
TUGboat, Volume 39 (2018), No. 1 51

TEX.StackExchange cherry picking: expl3

Enrico Gregorio

Abstract

We present some examples of macros built with
expl3 in answer to users’ problems presented on
tex.stackexchange.com to give a flavor of the lan-
guage and describe its possibilities. Topics include
list printing, string manipulation, macro creation,
and graphics.

1 Introduction

My first answer on TEX.SX using expl3, the program-
ming language for the future LATEX3, appeared in
November, 2011 and a month later I issued the first
version of kantlipsum. As every regular of TEX.SX
knows, I like to use expl3 code for solving problems,
because I firmly believe in its advantages over tradi-
tional TEX and LATEX programming.

I’ll present some selected answers I have given
(sometimes with modified code), also making some
comparisons with traditional coding. Some objec-
tions to expl3 may be justified: it’s verbose, it needs
to load a few thousand lines of code. Yes, it’s verbose
and in my opinion this is one of its strengths: I don’t
think that \hb@xt@ is clearer and easier to interpret
than \hbox_to_wd:nn. Loading a few thousand lines
of code is done almost instantly on modern machines.

Using expl3 doesn’t free the user from knowing
something about macro expansion, because this is
how TEX works to begin with, but a big advantage
is that commonly used and often misunderstood
\expandafter tricks are (almost) never needed.

Some acquaintance with the language is needed
for reading this paper, but I think that having the
interface3 manual at hand would be sufficient for
removing most doubts.

2 List printing

Our first toy problem is to define a macro \ocamllist
that prints a list of items in the style of OCaml. Thus
we want \ocamllist{} to print opening and clos-
ing brackets with a thin space in between, while
\ocamllist{aa,bb} should print [aa; bb].1

Such a command should be flexible enough to
allow recursive calls. There are several possible solu-
tion and the one by Petr Oľsák is, as usual, brilliant:

\def\ocamllist#1{\ocamllistA #1,,}

\def\ocamllistA#1,{[#1\ocamllistB}

\def\ocamllistB#1,{%

\ifx,#1,#1]%

\else

;#1\expandafter\ocamllistB

1 https://tex.stackexchange.com/questions/360958/

\fi

}

$\ocamllist{}$\par

\ocamllist{aa}\par

$\ocamllist{aa,bb}$\par

$\ocamllist{aa,\ocamllist{bb,cc},dd}$

\end

If we try it, the output is almost as required; it only
lacks the thin space:

[]
[aa]
[aa; bb]
[aa; [bb; cc]; dd]

Writing such code, however, requires mastery of the
low-level TEX language. Can we do it without having
to define three macros for doing such a thing? And,
most important, using a more natural language?
This is, of course, where expl3 comes into the picture.

\ExplSyntaxOn

\NewDocumentCommand{\ocamllist}{m}

{

[

\clist_set:Nn \l_hongxu_ocamllist_clist {#1}

\clist_if_empty:NTF \l_hongxu_ocamllist_clist

{ \, }

{ \clist_use:Nn \l_hongxu_ocamllist_clist {;} }

]

}

\clist_new:N \l_hongxu_ocamllist_clist

\ExplSyntaxOff

Yes, one needs to learn a bunch of new names for the
basic functions, but there are several advantages. For
instance, suppose we want to extend the macro so it
accepts a star variant for automatically sized fences
and an optional command for manually choosing the
size of the brackets. Very easy with expl3:

\ExplSyntaxOn

\NewDocumentCommand{\ocamllist}{sO{}m}

{

\IfBooleanTF{#1}{\left[}{\mathopen{#2[}}

\clist_set:Nn \l_hongxu_ocamllist_clist {#1}

\clist_if_empty:NTF \l_hongxu_ocamllist_clist

{ \, }

{ \clist_use:Nn \l_hongxu_ocamllist_clist {;} }

\IfBooleanTF{#1}{\right]}{\mathclose{#2]}}

}

\clist_new:N \l_hongxu_ocamllist_clist

\ExplSyntaxOff

Now the (silly) input

$\ocamllist{}$\par

\ocamllist{aa}\par

$\ocamllist[\Big]{aa,bb}$\par

$\ocamllist*{\sum\limits_{i=1}^n a_i,bb,cc}$\par

$\ocamllist[\big]{aa,\ocamllist{bb,cc},dd}$

will produce

TEX.StackExchange cherry picking: expl3

52 TUGboat, Volume 39 (2018), No. 1

[]
[aa][
aa; bb

]
[

n∑
i=1

ai; bb; cc

]
[
aa; [bb; cc]; dd

]
What’s happening? In the extended macro, s

stands for an optional *, whose presence can be tested
with \IfBooleanTF which does the necessary branch-
ing. The O{} bit specifies an optional argument with
empty default value.

Now let’s analyze the bulk of the macro. With
\clist_set:Nn we set a variable (of type clist) to
the specified argument. This is not just the same
as doing a standard \def, because the input is ‘nor-
malized’; for instance, leading and trailing spaces in
the items are removed. This would not be a prob-
lem here, as the macro is called in math mode, but
it could be for macros called in text mode. With
\clist_use:Nn the contents of the clist is deliv-
ered with the specified separator between items. Not
adding a semicolon after the last item is cleverly done
by the plain TEX macros above, while with expl3 we
need not worry about it. It should also be clear that
\clist_if_empty:NTF checks whether the variable
contains an empty list or not.

For those readers who are unacquainted with
expl3 syntax, let’s recall the main facts. A function
in the language has a name consisting of three parts:

1. a module name, here hongxu, that acts as a sort
of “name space” indicator;

2. a proper name, which consists of any string of
characters describing the function’s action, with
parts separated by underscores;

3. a signature, after the mandatory colon, that
specifies the arguments the function expects.

When reading expl3 code, one can immediately parse
the arguments to a function, because of the signature.
The main argument types are

• N, for arguments consisting of a single token,
usually a control sequence, but also a character;

• n, for standard braced arguments;

• T and F, for the true and false branch of a con-
ditional function, but they’re syntactically the
same as n, so the actual arguments should be
braced.

There are others, and we’ll see some of them in
action.

Names of variables follow a similar scheme; a
name consists of

1. a prefix, which should be l (local), g (global) or
c (constant);

2. a module name as with functions;

3. a proper name;

4. the variable’s type.

Sticking to this convention helps in reading and de-
bugging code.

A slightly different approach for this problem
would be with

\seq_set_split:Nnn \l_hongxu_ocamllist_seq { , } {#1}

\seq_if_empty:NTF \l_hongxu_ocamllist_seq

{ \, }

{ \seq_use:Nn \l_hongxu_ocamllist_seq {;} }

Here we use another data type, namely seq (se-
quence); the first command splits the input at com-
mas, removing leading and trailing spaces from the
items. An input such as \ocamllist{,} would be
treated differently by the two versions: with clist

it would produce an empty clist because of nor-
malization; with seq the sequence would have two
items. The choice depends on the needs at hand.

2.1 Two-row matrix input

A similar problem is typesetting a two-row matrix
with the entries specified as comma-separated pairs
firstrow/secondrow,2 so the input 1/5, 2/6 means
the matrix 1 2

5 6
. Cleverly written recursive macros

are possible, but here I’ll present an expl3 version.

\documentclass{article}

\usepackage{amsmath}

\usepackage{xparse}

\setcounter{MaxMatrixCols}{20} % or maybe more

\ExplSyntaxOn

\NewDocumentCommand{\twolinematrix}{O{}m}

{

\twoline_matrix:nn { #1 } { #2 }

}

\seq_new:N \l__twoline_i_seq

\seq_new:N \l__twoline_ii_seq

\cs_new_protected:Nn \twoline_matrix:nn

{

\seq_clear:N \l__twoline_i_seq

\seq_clear:N \l__twoline_ii_seq

\clist_map_function:nN { #2 } \twoline_add:n

\begin{#1matrix}

\seq_use:Nn \l__twoline_i_seq { & }

\\

\seq_use:Nn \l__twoline_ii_seq { & }

\end{#1matrix}

}

\cs_new:Nn \twoline_add:n

{

__twoline_add:w #1 \q_stop

}

\cs_new_protected:Npn __twoline_add:w #1/#2 \q_stop

{

\seq_put_right:Nn \l__twoline_i_seq { #1 }

\seq_put_right:Nn \l__twoline_ii_seq { #2 }

2 https://tex.stackexchange.com/questions/393053/

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 53

}

\ExplSyntaxOff

\begin{document}

\[

\twolinematrix{1/6, 2/7, 3/8, 4/9, 5/10}

\qquad

\twolinematrix[b]{

1/6, 2/7, 3/8, 4/9, 5/10,

6/11, 7/12, 8/13, 9/14, 10/15

}

\]

\end{document}

It is recommended to transfer action to an expl3
command as soon as the code is more than a few
lines, as we do here. The optional argument defaults
to empty; this exploits the uniform syntax of the
matrix-like environments of amsmath, so we can use
b for brackets or p for parentheses and so on.

The main function clears two seq variables and
proceeds to repopulate them. Since the argument
is a comma-separated list, it’s convenient to use
\clist_map_function:nN that passes each item to
the specified function, in this case \twoline_add:n,
which will add the parts to the two sequences. The
function separates the two parts by using an auxil-
iary function __twoline_add:w, whose definition
is clear: the first argument is whatever precedes the
slash, the second argument is what’s behind it. The
“quark” \q_stop is customary here, the analog of
\@nil in the LATEX kernel.

After having populated the two sequences, we
can deliver them to form the two rows of the ma-
trix. Since \seq_use:Nn delivers its output in one
swoop, there’s no problem of already being in an
alignment: typesetting will only start when the ac-
tion of \seq_use:Nn has ended.

You might wonder why the functions are de-
fined with the protected variant of \cs_new. It’s
because these functions perform assignments, in this
case adding items to sequences, so they should not
be expanded in a full expansion context. The un-
adorned \cs_new:Nn function should only be used
for functions that can be fully expanded. This helps
in avoiding the ever-loved fragile commands.

Another point is the declaration of function pa-
rameters: \cs_new_protected:Nn can deduce the
parameter text from the function name being defined.
On the other hand, \cs_new_protected:Npn needs
the parameter text to be fully spelled out. In the
case of __twoline_add:w it is necessary because
we use delimited arguments; the signature is thus w,
for weird.

It would take too long to fully explain the double
underscores; the idea is that functions or variables
whose names start with a double underscore are pri-
vate, whereas the others are public. For personal

macros the distinction is a bit foggy, but it becomes
important for package code: package writers are al-
lowed to use the public functions of another package,
but not the private ones, under the assumption that
the syntax and action of the public functions are
stable, whereas the private functions realizing the
actual implementation may vary with time.

If the first row always has a sequence of integers
in the natural order, we can simplify the input:

\NewDocumentCommand{\twolinematrix}{O{}m}

{

\twoline_matrix:nn { #1 } { #2 }

}

\clist_new:N \l__twoline_row_clist

\cs_new_protected:Nn \twoline_matrix:nn

{

\clist_set:Nn \l__twoline_row_clist { #2 }

\begin{#1matrix}

1 % start at 1

\use:x

{

\int_step_function:nnnN

{ 2 }

{ 1 }

{ \clist_count:N \l__twoline_row_clist }

__twoline_addindex:n

}

\\

\clist_use:Nn \l__twoline_row_clist { & }

\end{#1matrix}

}

\cs_new:Nn __twoline_addindex:n

{

& #1

}

\ExplSyntaxOff

The calls would then be like

\twolinematrix{6, 7, 8, 9, 10}

\twolinematrix[b]{

6, 7, 8, 9, 10,

11, 12, 13, 14, 15

}

Here we exploit the fact we can access the number of
items in a stored clist so we can easily generate the
tokens &2&3&...&n by fully expanding with \use:x

the function \int_step_function:nnnN. I leave fill-
ing in the details as an exercise to the reader. Time
to move on.

3 String manipulation

LATEX users sometimes have weird ideas like setting
the title of a document based on the file name.3 For
instance, from a file name such as

Chapter-Name_of_Section.tex

the document should be titled

Chapter: Name of Section

3 https://tex.stackexchange.com/questions/394489/

TEX.StackExchange cherry picking: expl3

54 TUGboat, Volume 39 (2018), No. 1

Not that I recommend such an approach, but at
least it provides an occasion for describing some
useful expl3 functions. We need to replace, in an
expandable way, the hyphen with a colon plus space,
and underscores with spaces.

expl3 defines \c_sys_jobname_str as its alias
for the TEX primitive \jobname; we now make our
acquaintance with another data type, namely str

(string). The tokens in a str variable are stored
‘literally’.4 We also see here an example of a constant,
that is, a variable whose value should never change.

Our approach is to examine the tokens in the
file name one by one and output a replacement if
needed:

\ExplSyntaxOn

\NewExpandableDocumentCommand{\massagedjobname}{}

{

\str_map_function:NN \c_sys_jobname_str

\ddas_jobname:n

}

\cs_new:Nn \ddas_jobname:n

{

\str_case:nnF { #1 }

{

{ - }{ :~ }

{ _ }{ ~ }

}

{ #1 }

}

\ExplSyntaxOff

Then one can do \title{\massagedjobname}. We
pass each token to \ddas_jobname:n, which does the
comparison: if the token is in the list in the second ar-
gument, then the corresponding replacement is done;
in case of no match, the F branch is followed and,
in this case the token itself is output. As all kernel
function with TF branching, also \str_case:nnTF

actually comes in four flavors

\str_case:nnTF

\str_case:nnT

\str_case:nnF

\str_case:nn

The true branch is followed when there is a match,
but here we don’t need it, so we can omit it using
the third variant.

Again, there are classical TEX methods, but
this has the big advantage of not requiring nested
conditionals which would become very cumbersome
when more than a couple of replacements are needed.

One might object that what we get doesn’t have
the correct category codes. Here’s a different ap-
proach that also resets letters to category code 11.

\ExplSyntaxOn

\str_new:N \g_ddas_jobname_str

\NewDocumentCommand{\computetitle}{m}

4 For TEX hackers: as characters with category code 12,
except for spaces that have their usual category code of 10.

{

\str_gset_eq:NN

\g_ddas_jobname_str

\c_sys_jobname_str

\str_greplace_all:Nnn

\g_ddas_jobname_str

{ - } { :~ }

\str_greplace_all:Nnn

\g_ddas_jobname_str

{ _ } { ~ }

\tl_gset_rescan:Nnx

#1

{ }

{ \str_use:N \g_ddas_jobname_str }

}

\ExplSyntaxOff

\computetitle{\massagedjobname}

This is not expandable, but that is not a problem
here, since what we need is a macro that holds the ti-
tle. We perform the replacements in a more efficient
fashion and then rescan the string so that the right
category codes are assigned. This has to be done
outside the scope of \ExplSyntaxOn, where the colon
is a letter and the space is ignored. Global assign-
ments are used, because the macro should be globally
available; it wouldn’t make a big difference here, but
following a scheme is always best. The working of
\str_greplace_all:Nnn should be clear from the
function’s name, and the syntax is as uniform as
possible: str refers to the ‘string’ module, greplace
stands for ‘global replace’; the first argument is the
str variable in which we want to do the replace-
ment, the second argument is the search string, and
the final one is the replacement string. There’s a
similar set of functions for tl variables. The sec-
ond argument to \tl_gset_rescan:Nnn is for local
assignments of category codes, but we need none.

Wait! Why is it \tl_gset_rescan:Nnx? This
is a great feature of expl3. We can define variants
of already existing functions. The argument type
x means: a normal braced argument that is fully
expanded before being passed to the main func-
tion. The expl3 kernel provides a definition for
\tl_gset_rescan:Nnn and then has

\cs_generate_variant:Nn \tl_gset_rescan:Nnn { Nnx }

Thus, suppose we have a macro \foo that takes
two arguments and we want to call it by first fully
expanding the second argument. The classical ap-
proach would be:

\newcommand{\fooexpii}[2]{%

\edef\@tempa{#2}%

\expandafter\fooexpii@aux\expandafter{\@tempa}{#1}%

}

\newcommand{\fooexpii@aux}[2]{%

\foo{#2}{#1}%

}

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 55

Indeed, the variant defined above does essentially
this, but the nice thing is that we don’t need to know
the details, just enjoy the result.

3.1 Colorizing capital letters

Another funny request is to change the color of capi-
tal letters in a given token list.5 For this a different
approach is needed, with regular expressions: expl3
has a powerful regular expression engine, tailored for
the special quirks of TEX.

\documentclass{article}

\usepackage{xparse}

\usepackage{xcolor}

\ExplSyntaxOn

\NewDocumentCommand{\colorcap}{ O{blue} m }

{

\sheljohn_colorcap:nn { #1 } { #2 }

}

\tl_new:N \l__sheljohn_colorcap_input_tl

\cs_new_protected:Npn \sheljohn_colorcap:nn #1 #2

{

% store the string in a variable

\tl_set:Nn \l__sheljohn_colorcap_input_tl { #2 }

\regex_replace_all:nnN

% search a capital letter (or more)

{ ([A-Z]+ | \cC.\{?[A-Z]+\}?) }

% replace the match with \textcolor{#1}{<match>}

{ \c{textcolor}\cB\{#1\cE\}\cB\{\1\cE\} }

\l__sheljohn_colorcap_input_tl

\tl_use:N \l__sheljohn_colorcap_input_tl

}

\ExplSyntaxOff

\begin{document}

\colorcap{\‘Once \r{U}pon a Time}

\colorcap[red]{Once Upon a Time}

\end{document}

We store the input in a tl (token list) variable and
then proceed to search for capital letters with [A-Z]+

(one or more) or sequences formed by

1. any control sequence, denoted by \cC.,

2. an optional open brace, \{?,

3. one or more capital letters, and

4. an optional close brace, \}?.

A match is replaced by \textcolor{#1}{〈match〉}.
The syntax of the replacement text is admittedly
peculiar, but it’s necessary for getting the correct
tokens with the likewise peculiar TEX properties.
Our output is:

Ònce Ůpon a Time
Once Upon a Time

Variables of type tl are simply containers of TEX
tokens.

5 https://tex.stackexchange.com/questions/173209/

While tokens in a tl variable are usually stored
with their category code, we can rescan them. An
example where this is useful is for splitting Windows-
style paths, which can use the backslash instead of
the slash of other operating systems.6

3.2 Menu sequences

We’d like to be able to say \menu{1,2,3,4} and
treat specially the first and last item, with provision
for a single item. The macro should be able to specify
a different separator, for cases such as

\menu[/]{C:/A/B/C}

\menu*{C:\A\B\C}

The *-variant will use the backslash as separator.
The code is rather longish, but instructive.

\documentclass{article}

\usepackage{xparse}

\ExplSyntaxOn

% user level commands

\NewDocumentCommand{\setmenuseparator}{ m }

{

\tobi_menu_setsep:n { #1 }

}

\NewDocumentCommand{\menu}{ s o m }

{

\group_begin:

\IfValueT{#2}{ \tobi_menu_setsep:n { #2 } }

\IfBooleanTF{#1}

{

\tobi_menu_process_rescan:n { #3 }

}

{

\tobi_menu_process:n { #3 }

}

\group_end:

}

% variables

\seq_new:N \l_tobi_menu_seq

\tl_new:N \l_tobi_menu_sep_tl

\tl_set:Nn \l_tobi_menu_sep_tl { , } % default

\tl_new:N \l_tobi_first_tl

\tl_new:N \l_tobi_last_tl

\tl_new:N \l_tobi_input_tl

% internal functions

\cs_new:Nn \tobi_menu_setsep:n

{

\tl_set:Nn \l_tobi_menu_sep_tl { #1 }

}

\cs_new:Npn \tobi_menu_process:n #1

{

\seq_set_split:NVn \l_tobi_menu_seq

\l_tobi_menu_sep_tl

{ #1 }

\tobi_premenu:

\int_case:nnF { \seq_count:N \l_tobi_menu_seq }

{

{ 0 } { EMPTY }

6 https://tex.stackexchange.com/questions/44961/

TEX.StackExchange cherry picking: expl3

56 TUGboat, Volume 39 (2018), No. 1

{ 1 } { \tobi_singlemenu:n { #1 } }

}

{

\seq_pop_left:NN \l_tobi_menu_seq \l_tobi_first_tl

\seq_pop_right:NN \l_tobi_menu_seq \l_tobi_last_tl

\tobi_firstmenu:V \l_tobi_first_tl

\seq_map_function:NN

\l_tobi_menu_seq

\tobi_midmenu:n

\tobi_lastmenu:V \l_tobi_last_tl

}

\tobi_postmenu:

}

\cs_new_protected:Npn \tobi_menu_process_rescan:n #1

{

\group_begin:

\tl_set_eq:NN \l_tobi_menu_sep_tl \c_backslash_str

\tl_set_rescan:Nnn \l_tobi_input_tl

{ \char_set_catcode_other:N \\ }

{ #1 }

\tobi_menu_process:V \l_tobi_input_tl

\group_end:

}

\cs_generate_variant:Nn \seq_set_split:Nnn { NV }

\cs_generate_variant:Nn \tobi_menu_process:n { V }

% customize to suit

\cs_new_protected:Nn \tobi_premenu:

{ \fbox{\strut pre} }

\cs_new_protected:Nn \tobi_postmenu:

{ \fbox{\strut post} }

\cs_new_protected:Nn \tobi_firstmenu:n

{ \fbox{\strut #1~(first)} }

\cs_generate_variant:Nn \tobi_firstmenu:n { V }

\cs_new_protected:Nn \tobi_midmenu:n

{ \fbox{\strut #1~(mid)} }

\cs_new_protected:Nn \tobi_lastmenu:n

{ \fbox{\strut #1~(last)} }

\cs_generate_variant:Nn \tobi_lastmenu:n { V }

\cs_new_protected:Nn \tobi_singlemenu:n

{ \fbox{\strut #1~(single)} }

\ExplSyntaxOff

\begin{document}

\menu{1,2,3,4}\par\medskip

\menu{Single Element}\par\medskip

\menu{A,B,C,D,E}\par\medskip

\menu[/]{A/B/C/D/E}\par\medskip

\setmenuseparator{/}

\menu{C:/A/B/C}\par\medskip

\menu*{C:\A\B\C}

\end{document}

We start off with an interesting application of
input splitting; we can set a seq variable to the
items we obtain from breaking the input at the
specified sequence of tokens. The function for this
is \seq_set_split:Nnn, whose second argument is
the chosen separator. However, in this application
the separator is variable, so we define a variant

\seq_set_split:NVn. The V argument type means
“brace the contents of the specified variable and pass
it as if it were a normal argument”. In classical terms
the action is similar to

\expandafter\foo\expandafter\xyz

\expandafter{\baz}{arg}

where \foo is the three-argument macro and \baz

is a container.
We then branch according to the number of

items in the sequence. When we have more than
one item, we separate off the first and the last to
receive special treatment: with \seq_pop_left:NN

we remove the leftmost item from the seq and store
it in a tl variable. Then we process the first item,
the middle items, and the last. Again, defining a
variant is handy for processing the special items: we
define a function for the explicit argument and then
a V variant thereof.

For the *-variant, the input is first rescanned,
making the backslash a printable character, and the
separator is set to \ using \c_backslash_str, a pre-
defined string. Then \tl_menu_process:V is used so
as to ‘recycle’ the standard function without having
to bother with \expandafter.

Everything is done in a group in order to allow
local setting of the separator, which can also be
set (conforming to the standard scoping rules) by
\setmenuseparator. Here’s the output:

pre 1 (first) 2 (mid) 3 (mid) 4 (last) post

pre Single Element (single) post

pre A (first) B (mid) C (mid) D (mid) E (last) post

pre A (first) B (mid) C (mid) D (mid) E (last) post

pre C: (first) A (mid) B (mid) C (last) post

pre C: (first) A (mid) B (mid) C (last) post

3.3 Doubling backslashes in auxiliary file

Another example of input manipulation is the re-
quest for writing to an auxiliary file, but doubling
all backslashes, for feeding to an external program.7

\documentclass{article}

\usepackage{xparse}

\ExplSyntaxOn

\NewDocumentCommand{\setupstream}{ O{default} m }

{

\iow_new:c { g_mblanc_dbswrite_#1_iow }

\iow_open:cn { g_mblanc_dbswrite_#1_iow } { #2 }

\AtEndDocument

{

7 https://tex.stackexchange.com/questions/402011/

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 57

\iow_close:c { g_mblanc_dbswrite_#1_iow }

}

}

\NewDocumentCommand{\dbswrite}{ s O{default} m }

{

\IfBooleanTF { #1 }

{% argument is a macro

\mblanc_dbswrite:nV { #2 } #3

}

{% argument is explicit

\mblanc_dbswrite:nn { #2 } { #3 }

}

}

\tl_new:N \l__mblanc_dbswrite_text_tl

\cs_new_protected:Nn \mblanc_dbswrite:nn

{

\tl_set:Nx

\l__mblanc_dbswrite_text_tl

{ \tl_to_str:n { #2 } }

\tl_replace_all:Nxx \l__mblanc_dbswrite_text_tl

{ \c_backslash_str }

{ \c_backslash_str \c_backslash_str }

\iow_now:cV

{ g_mblanc_dbswrite_#1_iow }

\l__mblanc_dbswrite_text_tl

}

\cs_generate_variant:Nn \mblanc_dbswrite:nn { nV }

\cs_generate_variant:Nn \tl_replace_all:Nnn { Nxx }

\cs_generate_variant:Nn \iow_now:Nn { cV }

\ExplSyntaxOff

\setupstream{\jobname.TESTFILE}

\setupstream[secondary]{\jobname.TESTFILESEC}

\newcommand{\test}{%

Here are my contents: \UndefinedMacro and \\%

}

\begin{document}

\dbswrite{%

Here are my contents:

\UndefinedMacro and \\

}

\dbswrite[secondary]{%

Here are my contents:

\UndefinedMacro and \\%

}

\dbswrite*{\test}

\dbswrite*[secondary]{\test}

\end{document}

We find here still another data type, iow (input/
output write). This is a good place to discuss a
nice feature of expl3 regarding input and output
streams. Since conventional TEX engines have a very
limited number of streams (16), a new stream is
allocated from a pool and when the stream is closed
that stream is available again, in contrast to what

happens in current LATEX (and plain TEX). Here
this is irrelevant, as the stream is only closed at the
end of the document, but it can be useful in other
applications.

With \iow_new:N we can allocate a new write
stream, but here we may need more than one, with
a symbolic name. Thus we use a variant with the c

type, so that the braced argument is turned into a
control sequence, the counterpart of the classical

\expandafter\foo\csname baz\endcsname

This way, we can easily use a variable name. The op-
tional argument defaults to default, but we can set
up as many as we want. Thus the macro \dbswrite

takes an optional argument for the symbolic name
of the stream, and also has a *-variant for the case
when we want to pass a tl argument (here a classical
parameterless macro).

The argument is first so-called “stringified” with
\tl_to_str:n, then backslashes are doubled with
\tl_replace_all:Nxx, and finally, the contents are
written out. The expl3 kernel doesn’t provide every
possible variant, so we need to do

\cs_generate_variant:Nn \tl_replace_all:Nnn {Nxx}

\cs_generate_variant:Nn \iow_now:Nn {cV}

It’s no problem if some other code, maybe from
a package we load, does the same, because an al-
ready existing variant will cause the code above to
do nothing and the variants are defined in a uni-
form way. Similarly we need \mblanc_dbswrite:nV

for the *-variant. Here we can see why we want
\NewDocumentCommand to generally do only “argu-
ment parsing and normalization” and then pass con-
trol to an internal public function: we just need to
concentrate on \mblanc_dbswrite:nn and a variant
will cope with the other case.

The generated files will be identical and contain

Here are my contents: \\UndefinedMacro and \\\\

Here are my contents: \\UndefinedMacro and \\\\

4 Macro factory

In several cases one has to build several macros fol-
lowing a certain scheme. The mapping facilities of
expl3 help in writing compact code.

The first example is about defining macros that
expand to the items in a given list.8 To begin, from
\DefinitionVariables{abc,def} we’d like to de-
fine \variableI and \variableII expanding to abc

and def respectively. Here’s the code:

\NewDocumentCommand{\DefinitionVariables}{m}

{

\int_zero:N \l_tmpa_int

\clist_map_inline:nn { #1 }

{

8 https://tex.stackexchange.com/questions/367335/

TEX.StackExchange cherry picking: expl3

58 TUGboat, Volume 39 (2018), No. 1

\int_incr:N \l_tmpa_int

\tl_clear_new:c

{

variable \int_to_Roman:n { \l_tmpa_int }

}

\tl_set:cn

{

variable \int_to_Roman:n { \l_tmpa_int }

}

{ ##1 }

}

}

Actually, we’re slightly abusing the language for
defining a ‘user level’ macro with (a variant of)
\tl_set:Nn.

The given list is mapped by passing each item
to the second argument, where the current item is
referred to as #1; here the hash mark needs to be
doubled because we’re in the body of a definition.
Compare this with the standard \@for cycle, where
the current item is stored in a macro, which typically
needs to be expanded, often in an awkward way.

We can avoid allocating a new int (integer)
variable and use the scratch one provided by the
kernel. An alternative way could be

\NewDocumentCommand{\DefinitionVariables}{m}

{

\int_step_inline:nnnn

{ 1 } % start

{ 1 } % step

{ \clist_count:n { #1 } } % end

{

\tl_clear_new:c

{

variable \int_to_Roman:n { ##1 }

}

\tl_set:cx

{

variable \int_to_Roman:n { ##1 }

}

{ \clist_item:nn { #1 } { ##1 } }

}

}

but this is less efficient because the clist needs to
be scanned at each step. However, this is a nice way
to show how we can do integer-based cycles.

4.1 Symbol abbreviation macro sets

A possibly better example of a macro factory is
the following: we want to define \CC to stand for
\mathbb{C} and also \cS to stand for \mathcal{S}.
Of course we’d like to add other similar symbols with
as little burden as possible.9

\ExplSyntaxOn

\NewDocumentCommand{\makeabbrev}{mmm}

{

\yoruk_makeabbrev:nnn { #1 } { #2 } { #3 }

}

\cs_new_protected:Nn \yoruk_makeabbrev:nnn

9 https://tex.stackexchange.com/questions/207985/

{

\clist_map_inline:nn { #3 }

{

\cs_new_protected:cpn { #2 } { #1 { ##1 } }

}

}

\ExplSyntaxOff

\makeabbrev{\mathbb}{#1#1}{C,N,Q,Z,D,R,T}

\makeabbrev{\mathcal}{c#1}{A,B,C,S}

Tricky code, isn’t it? If we try it, we’ll find that \CC
indeed expands to \mathbb{C}. The trick is that
when #2 is picked up, the hash marks are doubled
(this is a general TEX feature). When performing
each cycle in the first call of \makeabbrev, what TEX
sees is

\cs_new_protected:cpn { #1#1 } { \mathbb { #1 } }

(because double hash marks are reduced to single
during macro expansion) and, when the current item
is C, this becomes

\cs_new_protected:cpn { CC } { \mathbb{C} }

which is exactly what we need. Here we must use the
:cpn signature for \cs_new_protected because the
macro we’re defining has no signature itself, so the
(empty) parameter text is mandatory, as it cannot
be deduced. As before, c stands for ‘make a control
sequence out of the argument’.

What if we wanted to define \AA to \ZZ in one
fell swoop and maybe also \abf to \zbf to stand for
\mathbf{a} and so on? We can use the command
\int_step_inline:nnnn to populate a clist and
then do the same; a check whether we’re redefining
an existing control sequence is added as otherwise
we’d get errors for \AA and \SS.

\ExplSyntaxOn

\NewDocumentCommand{\makeabbreviations}{mmmm}

{% #1 = wrapper macro

% #2 = template

% #3 = starting letter

% #4 = ending letter

\clist_clear:N \l_tmpa_clist

\int_step_inline:nnnn

{ ‘#3 } % start

{ 1 } % step

{ ‘#4 } % end

{% populate a clist

\clist_put_right:Nx

\l_tmpa_clist

{ \char_generate:nn { ##1 } { 12 } }

}

\clist_map_inline:Nn \l_tmpa_clist

{

\cs_if_exist:cTF { #2 }

{

\msg_term:n

{

Not~redefining~\c_backslash_str#2

}

}

{

Enrico Gregorio

TUGboat, Volume 39 (2018), No. 1 59

\cs_new_protected:cpn { #2 } { #1 { ##1 } }

}

}

}

\ExplSyntaxOff

\makeabbreviations{\mathbb}{#1#1}{A}{Z}

\makeabbreviations{\mathbf}{#1bf}{a}{z}

In the log file and on the console we’d see

* Not redefining \AA

* Not redefining \SS

5 Graphics

I’d like to end this showcase with some new fea-
tures of expl3 regarding graphic inclusion. The team
(primarily Joseph Wright) is currently working on a
set of APIs for the graphics driver meant to imple-
ment the same APIs as PGF, with different names,
of course.

Some basic calls are already provided by the
current kernel (release of 21 February, 2018, at this
writing).

A funny question about printing numbers in
the style required by the Soviet Union postal service
appeared in October 2017.10 These numerals look
like this:

The idea is to use another expl3 data type,
namely prop (property list). A property list is a
container where data is identified by a key, in this
case the digit. We can extract an item, typically
consisting of code, by using its key.

So we start with

\prop_new:N \g_torcli_sovietdigits_prop

\prop_gput:Nnn \g_torcli_sovietdigits_prop { 0 }

{

〈code for 0〉
}

and so on for the other digits. Then we define an
interface

\NewDocumentCommand{\postalcode}{O{}m}

{

\mbox

{

\keys_set:nn { torcli/sovietdigits } { #1 }

\torcli_sovietdigits_print:n { #2 }

}

}

10 https://tex.stackexchange.com/questions/394616/

and now it’s down to using the code for the various
digits stored in the prop. I’ll not go into the details
of the key-value interface, suffice it to say that the
code is defined in terms of some parameters, using
the new LATEX3 graphics commands to draw the
necessary lines.

In the fully expl3 version, the code for 0 and 6 is

\prop_gput:Nnn \g_sovietdigits_prop { 0 }

{

__sovietdigits_moveto:nn {0}{0}

__sovietdigits_lineto:nn {1}{0}

__sovietdigits_lineto:nn {1}{2}

__sovietdigits_lineto:nn {0}{2}

\driver_draw_closestroke:

}

\prop_gput:Nnn \g_sovietdigits_prop { 6 }

{

__sovietdigits_moveto:nn {1}{2}

__sovietdigits_lineto:nn {0}{1}

__sovietdigits_lineto:nn {0}{0}

__sovietdigits_lineto:nn {1}{0}

__sovietdigits_lineto:nn {1}{1}

__sovietdigits_lineto:nn {0}{1}

\driver_draw_stroke:

}

where the functions __sovietdigits_moveto:nn

and __sovietdigits_lineto:nn are simply syn-
tactic sugar around the basic calls:

% Syntactic sugar

\cs_new_protected:Nn __sovietdigits_moveto:nn

{

\driver_draw_moveto:nn

{ #1 \l_sovietdigits_width_dim }

{ #2 \l_sovietdigits_width_dim }

}

\cs_new_protected:Nn __sovietdigits_lineto:nn

{

\driver_draw_lineto:nn

{ #1 \l_sovietdigits_width_dim }

{ #2 \l_sovietdigits_width_dim }

}

Happy LATEX3ing!

� Enrico Gregorio
Dipartimento di Informatica
Università di Verona
and
LATEX Team
enrico.gregorio@univr.it

TEX.StackExchange cherry picking: expl3

