
126 TUGboat, Volume 39 (2018), No. 2

The Canvas learning management system
and LATEXML

Will Robertson

1 Introduction

In 2017 The University of Adelaide adopted Canvas
(Instructure, Utah, USA) for its learning management
system (LMS). Unlike our previous LMS, Canvas
provides a programming interface to get data from
and send data to its servers. In this paper I will
discuss the system I have started developing to pre-
pare coursework material using LATEX, processed via
LATEXML, and uploaded into Canvas in both HTML

and PDF formats.

1.1 What is a learning management
system?

An LMS is an online system that organises students
into classes and allows them to access course notes,
assignments, lecture recordings, discussion boards,
and so on. They usually also include collaborative
features to help teamwork activities. The LMS is
also how the lecturer or coordinator for the course
communicates with the students, posts grades, and
otherwise does their job of running the course.

Each course tends to have a fairly typical struc-
ture, with links to the syllabus, assignment submis-
sions, grades, etc. Actual course content in Canvas
is organised into modules with individual pages writ-
ten in HTML via a rich text editor. The amount of
technical content in each course will depend on the
coordinator; most academics I know still rely largely
on printed lecture notes.

1.2 Requirements for the project

As the coordinator for the mechanical engineering
honours project course, I maintain a large collection
of course content that is provided as reference mate-
rial. After many years as a LATEX user, I am most
comfortable with the idea of a source document that
is portable, version controllable, and easy to edit.
For me, using any web interface to fix typos or make
small changes requires a non-negligible mental effort
due to having to log in, navigate to an appropriate
page, and click through to an editing mode. This
project was motivated by my desire for a more ef-
ficient and effective means to keep course material
up-to-date.

In the past, our honours project course docu-
mentation was a single monolithic Word document,
which was difficult to maintain and awkward to ex-
tract information from. With a slow move to online
documentation and incremental changes over time,

this comprehensive document fell out of sync with
the live content and had to be dropped. However, the
single reference document had specific utility in being
able to be easily distributed, and being searchable;
its loss was not disastrous but not ideal.

The new LMS provided the opportunity to re-
think the means by which the information needed
in this course was documented and communicated
to students and supervisors. This project was moti-
vated by two main requirements: (1) improving the
care and maintenance of the (somewhat extensive,
and growing, amount of) content, and (2) to allow
the generation of a comprehensive PDF reference
document for the entire course.

When I started this work, I didn’t know exactly
what I wanted except that I knew I needed at least
a good combination of the following:

One source, multiple outputs. My need for a
better system arose from wanting to be able to keep
online content up-to-date, while also having this
content collected in a single offline location. And it
soon became clear in my thinking that it would also
need to be compilable into a single PDF document
for distribution via alternate means.

Macros. I knew there would be a fair amount of
information that I would want to re-use and keep
consistent through the document (e.g., the names of
academic and professional staff members; due dates
for assessment). This precluded writing in HTML or
a ‘plain text’ format like Markdown.

Reliable and easy to set up. As much as I might
like to program my own document preparation sys-
tem, using this was to be part of my day job and I
don’t want to have to dive into the weeds if code rot
occurs and the system breaks down.

LATEX syntax. I admit, I stick with what I know.
Although I could have jumped into any number of
competing technologies here, I knew I would be most
comfortable if I was writing in the system with which
I was most accustomed. More objectively, LATEX is a
mature format with a variety of possibilities among
third party support tools for creating HTML.

2 The authoring interface

After some quick trials to establish that I could
programmatically send HTML content to Canvas, it
was time to decide how to generate the HTML in the
first place.

2.1 Which HTML converter to choose?

As discussed above, I didn’t want to do anything
home-grown (and hence fragile), nor inflexible such as
Markdown or raw HTML. I was aware of a number of

Will Robertson

TUGboat, Volume 39 (2018), No. 2 127

‘competing’ technologies to write in LATEX or LATEX-
like syntaxes which could be converted to XML and
hence to HTML. The most actively developed of these
tools, and their implementation language, appear to
be:

• lwarp [1] — Lua
• LATEXML [2, 3] — Perl
• HeVeA [8] —OCaml
• Tralics [4] — C++

• TEX4ht [5] — C and TEX
• GELLMU [6, 7] — Emacs Lisp

(Not an exhaustive list; apologies for any oversights.)
To be honest I didn’t thoroughly evaluate each on
their pragmatic merits; I was passingly familiar with
LATEXML’s philosophy, had heard it was robust, and
wanted to see if it fit the bill. It did, largely speaking.
Of the tools listed above, only TEX4ht and lwarp
are included in TEX Live. While LATEXML required
‘manual’ installation, I had no troubles doing so.

2.2 LATEXML overview

The LATEXML program would be better explained by
someone who knows a lot more than I do about Perl,
XML, and friends. My user-level understanding is
that LATEXML reimplements an extensive subset of
TEX in Perl, so that input documents are literally
processed as LATEX syntax, but not by the LATEX
program. The LATEXML parser then intercepts pack-
age loading and inserts its own understanding of the
various syntaxes introduced by different packages. If
needed, it is possible to write custom support for
packages that it doesn’t cover out of the box.

LATEXML does an excellent job emulating TEX,
and it covers an impressive array of both TEX and
LATEX programming constructs.1 Therefore, includ-
ing in my preamble a construct like

\newcommand\honourscoord{Will Robertson}

simply worked out of the box with LATEXML; indeed,
simple LATEX 2ε programming using counters and so
on worked without a hitch.

To run LATEXML on my document involves the
somewhat complex command:

latexml tex/$FILENAME.tex | latexmlpost - \

--xsltparameter=SIMPLIFY_HTML:true \

--sourcedirectory=tex \

--format=html5 \

--destination=html/$FILENAME.html \

--splitat=chapter \

--splitnaming=label

This setup ensures that for each ‘chapter’ of my
LATEX document a separate self-contained HTML file

1 Even David Carlisle’s xii.tex can be successfully run
through LATEXML.

is created, which is the starting point for getting my
content into Canvas.

Using a degree of consistency in the naming and
structure of my document, each of my source LATEX
files with an \input for each chapter is therefore
converted into a similarly-named HTML file. The
structure of the source document is as follows:

\documentclass{report}

...

\begin{document}

\title{...}\author{...}\date{...}

\maketitle\tableofcontents

\input{../texdata/course-data.tex}

\part{Introduction}\label{part-intro}

\input{../pages/introduction}

\input{../pages/course-schedule}

\input{../pages/week-planner}

...

The file course-data.tex is the source for various
data (such as names of staff members, weightings
of assessment, due dates, etc.) in basic LATEX data
structures.

Each .tex file contains one chapter, with a con-
vention that the \label of each chapter matches its
file name:

% file: pages/introduction.tex

\chapter{Introduction}

\label{introduction}

...

This is because LATEXML does not convert file by
file; rather, with the --splitat=chapter option, the
output HTML is split by chapter.

3 The Canvas programming interface

Canvas has a so-called ‘REST API’2 that was easy
enough for me to get started with, with a little trial
and error. Initially, I used curl commands wrapped
into Bash scripts like this:

curl -X GET -H "$CANVASAUTH" $CANVASCOURSE/$1

where $CANVASAUTH is set up in my .bash_profile

as a secret ‘token’ to avoid needing a manually-input
password, and $CANVASCOURSE is defined essentially
as the institution-specific URL to the Canvas course.
Finally, $1 is the parameter to send through to the
Canvas API, such as assignments or rubrics or
users, etc. The parameters passed in the curl ar-
gument $1 can include additional options, such as

assignments?search_term=charter

would return just the one assignment for my honours
project students called their ‘Project Charter’.

The Canvas API can also be used to send or
upload data to a course using PUT and POST. This

2 https://canvas.instructure.com/doc/api/

The Canvas learning management system and LATEXML

128 TUGboat, Volume 39 (2018), No. 2

can range from relatively small and simple pieces of
information, to entire ‘content pages’ in HTML, to
linked files that students can access and download
(see Section A).

The results from any communication are sent
back from the Canvas API in JSON format, for which
there are a number of useful standard tools. For
Bash scripts I use jq, a nice tool which is designed
in the philosophy of Unix tools such as awk and sed.

After getting comfortable with this Bash script
approach of sending and receiving data using curl

and friends, I more recently started programming
small Lua interfaces for more advanced operations.
The main impetus for this switch was that the Can-
vas API will not send arbitrarily large amounts of
information in one request. For example, if I request
a list of students, it will send me just ten and expect
me to ask again with page=2 as an option. Then re-
peat until no data is returned. This level of iteration
was beyond what I wanted to invest in a Bash script.

To write the Lua scripts I needed a number
of third-party utilities. For Lua there are in fact
very many tools to convert JSON data into Lua’s
‘table’ data structure. I have been using the library
json-lua (installed via luarocks) and it has been fine.
After installing an SSL library (namely luasec, since
unencrypted HTTP wouldn’t cut it), I was able to
convert the curl command above into an equivalent
statement in Lua:

local http = require("ssl.https")

local ltn12 = require("ltn12")

local body, code, hdrs, status = http.request{

method = "GET",

url = canvas_url .. req .. "?" .. opt,

headers = {

["authorization"] = "Bearer "..canvas_token,

["content-type"] = "application/json"

},

sink = ltn12.sink.table(canvas_result),

}

where canvas_result is the name of the table where
the data will be stored. It is then ‘decoded’ from
JSON using json-lua.

4 The generated HTML page

For pages delivered via Canvas, I am not writing self-
contained HTML files; rather, Canvas constructs the
page within its main interface, and within the page
includes what I call ‘snippets’ of HTML to display
the actual course content.

The HTML that is generated by LATEXML is not
intended to be used for ‘snippets’ to be transferred
into a separate system, but the good thing about

HTML is that this isn’t really a problem, since any
additional markup in the HTML is silently ignored.

LATEXML runs a two-stage process, where the
latexml program itself generates generic XML from
the LATEX input, and then latexmlpost converts this
generic XML into one of several output formats. In
theory I could write my own XSL stylesheet to format
the information in the generic XML document in a
customised way. Instead, I simply postprocess the
HTML output from latexmlpost; because LATEXML

creates highly structured and machine friendly HTML,
the output from latexmlpost makes this an easy pro-
cess with some ad hoc tools (with plans for more
robust Lua processing in the future).

According to the options passed to latexmlpost,
each chapter is converted into its own HTML file; this
means I have a one-for-one correspondence between
files \included as chapters in the main document.
Each of these chapters has a standard structure, with
‘top matter’ that is not needed:3

<!DOCTYPE html><html>

<head>

<title>

〈Title of chapter〉
</title>

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8">

<link rel="stylesheet" href="LaTeXML.css"

type="text/css">

[...]

</head>

<body>

The chapters end with ‘bottom matter’ which is also
not needed in my application:

<footer class="ltx_page_footer">

[...]

</footer>

</div>

</body>

</html>

Finally, the ‘content’ of each HTML file has a struc-
ture along the following lines:

<div class="ltx_page_main">

<header class="ltx_page_header">

[...]

</header>

<div class="ltx_page_content">

<section class="ltx_chapter ltx_authors_1line">

<h1 class="ltx_title ltx_title_chapter">

〈Chapter number〉

〈Title of chapter again〉
3 All of the HTML examples have been reformatted for

ease of reading.

Will Robertson

TUGboat, Volume 39 (2018), No. 2 129

</h1>

<div class="ltx_date ltx_role_creation"></div>

<section id="S1" class="ltx_section">

〈Contents of chapter〉
</section>

</section>

</div>

The un-greyed text is the part of the HTML that is
retained for upload into Canvas. A single line of awk
is used to extract everything contained between the
outer <section> tags:

awk ’/\<section.*\>/,/\<\/section\>/’ \

html/$BASE >> snip/$BASE

The LMS doesn’t do anything in particular with the
<section> tags, but it doesn’t mind them, either.
Similarly, all of the CSS structure (the class and
id tags) is not used by Canvas, but also, thankfully,
doesn’t cause any problems.

It is worth noting that while plain LATEX and
HTML share some superficial similarities in the types
of document structures they can produce, in some
cases LATEXML really has to work hard to replicate
certain LATEX structures in HTML+CSS. The exam-
ple that I ran into was related to lists. In order to
cope with LATEX syntax such as:

\begin{enumerate}

\item aaa

\item[1b.] bbb

\item ccc

\end{enumerate}

the HTML generated by latexmlpost looks like:

<ol id="I1" class="ltx_enumerate">

<li id="I1.i1" class="ltx_item"

style="list-style-type:none;">

1.

<div id="I1.i1.p1" class="ltx_para">

<p class="ltx_p">aaa</p>

</div>

<li ...>...

<li ...>...

(The second and third items have identical struc-
ture and are elided.) This is carefully structured
HTML source intended to be styled with specific CSS

provided by LATEXML. However, without latexml’s
custom CSS files to control its layout, this HTML

produces output something like this:

1.
aaa

1b.
bbb

2.
ccc

While understandable to a reader, this is not ideal
from a formatting perspective. LATEXML’s default to
match as much of LATEX’s functionality as possible
is notable in the overall design of LATEXML, but for
my needs it still needed a workaround. In an early
stage of this project, I used more cumbersome regex
code to adapt the LATEXML output to something that
didn’t need CSS, but the developer of LATEXML kindly
added the --xsltparameter=SIMPLIFY_HTML:true

option to account for my use case here.

5 Future work

• I do not yet have an automated approach to
linking images and files. This has been okay for
the time being, since for a small number of items
doing a manual upload is no real imposition.
In the long run, it would be nice to have this
automated; compiling the main document could
create a list of files, and a Lua script could check
which files were already present in Canvas and
only upload those missing. (And possibly even
delete any existing files no longer used in the
document.)

• What about mathematics? Luckily, for this
course I don’t need to include mathematical
content. LATEXML, naturally, can produce ap-
propriate mathematical output in a variety of
modes (MathML, etc.). Currently Canvas is
in the middle of having its support for mathe-
matical content improved and I’m holding off
considering this further until their platform has
stabilised.

• In time I will transition away from Bash scripts
entirely to make the system more portable and
robust. Since a TEX platform is required to
typeset the PDF documentation, Lua is the nat-
ural choice as a scripting language. I explicitly
do not wish to develop a full-featured Canvas
interface in Lua, but I hope this system will
become general enough that other users could
deploy it for their courses.

• Currently these documents use a largely ‘one-
way’ communication in that the LATEX source is
compiled and delivered to Canvas. However, for
certain types of information (assignment rubrics
in particular), the best source of this information
is within the LMS itself. Therefore, I will be

The Canvas learning management system and LATEXML

130 TUGboat, Volume 39 (2018), No. 2

building data processors to typeset information
from Canvas within the PDF documentation
(with a simple link in the online version).

6 Benefits of scripting Canvas

This is unrelated to the LATEX side of things, but
coming to terms with Canvas’s programming inter-
face has opened the door for me to perform quite
a number of additional tasks that were previously
impossible with our older LMS.

For example, our honours project reports are
assessed by their academic supervisors, and direct-
ing supervisors to each report and following up in a
timely manner were both difficult tasks to automate.
Using a Lua script I now dynamically create a list
of project reports that have not yet been marked.
This allows me to automatically construct person-
alised emails for each project supervisor to remind
them when marks are due with direct links to their
assessments to mark.

As with LATEX itself, once you have an inter-
face that can be programmed it opens the door to
extending the ways in which one uses the system.

7 Conclusion

I have satisfied the following use cases in this work:

• A typo fix or quick addition can be done by
editing the source in a text editor, synced via the
cloud, and uploaded with a one-line command.
No need to open a browser, log in, and click
through.

• Information can be ‘programmed’ using macros
for greater consistency. This is straightforward
in LATEX and basically unheard of in a web-based
editing approach.

• HTML and PDF output are kept in sync at all
times; the PDF provides an archivable document
for the entire course.

Although I haven’t (yet) produced the most
elegant system, I have created a solution without too
much elbow grease beyond standard LATEX ecosystem
tools that does quite a bit more than I think anyone
would otherwise consider possible. The choice of
LATEXML worked well, although few design decisions
rely on it; switching to another tool for the HTML

conversion would be possible with a little additional
work.

The ability to develop these solutions is truly a
testament to the flexibility of LATEX, and an example
of why I think it will remain relevant indefinitely.
Once you program your first document, you can
never go back to manually keeping track of all the
bits and pieces.

References

[1] B. Dunn. Producing HTML directly from
LATEX— the lwarp package. TUGboat 38(1), 2017.
tug.org/TUGboat/tb38-1/tb118dunn-lwarp.pdf

[2] D. Ginev and B. R. Miller. LATEXML 2012—A
Year of LATEXML, 2014. nist.gov/publications/
latexml-2012-year-latexml

[3] D. Ginev, B. R. Miller, and S. Oprea. E-books and
Graphics with LATEXML, 2014.
arxiv.org/pdf/1404.6547v1

[4] J. Grimm. Tralics, a LATEX to XML translator.
TUGboat 24(3), 2003.
tug.org/TUGboat/tb24-3/grimm.pdf

[5] E. M. Gurari. TEX4ht: HTML production. TUGboat
25(1), 2004. tug.org/TUGboat/tb25-1/gurari.pdf

[6] W. F. Hammond. GELLMU: A bridge for authors
from LATEX to XML. TUGboat 22(3), 2001.
tug.org/TUGboat/tb22-3/tb72hammond.pdf

[7] W. F. Hammond. Dual presentation with math
from one source using GELLMU. TUGboat 28(3),
2007. tug.org/TUGboat/tb28-3/tb90hammond.pdf

[8] HeVeA. hevea.inria.fr

A Uploading a file to Canvas via its API

Evidently in a fit of late night fervour I concocted the
following monstrosity for uploading a file to Canvas
using a Bash function and few helper commands:

curl -X POST -H "$CANVASAUTH" \

"$CANVASCOURSE/files" \

-F "name=$1" \

-F "parent_folder_path=upload" > tmp.json ;

URL=‘cat tmp.json | jq ’.upload_url’‘ ;

KEYS=‘cat tmp.json | jq ’.upload_params’ |\

jq -r -j "to_entries | \

map(\"-F \(.key)=\(.value|tostring)\

\")|.[]"‘ ;

echo curl -D response.tmp\

$URL $KEYS -F file=@$1 | bash ;

LOC=‘sed -n -e ’s/Location: \

\(.*\)/\1/p’ response.tmp‘;

LOC=${LOC%$’\r’}

curl -X POST -H "$CANVASAUTH" "$LOC" | jq ;

I think it’s fair to say that a Lua implementation
would be rather more maintainable.

� Will Robertson
School of Mechanical Engineering
The University of Adelaide, SA
Australia
will.robertson (at) adelaide dot edu dot au

https://gitlab.adelaide.edu.au/wspr/

canvas-tools

Will Robertson

