
TUGboat, Volume 39 (2018), No. 1 41

Executing TEX in Lua: Coroutines

Hans Hagen

Much of the Lua code in ConTEXt originates from
experiments. When it survives in the source code
it is probably used, waiting to be used or kept for
educational purposes. The functionality that we
describe here has already been present for a while in
ConTEXt, but improved a little starting with LuaTEX
1.08 due to an extra helper. The code shown here is
generic and not used in ConTEXt as such.

Say that we have this code:

for i=1,10000 do

tex.sprint("1")

tex.sprint("2")

for i=1,3 do

tex.sprint("3");tex.sprint("4")

tex.sprint("5")

end

tex.sprint("\\space")

end

When we call \directlua with this snippet we
get some 30 pages of 12345345345. The printed
text is saved till the end of the Lua call, so basically
we pipe some 170.000 characters to TEX that get
interpreted as one paragraph.

Now imagine this:

\setbox0\hbox{xxxxxxxxxxx} \number\wd0

which gives 4461336. If we check the box in Lua:

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.sprint(tex.box[0].width)

the result is 4461336 4461336, which is not what
you would expect at first sight. However, if you
consider that we just pipe to a TEX buffer that gets
parsed after the Lua call, it will be clear that the
reported width is the width that we started with. It
will work all right if we say:

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.sprint("\\directlua{\

tex.sprint(tex.box[0].width)}")

because now we get: 4461336 443625. It’s not that
complex to write some support code that makes this
more convenient. This can work out quite well but
there is a drawback. If we use this code:

print(status.input_ptr)

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.sprint("\\directlua{print(status.input_ptr)\

tex.sprint(tex.box[0].width)}")

Here we get 6 and 7 reported. You can imagine that
when a lot of nested \directlua calls happen, we
can get an overflow of the input level or (depending
on what we do) the input stack size. Ideally we want
to do a Lua call, temporarily go to TEX, return to
Lua, etc. without needing to worry about nesting
and possible crashes due to Lua itself running into
problems. One charming solution is to use so-called
coroutines: independent Lua threads that one can
switch between — you jump out from the current
routine to another and from there back to the current
one. However, when we use \directlua for that, we
still have this nesting issue and what is worse, we keep
nesting function calls too. This can be compared to:

\def\whatever{\ifdone\whatever\fi}

where at some point \ifdone is false so we quit.
But we keep nesting when the condition is met, so
eventually we can end up with some nesting related
overflow. The following:

\def\whatever{\ifdone\expandafter\whatever\fi}

is less likely to overflow because there we have tail
recursion which basically boils down to not nesting
but continuing. Do we have something similar in
LuaTEX for Lua? Yes, we do. We can register a
function, for instance

lua.get_functions_table()[1]

= function() print("Hi there!") end

and call that one with:

\luafunction 1

This is a bit faster than calling a function like:

\directlua{HiThere()}

which can also be achieved by

\directlua{print("Hi there!")}

which sometimes can be more convenient. Anyway,
a function call is what we can use for our purpose
as it doesn’t involve interpretation and effectively
behaves like a tail call. The following snippet shows
what we have in mind:

tex.routine(function()

tex.sprint(tex.box[0].width)

tex.sprint("\\enspace")

tex.sprint("\\setbox0\\hbox{!}")

tex.yield()

tex.sprint(tex.box[0].width)

end)

We start a routine, jump out to TEX in the
middle, come back when we’re done and continue.
This gives us: 4461336 218508, which is what we
expect.

This mechanism permits efficient (nested) loops
like:

Executing TEX in Lua: Coroutines



42 TUGboat, Volume 39 (2018), No. 1

tex.routine(function()

for i=1,10000 do

tex.sprint("1")

tex.yield()

tex.sprint("2")

tex.routine(function()

for i=1,3 do

tex.sprint("3")

tex.yield()

tex.sprint("4")

tex.yield()

tex.sprint("5")

end

end)

tex.sprint("\\space")

tex.yield()

end

end)

We do create coroutines, go back and forwards
between Lua and TEX, but avoid memory being
filled up with printed content. If we flush paragraphs
(instead of e.g. the space) then the main difference is
that instead of a small delay due to the loop unfolding
in a large set of prints and accumulated content, we
now get a steady flushing and processing.

However, we can still have an overflow of input
buffers because we still nest them: the limitation at
the TEX end has moved to a limitation at the Lua
end. How come? Here is the code that we use:

local stepper = nil

local stack = { }

local fid = 0xFFFFFF

local goback = "\\luafunction"..fid.."\\relax"

function tex.resume()

if coroutine.status(stepper) == "dead" then

stepper = table.remove(stack)

end

if stepper then

coroutine.resume(stepper)

end

end

lua.get_functions_table()[fid] = tex.resume

function tex.yield()

tex.sprint(goback)

coroutine.yield()

texio.closeinput()

end

function tex.routine(f)

table.insert(stack,stepper)

stepper = coroutine.create(f)

tex.sprint(goback)

end

The routine creates a coroutine, and yield

gives control to TEX. The resume is done at the TEX
end when we’re finished there. In practice this works
fine and when you permit enough nesting and levels
in TEX then you will not easily overflow.

When I picked up this side project and wondered
how to get around it, it suddenly struck me that if we
could just quit the current input level then nesting
would not be a problem. Adding a simple helper to
the engine made that possible (of course figuring it
out took a while):

local stepper = nil

local stack = { }

local fid = 0xFFFFFF

local goback = "\\luafunction"..fid.."\\relax"

function tex.resume()

if coroutine.status(stepper) == "dead" then

stepper = table.remove(stack)

end

if stepper then

coroutine.resume(stepper)

end

end

lua.get_functions_table()[fid] = tex.resume

if texio.closeinput then

function tex.yield()

tex.sprint(goback)

coroutine.yield()

texio.closeinput()

end

else

function tex.yield()

tex.sprint(goback)

coroutine.yield()

end

end

function tex.routine(f)

table.insert(stack,stepper)

stepper = coroutine.create(f)

tex.sprint(goback)

end

The trick is in texio.closeinput, a recent
helper and one that should be used with care. We
assume that the user knows what she or he is do-
ing. On an old laptop with a i7-3840QM processor
running Windows 10 the following snippet takes less
than 0.35 seconds with LuaTEX and 0.26 seconds
with LuaJITTEX.

tex.routine(function()

for i=1,10000 do

tex.sprint("\\setbox0\\hpack{x}")

tex.yield()

Hans Hagen



TUGboat, Volume 39 (2018), No. 1 43

tex.sprint(tex.box[0].width)

tex.routine(function()

for i=1,3 do

tex.sprint("\\setbox0\\hpack{xx}")

tex.yield()

tex.sprint(tex.box[0].width)

end

end)

end

end)

Say that we run the bad snippet:

for i=1,10000 do

tex.sprint("\\setbox0\\hpack{x}")

tex.sprint(tex.box[0].width)

for i=1,3 do

tex.sprint("\\setbox0\\hpack{xx}")

tex.sprint(tex.box[0].width)

end

end

This time we need 0.12 seconds in both engines.
So what if we run this:

\dorecurse{10000}{%

\setbox0\hpack{x}

\number\wd0

\dorecurse{3}{%

\setbox0\hpack{xx}

\number\wd0

}%

}

Pure TEX needs 0.30 seconds for both engines
but there we lose 0.13 seconds on the loop code.
In the Lua example where we yield, the loop code
takes hardly any time. As we need only 0.05 seconds
more it demonstrates that when we use the power of
Lua the performance hit of the switch is quite small:
we yield 40,000 times! In general, such differences
are far exceeded by the overhead: the time needed
to typeset the content (which \hpack doesn’t do),
breaking paragraphs into lines, constructing pages
and other overhead involved in the run. In ConTEXt
we use a slightly different variant which has 0.30
seconds more overhead, but that is probably true for
all Lua usage in ConTEXt, but again, it disappears
in other runtime.

Here is another example:

\def\TestWord#1%

{\directlua{

tex.routine(function()

tex.sprint("\\setbox0\\hbox{\\tttf #1}")

tex.yield()

tex.sprint(math.round

(100 * tex.box[0].width/tex.hsize))

tex.sprint(" percent of the hsize: ")

tex.sprint("\\box0")

end)

}}

The width of next word is \TestWord {inline}!

The width of next word is 9 percent of the hsize:
inline!

Now, in order to stay realistic, this macro can
also be defined as:

\def\TestWord#1%

{\setbox0\hbox{\tttf #1}%

\directlua{

tex.sprint(math.round(

100 * tex.box[0].width/tex.hsize))

} %

percent of the hsize: \box0\relax}

We get the same result: “The width of next word is
9 percent of the hsize: inline!”.

We have been using a Lua–TEX mix for over
a decade now in ConTEXt, and have never really
needed this mixed model. There are a few places
where we could (have) benefitted from it and we
might use it in a few places, but so far we have done
fine without it. In fact, in most cases typesetting
can be done fine at the TEX end. It’s all a matter of
imagination.

� Hans Hagen
Pragma ADE
http://pragma-ade.com

Executing TEX in Lua: Coroutines


