTricks.
* pst-calculate in graphics/pstricks/contrib

Floating point support in LATEX, using expl3.
pst-dart in graphics/pstricks/contrib

Dart boards with PSTricks.
structmech in graphics/pgf/contrib

TikZ support for structural mechanics drawings.
tikz-feynhand in graphics/pgf/contrib

Feynman diagrams with TikZ.
tikz-karnaugh in graphics/pgf/contrib

PGF package for Karnaugh maps supporting
many variables.

tikz-ladder in graphics/pgf/contrib

Ladder diagrams for the PLC LD language.
tikz-layers in graphics/pgf/contrib

Provide more graphics layers for TikZ.
tikz-relay in graphics/pgf/contrib

Electrical diagrams with TikZ.
tikz-sfc in graphics/pgf/contrib

Symbol collection for PLC programming sequential
function chart (SFC) diagrams in TikZ.

info

guide-latex-fr in info

Introduction to LATEX written in French.
latex-via-exemplos in info

LATEX course written in Brazilian Portuguese.
* short-math-guide in info

Guide to using amsmath and related packages.

language/thai

thaispec in language/thai

Thai-language typesetting in X ELATEX.

macros/latex/contrib

ascmac in macros/latex/contrib

Box and picture macros with Japanese vertical
writing support.

authorarchive in macros/latex/contrib

Add self-archiving information to scientific papers.
auto-pst-pdf-lua in macros/latex/contrib

Using LuaLATEX together with PostScript code.
bxtexlogo in macros/latex/contrib

Additional TEX-family logos and abbreviations.
cascade in macros/latex/contrib

Brace constructions for math demonstrations.
chemsec in macros/latex/contrib

Automated creation of numeric entity labels.
colophon in macros/latex/contrib

Produce a colophon.
crossreftools in macros/latex/contrib

Expandable extraction of cleveref data.
duckuments in macros/latex/contrib

Create duckified dummy content.

graphics/pixelart

TUGboat, Volume 39 (2018), No. 1 89

eqnnumwarn in macros/latex/contrib

Warn about displaced equation numbers.
exercisebank in macros/latex/contrib

Creating, managing, reusing exercises.
fancyhandout in macros/latex/contrib

Produce nice-looking handouts.
fduthesis in macros/latex/contrib

Thesis template for Fudan University.
footnotehyper in macros/latex/contrib

Partial hyperref support for the footnote package.
gentombow in macros/latex/contrib

Generate Japanese-style crop marks.
graphicxpsd in macros/latex/contrib

Adobe Photoshop Data (PSD) support for graphicx.
gridslides in macros/latex/contrib

Free form slides with blocks placed on a grid.
handin in macros/latex/contrib

Lightweight template for problem sets.
hecthese in macros/latex/contrib

Thesis class for HEC Montréal.
hulipsum in macros/latex/contrib

Hungarian dummy text.
intopdf in macros/latex/contrib

Embed non-PDF files in PDF with hyperlinks.
isopt in macros/latex/contrib

Print dimension with user-defined space between
number and unit.

jkmath in macros/latex/contrib

Semantic markup macros for math.
labelschanged in macros/latex/contrib

Find labels causing endless “may have changed”
warnings.

lccaps in macros/latex/contrib

Lowercased (spaced) small capitals.
llncsconf in macros/latex/contrib

Extending the Springer llncs class.
mathfam256 in macros/latex/contrib

256 math families for (u)pLATEX and Lamed.
mathfixs in macros/latex/contrib

Spacing for fractions and roots, bold symbols, etc.
modernposter in macros/latex/contrib

Modern LATEX poster class
nicematrix in macros/latex/contrib

Matrices with continuous dotted lines.
nidanfloat in macros/latex/contrib

Support for [b] placement for full-width float in
double-column mode.

outlining in macros/latex/contrib

Create outlines for scientific documents.
pdfprivacy in macros/latex/contrib

Suppressing PDF metadata.
polexpr in macros/latex/contrib

Parser for polynomial expressions.
scientific-thesis-cover in macros/latex/contrib

Generic support for cover pages and affirmations.
sectionbreak in macros/latex/contrib

Support for thought breaks.
simpleinvoice in macros/latex/contrib

Easy typesetting of invoices.

statmath in macros/latex/contrib

Simple use of statistical notation.
stealcaps in macros/latex/contrib

Borrow small capitals from another font.
textualicomma in macros/latex/contrib

Using the text ‘,’ as decimal separator in math.
thesis-gwu in macros/latex/contrib

Thesis class for George Washington University
School of Engineering and Applied Science.

timbreicmc in macros/latex/contrib

Include watermarks for ICMC/USP (Brazil).
translator in macros/latex/contrib

Easy translation of strings.
unitn-bimrep in macros/latex/contrib

Class for the bimonthly PhD engineering report at
Università di Trento.

univie-ling in macros/latex/contrib

Class for the applied linguistics department at
Vienna University.

xtuthesis in macros/latex/contrib

XTU (China) thesis template.
xurl in macros/latex/contrib

Allow url break at any alphanumeric character.

macros/latex/contrib/beamer-contrib/themes

beamertheme-saintpetersburg in m/l/c/b-c/themes

Support for Saint Petersburg State University.

macros/latex/contrib/biblatex-contrib

biblatex-ext in m/l/c/biblatex-contrib

Extended BibLATEX standard styles.

macros/luatex/latex

bezierplot in macros/luatex/latex

Approximate smooth function graphs with splines.
gurps in macros/luatex/latex

Generic Universal Role Playing System materials.
plantuml in macros/luatex/latex

Rendering diagrams specified in PlantUML.
typewriter in macros/luatex/latex

Typeset with randomly variable monospace font.
wallcalendar in macros/luatex/latex

Wall calendar class with custom layouts and
internationalization.

macros/xetex/latex

sexam in macros/xetex/latex

Support for Arabic exam scripts.

support

ctan-o-mat in support

Upload or validate a package for CTAN.
lyluatex in support

Include LilyPond scores in a LuaLATEX document.
npp-for-context in support

ConTEXt plugin for Notepad++.

support/npp-for-context

90 TUGboat, Volume 39 (2018), No. 1

Die TEXnische Komödie 4/2017–1/2018

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Die TEXnische Komödie 4/2017

Elke Schubert, Verwendung des Paketes
tocbasic mit Standardklassen [Using the
tocbasic package with standard classes];
pp. 15–20

The tocbasic package allows the user a variety
of different ways to influence “lists of” pages and
their entries. In this article we show how this KOMA-

Script package can be used with standard classes.

Markus Kohm, Spezielle Kapitel mit einer
Präfixzeile [Special chapters with a prefix line];
pp. 21–31

Recently a LATEX user asked for a prefix line
similar to the one in the standard book class. But in
his scenario there should not be the word chapter

but another, without a number. Two solutions were
presented on tex.stackexchange, one of which is
presented in this article in a more common form.

Sebastian Veldhuis, Mathematica-, R- und
LATEX-Code mit TEXstudio [Connected processing
of Mathematica-, R- and LATEX code using
TEXstudio]; pp. 32–34

Mathematica and R are useful tools for solv-
ing complex mathematical problems and statistical
evaluations. However, manually importing the cor-
responding outputs into a LATEX document is very
time-consuming and sometimes error-prone. There-
fore, the question to be answered here is what an
output routine may look like which allows joint pro-
cessing of Mathematica, R and LATEX code within a
document. The implementation takes place in the
editor TEXstudio on Windows, but should be easily
transferable to other editors and operating systems.

Rolf Niepraschk, Tabellenwerte mit Lua
bearbeiten [Editing table values with Lua];
pp. 35–37

LuaTEX offers a simple way to execute calcula-
tions in a document. In this article we show how we
can edit the values in a table using Lua code.

Herbert Voß, Die Schrift IBM Plex [The IBM

Plex font]; pp. 37–40
In November 2017 IBM presented its new stan-

dard font, “Plex”, under an open source license. The
font contains all three families, Roman, Sans Serif
and Mono, and can be used with LATEX.

Die TEXnische Komödie 1/2018

Kathrin Würth, Peter Gallmann, Richtlinien
zum Verfassen wissenschaftlicher Arbeiten
[Guidelines for the creation of scientific theses];
pp. 13–46

Writing a scientific thesis is one of the biggest
challenges during a course of studies, but the form is
easily learnable. There are many questions such as,
What shall a bibliography look like? How to prop-
erly quote? Since these — for scientists extremely
important — methods are not taught at school; those
questions are important and valid. In this article we
try to give a few guidelines.

Peter Gallmann, Christine Römer,
Striche — Formen und Funktionen [Dashes —
forms and meanings]; pp. 47–53

This article presents an overview of all dashes
and slashes with their glyphs and usage in texts.

Herbert Voß, Schriften für Menschen mit einer
Leseschwäche [Fonts for people with dyslexia];
pp. 54–56

This article gives an overview of fonts useful for
readers with dyslexia.

Ferdinand Ulrich, Hesse Antiqua zum 100.
Geburtstag Gudrun Zapf-von Hesse (*2. Januar
1918), Antiqua 2018 — 100 [Hesse Antiqua for the
100th birthday of Gudrun Zapf-von Hesse . . .];
pp. 57–65

Gudrun Zapf von Hesse, born January 2 in 1918,
is a woman of many talents. She would emphasize
that she is a trained bookbinder first, but she was
also active as a lettering artist, she has produced
work in the graphic arts — and she is a typeface
designer. On the day she turned 100, her first al-
phabet design was finally released, after 70 years.
English article posted at https://www.fontshop.

com/content/hesse-antiqua.

[Received from Herbert Voß.]

TUGboat, Volume 39 (2018), No. 1 91

Zpravodaj 2017/1–4

Editor’s note: Zpravodaj is the journal of CSTUG,
the TEX user group oriented mainly but not entirely
to the Czech and Slovak languages (cstug.cz).

Zpravodaj 2017/1–2

Petr Sojka, Úvodńık [Introduction]; pp. 1–2
This editorial discusses CSTUG’s new publishing

policy and comments on this issue’s articles. Go forth
and participate in CSTUG to make the bright future
of TEX & Friends a reality! You can!

Hans Hagen, ConTEXt–Lua Documents;
pp. 3–54

In ConTEXt, it is now possible to prepare doc-
uments in a mixture of TEX, XML, MetaPost, and
Lua. The article gives a short introduction into the
programming language of Lua and then goes on to
describe how Lua can be used for programming in
ConTEXt MkIV. 10.5300/2017-1-2/3

Hans Hagen, Exporting XML and ePub from
ConTEXt; pp. 55–63

The article describes the XML backend of Con-
TEXt, which can be used to produce structured XML

documents out of a TEX input. One of the many
applications of the XML backend is the conversion
to ePub e-book format, which the article covers in
detail. 10.5300/2017-1-2/55

Hans Hagen and Idris Samawi Hamid,
Oriental TEX: Optimizing paragraphs; pp. 64–97

The article describes the state of the art in para-
graph optimization for Arabic as implemented in Con-
TEXt. The implementation is introduced using Latin
script examples. The article proceeds to describe
the main features of Arabic script and known ap-
proaches towards paragraph optimization. One of the
described approaches is then implemented and used
to typeset a passage from the Qur’ān. 10.5300/2017-

1-2/64

Taco Hoekwater, MetaPost: PNG output;
pp. 98–100

[Printed in TUGboat 34:2.] 10.5300/2017-1-2/98

Aleš Kozub́ık, Mapy v LATEXových
dokumentoch – predstavenie balička getmap

[Maps in LATEX documents — an introduction of
the getmap package]; pp. 101–109

The aim of this article is to introduce the getmap

package. This package supports inclusion into LATEX
documents the map materials obtained from the ex-
ternal resources such as OpenStreetMap and Google
Maps, possibly even with the support of Google
Street View. In the simplest case, the specification
of an address is sufficient. The package loads the map
using the \write18 feature, which must be activated
to use this package. The image will be downloaded
by an external Lua script that can be used also from
the command line. 10.5300/2017-1-2/101

V́ıt Novotny, Konference TUG@BachoTEX 2017
[Conference TUG@BachoTEX 2017]; pp. 110–116

The article is a summary of the TUG@BachoTEX
2017 conference, which was held from April 29 to
May 3 jointly by GUST and TUG at Bachotek near
Brodnica, Poland. 10.5300/2017-1-2/110

Zpravodaj 2017/3–4

Petr Sojka, Úvodńık [Introduction]; p. 117
This editorial again discusses CSTUG’s new pub-

lishing policy and comments on this issue’s articles.

Petr Sojka, Vı́t Novotny, TEX na školách?
Samozřejmě ano! Př́ıklad užit́ı TEXu ma Fakultě
informatiky Masarykovy univerzity [TEX in
Schools? Just Say Yes: The use of TEX at the
Faculty of Informatics, Masaryk University];
pp. 118–137

[Printed in TUGboat 38:2.] 10.5300/2017-3-4/118

Hans Hagen, Lua in MetaPost; pp. 138–154
In LuaTEX, it is now possible to run snippets

of Lua code from within MetaPost. The article de-
scribes the mechanism, the low-level interface avail-
able in LuaTEX, as well as the high-level interface
available in ConTEXt through example. 10.5300/2017-

3-4/138

Peter Wilson, Mělo by to fungovat VI –
Odstavce [It might work. VI — Paragraphs];
pp. 155–164

This paper demonstrates possibilities of setting
the TEX paragraph parameters for different, even less
usual, paragraph justifications. [Printed in TUGboat

28:2.] 10.5300/2017-3-4/155

92 TUGboat, Volume 39 (2018), No. 1

TUG financial statements for 2017

Karl Berry, TUG treasurer

The financial statements for 2017 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
https://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was down about $10,000 in
2017 compared to 2016, in large part due to doubling
the electronic discount. Contributions were down
about $2,500. Product sales (mainly Lucida) was
up about $1,300. The annual conference was not on
our budget in 2017. Other categories were about the
same. Overall, 2017 income was down 11%.

Cost of Goods Sold and Expenses highlights,
and the bottom line

Postage and delivery costs were up about $1,600,
due to increasing postal costs worldwide. Other cost
categories were about the same. No unusual fees
were incurred in 2017.

The bottom line for 2017 was strongly negative,
about $15,200.

Balance sheet highlights

TUG’s end-of-year asset total is down by around
$9,600 (4.9%) in 2017 compared to 2016, following
the bottom-line loss.

Committed Funds are reserved for designated
projects: LATEX, CTAN, the TEX development fund,
and others (https://tug.org/donate). Incoming
donations are allocated accordingly and disbursed as
the projects progress. TUG charges no overhead for
administering these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2017 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2017. The payroll liabilities are for 2017
state and federal taxes due January 15, 2018.

Summary

We ended 2017 with 15 fewer members than in 2016.
In 2018, TUG started a trial membership initiative
which has attracted some new members. If the new
trial members renew as regular members, we can
hope the downward membership trend will slow or
even stop.

Additional ideas for attracting members, or ben-
efits TUG could provide, would be very welcome.

⋄ Karl Berry, TUG treasurer
https://tug.org/tax-exempt

TUG 12/31/2017 (vs. 2016) Revenue, Expense

Jan - Dec 17 Jan - Dec 16

Ordinary Income/Expense

Income

Membership Dues 76,502 86,460

Product Sales 7,100 5,801

Contributions Income 7,654 10,681

Annual Conference -699

Interest Income 546 575

Advertising Income 315 315

Services Income 761 1,176

Total Income 92,878 104,309

Cost of Goods Sold

TUGboat Prod/Mailing 23,677 24,896

Software Production/Mailing 2,599 2,479

Postage/Delivery - Members 2,901 1,356

Lucida Sales Accrual B&H 2,895 2,263

Member Renewal 364 384

Total COGS 32,436 31,378

Gross Profit 60,442 72,931

Expense

Contributions made by TUG 2,000 2,000

Office Overhead 13,741 14,934

Payroll Exp 63,186 63,167

Professional Fees 38 13,878

Interest Expense 45 50

Total Expense 79,010 94,029

Net Ordinary Income -18,568 -21,098

Other Income/Expense

Other Income

Prior year adjust 3,356 -1

Net Other Income 3,356 -1

Net Income -15,212 -21,099

TUG 12/31/2017 (vs. 2016) Balance Sheet

Dec 31, 17 Dec 31, 16

ASSETS

Current Assets

Total Checking/Savings 184,765 193,913

Accounts Receivable 275 715

Total Current Assets 185,040 194,628

TOTAL ASSETS 185,040 194,628

LIABILITIES & EQUITY

Liabilities

Committed Funds 42,972 35,842

TUG conference 596

Prepaid member income 6,070 6,850

Payroll Liabilities 1,080 1,083

Total Current Liabilities 53,416 47,792

TOTAL LIABILITIES 53,416 47,792

Equity

Unrestricted 146,836 167,934

Net Income -15,212 -21,098

Total Equity 131,624 146,836

TOTAL LIABILITIES & EQUITY 185,040 194,628

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Dominici, Massimiliano
Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

TUGboat, Volume 39 (2018), No. 1 93

Hendrickson, Amy
57 Longwood Ave. #8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: http://texnology.com

LATEX Macro Writing: Packages for print and
e-publishing; Sophisticated documentation for users.
Book and journal packages distributed on-line to
thousands of authors.

More than 30 years’ experience, for major publishing
companies, scientific organizations, leading universities,
and international clients.

Graphic design; Software documentation; LATEX
used for Data Visualization, and automated report
generation; e-publishing, design and implementation;
Innovation to match your needs and ideas.

LATEX training, customized to your needs, on-site—
have taught classes widely in the US, and in the
Netherlands and Sweden.

See the TEXnology website for examples. Call or
send email: I’ll be glad to discuss your project with you.

Latchman, David
2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs. Call or email to discuss your
project or visit my website for further details.

Peter, Steve
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge,
and Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens
of languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Sofka, Michael
8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document

Sofka, Michael (cont’d)

conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

TEXtnik
Spain
Email: textnik.typesetting (at) gmail.com

Do you need personalised LATEX class or package
creation? Maybe help to finalise your current
typesetting project? Any problems compiling your
current files or converting from other formats to
LATEX? We offer +15 years of experience as advanced
LATEX user and programmer. Our experience with
other programming languages (scripting, Python
and others) allows building systems for automatic
typesetting, integration with databases, . . . We can
manage scientific projects (Physics, Mathematics, . . .)
in languages such as Spanish, English, German and
Basque.

Veytsman, Boris
132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated

94 TUGboat, Volume 39 (2018), No. 1

Veytsman, Boris (cont’d)

document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Webley, Jonathan
Flat 11, 10 Mavisbank Gardens
Glasgow, G1 1HG, UK
07914344479
Email: jonathan.webley (at) gmail.com

I’m a proofreader, copy-editor, and LATEX typesetter.
I specialize in math, physics, and IT. However, I’m
comfortable with most other science, engineering and
technical material and I’m willing to undertake most
LATEX work. I’m good with equations and tricky
tables, and converting a Word document to LATEX.
I’ve done hundreds of papers for journals over the
years. Samples of work can be supplied on request.

Production notes

Karl Berry

In the previous issue, Barbara’s editorial (tug.org/TUGboat/
tb38-3/tb120beet.pdf) mentioned the plan to create “com-
plete” PDFs for all issues. This has been done, to the extent
presently practical, and they are linked from the individual is-
sues’ contents pages under tug.org/TUGboat/Contents. Cover
pages, ancillary items, and assorted other refinements to the
contents and “lists” files (authors, titles, keywords, also linked
on the Contents page) were made in the course of the work.

The results are far from perfect, since the sources for
many older issues are incomplete or missing, ditto the files
sent to the printer, ditto the scanning done over the years.
Sometimes the only files available had cropmarks and printer’s
instructions. Nevertheless, I felt it more useful to include
everything available, for the sake of the content, rather than
omit material for its imperfections.

Going forward, the plan is for the page numbers in both
the main and by-difficulty tables of contents to be active links
in the complete PDF to the corresponding page. This was
done for the first time in the last issue, 38:3. (There is no
plan to do this for older issues.)

On the TEXnical side, I used this pdfTEX primitive
command to create these links:

\pdfstartlink

attr{/Border [0 0 0]}

goto page \tublinkdestpage{/XYZ}\relax

where: 1) attr{/Border...} prevents boxes from being dis-
played around the links by PDF readers, which I find remark-
ably distracting; 2) gotopage.../XYZ specifies the destination
page and to preserve the current position when moving, in-
stead of zooming the display in or out; 3) \tublinkdestpage
was previously defined as a counter, set to the corresponding
“physical” PDF page number (always starts at 1).

Thus, making the actual link is reasonably straight-
forward. Getting to that point, though, was more painful:
disentangling the longstanding TUGboat cover machinery,
which previously made several of the cover pages at once, with
DVI output (dating back to the days when TUGboat paste-up
involved scissors and glue, not just moving bytes around). I
wanted to switch to pdfTEX directly for the sake of making
the link (as opposed to trying to pass links through DVI to
PostScript to PDF), and to process each page in a separate
run, due to macro dependencies and just for my sanity. The
final result is not intended to be visibly different.

One other (unrelated) improvement I learned of recently
was to run the complete PDF through Ghostscript using
-dCompressFonts=true, which compresses our Type 1 fonts
into Type 1C, usually making the final file significantly smaller.

Happy TUGboat browsing!

⋄ Karl Berry
tug.org/TUGboat

The 39th Annual Meeting of the TEX Users Group

July 20–22, 2018

Institute for Pure and Applied Mathematics— IMPA
Rio de Janeiro, Brazil

Official satellite conference of
International Congress of Mathematicians 2018

tug2018@tug.org

http://tug.org/tug2018

Sponsored by the TEX Users Group, DANTE e.V., and ICM’18.

2018

Apr 4 – 6 DANTE 2018 Frühjahrstagung and

58th meeting, Passau, Germany.
www.dante.de/events.html

Apr 12 – 14 TYPO Labs 2018, “How far can we go?”,
Berlin, Germany. typotalks.com/labs

Apr 28 –
May 2

BachoTEX2018, “What’s to stay,

what’s to go”, 26th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex

May 1 TUG2018 and Practical TEX 2018.
Deadlines: early bird registration,
abstracts for presentation proposals,
tug.org/tug2018 and practicaltex2018

May 17 – 19 TYPO Berlin 2018, “Trigger”,
Berlin, Germany. typotalks.com/berlin

Jun 3 – 8 17th Annual Book History Workshop,
Texas A&M University, College Station,
Texas. library.tamu.edu/book-history

Jun 4 – 15 Mills College Summer Institute for
Book and Print Technologies,
Oakland, California.
millsbookartsummer.org

Jun 14 – 16 /gKafematik/: Graphemics in the 21st
century—From graphemes to knowledge,
IMT Atlantique, Brest, France.
conferences.telecom-bretagne.eu/

grafematik/

Jun 24 – 30 Digital Humanities 2018, Alliance of
Digital Humanities Organizations,
El Colegio de México and Universidad
Nacional Autónoma de México (UNAM),
Mexico City. adho.org/conference

Jun 25 – 27 Practical TEX 2018,
Rensselaer Polytechnic Institute,
Troy, New York.
tug.org/practicaltex2018

Jun 25 – 29 SHARP 2018, “From First to Last:
Texts, Creators, Readers, Agents”.
Society for the History of Authorship,
Reading & Publishing. Sydney, Australia.
www.sharpweb.org/main

96 TUGboat, Volume 39 (2018), No. 1

Calendar

Jun 28 – 29 Centre for Printing History & Culture,
“Script, print, and letterforms in
global contexts: the visual and
the material”, Birmingham City
University, Birmingham, UK.
www.cphc.org.uk/events

Jul 1 TUG2018 deadline for preprints for
printed program. tug.org/tug2018

Jul 5 – 7 Sixteenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), “Reconsidering Freedom”,
University of Pennsylvania,
Philadelphia, USA.
thehumanities.com/2018-conference

TUG2018 (satellite conference to the
International Congress of Mathematicians)
Rio de Janeiro, Brazil.

Jul 20 – 22 The 39th annual meeting of the
TEX Users Group.
tug.org/tug2018

Jul 30 –
Aug 3

Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

Aug 1 – 5 TypeCon 2018, 20th anniversary,
Portland, Oregon. typecon.com

Aug 4 TUGboat 39:2 (proceedings issue),
submission deadline.

Aug 12 – 16 SIGGRAPH 2018, “Generations”,
Vancouver, Canada. s2018.siggraph.org

Sep 2 – 8 12th International ConTEXt Meeting,
“Unusual usage of ConTEXt”,
Prague–Sibřina, Czech Republic.
meeting.contextgarden.net/2018

Sep 9 – 14 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 29 TUGboat 39:3, submission deadline.

Oct 5 – 7 Oak Knoll Fest XX, New Castle,
Delaware. www.oakknoll.com/fest

Status as of 15 March 2018

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings.
Interested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 39 (2018), No. 1

Introductory

4 Barbara Beeton / Editorial comments
• typography and TUGboat news

16 Jonathan Fine / TUG is TEX users helping each other
• brief review of TEX Users Group’s status and purpose

16 Jonathan Fine / LATEX and Jupyter, TikZ and Vega
• analogy of TEX and HTML publishing languages

44 Frank Mittelbach and the LATEX Project Team / New rules for reporting bugs in the LATEX core software
• as maintained by the LATEX Project: use the latexbug package and github.com/latex3/latex2e

20 Gerd Neugebauer / CTAN quiz
• a tour by url through several notable features of CTAN

3 Boris Veytsman / From the president
• conferences, funding, accessibility, education

19 David Walden / Type designer Nina Stössinger speaks at 3rd Annual Updike Prize event
• report of vibrant presentation on “Looking & Making & Questioning”

Intermediate

88 Karl Berry / The treasure chest
• new CTAN packages, October 2017–April 2018

30 Marcin Borkowski / TEXing in Emacs
• Emacs basics, built-in features for text, customizations, extensions

17 Peter Flynn / Typographers’ Inn
• Fonts and faces and families; X ELATEX

8 Yannis Haralambous / TEX as a path, a talk given at Donald Knuth’s 80th birthday celebration symposium
• the impact of TEX: technical, esthetic, and personal

48 LATEX Project Team / LATEX news, issue 28, April 2018
• A new home for LATEX2ε sources; Bug reports for core LATEX2ε;

UTF-8: the new default input encoding;
A general rollback concept; Integration of remreset and chngcntr packages;
Testing for undefined commands; Changes to packages

21 Carla Maggi / The DuckBoat—News from TEX.SE: The Morse code of TikZ
• history of duck mania, extended TikZ example

Intermediate Plus

60 Luciano Battaia / Three-dimensional graphics with TikZ/PSTricks and the help of Geogebra
• 3D examples plotted by Geogebra and typeset with TEX

69 Alan Braslau, Idris Hamid, Hans Hagen / ConTEXt nodes: commutative diagrams and related graphics
• introduction to and graduated examples of diagrams with MetaPost and ConTEXt

Advanced

51 Enrico Gregorio / TEX.StackExchange cherry picking: expl3
• extended examples of expl3 programming: lists, strings, macros, graphics

27 Hans Hagen / From Lua 5.2 to 5.3
• handling complications from new integer representations of numbers

41 Hans Hagen / Executing TEX in Lua: Coroutines
• efficiently executing TEX inside Lua loops

37 Henri Menke / Tutorial: Using external C libraries with the LuaTEX FFI
• step-by-step example linking the GNU Scientific Library (GSL) to LuaTEX, and pgfplots

81 Udo Wermuth / TEX’s “additional demerits” parameters
• analysis of \adjdemerits, \finalhyphendemerits, \doublehyphendemerits

Reports and notices

2 Institutional members

5 Barbara Beeton / Hyphenation exception log
• update for missed and incorrect U.S. English hyphenations

7 Norbert Preining / In memoriam: Staszek Wawrykiewicz (1953–2018)

27 John Atkinson / Comic: Prefixation

90 From other TEX journals: Die TEXnische Komödie 4/2017–1/2018; Zpravodaj 2017/1–4;

92 Karl Berry / TUG financial statements for 2017

93 TEX consulting and production services

94 Karl Berry / Production notes
• page numbers as links in TUGboat’s complete PDF contents

95 TUG 2018 announcement

96 Calendar

