
TUGboat, Volume 39 (2018), No. 1 37

Tutorial: Using external C libraries
with the LuaTEX FFI

Henri Menke

Abstract

The recent 1.0.3 release of LuaTEX introduced an
FFI library (Foreign Function Interface) with the
same interface as the one included by default in
the LuaJIT interpreter. This allows for interfacing
with any external library which adheres to the C
calling convention for functions, which is pretty much
everything. In this tutorial I will present how to
interface with the GNU Scientific Library (GSL) to
calculate integrals numerically. As a showcase I
will plot a complete Fermi-Dirac integral using the
pgfplots package. To understand this article, the
reader should have good knowledge of the Lua and C
programming languages and a basic understanding
of the C memory model.

1 The FFI library

Lua is known for its rich C API which allows interfac-
ing with system libraries in a straightforward fashion.
The workflow for that is always the same: Write a
function in C which fetches the arguments from the
stack of the Lua interpreter and converts them into
fixed C types. Using the fixed-type variables call
the library function and receive a result, either as a
return value or as an output argument. The result
has to be converted back to a Lua type and pushed
onto the stack of the Lua interpreter. Then hand
the control back to the interpreter.

As we can already see, this recipe involves writ-
ing a lot of code, most of which is pure boilerplate.
Wouldn’t it be great if there was something which
would just do all the type conversion work for us?
And indeed there is, the FFI [3, 5, 8]. The concept
of a Foreign Function Interface is not exclusive to
Lua and also exists in other languages, e.g. with the
ctypes library for Python.

Different FFIs have different ways of binding
library functions. The Lua FFI chooses to parse plain
C declarations. The advantage of this is that when
interfacing with C libraries, you can copy and paste
function prototypes from corresponding header files.
Of course, the disadvantage is that for non-C libraries
you have to come up with those prototypes yourself,
which is not always an easy task. The FORTRAN

language, for example, does not use the C-style call
by value convention but always uses call by reference;
that is to say, all types from a C function prototype
would have to be converted to pointer types.

Thanks to Hans Hagen for very useful discussions.

2 The GNU Scientific Library

The GNU Scientific Library (GSL) [2] is a software li-
brary for scientific computing, implementing a broad
range of algorithms. A complete list of algorithms
is far too long to be presented here, and beyond the
scope of this tutorial. We will only deal with the
numerical integration routines here.

The numerical integration routines in the GSL

are based on algorithms from the QUADPACK [9]
package for adaptive Gauss-Legendre integration. In
essence, each of the functions computes the integral

I =

∫ b

a

f(x)w(x) dx (1)

where w(x) is a weight function. We will be focussing
only on the case where the weight function w(x) =
1. Since an integral cannot be solved exactly by a
computer, the user has to provide error bounds to
indicate convergence.

3 Interfacing with the GSL

The first thing to do when we want to interface
with an external library is load the FFI Lua module
and use it to load the shared library of interest into
memory.

local ffi = require("ffi")

local gsl = ffi.load("gsl")

3.1 C declarations

Next we have to add all the C declarations which are
important for us. Let us first have a look over the
code and then discuss why I wrote things the way
they are.

ffi.cdef[[

typedef double(*gsl_cb)(double x, void *);

typedef struct {

gsl_cb F;

void *params;

} gsl_function;

typedef void gsl_integration_workspace;

gsl_integration_workspace *

gsl_integration_workspace_alloc(size_t n);

void gsl_integration_workspace_free(

gsl_integration_workspace * w);

int gsl_integration_qagiu(

gsl_function *f,

double a, double epsabs, double epsrel,

size_t limit,

gsl_integration_workspace *workspace,

double *result, double *abserr);

]]

Tutorial: Using external C libraries with the LuaTEX FFI

38 TUGboat, Volume 39 (2018), No. 1

The first declaration introduces a new type,
which I call gsl_cb, which stands for GSL callback.
It is a pointer to a function which takes a floating
point number and a void pointer and returns an-
other floating point number. In reality, this function
pointer will point to a Lua function representing the
integrand, i.e. f(x) in Eq. 1. We can ignore the un-
named second argument (void *) here because this
is only relevant for the C interface of the GSL but
we still have to declare it.

The next declaration is another type declara-
tion, this time with the name gsl_function. It is
a structure containing two values; the first is the
function pointer to the integrand F, the second a
pointer to some memory where parameters could
be located. In our case we will not use the params

field but we nevertheless have to declare it. What is
very important is that the order of the fields in the
structure is exactly the same as in the C header file.
Otherwise the memory alignment of the field will be
off and a segmentation fault will occur.

The last type declaration is for the identifier
gsl_integration_workspace, which I simply make
it an alias for void. Looking in the C header file of
the GSL, we find that gsl_integration_workspace
is defined as a structure with several fields, so why
do we not declare those fields? The reason is sim-
ple: we don’t care. As you will see we do not ac-
cess any fields of gsl_integration_workspace from
the Lua level and the GSL library already knows
what the fields are. Therefore I decided to make
gsl_integration_workspace opaque.

The next three declarations are all function dec-
larations which are straight copies from the header
file: gsl_integration_workspace_alloc allocates
enough memory to perform integration using n subin-
tervals; gsl_integration_workspace_free releases
that memory back to the system; and the third func-
tion declaration, gsl_integration_qagiu, is the
actual integration routine. It computes the inte-
gral of the function f over the semi-infinite interval
from a to ∞ with the desired absolute and relative
error limits epsabs and epsrel using at most limit
subintervals which have been previously allocated in
workspace. The final approximation and the corre-
sponding absolute error are returned in result and
abserr [10].

3.2 Lua interface

Now that we’ve declared all of the library functions
it is time that we integrate this with Lua. To this
end we write a function which nicely encapsulates
all the lower level structure. The function is named
gsl_qagiu and takes as parameters a (Lua) func-

tion f (which takes one argument), the lower limit
of the integral a, and three optional arguments, the
absolute error epsabs, the relative error epsrel, and
the maximum number of subintervals N.

local gsl_f = ffi.new("gsl_function")

local result = ffi.new("double[1]")

local abserr = ffi.new("double[1]")

function gsl_qagiu(f,a,epsabs,epsrel,N)

local N = N or 50

local epsabs = epsabs or 1e-8

local epsrel = epsrel or 1e-8

gsl_f.F = ffi.cast("gsl_cb",f)

gsl_f.params = nil

local w =

gsl.gsl_integration_workspace_alloc(N)

gsl.gsl_integration_qagiu(gsl_f, a,

epsabs, epsrel, N,

w, result, abserr)

gsl.gsl_integration_workspace_free(w)

gsl_f.F:free()

return result[0]

end

We start by defining some local variables outside
the function for better performance. We instantiate
a new value of type gsl_function and two arrays
of length one using the ffi.new method.

After processing the optional arguments, we set
the fields F and params. This is where it gets interest-
ing. Recall that the type of the field F is a pointer to
a function which takes two arguments. Even though
the Lua function f only takes one argument we can
use it directly, because of the way Lua deals with
optional arguments. If the number of arguments is
less than the number of parameters passed to the
function call, all the additional parameters are sim-
ply dropped. The only problem that we have left is
that this is a Lua function, not a C function. To this
end we use ffi.cast to cast the Lua function into
a C function. It can also be converted implicitly by
simply assigning f, but then it is less clear what is
going on. At this point it is very important that the
types of the arguments and the return value match,
otherwise we will run into memory problems. Be-
cause the field params is unused we simply set it to
the null pointer by assigning nil. (We could proba-
bly leave it unset but that is bad practice. Always
initialize your variables!)

The result and the absolute error of the integra-
tion are returned as output arguments from the GSL

Henri Menke

TUGboat, Volume 39 (2018), No. 1 39

function, i.e. the variables have to have pointer type.
The easiest way to create a pointer to a value is by
creating an array of length one of the desired type,
which we already did outside the function. Arrays
can be implicitly cast into pointers but at the same
time live on the stack, so we do not have to worry
about heap allocation and deallocation.

Next we use the previously declared functions
to first allocate a workspace structure of sufficient
size, then call the integration function with all of our
arguments, releasing the workspace memory back
to the system. You might notice that not all of
the variables in the call to the integration routine
have been created using ffi.new. This is indeed not
necessary because the FFI will try to convert Lua
values to native C types for you implicitly. Roughly
speaking, you only have to use ffi.new for non-
fundamental types or arrays.

There is one last subtlety to take care of. The
library function to which we passed the function
pointer is allowed to store that pointer for later use.
Therefore this pointer will not decrease its reference
count after exiting the function and therefore can
never be garbage collected. We are probably not
going to call this function so many times that this
memory leak will have a huge impact but it is cer-
tainly good practice to release resources on exit, so
we indicate to the garbage collector that this pointer
can be cleaned up by calling its free() method.

Finally we return the result which is stored in
the first element of the array. Note that C uses
zero-based indexing.

3.3 Usage in pgfplots

So far we have only been implementing some kind of
abstract skeleton for numerical integration. Now it
is definitely time to actually use it. To this end we
will plot the following complete Fermi-Dirac integral:

F1/2(t) =

∫ ∞
0

x1/2

ex−t + 1
dx. (2)

What we will do now is call the gsl_qagiu routine
with the integrand as the first argument and the
lower limit as the second argument. Because we
want to obtain the result of the integration in TEX
we do not return the result of the integration but
feed it back to TEX using tex.sprint.

function F_one_half(t)

tex.sprint(gsl_qagiu(function(x)

return math.sqrt(x)/(math.exp(x-t)+1)

end, 0))

end

The last thing to do is plot this function using
pgfplots. In the following I use ConTEXt syntax but

the TEX and LATEX syntax is very similar. It should
be noted though, that for FFI to work in LATEX, the
--shell-escape option has to be enabled, because
these operations are considered unsafe. First of all
we need to tell TikZ about the Lua function. We
do this using declare function and simply calling
the Lua function with the argument. (A LATEX user
would use \directlua instead of \ctxlua.) There is
still a slight problem. The pgfplots package uses its
own representation for floating point numbers, called
fpu [1], which is not compatible with Lua. There
are ways to work around this (see the Appendix),
but the simplest solution for the moment is simply
turning off the fpu for this plot.

\starttikzpicture

[declare function={

F_one_half(\t) = \ctxlua{F_one_half(\t)};

}]

\startaxis[

use fpu=false, % very important!

width=6cm,

no marks,

samples=101,

xlabel={t},

ylabel={$F_{1/2}(t)$},

]

\addplot{F_one_half(x)};

\stopaxis

\stoptikzpicture

4 Conclusion

The availability of FFI in LuaTEX takes document
processing to a completely new level. The possi-
bility to interface with native C libraries allows for
tasks which were previously intractable, such as the
numerical integration in this tutorial. This article
was inspired by a question asked on Stack Exchange,
where a minimal working example of the techniques
presented here can be found [7].

Another example would be the conversion of an
image from SVG format to PDF without the gener-
ation of intermediate files, as I demonstrated in [6]
using the Cairo and Rsvg-2 libraries.

Finally, Aditya Mahajan published an article
on his ConTEXt blog on how to interface the Julia
programming language with LuaTEX via the FFI [4].

5 Appendix

During the preparation of this manuscript I was made
aware, by Aditya Mahajan, that the approach of
turning off the fpu is not always a viable workaround;
it can fail, for instance when trying to plot in logscale.
Therefore one has to convert the function argument
from fpu float to Lua number and the result from

Tutorial: Using external C libraries with the LuaTEX FFI

40 TUGboat, Volume 39 (2018), No. 1

Lua number to fpu float. Fortunately PGF provides
macros to facilitate this conversion. Using those
one can declare the function from the main text as
follows:

\pgfmathdeclarefunction{F_one_half}{1}{%

\pgfmathfloatparsenumber{%

\ctxlua{

F_one_half(\pgfmathfloatvalueof{#1})

}%

}%

}

One does not necessarily have to rely on the
macro level here. As of version 3, the PGF package
comes with a Lua backend for function evaluations
which provides parser functions for fpu types. With
this, one could adapt the Lua function from the main
text as follows:

local plf = require"pgf.luamath.functions"

function F_one_half(t)

local t = plf.tonumber(t)

local result = gsl_qagiu(function(x)

return math.sqrt(x)/(math.exp(x-t)+1)

end, 0))

tex.sprint(plf.toTeXstring(result))

end

References

[1] Christian Feuersänger. Floating point unit library.
https://ctan.org/pkg/pgf, 2015.

[2] M. Galassi et al. GNU Scientific Library Reference
Manual. Network Theory Ltd., third edition, 2009.

[3] Hans Hagen, Luigi Scarso, and Taco Hoekwater.
LuaTeX 1.0.3 announcement. https://tug.org/

pipermail/luatex/2017-February/006345.html,
2017.

[4] Aditya Mahajan. Interfacing LuaTEX with Julia.
https://adityam.github.io/context-blog/

post/interfacing-with-julia/, 2017.

[5] James R. McKaskill. LuaFFI.
https://github.com/jmckaskill/luaffi,
2010–2013.

[6] Henri Menke. Answer to ‘How to include
SVG diagrams in LaTeX?’ https://tex.

stackexchange.com/a/408014, 2017.

[7] Henri Menke. Answer to ‘Plot complete
Fermi-Dirac integral in Lualatex’. https:

//tex.stackexchange.com/a/403794, 2017.

[8] Mike Pall. LuaJIT: FFI library.
http://luajit.org/ext_ffi.html, 2005–2017.

[9] R. Piessens, E. de Doncker-Kapenga,
C.W. Überhuber, and D.K. Kahaner.
Quadpack: A Subroutine Package for Automatic
Integration. Springer, 1983.

[10] The GSL Team. GNU Scientific Library:
Numerical integration. https://www.gnu.org/

software/gsl/doc/html/integration.html,
1996–2017.

� Henri Menke
9016 Dunedin
New Zealand
henrimenke (at) gmail dot com

Henri Menke

