
TUGboat, Volume 39 (2018), No. 1 27

Solutions for the CTAN quiz (on p. 18)

1. https://ctan.org/topics/cloud

2. https://ctan.org/lion

3. https://ctan.org/credits

4. https://ctan.org/help/supported-browsers

5. https://ctan.org/mirrors

6. https://ctan.org/mirrors/register

7. https://ctan.org/pkg

8. https://ctan.org/author

9. https://ctan.org/ctan-ann

10. https://ctan.org/search?ext=new

11. https://ctan.org/upload

12. https://ctan.org/help/submit

13. https://ctan.org/user/settings

14. https://ctan.org/author/knuth

15. https://ctan.org/help/json

16. https://ctan.org/tex-archive

17. https://ctan.org/home

18. https://ctan.org/guestbook

19. https://ctan.org/lugs

20. https://ctan.org/incoming

Comic by John Atkinson (http://wronghands1.com).

From Lua 5.2 to 5.3

Hans Hagen

When we started with LuaTEX we used Lua 5.1
and moved to 5.2 when that became available. We
didn’t run into issues then because there were no
fundamental changes that could not be dealt with.
However, when Lua 5.3 was announced in 2015 we
were not sure if we should make the move. The main
reason was that we’d chosen Lua because of its clean
design which meant that we had only one number
type: double. In 5.3 on the other hand, deep down a
number can be either an integer or a floating point
quantity.

Internally TEX is mostly (up to) 32-bit integers
and when we go from Lua to TEX we round num-
bers. Nonetheless one can expect some benefits in
using integers. Performance-wise we didn’t expect
much, and memory consumption would be the same
too. So, the main question then was: can we get
the same output and not run into trouble due to
possible differences in serializing numbers; after all
TEX is about stability. The serialization aspect is
for instance important when we compare quantities
and/or use numbers in hashes.

Apart from this change in number model, which
comes with a few extra helpers, another extension
in 5.3 was that bit-wise operations are now part of
the language. The lpeg library is still not part of
stock Lua. There is some minimal UTF8 support,
but less than we provide in LuaTEX already. So,
looking at these changes, we were not in a hurry to
update. Also, it made sense to wait till this important
number-related change was stable.

But, a few years later, we still had it on our
agenda to test, and after the ConTEXt 2017 meeting
we decided to give it a try; here are some observa-
tions. A quick test was just dropping in the new Lua
code and seeing if we could make a ConTEXt format.
Indeed that was no big deal but a test run failed
because at some point a (for instance) 1 became a
1.0. It turned out that serializing has some side
effects. And with some ad hoc prints for tracing (in
the LuaTEX source) I could figure out what went
on. How numbers are seen can (to some extent) be
deduced from the string.format function, which
is in Lua a combination of parsing, splitting and
concatenation combined with piping to the C code
sprintf function.1

1 Actually, at some point I decided to write my own for-
matter on top of format and I ended up with splitting as well.
It’s only now that I realize why this is working out so well
(in terms of performance): simple format (single items) are
passed more or less directly to sprintf and as Lua itself is

From Lua 5.2 to 5.3

http://wronghands1.com/
http://wronghands1.com


28 TUGboat, Volume 39 (2018), No. 1

local a = 2 * (1/2) print(string.format("%s", a),math.type(x))

local b = 2 * (1/2) print(string.format("%d", b),math.type(x))

local c = 2 print(string.format("%d", c),math.type(x))

local d = -2 print(string.format("%d", d),math.type(x))

local e = 2 * (1/2) print(string.format("%i", e),math.type(x))

local f = 2.1 print(string.format("%.0f",f),math.type(x))

local g = 2.0 print(string.format("%.0f",g),math.type(x))

local h = 2.1 print(string.format("%G", h),math.type(x))

local i = 2.0 print(string.format("%G", i),math.type(x))

local j = 2 print(string.format("%.0f",j),math.type(x))

local k = -2 print(string.format("%.0f",k),math.type(x))

number fmt out type
2 * (1/2) s 1.0 float

2 * (1/2) d 1 float

2 d 2 integer

−2 d 2 integer

2 * (1/2) i 1 float

2.1 .0f 2 float

2.0 .0f 2 float

2.1 G 2.1 float

2.0 G 2 float

2 .0f 2 integer

−2 .0f 2 integer

Figure 1: Various number representation in Lua 5.3: code at left, summary and output at right.

Figure 1 gives many examples, demonstrating
that we have to be careful when we need these num-
bers represented as strings. In ConTEXt the number
of places where we had to check for that was not
that large; in fact, only some hashing related to font
sizes had to be done using explicit rounding.

Another surprising side effect is the following.
Instead of:

local n = 2^6

we now need to use:

local n = 0x40

or just:

local n = 64

because we don’t want this to be serialized to 64.0

which is due to the fact that a power results in a
float. One can wonder if this makes sense when we
apply it to an integer.

At any rate, once we could process a file, two
documents were chosen for a performance test. Some
experiments with loops and casts had demonstrated
that we could expect a small performance hit and
indeed, this was the case. Processing the LuaTEX
manual takes 10.7 seconds with 5.2 on my 5-year-old
laptop and 11.6 seconds with 5.3. If we consider
that ConTEXt spends 50% of its time in Lua, then
we see a 20% performance penalty. Processing the
Metafun manual (which has lots of MetaPost images)
went from less than 20 seconds (LuaJITTEX does it
in 16 seconds) up to more than 27 seconds. So
there we lose more than 50% on the Lua end. When
we observed these kinds of differences, Luigi and I
immediately got into debugging mode, partly out of
curiosity, but also because consistent performance is
important to us.

fast, due to some caching, the overhead is small compared to
the built-in splitter method. And the ConTEXt formatter has
many more options and is extensible.

Because these numbers made no sense, we traced
different sub-mechanisms and eventually it became
clear that the reason for the speed penalty was that
the core string.format function was behaving quite
badly in the mingw cross-compiled binary, as seen by
this test:

local t = os.clock()

for i=1,1000*1000 do

-- local a = string.format("%.3f",1.23)

-- local b = string.format("%i",123)

local c = string.format("%s",123)

end

print(os.clock()-t)

lua 5.3 lua 5.2 texlua 5.3 texlua 5.2
a 0.43 0.54 3.71 (0.47) 0.53
b 0.18 0.24 3.78 (0.17) 0.22
c 0.26 0.68 3.67 (0.29) 0.66

The 5.2 binaries perform the same but the 5.3
Lua binary greatly outperforms LuaTEX, and so we
had to figure out why. After all, all this integer
optimization could bring some gain! It took us a
while to figure this out. The numbers in parentheses
are the results after fixing this.

Because font internals are specified in integers
one would expect a gain in running:

mtxrun --script font --reload force

and indeed that is the case. On my machine a scan
results in 2561 registered fonts from 4906 read files
and with 5.2 that takes 9.1 seconds while 5.3 needs
a bit less: 8.6 seconds (with the bad format perfor-
mance) and even less once that was fixed. For a
test:

\setupbodyfont[modern] \tf \bf \it \bs

\setupbodyfont[pagella] \tf \bf \it \bs

\setupbodyfont[dejavu] \tf \bf \it \bs

\setupbodyfont[termes] \tf \bf \it \bs

\setupbodyfont[cambria] \tf \bf \it \bs

\starttext \stoptext

Hans Hagen



TUGboat, Volume 39 (2018), No. 1 29

This code needs 30% more runtime so the ques-
tion is: how often do we call string.format there?
A first run (when we wipe the font cache) needs some
715,000 calls while successive runs need 115,000 calls
so that slow down definitely comes from the bad han-
dling of string.format. When we drop in a Lua
update or whatever other dependency we don’t want
this kind of impact. In fact, when one uses external
libraries that are or can be compiled under the TEX
Live infrastructure and the impact would be such,
it’s bad advertising, especially when one considers
the occasional complaint about LuaTEX being slower
than other engines.

The good news is that eventually Luigi was able
to nail down this issue and we got a binary that per-
formed well. It looks like Lua 5.3.4 (cross)compiles
badly with GCC 5.3.0 and 6.3.0.

So in the end caching the fonts takes:

caching running
5.2 stock 8.3 1.2
5.3 bugged 12.6 2.1
5.3 fixed 6.3 1.0

So indeed it looks like 5.3 is able to speed up
LuaTEX a bit, given that one integrates it in the
right way! Using a recent compiler is needed too,
although one can wonder when a bad case will show
up again. One can also wonder why such a slow down
can mostly go unnoticed, because for sure LuaTEX
is not the only compiled program.

The next examples are some edge cases that
show you need to be aware that 1) an integer has its
limits, 2) that hexadecimal numbers are integers and
3) that Lua and LuaJIT can be different in details.

print(0xFFFFFFFFFFFFFFFF)

lua 5.2 1.844674407371e+019
luajit 1.844674407371e+19
lua 5.3 −1

print(0x7FFFFFFFFFFFFFFF)

lua 5.2 9.2233720368548e+018
luajit 9.2233720368548e+18
lua 5.3 9223372036854775807

So, to summarize the process. A quick test was
relatively easy: move 5.3 into the code base, adapt
a little bit of internals (there were some LuaTEX
interfacing bits where explicit rounding was needed),
run tests and eventually fix some issues related to
the Makefile (compatibility) and C code obscurities
(the slow sprintf). Adapting ConTEXt was also not
much work, and the test suite uncovered some nasty
side effects. For instance, the valid 5.2 solution:

local s = string.format("02X",u/1024)

local s = string.char (u/1024)

now has to become (both 5.2 and 5.3):

local s = string.format("02X",math.floor(u/1024))

local s = string.char (math.floor(u/1024))

or (both 5.2 and (emulated or real) 5.3):

local s = string.format("02X",bit32.rshift(u,10))

local s = string.char (bit32.rshift(u,10))

or (only 5.3):

local s = string.format("02X",u >> 10))

local s = string.char (u >> 10)

or (only 5.3):

local s = string.format("02X",u//1024)

local s = string.char (u//1024)

A conditional section like:

if LUAVERSION >= 5.3 then

local s = string.format("02X",u >> 10))

local s = string.char (u >> 10)

else

local s = string.format("02X",

bit32.rshift(u,10))

local s = string.char (bit32.rshift(u,10))

end

will fail because (of course) the 5.2 parser doesn’t
like that. In ConTEXt we have some experimental
solutions for that but that is beyond this summary.

In the process a few UTF helpers were added to
the string library so that we have a common set for
LuaJIT and Lua (the utf8 library that was added
to 5.3 is not that important for LuaTEX). For now
we keep the bit32 library on board. Of course we’ll
not mention all the details here.

When we consider a gain in speed of 5-10%
with 5.3 that also means that the gain of LuaJITTEX
compared to 5.2 becomes less. For instance in font
processing both engines now perform closer to the
same.

As I write this, we’ve just entered 2018 and
after a few months of testing LuaTEX with Lua 5.3
we’re confident that we can move the code to the
experimental branch. This means that we will use
this version in the ConTEXt distribution and likely
will ship this version as 1.10 in 2019, where it becomes
the default. The 2018 version of TEX Live will have
1.07 with Lua 5.2 while intermediate versions of the
Lua 5.3 binary will end up on the ConTEXt garden,
probably with number 1.08 and 1.09 (who knows
what else we will add or change in the meantime).

� Hans Hagen
Pragma ADE
http://pragma-ade.com

From Lua 5.2 to 5.3


