
TUGboat, Volume 39 (2018), No. 2 143

WeTEX and Hegelian contradictions
in classical mathematics

S. K. Venkatesan

Abstract

We consider the contradiction between WYSIWYG

and LATEX markup, in order to demonstrate a Hegel-
ian synthesis (WeTEX, a KaTEX-based JavaScript im-
plementation) of this contradiction. We then briefly
consider other contradictions such as form vs. con-
tent in mathematics typesetting. After that we move
on to the Hegelian contradictions in classical mathe-
matics, starting from Zeno’s paradox, leading to the
hierarchy of infinities, continuum hypothesis, and fi-
nally the problem of algorithmic complexity classes.

“Reason has always existed, but not always in a
reasonable form” — Karl Marx.

1 Introduction

Contradictions are mills through which reality ebbs
and flows. The right and left hand sides exist as
opposing manifestations. The fact that the perfect
symmetry of the left and right is broken is what
establishes their distinction. If Earth were a perfect
sphere, then there would not be rivers and valleys
that bring life to it. However, since the radius of
the earth is almost a constant (to more than 99%
accuracy), we are qualified to call it a sphere.

Contradictions are also a great source of changes
to society and transitions from one form to another.
Goliath was powerful when combat was direct physi-
cal conflict with hand-held weapons. When the giant
Goliath calls David to come near him to fight, it is
clear that only at that range can he overcome David.
David, at the same time, keeps his distance to deny
him that opportunity and defeats him with his long-
distance weapon. Inside the atomic nucleus such a
conflict between the Goliath of nuclear forces that
operate only at short distances releases an enormous
amount of energy when they come in conflict with
electrical repulsion that operates at long distances,
when the size of the nucleus becomes sufficiently
large, as in the case of the uranium or plutonium
nucleus. At the other end of the spectrum, when
gravitational forces crush electrical repulsion in hy-
drogen ions, the Goliathian nuclear forces take over,
releasing the enormous energy that powers suns.

In this article we first consider WeTEX, a KaTEX-
based JavaScript implementation of an equation edi-
tor that resolves the conflict between the WYSIWYG

(What You See Is What You Get) paradigm and the
LATEX macros, a WYSIWYM (What You See Is What
You Mean) system. We see how both of these contra-

dictory approaches work at different user parametric
ranges and use cases. The synthesis of these opposing
paradigms produces a new application, WeTEX.

In the third section we consider Zeno’s para-
dox, countable infinity and uncountable infinities
of higher order. We also show how these Hegelian
contradictions lead to a hierarchy of infinities.

In the fourth section we consider the Cantor
set in the context of the continuum hypothesis and
in the fifth and final section we consider a class of
recursive algorithms for constructing the Cantor set
and its complexity.

2 WeTEX — a synthesis between
WYSIWYG and WYSIWYM

LATEX markup solved the problem of typesetting doc-
uments using a system of macros involving braces
and backslashes. WYSIWYG systems, on the other
hand, use a system of graphical menu objects with
place holders for inserting text and symbols. This
allows the user to directly visualize the output in-
stantly with instant gratification. On the other hand,
it is not easy to search for symbols in a character
palette in a WYSIWYG system, so LATEX-like back-
slashed named entities are more convenient. Auto-
completion prompts can further improve productivity
in authoring such macro entities in LATEX, as some
LATEX editors provide.

The WeTEX system was created as a proof
of concept for a hybrid system. At present we
deal only with authoring equations. We have used
KaTEX’s JavaScript rendering engine to implement
this math editor. The KaTEX source code is available
in a Github repository, github.com/Khan/KaTeX.
WeTEX’s open source (GPL-licensed) code is available
in the Github repository github.com/Sukii/WeTeX.

In addition to the standard LATEX (KaTEX fla-
vor) macros, WeTEX defines some additional macros
and keyboard shortcuts, described in Table 1.

In addition to typesetting equations we will also
be making an attempt to make the mathematics com-
putable, wherever possible. A preliminary attempt
at integration with Maxima [1], an open source GPL

licensed maths computing library, has been made
at mathml.in. Here the contradiction is between
form and content, as we will be attempting to walk
on two legs, quite similar to the literate program-
ming approach for LATEX macro packages where one
has to make a fine balance between the code and
documentation. One the one hand the attempt of
presentation aspect is beautiful typography, as an
endeavor of a metal-based art form developed for
many centuries in Europe. However, all this beauty
has to be rooted in objectivity and realism, especially

WeTEX and Hegelian contradictions in classical mathematics

144 TUGboat, Volume 39 (2018), No. 2

Table 1: WeTEX macros and shortcut keys

WeTEX Shortcut Description Sample

input key output

_ shift _ Subscript Ad

^ shift ^ Superscript Ad

\t[] ctrl - Tensor Aijk
abc

\f[] shift % Fraction a
d

\r[] shift ! Square root
√

456

\x[] shift @ Unicode text Unicode

\q[] shift # Cube root 3
√

082

\d[] ctrl d Differential derivative dX
dZ

\p[] ctrl p Partial derivative ∂X
∂Z

\i[] alt i Integration
∫ Z

X
Y dX

\s[] alt s Summation
∑Y

X
Z

(()) ctrl (Left & right parentheses
(
a
z

)
[[]] ctrl [Left & right brackets

[
a
z

]
{{}} ctrl { Left & right braces

{
a
z

}
\8 ctrl 8 Infinity symbol ∞
\0 ctrl . Centered single dot ·
shift ~ Similar ∼
ctrl = Equivalent ≡

the functional requirement of mathematics and its
development rooted in industrial society, publish-
ing books and journals both in electronic and print
forms. Modern electronic devices also now allow
us to develop newer forms that can interact more
closely with users both in form and content, allowing
much broader dissemination of content, forcing us
to think about accessibility requirements of content
transcending the current form. However the spirit
of accessibility is not only a technical requirement,
but also requires that we change the form (pun unin-
tended) of the content also, making it accessible to
a broader audience.

3 Classical Hegelian hierarchy of infinities

We will begin with the classical Zeno’s paradox that
is usually explained in terms of Achilles and the
tortoise [2].

3.1 Zeno’s paradox

However, we will illustrate this in a much simpler
way using the concept of recursive decimals:

0.99999 · · · = 1 .

We know from this that there is an infinite se-
quence of numbers, 0.9, 0.99, 0.999, . . . , which are
bounded above by the finite value 1.0. The finite
value 1.0 can be expressed by the infinite sequence
of decimals represented by the above equation. Of
course, there are many such infinite sequences that
approach 1.0, each with its own rhyme and rhythm.
The fact that the infinite is contained in the finite

value of 1.0 is indeed a paradox in classical logic, but
not in paraconsistency logic [3], which allows such an
inconsistency to exist without great consternation.
In classical logic A and −A cannot exist as truth
together. It would create a blow-up. Consider the
classical Boolean logic statement:

(A or B) and (−A or B) is true .

In classical logic we can conclude from this state-
ment that B is true. This is considered a blow-up,
as in classical logic an unrelated statement B would
be true if both A and −A were to be true. Para-
consistency logic [3] mitigates this blow-up. The
name “paraconsistency” was coined by the Peruvian
philosopher Francisco Miró Quesada [4].

3.2 Hegelian hierarchy of infinities in
classical mathematics

Let us now consider the cardinality of a set as the
number of elements in a set, for example, if

A = {dog, cat, horse, car, bus, train, aeroplane}
then #(A) = 7. Now consider the set of all subsets of
A, symbolically written as the set 2A. This notation
for the power-set is justified by the relation

#(2A) =

#(A)∑
i=0

(
n

i

)
= 2#(A) .

We would like to point out that this process can
be continued indefinitely, i.e., we can construct the
power-set of a power-set or, in plain language, that
there can be a set of all subsets of the set of all
subsets of a set, etc., i.e.,

A, 2A, 22
A

,

Now let us consider the set of natural numbers,

N = {1, 2, 3, . . .}
The cardinality of natural numbers is denoted by
aleph,

ℵ = #(N) .

Now consider the cardinality of the set of all real
numbers between 0 and 1, i.e.,

c = #([0, 1])] .

Just as the number of drops of water in a glass of
water cannot be counted like a bunch of bananas,
we intuitively know that the set of real numbers in
[0,1] cannot be counted like natural numbers. We
will prove this now.

Let us represent all real numbers between 0
and 1 in terms of their binary representation in some
counting order,

a1 = 0.01010 · · ·
a2 = 0.110010 · · ·
a3 = 0.101011 · · ·
· · · .

S. K. Venkatesan

TUGboat, Volume 39 (2018), No. 2 145

By a diagonalization process discovered by Cantor
we can construct a real number,

b = 0.100 · · · ,
where b is obtained by reversing the 0s and 1s of the
i-th digit of ai, such that

b /∈ {a1, a2, a3, . . .} ,
leading to a contradiction, thus proving that it is not
countable. However, this is only a qualitative result.
We will now prove a quantitative result, that

c = 2ℵ .

In order to prove this, consider the binary represen-
tation of a real number in (0,1),

x = {0.010011001 · · ·} .
We now obtain the corresponding subset of natural
numbers by considering all the index positions of “1”
in the above binary representation, i.e.,

S = {2, 5, 6, 9, . . .} .
Similarly, for every subset of natural numbers

we can construct a real number in (0,1). This implies
a bijective mapping between the power-set of natural
numbers and the set (0,1), proving the result. QED

So finally we also have the result that we can
construct an infinite hierarchy of infinities, i.e.,

ℵ, 2ℵ, 22
ℵ
,

Although here we are only discussing about num-
bers and the mathematics of set theory, these results
have much greater implication in computer science
as there is a corresponding categorical mapping at
higher levels that maps these domains to similar prob-
lems there. At an abstract level, decision problems
can be considered as function mappings,

f : A→ {0, 1} ,
where A ⊂ N.

So in essence a decision problem can be mapped
to a real number. However, at the same time it can
be shown that the set of algorithms or procedural
programs is countable, as a Turing machine can be
reduced to a natural number, a binary state of the
computer. Putting the two facts together, we get the
result that not all decision problems can be solved
accurately by a computer as real numbers are un-
countable. However, rational numbers are countable
(as they are like two-dimensional natural numbers,
they can be counted in a zig-zag way starting from
the top right corner) and they are dense in real
numbers (which means that a sequence of rational
numbers can sufficiently approximate any given real
number). So every decision problem can be solved
approximately by a computer, although the degree
of approximation varies depending on the decision
problem and the computer algorithm.

4 The Cantor set and the continuum
hypothesis

The continuum hypothesis states that there are no
cardinal numbers between ℵ and 2ℵ. We will now
argue against this, but the argument has to be con-
sidered from the point of view that there are better
measures that distinguish between different shades
of infinities than just counting bananas, namely, by
weighing them.

Let us now consider the Cantor set, C , which
can be obtained by recursively removing the middle
one-third (but keeping the end points during the
removal) of the set of real numbers in [0,1]. Consider
the sequence of sets, C1 = [0, 1

3]∪ [23 , 1], C2 = [0, 1
9]∪

[29 ,
1
3]∪[23 ,

7
9]∪[89 , 1], . . . , defining the Cantor set to be

C =

∞⋂
k=1

Ck .

It can also be symbolically written as a geomet-
ric set following the relation

3× C (0) = C (0) ∪ C (2/3) .

Or to put it more simply, when we scale the
Cantor set by 3, we get two Cantor sets, i.e.,

3D = 2 ,

where 0 < D < 1 is the scaling dimension of the
Cantor set and from this relation we obtain D =
log 2/ log 3 ≈ 0.63.

For example, we can see that natural numbers
are 0-dimensional points in Euclidean space that
don’t scale, while the interval [0,1] scales linearly, a
two-dimensional square scales quadratically, a three-
dimensional cube grows to the cubic power, etc.

We can also prove easily that the Cantor set is
uncountable. Consider the ternary representation of
a real number in (0,1), i.e.,

x = 0.0102201 · · · .
The points in the Cantor sets will not have digit

“1” in them, i.e.,

x = 0.002022002 · · ·
Similar to the proof involving the binary rep-

resentation of real numbers we can show that the
Cantor set, C , is uncountable. Using a similar pro-
cedure we can also show that

#(C) = 2ℵ .

One then wonders how this is a counter example
to the continuum hypothesis? The answer lies not in
counting bananas but weighing bananas, as there is
more geometric information in the Cantor set that
is lost in counting rather than weighing them. It
is this extra geometric information that is captured
by the scaling dimension, which distinguishes it as a

WeTEX and Hegelian contradictions in classical mathematics

146 TUGboat, Volume 39 (2018), No. 2

fractal object existing between the 0-dimension and
1-dimension. This quantitative aspect becomes clear
as we deal with algorithms that generate the Cantor
set and their complexity in the next section.

5 Algorithmic complexity of the Cantor
set and the power of iterative functional
formulations

Let us now consider the iterative algorithm for con-
structing a Cantor set by considering the n-digit
ternary representation of real number between 0
and 1, such as

x = 0. 012102002 · · · 1020︸ ︷︷ ︸
n

.

The Cantor set follows the recursive relation,

C =
1

3
C ∪

(
1

3
C +

2

3

)
.

This can be used to define a recursive push-down
from the left,

x→
(1

3x
1
3x + 2

3

)
,

which can be represented using a constant push of 0s
and 2s from the left as in the tree-like representation
shown in Figure 1.

Figure 1: Binary tree formulation of the Cantor set

C

0

0

0 2

2

0 2

2

0

0 2

2

0 2

· ·

To construct the real numbers between 0 and 1
in an n-digit ternary representation, we need a deci-
sion tree with 3n steps, while to construct the Cantor
set, we need a tree of 2n steps. As there are no fur-
ther information or constraints that can be retrieved
either from geometry or from its ternary representa-
tion, so this is the minimal complexity that can be
achieved in order to compute the points in the Cantor
set, C . This then proves that the Cantor set compu-
tation problem cannot be solved in polynomial time.

However, we have discovered how a single al-
gorithmic step in recursive functional formulation
requires 2n operations in the state machine. Check-
ing the results (2n states of n-digits) of this output

to see if these n-digits are distinct points in C re-
quires equal or more effort. However, if we are using
a stateless function to generate the output then it
is enough to test only a few points in the Cantor
set to check for the veracity of 2n values (just as in
a cooked pot it is enough to test a few particles of
rice to see if it is cooked). So this effectively reduces
the problem to a NP-class problem. This shows the
power of recursive functions and functional formula-
tions of the lambda calculus. The power of neural
networks in modelling data comes precisely from this
iterative functional formulation.

The Cantor set is a simple example of a comput-
able fractal. However, there are more complex (pun
unintended) fractals that are not even computable.
Penrose [5] conjectured that some Mandelbrot sets
are not computable, and this has been confirmed [6].
However, here again, these Mandelbrot fractals are
formulated in terms of complex functions, another
example of iterative functional formulation, which
in this case is not even computable in terms of state
machines.

Finally, we would like to mention that the power
of recursion was considered in the early 1960s by
Noam Chomsky who quoted the famous phrase of
Wilhelm von Humboldt, “infinite by finite means”
and later on by Douglas Hofstadter in his popular
work [7], where he also makes interesting references
to Metafont.

References

[1] Maxima (1982). A Computer Algebra System.
maxima.sourceforge.net

[2] Aristotle (350 BCE), Zeno’s paradox, translated by
R.P. Hardie and R.K. Gaye.
classics.mit.edu/Aristotle/physics.6.vi.html

[3] Béziau, J.-Y. (1970). Future of Paraconsistency
Logic. wwwa.unine.ch/unilog/jyb/future-pl.pdf

[4] New Directions in Paraconsistent Logic, 5th WCP
(2014) Kolkata, India, February 2014, Béziau,
J.-Y., Chakraborty, M., and Dutta, S., eds..
Springer-Verlag.

[5] Penrose, R. (1989). The Emperor’s New Mind.
Concerning Computers, Minds and The Laws of
Physics. Oxford University Press, New York.

[6] Blum, L., Shub, M., and Smale, S. (1989). On a
theory of computation and complexity over the
real numbers: NP-completeness, recursive functions
and universal machines, Bull. Amer. Math. Soc.,
21(1):1–46.

[7] Hofstadter, D. (1979). Gödel, Escher, Bach: An
Eternal Golden Braid. Basic Books.

� S. K. Venkatesan
TNQ Technologies, Chennai, India
skvenkat (at) tnqsoftware dot co dot in

S. K. Venkatesan

