
TUGBOAT

Volume 39, Number 3 / 2018

General Delivery 163 From the president / Boris Veytsman

164 Editorial comments / Barbara Beeton

Passings: Patricia Monohon (30 May 1941–6 April 2018),
Vytas Statulevicius (†July 2018);

TEX and the history of desktop publishing;
Open season for lectures on typography;
Daniel Berkeley Updike and the Janson font;
W. A. Dwiggins—Making orders;
The Updike prize for student font designers; A “brand” new font

167 TUGboat open-access survey results / TUG Board

168 TEXConf 2018 in Japan / Norbert Preining

Typography 169 The Cary Graphic Arts Collection / David Walden

171 Typographers’ Inn / Peter Flynn

Tutorials 173 A beginner’s guide to file encoding and TeXShop /

Herbert Schulz and Richard Koch

177 The DuckBoat—News from TEX.SE: Formatting posts / Carla Maggi

182 Managing the paper trail of student projects: datatool and more /

B. Tomas Johansson

Fonts 185 Interview with Kris Holmes / David Walden

204 Science and history behind the design of Lucida /

Charles Bigelow and Kris Holmes

212 TEX Gyre text fonts revisited / Bogusław Jackowski,

Piotr Pianowski, Piotr Strzelczyk

Electronic Documents 217 HINT: Reflowing TEX output / Martin Ruckert

Software & Tools 224 Axessibility: Creating PDF documents with accessible formulae /

D. Ahmetovic, T. Armano, C. Bernareggi, M. Berra,

A. Capietto, S. Coriasco, N. Murru, A. Ruighi

228 Improving the representation and conversion of mathematical formulae
by considering their textual context /

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke,

Howard S. Cohl, Bela Gipp

Graphics 241 Dednat6: An extensible (semi-)preprocessor for LuaLATEX that understands
diagrams in ASCII art / Eduardo Ochs

LATEX 246 Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX /

Frank Mittelbach

252 The widows-and-orphans package / Frank Mittelbach

263 The dashundergaps package / Frank Mittelbach

Bibliographies 275 State secrets in bibliography-style hacking / Karl Berry and Oren Patashnik

Methods 276 Experiments with \parfillskip / Udo Wermuth

Hints & Tricks 304 The treasure chest / Karl Berry

Abstracts 305 Die TEXnische Komödie: Contents of issue 4/2018

Advertisements 305 TEX consulting and production services

TUG Business 162 TUGboat editorial information

162 TUG institutional members

307 TUG 2019 election

News 308 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2019 dues for individual members are as follows:

Trial rate for new members: $20.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options described at
tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2019 is $110.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: November 2018]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Taco Hoekwater
Klaus Höppner
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2018 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such
approval, the original English permission notice must
be included.

The printer, he discovered, had the final say on how
a piece of writing would be perceived. Those cold
letters, forged in heat, sway the reading public in
ways that even the most astute among them will
never understand. Grayson understood, and he knew
something else: that a printer need not be bound to
the types offered by a foundry. A letter Q could be
drawn a million ways, and he could create his own.

John Dunning
The Bookman’s Wake (1995)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 39, NUMBER 3, 2018

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 39, No. 3) is the last issue of the
2018 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board
Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager
Robin Laakso, Office Manager
Boris Veytsman, Associate Editor, Book Reviews

Production team
William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Clarissa Littler,
Steve Peter, Michael Sofka, Christina Thiele

162 TUGboat, Volume 39 (2018), No. 3

TUGboat advertising
For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

Submitting items for publication
Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The submission deadline for the first 2019 issue is
March 31.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications
TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG
Institutional
Members

TUG institutional members
receive a discount on multiple
memberships, site-wide electronic
access, and other benefits:
tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,
Providence, Rhode Island

Association for Computing
Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,
Bowie, Maryland

CSTUG, Praha, Czech Republic

Harris Space and Intelligence
Systems, Melbourne, Floida

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

Nagwa Limited, Windsor, UK

New York University,
Academic Computing Facility,
New York, New York

Overleaf, London, UK

Springer-Verlag Heidelberg,
Heidelberg, Germany

StackExchange,
New York City, New York

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

University College Cork,
Computer Centre,
Cork, Ireland

Université Laval,
Ste-Foy, Québec, Canada

University of Ontario,
Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 39 (2018), No. 3 163

From the president

Boris Veytsman

I have been working in Silicon Valley for more than a
year now. This place is famous for its startups, both
for- and non-profit ones. There are many interesting
tips to be learned here. I would like to share one of
them.

Venture capital funders often propose to aspiring
founders the following question. “Imagine money is
not a problem: suppose you have a bottomless box
of dollars in your office. What would you do?” I
find this question very useful. Certainly money is a
constraint for our (and everyone’s) plans. However,
if we imagine this constraint lifted, we can get a
better grasp of what we ultimately want to achieve.

Maybe the following is a somewhat geeky com-
parison, but this exercise reminds me of a way to
approach linear programming problems: we deal
with constraints by first pretending there are none,
and looking for the best direction to improve our
target function. Only then do we reintroduce the
constraints.

Now TUG is not a startup: we are an organiza-
tion more than three decades old, a dinosaur by the
Silicon Valley reckoning. Still I find it useful to think
about the question. While the financial situation of
TUG is stable, clearly there are limits to our available
funds. Suppose this constraint is eliminated. What
would we do?

I will list my preferences in no particular order.
I would like to hear from other members about theirs.
Please think for a minute what you would want TUG

to do if money were not an issue.
There is the development fund. Right now we

give small grants, from several hundreds to low thou-
sands of dollars, to developers having interesting
projects. This is definitely not enough. If we had
money, we could completely change the policy. In-
stead of waiting for developers to suggest a project
to us (and hoping they will finish it for the very
small grants we can afford), we could actively lead
the development process. We could identify the most
important needs in the community (maybe scraping
forums like TeX.sx and the texhax list) and offer
substantial competitive grants to the developers. Of
course, we should also give much more money to ma-
jor existing projects such as CTAN, LATEX3, TEX Live,
accessibility, font development, . . .

For conferences: we could increase our bursary
fund and thus be able to be much more generous
with helping (especially) students and members from

developing countries to attend our meetings. We
need many more new faces in our conferences if we
want to stay viable.

Speaking of students, we could organize subsi-
dized summer TEX camps for school and university
students, develop teaching materials and reward the
best teachers introducing TEX in the classroom.

For example, distance learning courses such as
Coursera are quite popular, especially for program-
ming related topics. A similar set of courses about
TEX might help many novices and widen our user
base. If we can make these courses free for the users,
this would be a worthy project. However, we cannot
expect teachers to do all the work for free. With
unlimited funds, we could pay them a fair amount
to create and possibly lead free distance learning
courses for TEX users.

In general, the future of TEX, as for anything,
is with the younger generation. We need to invest
more in students and their teachers.

On another front, we could restart our book
publications. TUG has produced a couple interesting
books, but it has been eight years since the last of
them. We could create a TEX showcase, publishing
beautiful examples of TEX in action, demonstrating
free fonts, interesting book design and, of course,
good content.

It would be interesting to make a foray into
electronic publishing. There have been many e-books
made with TEX. A set of example books made by
the best TEXnicians might further improve TEX’s
presence in this area. More could be done with
TUGboat in this or other areas.

⋆ ⋆ ⋆

Well, this was an interesting exercise. Now we are
back on Earth where our funds are limited. Still, the
goals discussed here (and those I haven’t thought of)
are worth working for.

The task of fundraising, recruiting new members,
convincing organizations to join is hard. It takes a
considerable amount of time and effort. A dream
like the one above helps to remind us why we are
doing it.

I hope we can recruit new members and attract
donations to realize at least some of these goals.

Happy TEXing!

⋄ Boris Veytsman
TEX Users Group
borisv (at) lk dot net

http://borisv.lk.net

From the president

164 TUGboat, Volume 39 (2018), No. 3

Editorial comments

Barbara Beeton

Passings:
Patricia Monohon

(30 May 1941–6 April 2018)
Vytas Statulevicius (†July 2018)

Patricia Monohon was a long-time member of TUG,
and served on the board from 1997 through 2002.
More importantly, she was responsible for moving
the TUG office from Providence to San Francisco
in 1993, and remained in charge of the office until
1997. During that period she was instrumental in
selecting the sites for the annual meetings in Santa
Barbara (1994) and San Francisco (1997). Patricia
also proposed the site for the 2003 meeting on the
Big Island, Hawaii, and served on the organizing
committee.

Dr. Statulevicius was president of the Lithua-
nian TEX users group. He attended a number of
TUG meetings along with colleagues from VTEX, a
service organization that readies LATEX manuscripts
for publication for numerous book and journal pub-
lishers.

TEX and the history of desktop publishing

I’ve never quite thought of TEX as a prime example
of desktop publishing. However, it’s quite true that
TEX makes first-class typography available to anyone
willing to expend the effort to learn how to use it
properly. And it’s also true that TEX is fully func-
tional on one’s desktop—thus a suitable candidate
for an overview of the topic.

This was a pertinent question when the IEEE

joined with the Computer History Museum in Menlo
Park, California, in staging a two-day meeting on the
History of Desktop Publishing in May 2017. Partici-
pants in the meeting representing TEX included Don
Knuth, Chuck Bigelow, and Dave Walden; Dave’s
prior status as historian and editor of anecdotes for
the IEEE Annals of the History of Computing was
instrumental in having TEX considered for inclusion.
The success of the meeting was sufficient to war-
rant a two-issue record in the Annals; the first of
these two issues has just been published. (The TOC

can be found at https://www.computer.org/csdl/
magazine/an/2018/03.)

The relevant record of TEX’s history in this
context is the subject of a two-part article by Dave,
Karl Berry, and myself. The first part, entitled “TEX:
A branch in desktop publishing evolution, Part 1”,
covers the development and adoption of TEX until
it was cut loose from Stanford, and appears in the

first issue; the second part, covering the growth of
the TEX user and developer community, will appear
early next year in the second topical issue.

In addition to the published proceedings, the
discussions and several ancillary interviews have been
recorded and transcribed. This material is (or will
be, when ready) posted online at https://history.
computer.org/annals/dtp/. What I’ve read so far
is fascinating. The history “extras” by and about the
Seybolds, father (John) and son (Jonathan), reveal
how much easier we have it now that computers are
so much larger and faster.

I’ve been privileged to be involved at the AMS

in efforts to bring the Society’s publications from
traditional typesetting to full composition by com-
puter, and many of the names that appear in these
recollections are familiar to me—I’ve even worked
in various contexts with some of them. (For example,
I remember the day I first heard the term “WYSI-

WYG”, written on a blackboard in big, bold letters,
at a meeting of the Graphic Computer Communica-
tions Association in Philadelphia. Even then, the
approach desired by the industry was “structural”
and content-driven, not based solely on appearance.)
So, in this way, TEX is not a typical desktop word
processor, but it is still personally accessible publish-
ing, and thus a worthy member of this assemblage.

Open season for lectures on typography

This fall has been filled with events celebrating font
design, typography, and typographers. I was pleased
to attend three such events in Providence and the
Boston area that turned out to be more closely re-
lated than one might have expected from their an-
nouncements.

Daniel Berkeley Updike and the Janson font

August 25 was the occasion for a lecture at the
Museum of Printing in Haverhill, Massachusetts
(https://museumofprinting.org/).

Daniel Berkeley Updike is best known as the
founder and proprietor of the Merrymount Press
in Boston. This press was one of the (if not the)
most distinguished U.S. scholarly printing offices in
the late nineteenth – early twentieth century. John
Kristensen of Firefly Press (a small “fine press”) told
the story of Updike’s printing of the authorized 1928
revision of The Book of Common Prayer using the
Janson font.

Updike, a scholar and historian as well as a
printer, chose a typeface from the seventeenth cen-
tury, contemporary with earlier editions of the Prayer-
book. The typeface was one attributed (mistakenly)
to Anton Janson, and given his name. It had recently

TUGboat, Volume 39 (2018), No. 3 165

been revived and was available from the Stempel
type foundry (in Germany), cast from the original
matrices. However, not all the sizes needed for the
Prayerbook were available, so Updike— in contrast
to all his earlier projects, which used type from the
original foundries—chose to duplicate the type, cre-
ating new matrices from original types where they
existed, and having additional matrices made for the
“missing” 18-point, interpolated from the existing
sizes.

The Janson matrices made for the Merrymount
Press are now in the possession of Firefly Press, and
Kristensen characterizes himself as “the world’s last
D. B. Updike ‘wannabe’ ”.

Kristensen’s talk also covered other fonts used,
and works issued, by the Merrymount Press, as well
as Updike’s relations with other printers and institu-
tions of the period. A comparison with the works de-
signed by Bruce Rogers recognized the sheer beauty
of Rogers’ title pages and text, but pointed out that
they were not easy to read, whereas Updike designed
books that were not only beautiful, but meant to be
read and used, an absolute requirement for works
such as the Prayerbook. (An attendee at the lecture
had experience conducting services from the Prayer-

book, and confirmed that it is indeed eminently suited
for that use.)

When the Merrymount Press ceased operation,
its holdings were distributed to several sites, mostly
outside Massachusetts—to keep them away from
Harvard. (It wasn’t explained why Updike was ad-
amant about this.) The bulk of the fonts, most
matrices, and other materials were relocated to the
Huntington Library in San Marino, California. The
matrices for the Mountjoye (Bell) font went to the
Bancroft Library at Berkeley. The matrices for the
Janson font passed through several hands, ending
up with Firefly Press. The matrices for two fonts
(Merrymount and Montallegro) created for the Press,
along with much historical material, specimen sheets,
and related papers were donated to Special Collec-
tions at the Providence Public Library, where they
became the foundation of the D. B. Updike Collec-
tion. Updike was a native Rhode Islander, and his
legacy is now a resource for aspiring type designers,
as reported in other TUGboat issues, as well as later
in this column.

W. A. Dwiggins—Making orders

A review of the book by Bruce Kennett—W. A.

Dwiggins: A life in design—appeared in the previ-
ous issue of TUGboat (https://tug.org/TUGboat/
tb39-2/tb122reviews-kennett.pdf). On October
13, Kennett appeared at the Museum of Printing to

talk about the period of Dwiggins’ life during which
he worked with many of the paper mills in Mas-
sachusetts, producing advertising and promotional
materials aimed at printers, the principal users of
the paper products.

Dwiggins’ approach was not a “hard sell”, but
provided information that would assist printers in
making best use of each type of paper. Among the
techniques he recommended were the use of line cuts
rather than halftones to present illustrations; the
contemporary technology did not render halftones
cleanly, whereas line cuts were capable of producing
sharp, attractive images. Other recommendations
included matching fonts and paper to the intended
final product and audience. What he provided was
a toolbox, not a recipe. An attractive broadside in
fact unfolded to display the image of a functional
carpenter’s toolkit, inviting the viewer to choose the
best tools for the job.

In a related comment, Dwiggins voiced the opin-
ion that the lowercase of available sans serif fonts was
simply dreadful. On hearing that opinion, Linotype
asked “can you do better?” Rising to the challenge,
Dwiggins produced designs that were indeed superior
to anything already available; as a result, Linotype
put him on retainer, accepting unseen anything that
Dwiggins produced that was applicable to their line.

A quite broad selection of examples of Dwiggins’
work was on display, to be handled and inspected
directly. This gave a wider appreciation of the work
than can be obtained from images in a book, no
matter how carefully produced.

The Updike prize for student font designers

Special Collections at the Providence Public Library
is the home of an extensive typography collection
that grew from a legacy of Daniel Berkeley Updike’s
correspondence and books on the subject, and is
named in his honor. Since 2014, when a prize for
student type design was launched with a lecture
by Matthew Carter [1], a ceremony has been held
every year [2, 3, 4] to recognize the finalists and
winner of the prize, accompanied by a talk by a
current practitioner of font design [5]. This year’s
celebration was held on October 24, and the speaker
was Victoria Rushton.

Rushton is an illustration graduate of the Rhode
Island School of Design (RISD).

During her undergraduate studies, she discov-
ered that, more than anything else, she liked to
include words in her drawings. After graduation, she
determined that font design was much more suited to
her interests and undertook training at Font Bureau
to design typefaces. Three of her typefaces have been

166 TUGboat, Volume 39 (2018), No. 3

released commercially [6], and she accepts custom
lettering commissions. The style of her work tends
toward script styles rather than typefaces intended
solely for the setting of text.

Rushton’s talk was the story of her personal
journey into typeface design. It concentrated on
three “unreleased” typefaces, and the inspirations
for their creation.

The first typeface was a swirly, romantic script,
created in the aftermath of a breakup.

The second face was based on her sister Ce-
cilie’s handwriting. Cecilie is a fabric artist, and the
typeface was originally used for all the text on her
web pages, as shown in slides accompanying the talk.
However, even though the pages still mention the
font [7], the only remaining evidence online is the
logotype in the top right corner.

The third face was based on a handwritten letter
by Oswald (“Oz”) Cooper, a type designer, letter-
ing artist, and graphic designer active during the
early 20th century. Cooper is known largely for
bold display typefaces, many of which were based
on his handwriting. The typeface created by Rush-
ton accentuated various features of Cooper’s script,
in particular the rounded terminals, resulting in a
quirky but pleasing informal appearance that worked
surprisingly well for text.

After Rushton’s talk the results of the student
competition were presented. Four designs were cho-
sen for recognition, although only three of the par-
ticipants were in attendance; the typeface created
by the fourth was not shown.

Top honors were awarded to the “Frisk” family
of fonts by Gene Hua. The family consists of numer-
ous weights in both upright and italic forms. His
inspiration was the content of old playbills. While
suitable for text composition, the impression left by
the design is lively rather than sober. (One of the
judges did characterize the italic form as “frisky”.)
In addition to other prizes, the award included a
trophy—a composing stick (with the winner’s name
on a plate on its side), which was a source of conster-
nation to all the student competitors: what is this
thing, and what is it used for?

In second place was the “Altar” font created by
Stephanie Winarto. This text face was inspired by
an Episcopal altar book set in the Merrymount font
designed for Updike’s Merrymount press. (The book
is reminiscent of productions by William Morris, with
highly decorative marginal graphics.) The new face
is characterized by diamond-shaped elements, with
the dots on “i”s set in red in the example of its use.

A runner-up was “Updike Nouvel” by Annibel
Braden. This was based on a sign-painter’s guide,
which shows only uppercase letters that appear to
be incised rather than printed. The example of the
new typeface in contrast appears to be raised, three-
dimensional, and is multi-layered, shaded, and gold-
colored. The “Glyphs” tool was used in its creation.

A question and answer session followed the pre-
sentations, moderated by Matthew Bird, a member
of the RISD industrial design faculty. In addition
to discussing sources of inspiration, topics included
the importance of choosing an appropriate name
for a font (it should not already be in use), and
whether the participants intend to make font design
a full-time career (probably not).

A “brand” new font

A font constructed entirely from logos representing
well-known brands is highlighted at https://www.

engadget.com/2018/09/01/corporate-logo-font-

typeface-digital-studio/. Most of the letters
look familiar, but I failed at the attempt to identify
them all. Can you do better?

References

[1] Updike prize for student type design and talk
by Matthew Carter, TUGboat 35:1 (2014), 3–4,
tug.org/TUGboat/tb35-1/tb109beet.pdf

[2] First annual Updike Prize and talk by Tobias
Frere-Jones, TUGboat 36:1 (2015), 4–5,
tug.org/TUGboat/tb36-1/tb112beet.pdf

[3] Second annual Updike Prize for student type
design and talk by Fiona Ross, TUGboat 37:3
(2016), 257–258,
tug.org/TUGboat/tb37-3/tb117beet.pdf

[4] Type designer Nina Stössinger speaks at 3rd
annual Updike Prize event. TUGboat 39:1 (2018),
19,
tug.org/TUGboat/tb39-1/tb121walden-

updike.pdf

[5] Announcement of the Updike Prize.
https://www.provlib.org/research-

collections/historical-collections/updike-

prize-student-type-design/

[6] Three fonts by Victoria Rushton.
https://victoriarushton.typenetwork.com/

[7] Cecilie Rushton’s web page.
https://cecilierushton.com/

⋄ Barbara Beeton
https://tug.org/TUGboat

tugboat (at) tug dot org

TUGboat, Volume 39 (2018), No. 3 167

TUGboat open-access survey results

TUG Board

Earlier this fall (approx. August 6–September 16),
the TUG Board conducted a one-question survey on
increasing open access to the TUGboat journal. To
date, TUGboat has been delayed open-access, with
most technical articles available only to members for
about one year after publication.

Clearly, we would only want to change the policy
if doing so would help TUG, not hurt it. Member-
ships are what pay the bills, and we could not predict
whether this change would cause a crash in member-
ships or not. We knew the survey could provide only
general indications, since the responders would be
self-selected and unverified, but it was the only way
we could think of to garner any information at all.
The survey had one question for members:

If all TUGboat material were publicly available
online immediately upon publication, would that
make renewing your TUG membership more likely,
less likely, or have no particular effect?

and the analogous question for non-members, asking
about joining instead of renewing.

There was an excellent response, better than we
had hoped for. 588 people responded in all, 519 (88%)
as current members and 69 (12%) as non-members.
At the time of the survey, TUG had approximately
1180 members, so about 44% of members responded.

Overall, approximately 79% of respondents said
that the proposed full open-access would have no
effect on their decision, 11% said they would be less
likely to join or renew, and 10% said they would
be more likely. (The exact numbers are posted at
tug.org/TUGboat.)

Given this split response, the Board has decided
on a compromise change: all TUGboat issues ex-

cept the current one will now be publicly available.
For example, you are reading this report in TUG-

boat 39:3, so issues 39:2 and earlier are now publicly
available, while the technical articles in this issue
remain available only to members (either in print
or online at tug.org/members), until issue 40:1 is
published.

It is our hope that this change will both retain
the current members who would have (understand-
ably) dropped with full open-access, and lead more
people to renew and join in support of the greater
access. If future developments dictate, the policy
may be changed again.

We also hope that the greater access will lead to
more references to TUGboat articles on the forums
and mailing lists, and greater visibility generally.

Comments

In addition to the one question above, we had a field
where respondents could submit free-form comments.
We were grateful to receive dozens of insightful and
thought-provoking ideas this way, and would like to
relate and respond to a few of them here.

The vast majority of comments, following the
numeric results, were a statement of support for TEX
and TUG in general, and so any particular TUGboat

policy would not change that support. Thank you all!
Among people responding “more likely”, the

general sentiment was support for open access in
general, and the concomitant benefits.

Several people asked about getting notifications
when a new issue was published. We send out a
monthly newsletter, which includes announcements
of new TUGboat issues. Non-members can subscribe
at lists.tug.org/tex-announce.

A few people were evidently unaware that it
is possible to choose to get TUGboat electronically
only, or how the fees changed. Indeed, there is a sub-
stantial discount on the membership fee for receiving
benefits electronically only; see tug.org/join. That
page also explains possible tax deductions.

On the other hand, quite a few respondents
indicated a strong desire for the physical TUGboat

(and software DVD), belying other respondents who
wondered who would want anything on paper (or
disc) nowadays. We have no plans to discontinue the
physical TUGboat (or DVD).

A couple people suggested conducting the survey
through the members’ area on the web site, to avoid
multiple submissions and know if responders were
members. We did consider this, but ultimately felt
that responders’ anonymity was more important to
gathering useful results.

And lastly, one eagle-eyed respondent noticed we
incorrectly used past tense instead of the subjunctive
in the survey text. Does any other organization have
such proofreaders?! (We fixed it.) Thank you.

Thanks to all the survey respondents for giving
us a foundation for a decision, and making so many
thoughtful comments. And a special thanks to all
the authors, reviewers, and all contributors to TUG-

boat over the years, who have made it an important
resource for the TEX world since TUG’s founding.

For further comments or discussion on this (or
any other TUG questions), feel free to contact the
Board at any time.

⋄ TUG Board
board@tug.org

168 TUGboat, Volume 39 (2018), No. 3

TEXConf 2018 in Japan

Norbert Preining

On Saturday 10 November I attended the yearly
conference of Japanese TEX users, TEXConf 2018,1

which this year took place in Sapporo, Hokkaido.

Having attended several international TEX con-
ferences, I am always surprised how many Japanese
TEX users find their way to this yearly meeting. This
year we were about 50 participants. We had five
full talks and two lightning talks, followed by a very
enjoyable dinner and after-party.

The first talk was by Takuto Asakura (朝
倉卓人), ‘llmk—The light LATEX Make’2 (slides3).
Takuto gave a short overview of the available TEX
make alternatives and why he saw the need for a new
tool, which is written in texlua. After some short ex-
amples of usage he mentioned a few advanced usage
scenarios. He will write an article for TUGboat and
plans to present llmk at the TUG 2019 conference in
the USA. As an old-school guy I prefer make, which
is by far more powerful, but I welcome additions to
make building TEX documents easier. My only wish
would be a no-markup-do-your-best build system—
guess I will start writing my own ;-).

Next up was my own talk on ‘Continuous inte-
gration testing for TEX Live’ (slides4), where I got
into the nitty-gritty details of DevOps for TEX Live —
mirroring the Subversion repos into git, and linking
them to CI services, as well as using deployments to
get binaries back. I hope to have an article about
this ready for the next TUGboat.

After lunch, Takashi Suwa (諏訪 敬之) pre-
sented his work on a new typesetting system with a
static type system, SATySFi.5 With his background
in formal verification, Takashi took an interesting
approach to typesetting. Due to the complete static
typing of the input source, error messages can be
much more informative—one of Takashi’s biggest
complaints with current TEX, but it also makes the
input format a bit bothersome in my opinion. For
me one of DEK’s biggest achievements is the defi-
nition of a no-thrills, easy to read and write, input

1 tug.org/l/4A0k8 2 tug.org/l/9JuCN
3 tug.org/l/72koH 4 tug.org/l/5g6hV
5 tug.org/l/y7Nd1

format for mathematics. Takashi has also written a
book documenting SATySFi, and I have urged him
to make an English translation.

The next talk was by Keiichiro Ishino (石野
恵一郎) on ‘Breaking paragraphs into lines with
the AHFormatter’6 (slides7), a commercial typeset-
ting program targeting businesses with XSL-FO, CSS,
XML, . . . formatting abilities. It was very interesting
to see how commercial products deal with the very
same problems we are facing.

Hironori Kitagawa (北川弘典) reported on the
state of luatex-ja8 (slides9), in particular his work
on line adjustments in the presence of inline math
formulas, as well as usage of the luatex-fontspec

sub-package. I cannot repeat it often enough — I con-
sider luatex-ja one of the most important packages
and it is in daily use on my site.

The day closed with two lightning talks, the
first by Keiichiro Shikano (鹿野桂一郎) on the
usage of Encapsulated PostScript (eps) files in TEX
(slides10). Unfortunately, he didn’t really rehearse his
talk and his time was over before it got interesting ;-).
Fortunately, we can read his slides online.

The last talk was by Hironobu Yamashita (山
下弘展) on ‘How to become happy when typesetting
Japanese with LATEX’ (slides11). A very funny and
informative talk on the incredible work Hironobu
is doing for the TEX community—development of
many packages, support, and updates of the source
code of several programs; the list is long.

I love to attend TEX meetings, and the Japanese
TEXConf is in particular always interesting, in partic-
ular because TEXies here have a tendency to be rather
tech-savvy, one could even say \expandafter-manic.
This was in fact the biggest complaints during our
walk to the dinner location — not enough mention of
\expandafter in the talks.

It is now nearly ten years that I’ve been attend-
ing the Japanese TEX user meetings, and I think we
have come a long way — from a rather separate group
of TEX developers and users distributing their stuff
on Japanese-only wikis and private pages to a group
that is now strongly integrated into our global TEX
community (let me just mention the TUG conference
in Tokyo12) as well as contributing to many projects.
Thanks a lot!

⋄ Norbert Preining
Accelia Inc., Tokyo, Japan
preining.info

6 tug.org/l/5WRrP 7 tug.org/l/7fLd4
8 tug.org/l/T7tVg 9 tug.org/l/PbYI5

10 tug.org/l/OM4yt 11 tug.org/l/3DIur
12 tug.org/l/Dq5GI

Norbert Preining

TUGboat, Volume 39 (2018), No. 3 169

The Cary Graphic Arts Collection

David Walden

The Cary Graphics Arts Collection (library.rit.
edu/cary) on the second floor of the Wallace Li-
brary at the Rochester Institute of Technology (RIT)
is a library on the history and practice of print-
ing. Contained within the Collection is the Cary
Graphic Design Archive,1 “preserving the work of
significant American graphic artists from the 1920s
to the present”. The library has many important
holdings and is open to visitors as well as faculty
and students at RIT.

Unusual for a library and archive, the Cary
Collection includes a print shop with “a working
collection of some 20 historical printing presses and
more than 2,000 fonts of metal and wood type”2 of
mechanical design spanning from the early 1800s to
the present.

The collection curator Dr. Steven Galbraith (in
photo below) says that last year 2,000 students came
through or used either the library or print shop for
classes and projects.

On June 25, 2018, Curator Galbraith gave me
a tour of the Collection’s facilities, along with Kris
Holmes whom I was interviewing (see interview in
this issue), in the Collection’s Reading Room.

According to the 85-page book Highlights of the

Cary Graphic Arts Collection, the collection was ini-
tially established at RIT in 1969 with the gift, in
honor of Melbert Cary Jr., of his library, by the Mary
Flagler Cary Charitable Trust (created in memory of
Melbert Cary’s widow). Melbert Cary’s life involved
printing in several ways: he was director of an agency
that imported metal type from Europe that it sold
to printers, he had his own small printing business,
and his interest in the history of printing led to a
library of 2,300 books on the topic. In the years since
the creation of the Collection, the library has grown

through other gifts and acquisitions and now contains
some 45,000 volumes. The Collection also includes a
number of subcollections, including typography spec-
imens, examples of fine printing, books on book bind-
ing, and many more (twcarchivesspace.rit.edu).

Curator Galbraith is anticipating a major reno-
vation of the RIT Libraries, and he says, “Our goal
in the Cary Collection is to expand our facilities to
make our collections more visible and accessible to
students and researchers.”

The Collection also regularly presents lectures
and exhibits,3 for instance a 2012 exhibit on the
edges of books (photo by Elizabeth Lamark).4

In early 2018, Chuck Bigelow and Kris Holmes
gave a lecture at the Collection celebrating the 40th
anniversary of their first commercial font, Leviathan,
a display capitals type for a fine press printing of
Moby Dick.

Chuck and Kris have long been involved with
RIT’s graphic arts programs, with Chuck until re-
cently serving as Melbert Cary Jr. Distinguished
Professor of Graphic Arts at RIT and Kris teaching
type design. Chuck is now resident scholar at the
Cary Collection.

Hermann Zapf was an earlier Melbert Cary
Jr. Distinguished Professor of Graphic Arts (from
1977).5 From 1979 through 1988, Zapf taught a sum-
mer workshop on type design and calligraphy at RIT.
More generally, Zapf significantly influenced RIT’s
programs related to printing, was an ambassador for
the Cary Collection, helped the Collection obtain
significant archives, placed many of his own papers
and works in the Collection archive,6 and designed
etchings for the glass-surrounded RIT Press space
in the Wallace Library (please see rit.edu/press/
history). At the time of my visit, the Collection
staff was preparing for an exhibit on Zapf; it opened
in late August—The Zapf Centenary: The Work
of Hermann & Gudrun Zapf, 1918–2018, commem-
orating the 100th birthdays of Hermann Zapf and
Gudrun Zapf von Hesse with a retrospective of their
influential work and careers. The following drawing,

The Cary Graphic Arts Collection

170 TUGboat, Volume 39 (2018), No. 3

from Zapf’s 1979 RIT summer course, is typical of
what he used when demonstrating calligraphy.

Kris Holmes explained, “Many teachers use a chalk-
board and they write the letters with a piece of chalk
held parallel to the surface, thus creating a ‘broad
edge’. But Zapf chose to put up sheets of dark pa-
per and write with his chalk directly on the paper.
These sheets are usefully less ephemeral than chalk-
board samples. They now provide a little window
into Zapf’s teaching.”

I particularly enjoyed being shown the Arthur M.
Lowenthal Memorial Pressroom with its cases of
type, various styles of printing presses, and other
equipment for trimming, binding, and so on.

The image in the left column of the prior page
shows an Albion iron hand press No. 6551 (1891)
once owned by William Morris in England and Fred-
eric W. Goudy in New York.2 An RIT alumnus pro-
vided funds to the Collection to buy this press at a
Christie’s auction. Associate Curator Amelia Hugill-
Fontanel was in charge of restoring the press to work-
ing order once it was acquired.7 Of the press room
and collection more generally, Hugill-Fontanel says,
“Each of the Cary presses demonstrates technological
progress in the development of printing machines.
We firmly believe that they will be preserved through
teaching and limited-edition press work.”

According to another story from Curator Gal-
braith, a fire at Goudy’s print shop destroyed much
of Goudy’s work. However, Goudy had loaned a
different Albion press and some cases of type which
thus survived the fire; that press is also now in the
pressroom along with the type which is known as
the “The Lost Goudy Types”.

Kris Holmes took the following photo as we
walked through the Lowenthal Pressroom. Of the
photo she says, “This is the ‘Adopt A Font’ project.
Students commit to cleaning up one of the Collec-
tion’s wood type fonts. In this case it is one of their
beautiful collection of Hebrew wood type. I think
this is so typical of the Cary—they find ways of
getting students engaged.”

Having engineering students on the same cam-
pus as the pressroom provides especially interest-
ing opportunities. For instance, in 2015 five stu-
dents developed an “aluminum hand-operated let-
terpress, weighing in at 25 pounds and assembled
with two Allen wrenches, [that] can produce high
quality and repeatable prints”8 (photo by Amelia
Hugill-Fontanel).

In 2016 another set of students built an 18th
Century English common press that was then added
to the Cary Collection (see videos9,10).

Visiting the pressroom and learning how it and
the rest of the Collection is used in classes throughout
RIT makes me wish I were back in college again. Visit
the collection if you are near Rochester.

Notes
1library.rit.edu/gda/historical/about
2tinyurl.com/morris-press
3library.rit.edu/cary/exhibitions
4Steven K. Galbraith, Edges of Books: Specimens of Edge

Decoration from RIT Cary Graphic Arts Collection, RIT

Graphics Art Press, 2012.
5Others who have held the Cary Professor position are
Alexander Lawson (the first Cary professor, library.rit.
edu/cary/goudylawson) and Frank Romano (between Zapf
and Bigelow, www.rit.edu/news/story.php?id=49409).

6library.rit.edu/cary/news/hermann-zapf-tribute
7tinyurl.com/amelia-press
8rit.edu/news/story.php?id=52390
9youtube.com/watch?v=gVbGoQVDYjk
10youtube.com/watch?v=JJvFYa3EBn0

David Walden

TUGboat, Volume 39 (2018), No. 3 171

Typographers’ Inn

Peter Flynn

Font tables

Peter Wilson has rightly called me to account for
missing out the fonttable (two t’s) package in the de-
scription of my experimental fontable (one t) package
[4, p 17].

The fonttable package is much more powerful
than the one I am [still] working on, and I was so
intent on reimplementing the specific requirements
of the allfnt8.tex file in X ELATEX to the exclusion
of pretty much everything else that I didn’t do any
justice to fonttable (and a number of other test and
display tools).

I am expecting shortly to have more time at my
disposal to remedy this and other neglected projects.

Monospace that fits

One of the recurrent problems in documentation is
finding a suitable monospace font for program listings
or other examples of code. I have whittled my own
requirements down to something like this:

1. must remain distinct and legible at small sizes
(eg \footnotesize) because a) you might want
code in footnotes; or b) you might need a small
size on special occasions when you need to fit
a listing to the page and keep whole lines on
single lines (no wrap).;

2. must not have a set wider than one alphabet
of the body face lowercase, and preferably nar-
rower; that is,
ABCDEFGHIJKLMNOPQRSTUVWXYZ

must be the same width or narrower than
abcdefghijklmnopqrstuvwxyz;

3. must distinguish clearly between zero (0) and
capital O, and between lowercase l, digit 1, cap-
ital I, and vertical bar (|);

4. may be serif or sans-serif. . . ;
5. . . . but must be distinctly different from the cho-

sen body face;
6. must not have any characters with an unusual

or unconventional design;
7. must be close but not the same in weight to

the chosen body face, so that it is distinct in
running text but not disruptive, and so that
blocks of code have roughly the same greyness
as normal text.

‘What’s wrong with Computer Modern Typewriter?’
I hear some people ask. Actually not much, except
for the idiosyncratic @ sign1 and the set, which is

1 When I was having the conference mugs printed for the
first TUG meeting in Cork in 1990, the company replaced

Table 1: Widths of set for some related serif,
sans-serif, and monospace fonts

CMR abcdefghijlkmnopqrstuvwxyz O0|I1l
CMSS abcdefghijlkmnopqrstuvwxyz O0|I1l
CMTT abcdefghijlkmnopqrstuvwxyz O0|I1l

PT Serif abcdefghijlkmnopqrstuvwxyz O0|I1l
PT Sans abcdefghijlkmnopqrstuvwxyz O0|I1l

PT Mono abcdefghijlkmnopqrstuvwxyz O0|I1l

Libertine abcdefghijlkmnopqrstuvwxyz O0|I1l

Biolinum abcdefghijlkmnopqrstuvwxyz O0|I1l

Lib. Mono abcdefghijlkmnopqrstuvwxyz O0|I1l

Plex Serif abcdefghijlkmnopqrstuvwxyz O0|I1l
Plex Sans abcdefghijlkmnopqrstuvwxyz O0|I1l

Plex Mono abcdefghijlkmnopqrstuvwxyz O0|I1l

Nimbus Serif abcdefghijlkmnopqrstuvwxyz O0|I1l

do. Sans abcdefghijlkmnopqrstuvwxyz O0|I1l
do. Mono abcdefghijlkmnopqrstuvwxyz O0|I1l

do. Mono N abcdefghijlkmnopqrstuvwxyz O0|I1l

Times abcdefghijlkmnopqrstuvwxyz O0|I1l

Helvetica abcdefghijlkmnopqrstuvwxyz O0|I1l
Courier abcdefghijlkmnopqrstuvwxyz O0|I1l

Luxi Mono * abcdefghijlkmnopqrstuvwxyz O0|I1l

Times, Helvetica, and Courier (unrelated) are included for
comparison as they are a common default.

* Luxi Mono set to one \magstep smaller than the others.

wider than its Roman sibling (see item 2 in the list
on p. 171) but only very little. The problem with
width is that in listings, it would be nice to have a
narrower font so that fewer long lines need wrapping,
while remaining readable. Of those listed in Table 1,
the three space-savers are thus CMTT, Nimbus Mono
Narrow and possibly Luxi Mono scaled down.

Of course, it’s possible to scale any font if needed,
and it’s common if you’re using X ELATEX to use
the fontspec package’s Scale=MatchLowercase option
on font specification commands. But while this is
important for using the monospace font in running
text, listings may need to be in a different size.

Among the various weights, it’s clear that Cour-
ier is not only wider than most but significantly
lighter. Luxi Mono is much closer to the weight
of the old Prestige Elite (12–pitch) typewriter face.
For the conflicting character forms, Nimbus Mono
Narrow has less distinction than most of the others.

It’s also a matter of æsthetics, and many people
are happiest using what they think looks nice. Per-
sonally, I like PT Mono but it’s very wide; Libertine
Mono reminds me of a golfball I had for the IBM

Selectric typewriter once: all the attributes of a serif
typeface except the proportional widths; Plex Mono
is in some ways very similar in feel to PT Mono

the @ sign in the email address with the copyright symbol ©,
which they thought ‘looked nicer’. Fortunately I spotted this
before they were printed.

Typographers’ Inn

172 TUGboat, Volume 39 (2018), No. 3

despite being unseriffed; Courier I have a personal
and unexplained dislike for; so it’s down to Luxi and
Nimbus from this lot — but there are so many others
available too . . .

Centering (reprise)

Talking of ‘projects’, as we shall see, the habit of
allowing a wordprocessor centering algorithm to auto-
center display material, which I have mentioned be-
fore [1, 2, 3] has been popping up all over the place,
two of them in my own institution within a month
of each other—Figure 1 shows them with the text
in question reproduced underneath, as it’s probably
not clear from the images reproduced at this size.

Free Entry with convention
passes Tickets €10 without

Come find your perfect project for
this summer with the help of our

members!

Free Entry with convention passes
Tickets €10 without

Come find your perfect project
for this summer

with the help of our members!

Figure 1: Centered text with linebreaks: transcription
plus suggested breaks

LATEX, like other systems, fits the maximum
number of words to the centered line[s], and allows
the last line to be short, if necessary. Authors and
designers should add manual line-breaks at the logical
break-points, especially if there is no proof-reader.
In the right-hand example here about a ‘Porject
[sic] Matching Workshop’, the choice of yellow text
on a brightly-coloured background (not visible in
monochrome here) manages to make it so hard to
read that no-one noticed.

Afterthought

A year or so ago, the Prime Minister of Pakistan
came under suspicion of having forged a document it
was hoped would clear his family of wrongdoing in a
property transaction [6]. The document was dated
2006, but it was set in Calibri, which wasn’t publicly
released until 2007, although it was available in test
versions of Microsoft Office from 2004, including

the new XML version we were all given after the
XML conference in Washington, DC, that year. In
theory it’s possible the Prime Minister’s office was
represented there. . .

It’s by no means the first time a typeface has
caused high-level embarrassment: in 2010 a designer
working for a French government agency created a
logo using a font called Bienvenue. Unfortunately
this font was created privately for France Telecom,
and isn’t supposed to be available to anyone else
[5]. The embarrassment was that the office con-
cerned was France’s new intellectual property rights
agency HADOPI (Haute Autorité pour la Diffusion

des Œuvres et la Protection des droits d’auteur sur

Internet, no less), set up explicitly to ensure copy-
right and IP enforcement.

Designers and typesetters are often raided and
sued over allegations of using typefaces they haven’t
paid for, and have been fined some very large sums
as a result. I don’t think any TEX user would ever
do such a thing as use an unlicensed font—espe-
cially as there are so many excellent typefaces free of
commercial license conditions, but please make sure
you’re legal. Designing a typeface takes years, and
the designers deserve your support.

References

[1] P. Flynn. Typographers’ Inn—Titling
and centering. TUGboat 33(1), May 2012.
tug.org/TUGboat/tb33-1/tb103inn.pdf

[2] P. Flynn. Typographers’ Inn—Afterthought.
TUGboat 37(3), Sep 2016. tug.org/TUGboat/

tb37-3/tb117inn.pdf

[3] P. Flynn. Typographers’ Inn—Afterthought.
TUGboat 38(1), May 2017. tug.org/TUGboat/

tb38-1/tb118inn.pdf

[4] P. Flynn. Typographers’ Inn—Fonts and
faces and families. TUGboat 39(1), Jun 2018.
tug.org/TUGboat/tb39-1/tb121inn.pdf

[5] Insider Software. Staying Legal: The
Challenges of Font License Compliance.
insidersoftware.com/downloads/infusionsoft/

StayingLegal-FontLicenseCompliance.pdf,
Sep 2010.

[6] B. Kentish. Pakistan’s Prime Minister may be
brought down by Microsoft’s Calibri font amid
corruption allegations. The Independent, Jul 2017.

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

blogs.silmaril.ie/peter

Peter Flynn

TUGboat, Volume 39 (2018), No. 3 173

A beginner’s guide to file encoding
and TEXShop

Herbert Schulz and Richard Koch

Abstract

A common problem TEX users face when opening
and typesetting files is that the text displayed either
in the source or in the typeset document or both is
not what should be there; characters are scrambled
and improper characters appear. This is usually an
encoding problem—either the editor or TEX or both
do not interpret the input correctly.

This document is meant as a first introduction
to file encodings. It is definitely not meant as an
exhaustive document, and deals only with the most
common encodings in use today.

While the following document was originally
written for distribution with the TEXShop editor
(a.k.a. front end) running on Mac systems, other
front ends use a similar directive, and the general
discussion about file encodings is valid no matter
what editor you use.

1 What is a file encoding?

While we usually think of the .tex source file as
containing characters, in reality this source, like all
computer files, is just a long stream of whole numbers,
each (nowadays) from 0 through 255. Computer
scientists call these whole numbers bytes.

All other computer data must be encoded in one
way or another into bytes. The most common en-
coding of ordinary text into bytes is called ASCII; it
encodes most of the characters found on an ordinary
American typewriter. For instance, the characters ‘A’
through ‘Z’ are encoded as 65 through 90, the char-
acters ‘a’ through ‘z’ become 98 through 123. The
space character is encoded as byte 32, and numerals,
parentheses, and punctuation characters encode as
other bytes.

Originally, TEX required ASCII input. While
this was sufficient in the United States, it proved
cumbersome in Western Europe, where accents, um-
lauts, upside down question marks, and the like are
common; macros were needed to construct those
characters and that broke hyphenation. More diffi-
cult problems arose when TEX was used in the Near
and Far East.

The ASCII encoding only uses bytes from 0
through 127. Thus the door was open to encode
other characters using bytes 128 through 255. Many
different single-byte encodings now exist to display
additional characters using these bytes.

2 Extending the character table

The three most often used extended single-byte en-
codings on the Mac are MacOSRoman, IsoLatin1 and
IsoLatin9.1

The MacOSRoman encoding is left over from the
days before OS X and, as expected, exclusive to Mac
computers. Its use is no longer encouraged.

The IsoLatin1 encoding extends the ASCII en-
coding with the accented characters used in Western
European languages.

IsoLatin9 primarily adds the Euro symbol, e,
to the IsoLatin1 encoding along with a few other
changes.

2.1 Other encodings used with TEX

Other fairly common encodings include IsoLatin2 for
central European languages, IsoLatin5 for Turkish
and IsoLatinGreek (also called Iso8859-7) for Greek.
Several different encodings are available for Russian
and other languages using Cyrillic. Additional en-
codings are available for Korean and Chinese, but
Far Eastern languages use thousands of symbols, so
these encodings are not very satisfactory.

2.2 Windows stuff

Windows Latin 1 is a version of IsoLatin1 with some
characters in different code locations as defined by
Microsoft. Thus, folks running Windows can end up
with files in this encoding.

2.3 A crucial flaw

The various encodings were developed independently
by computer companies as their products were sold
in more and more countries.

Unfortunately (but unavoidably), text files do
not have a header specifying the encoding used by
the file. Thus there is no way for TEXShop to au-
tomatically adjust the encoding as various files are
input. Some text editors have built-in heuristics to
try to guess the correct encoding, but TEXShop does
not use these heuristics because they work only 90%
of the time and an incorrect guess can lead to havoc.

3 Unicode

As the computer market expanded across the world,
computer companies came to their senses and cre-
ated a consortium to develop an all-encompassing
standard, called Unicode. The goal of Unicode is to
encode all symbols commonly used across the world,
including Roman, Greek, Cyrillic, Arabic, Hebrew,
Chinese, Japanese, Korean, and many others. Uni-
code even has support for Egyptian hieroglyphics and

1 We will use the same notation as for the TEXShop en-
coding directive in this document. See the table on page 176.

A beginner’s guide to file encoding and TEXShop

174 TUGboat, Volume 39 (2018), No. 3

relatively recently added support for mathematical
symbols.

All modern computer systems, including Mac-
intosh, Windows, GNU/Linux and other Unix, now
support Unicode. Internally, TEXShop and many
other editors represent characters using Unicode and
thus can accept text that is a combination of Ro-
man, Greek, Cyrillic, Arabic, Chinese, and other
languages. TEXShop even understands that Arabic,
Hebrew, and Persian are written from right to left.
To input these extra languages, activate additional
keyboards using the System Preferences Keyboard
Pane. This Pane changed in recent versions of OS X;
in El Capitan, select a keyboard on the left, or click
‘+’ below the list to see a list of additional languages
and add their keyboards.

3.1 Unicode representations

Because it has far more than 256 symbols, Unicode
defines symbols using much larger integers, using
more than one byte. Unicode defines the “internal”
structure of these numbers, but gives several different
ways to represent the numbers on computers. By
far the most popular Unicode encoding nowadays is
UTF-8, which uses a sequence of 8-bit bytes, but UTF-

16 (using a sequence of 16-bit chunks) and others
are also available. (All the Unicode representations
are equivalent; the multiple representations exist for
historical and other reasons beyond this short note.)

The great advantage of UTF-8 is that ordinary
ASCII characters retain their single-byte form in
the encoded file. Consequently, ordinary ASCII files
remain valid as UTF-8 files. With most single-byte
encodings like IsoLatin1, IsoLatin9, etc., any sequence
of bytes forms a legal file. If you open such a file
with the wrong encoding, the file will be read, but
some of the symbols will be wrong. For example,
if someone in Germany using IsoLatin9 collaborates
with someone in the U.S. using MacOSRoman, and
their paper is written in English, they may not notice
the mismatch until they proofread the references and
discover that accents and umlauts have gone missing.

However, not all sequences of bytes form valid
UTF-8 files, because non-ASCII symbols are con-
verted into bytes using a somewhat complicated code.
In the previous example, if the German collabora-
tor uses IsoLatin9 and includes non-ASCII characters,
such as those with umlauts, in the document and the
American collaborator uses UTF-8, TEXShop will re-
port an error when it tries to open the IsoLatin9 file in
UTF-8. TEXShop will then display an error message
and offer to open the file in a “fallback” single-byte
encoding, currently IsoLatin9 (not configurable).

On the other hand, both authors of this docu-
ment use UTF-8 Unicode as our default encoding,
turning that message to our advantage. UTF-8 pre-
serves everything typed in TEXShop, so there are no
puzzling character losses. HTML and other code is
usually saved in UTF-8, so TEXShop can be used as
a more general text editor. Moreover, if a TEX file
from an external source is not in UTF-8, we get the
warning above. The trick is then to let TEXShop
open the file in the “fallback” encoding, IsoLatin9,
and examine the file for an inputenc line which tells
you what encoding was actually used. Then close the
file without making any changes and re-open it using
the Open dialog and manually choose the correct
encoding. Once the file is open with the correct en-
coding you may add the TEXShop encoding directive
line for that encoding and save it for future use.

Using UTF-8 Unicode has become so advanta-
geous that TEXShop 4.00 and later use this encoding
as the default, out of the box,2 encoding.

3.2 Encoding vs. formatting

All of the encoding methods discussed here, including
Unicode, are irrelevant to italics, underlining, font
size, font color, etc. They just define characters
as numbers. It is up to users to specify additional
attributes in some other way. For example, when
Apple’s TextEdit program is used in Plain Text mode,
a user can change the font or font size for an entire
document, but not for individual sections of the
document. If the document is saved to disk and then
reloaded, the font changes are lost. On the other
hand, a word processor like Microsoft Word or Apple
Pages has much more control over fonts, font size and
the like. These programs output text in a proprietary
format readable only by that program, but the file
does preserve the extra attribute information.

While all modern computers support Unicode,
particular fonts (nearly always) have symbols for only
a small portion of the Unicode world. Fonts should
have a special character, often a box, to indicate that
a character is missing. Thus if you want to write in,
say, Arabic or Hebrew, you must choose a font which
contains these symbols. Modern computers support a
great range of symbols because the computer business
covers the world, but it may still be hard to find a
font covering obscure Unicode symbols.

2 If you switch to the latest TEXShop version and have
already reset the default encoding in TeXShop→Preferences,
your selection will be maintained.

Herbert Schulz and Richard Koch

TUGboat, Volume 39 (2018), No. 3 175

4 Two sides of the story:
TEXShop and TEX

Once a user selects an appropriate encoding, the user
must configure both TEXShop and the appropriate
TEX engine to use that encoding. Different sets of
problems arise with these two tasks.

Users in the United States and other English
speaking countries can often ignore encodings alto-
gether. The default TEXShop encoding supports
ASCII, and TEX and LATEX have supported ASCII

from the beginning. So there is nothing to do.
Users in Western Europe must take slightly more

care. The current default TEXShop encoding, UTF-8

Unicode, will be sufficient for their needs. But they
must configure TEX and LATEX as described below,
and carefully choose fonts which support the needed
accents, umlauts, and the like. The required steps
are easy.

Users in Russia and Eastern Europe must take
similar steps, but the authors of this paper are not
knowledgeable about correct configurations, so we
suggest getting help from friends already using TEX.

Users in the Far East and Middle East, and
scholars working with multi-language projects, will
need to consult other sources for detailed configura-
tions. These users should certainly examine X ETEX
and LuaTEX, because these extensions of TEX use
Unicode directly and are much more capable of han-
dling languages where Unicode becomes essential.
Both X ETEX and LuaTEX can typeset almost all
standard TEX and LATEX source files, but have addi-
tional code for Unicode support. One big problem
with these languages is that appropriate fonts must
be chosen which support the languages. To simplify
that problem, both X ETEX and LuaTEX allow users
to use the ordinary system fonts supplied with their
computer.

5 Telling TEXShop what encoding to use
to Load and Save source files

To set the default TEXShop encoding, open TEXShop
Preferences. Select the Source tab. In the second
column, find the Encoding section. This section con-
tains a pull down menu; select the desired encoding
from this menu. Select Western (ISO Latin 9) to
get the IsoLatin9 encoding, useful in English speak-
ing countries and Western Europe. You must select
Unicode (UTF-8), the current default, or Unicode
(UTF-16) if you want to preserve everything you can
type into the TEXShop editor. If you pick any other
encoding, there may be characters you can type in
TEXShop which will be lost if you Save and then
re-Load. On the other hand, UTF-8 may not work
well with certain LATEX packages, as explained later.

TEXShop has a mechanism to set the encoding
of a particular file independent of the user’s default
choice, or of choices in the Load and Save panels. To
set the encoding used to read or write a particular file
to UTF-8, add the following line to the first twenty
lines of the top of the file:

% !TEX encoding = UTF-8 Unicode

The easy way to do this is to select the Macro com-
mand Encoding. A dialog will appear from which
the desired encoding can be selected, and after the
dialog is closed, the line will be placed at the top of
the file, replacing any existing encoding line.

If such a line exists, the indicated encoding will
be used, overriding all other methods of setting the
encoding, unless the option key is held down during
the entire load or save operation.

Many users in Western Europe prefer to set
IsoLatin9 as their default encoding so they can easily
read files from collaborators, but include the line
setting encoding to UTF-8 in file templates used to
create files, so that their own files are encoded in
UTF-8.

It is also possible to set the encoding used to
read a file by Opening the file explicitly from within
TEXShop. The resulting dialog has a pull-down menu
at the bottom to select the encoding to be used
for that particular file.3 (Note that the “% !TEX

encoding =” line overrides this command.)
Explicitly Saving a file from within TEXShop

produces a Save Dialog with a similar pulldown menu
to set the encoding.

Note: you can’t easily change the encoding of
a file. The best thing to do is copy the whole docu-
ment into a new one and save that with the correct
encoding. Using the TEXShop directive before saving
the new file the first time is definitely recommended.

6 Telling LATEX about file encodings

Your typesetting engine needs to know the encoding
used to save each source file so the input source and
the output glyphs are synchronized. For ordinary
LATEX, this is usually done by including a command
like the following in the header of the source:

\usepackage[latin9]{inputenc}

Some values for other common encodings are given
in the short table following.

This line is not needed when the source encoding
is ordinary ASCII.

One valid value for encoding with inputenc is
utf8. This line works in Western Europe, but not in
situations requiring wider use of Unicode (because

3 Under El Capitan you must first press the Options button
to get to the pulldown menu.

A beginner’s guide to file encoding and TEXShop

176 TUGboat, Volume 39 (2018), No. 3

TEXShop TEXShop LATEX
Open/Save dialogs encoding directive inputenc

Unicode (UTF-8) UTF-8 Unicode utf8

Western (Mac OS Roman) MacOSRoman applemac

Western (ISO Latin 1) IsoLatin latin1

Central European (ISO Latin 2) IsoLatin2 latin2

Turkish (ISO Latin 5) IsoLatin5 latin5

Western (ISO Latin 9) IsoLatin9 latin9

Mac Central European Roman Mac Central European Roman macee

Western (Windows Latin 1) Windows Latin 1 ansinew or cp1252

Table 1: Partial encoding list of names in three contexts

the characters are lacking from TEX’s usual fonts).
When in doubt, it is useful to read the inputenc
documentation. To do that, go to the TEXShop Help
menu, select Show Help for Package, and fill in the
requested Package with inputenc.

Users in Western Europe usually use four “re-
lated” commands in the header. Here are these four
lines for users in Germany.

\usepackage[german]{babel}

\usepackage{lmodern}

\usepackage[T1]{fontenc}

\usepackage[latin9]{inputenc}

The first of these lines asks LATEX to use German
conventions for dates, hyphenation, etc.

The second line tells LATEX to use the Latin Mod-
ern fonts. These fonts agree with Donald Knuth’s
Computer Modern fonts in the first 128 spots, but
include additional accents, umlauts, upside down
question marks, and so forth used in Western Eu-
rope.

The third line tells LATEX the connection be-
tween the input characters in the file and the glyphs
in the fonts (i.e., the physical representation of the
printed characters in the final document).

As explained above, the final line tells LATEX
which encoding was used for the source file.

Users interested in more details should consult
the documentation for babel, lmodern, and fontenc
using TEXShop’s Show Help for Package item in the
Help Menu. The documentation is interesting, going
into considerable historical detail about the evolution
of font design in TEX.

7 Encodings understood by TEXShop

Table 1 shows the corresponding entries for some
popular file/input encodings used with LATEX in
TEXShop.

The ‘Open/Save Dialogs’ column shows the des-
ignation for the encodings in TEXShop’s Open/Save
Dialogs; you may have to click on the Options button
to display the popup menu for encodings.

The ‘Directive’ column gives the designation
used in TEXShop’s encoding directive,

% !TEX encoding = xxxxx

where xxxxx is the designator you wish to use. If this
line is in place before you first Save your source file,
TEXShop will automatically save the file with the
designated encoding. TEXShop will also automati-
cally Open the file with that encoding when double
clicked. We suggest you create a Template which
contains the directive and use that to create new
documents.

The ‘inputenc’ column gives the optional ar-
gument for the LATEX inputenc package. As with
the Directive, we suggest creating a Template which
has the proper inputenc line for the corresponding
encoding in the directive.

Good luck!

⋄ Herbert Schulz and Richard Koch
tug.org/mactex

Herbert Schulz and Richard Koch

TUGboat, Volume 39 (2018), No. 3 177

The DuckBoat—News from TEX.SE:
Formatting posts

Herr Professor Paulinho van Duck

Abstract

Prof. van Duck carried on a survey regarding the
non-canonical reasons to upvote TEX.SE posts; in the
first part of this installment, he will show you the
most meaningful results of his research. In the fol-
lowing Quack Guide, you will find some tips & tricks
for quickly formatting TEX.SE posts and attaching
images to them.

1 Quack chat

Hi, TEX/LATEX friends!
Many things have happened since last time.

The most important one is undoubtedly that Paulo
Cereda finished his thesis, now he is a PhDuck! It
should have been a secret, but how could Paulo keep
that secret?

All the TEX.SE friends were very happy with it,
but soon we missed a reason to make fun of him. So
we started reminding him to publish the new version
of arara, but he also did that: arara 4.0 is now
available, with the coolest manual ever!

So, if you find a new topic to scoff at Paulo,
please let me know.

In July, the most highly-anticipated event of
the year, the TEX Users Group meeting, took place
at the gorgeous location of Rio de Janeiro. I am
very glad that the presentation of tikzducks was
declared the best talk, quack!

However, the occurrence that actually turned
the TEX.SE Community upside down was the new
site theme, gone live in August. Unfortunately, it
is rather awful and less convenient, compared with
the previous layout, and few people like it. The Pow-
ers (the people who manage all the Stack Overflow
site) did not take into account any suggestions made
previously by the TEX.SE Community, and it made
many people angry. The post which announced the
change got (at the time of writing) 69 downvotes—
a record—and only 12 upvotes. If you want to know
the whole story, just visit the TEX.SE Meta site.

Before going on, let me thank Claudio Beccari,
from guIt, the Italian TEX user group. He appre-
ciated my first article very much and asked me to
make an Italian version of it.

He also found an error in my first Quack Guide:
the file extension must be specified in the BibLATEX
macro \addbibresource. In my MWEB example on
page 305 in TUGboat 38:3, it should have been:

\addbibresource{jobname.bib}

(extension .bib included).
Finally, I would like to thank Ulrike Fischer and

her husband Gert, who allowed me to meet Bär, and
spend a nice day together with them.

2 Upvoting behavior

Some time ago I suggested to my friend Carla that
she post a question/poll on the TEX.SE Meta site
about the “wrong” reasons to upvote.

It was welcomed by the Community, many an-
swers arrived, and some results even surprised me,
quack!

I will comment on only a little of the feedback
here; you can find the complete list at tex.meta.

stackexchange.com/questions/7627/poll-wrong-

reasons-to-upvote.
Of course, all the listed reasons are not per se

always “wrong”, but they are if you upvote only

because of them.
According to the help pages of the site, voting

up is how the community indicates which questions
and answers are most useful and appropriate. In
particular, the best answers should receive more
votes so that good content rises to the top.

I would have expected that the first “wrong”
reason to upvote would be “the post contains a stun-
ning image or a beautiful typographical object” and
users vote for it only because they love the picture,
in the same way they put a “like” on a kitten photo
in a social network. Many TikZ posts, for example,
get votes due to this reason.

But, contrary to my expectations, it is only third
in rank; the gold medal goes to “the post is by one
of the top users, I upvoted on trust.”

Of course, if the answer is by a top user, it is
likely to be excellent. However, it is “wrong” to
upvote only because it is by a top user, without even
reading it, and without reading the other alternative
answers, which could be even more refined.

Also, sometimes top users can give a bit overly
complex answers to show their skills; there are cases
where the same result can be obtained with simpler
methods.

There are even (rare) situations when a top user
does not understand the question, so the answer is
gorgeous, but it does not solve the OP’s problem.

So, please remember to upvote the answer, not
the answerer, quack!

Going back to our rank, the second place goes
to “the answer is the first of the list, it solves my
problem, I have no time/will to read the others, even
if they could be better.”

The DuckBoat—News from TEX.SE: Formatting posts

178 TUGboat, Volume 39 (2018), No. 3

Bold Italics Link

Blockquote

Code

Image

Numbered
list

Bulleted
list

Heading

Horizontal
rule

Undo

Redo

Markdown
editing help

Figure 1: Formatting toolbar buttons

It is also likely that the first answer gets more
votes than others simply because every time an an-
swer is added the post goes on the Top Questions
list. Indeed, “the post is in the top charts” is “wrong”
reason no. 7.

I would add that timing matters on many oc-
casions, for example, an answer posted when it is
evening in Europe surely earns more reputation than
one posted when it is afternoon in Honolulu (sorry for
Hawaiian (LA)TEX friends, maybe it is a punishment
because they cook pineapple pizza).

Reason no. 4 is one which I find it difficult to call
“wrong”: “the post has some duck-related content.”
I know it could be unbelievable, but there are users
who hate ducks, there are also users who eat ducks,
I have to pay attention, quack!

Some time ago the duck mania reached a peak,
and every time you entered our chat you saw a TikZ
ducks picture; hence some users got bored of it.

Now the situation is quieter, so feel free to
use the new package duckuments1 (by Jonathan P.
Spratte, alias Skillmon, one of our best users) or
the new example-image-duck when you build your
MWEs.

Recently also marmots (after the nickname of
our speediest TikZ expert) have caught on, and they
have their own package tikzmarmots.2 We are also
waiting for tikzlings, the new TikZ collection of
animals and beings.

Anyway, remember that upvoting is important
because it is the way to show best answers to future
users and to thank people who posted them, quack!

3 Quack Guide No. 3
How to format a post in TEX.SE

This time my Quack Guide does not strictly concern
LATEX, but TEX.SE.

1 ctan.org/pkg/duckuments
2 ctan.org/pkg/tikzmarmots

I will try to explain how to format a post on
our site and attach an image to it. A very special
reader of mine (Peter Wilson) asked me to treat this
topic, and how can I not please my readers?

3.1 Formatting the text of the post

TEX.SE uses Markdown, a very simple markup lan-
guage. Table 1 shows the formatting basics.

The more common “commands” also have but-
tons in the formatting toolbar placed above the body
frame of your post, see Figure 1, and some shortcuts,
listed in Table 2.

To apply them, just select the text you want to
italicize/bold/etc. and press the specific button or
its keyboard shortcut. Please note that the button
and the shortcut for formatting code work both for
inline code and code blocks.

Unfortunately, TEX.SE does not allow you to
attach a .tex file. The quickest way to add your
MWE is to copy it from your editor, paste it in the
body frame of your post, select it and press Ctrl + K

or click the curly brackets button.
On the other hand, adding links is allowed. If

the link refers to another question from TEX.SE, you
can simply copy-paste it, and its clickable title will
automatically appear.

For the other links, to make them more read-
able than the simple site address, you can put a
description within square brackets and the url within
parentheses:

[<link description>](<url>)

The description will appear in red, as a clickable link.
The same result can be obtained with reference-

style links:

[<link description>][<urltag>]

putting the tag resolution after an empty line:

[<urltag>]: <url>

The tag can be a number or a word.

Herr Professor Paulinho van Duck

TUGboat, Volume 39 (2018), No. 3 179

Table 1: How to format the text of a post on TEX.SE

Markdown syntax Result

Use _one_, __two__ or ___three___ underscores

or asterisks to get *italics*, **bold** or

bold italics.

Use one, two or three underscores or asterisks to get
italics, bold, or bold italics.

For `inline code` use backticks. For inline code use backticks.

Indent four spaces (after an empty line) for:

 Code

 blocks.

Indent four spaces (after an empty line) for:

Code

blocks.

Add two spaces

at the end of a line to have a linebreak.

Leave an empty line for a new paragraph.

add two spaces
at the end of a line to have a linebreak.

Leave an empty line for a new paragraph.

For bulleted lists, leave an empty line and:

- use a minus sign

+ or plus sign

* or an asterisk.

For bulleted lists, leave an empty line and:

• use a minus sign

• or plus sign

• or an asterisk.

For a numbered list, leave an empty line and

type:

 1. a space

 2. a number

 3. and a dot.

For a numbered list, leave an empty line and type:

1. a space

2. a number

3. and a dot.

Add a > to the beginning of any line

> to create

> a blockquote.

Add a > to the beginning of any line

to create a blockquote

Underline text to have

First Header

============

Second Header

or use #

First Header

Second Header

Third Header

Underline text to have

First Header

Second Header
or use #

First Header

Second Header
Third Header

Leave an empty line and type

to get a horizontal rule.

Leave an empty line and type

to get a horizontal rule.

The DuckBoat—News from TEX.SE: Formatting posts

180 TUGboat, Volume 39 (2018), No. 3

Table 2: Formatting shortcuts on TEX.SE

Description Shortcuts

Italics Ctrl + I

Bold Ctrl + B

Code Ctrl + K

Bulleted list Ctrl + U

Numbered list Ctrl + O

Heading Ctrl + H

Horizontal rule Ctrl + R

Link Ctrl + L

Image Ctrl + G

The following three examples all give as a result
the clickable word CTAN:

[CTAN](https://www.ctan.org/)

[CTAN][1]

[CTAN][ctan]

[1]: https://www.ctan.org/

[CTAN]: https://www.ctan.org/

For images, it is the same but with a ! at the
beginning:

![<image description>](<image url>)

![<image description>][<imgtag>]

[<imgtag>]: <image url>

Of course, usually you do not have a url for your
image, but no need to worry about that, the Stack
Exchange network has an image hosting platform via
imgur.com.

To upload your image, just press the specific
toolbar button or Ctrl + G , and drag and drop it or
click to select it from your computer path. Remember
the maximum loadable size of the image is 2 MiB.

The problem is TEX.SE does not allow you to
attach a .pdf file; you have to somehow transform
your output into .png, .jpeg or another upload-
able format. We will see how to do it in the next
subsection.

Returning to the formatting methods, a limited
subset of HTML syntax can also be used, Table 3
shows some examples. Note that superscript or sub-
script text can be used for a whole sentence if you
want to write it in a smaller font size.

A useful trick is to put an empty comment: <!>
within two empty lines to separate a list and a code
block, otherwise, Markdown does not understand
where the list ends and the code begins and makes a
mess.

Table 3: Examples of HTML syntax allowed on TEX.SE

HTML syntax Result

<kbd>Ctrl</kbd> Ctrl

_{subscript} subscript

^{superscript} superscript

<s>cancelled</s> cancelled

The syntax of Table 1 does not work in titles of
questions; they cannot be formatted, and must be
written in plain text only.

In comments, you can use only bold, italics,
inline code and links. The rest is not supported, but
you can contact the users who commented before
you by writing @username. This way of pinging, on
the other hand, does not work in posts.

For more info, please look at the TEX.SE help
page: tex.stackexchange.com/help/formatting.

3.2 Creating the image to attach

Now let us see how to create an uploadable image
format starting from our .pdf file.

If only a little piece of your document is needed,
such as a mathematical formula, a TikZ picture, or
a small table, the quickest way is just to make a
screenshot and crop the image with some graphics
editor, or copy only a subrectangle of the screen and
save it as an image. The way to do these depends
on your operating system.

You can also transform your .pdf into a .png

file, and crop it, via imgur.com, even without an
account. From the home page of that site click
on “New post”, upload your .pdf, choose “Edit
image” from the drop-down menu which appears if
you pass the cursor over your uploaded image, crop
it, save it and then download your .png by choosing
“Download image” from the same drop-down menu.

For cropping, there is also the tool pdfcrop,
included in your TEX distribution. This calculates
the bounding box of each page of your document and
generates an output PDF file with margins removed.
It could be useful to add \pagestyle{empty} to
your MWE to switch off page numbering, if page
numbers are not relevant for the post topic.

Another very easy tool included in your distri-
bution, pdftoppm, converts PDF files to color image
files in Portable Pixmap (PPM) format, grayscale
image files in Portable Graymap (PGM) format, or
monochrome image files in Portable Bitmap (PBM)
format.

Herr Professor Paulinho van Duck

TUGboat, Volume 39 (2018), No. 3 181

It creates an image file for each page of your
PDF file and also has the options -png and -jpeg to
respectively generate a PNG or a JPEG instead of a
PPM file.

The syntax is:

pdftoppm [options] PDF-file PPM-root

For example, suppose you have to convert a
document which contains only a little table and has
no page numbers, named yourdoc.pdf. If you run:

pdfcrop yourdoc.pdf

pdftoppm -png yourdoc-crop.pdf yourdoc

you will get a document with your table only, no
white space around it, in PDF (yourdoc-crop.pdf)
and PNG (yourdoc.png) formats.

If your documentclass is standalone3 or your
output is not affected by the class of the document,
you can use the convert option of standalone to
transform it into an image format (.png is recom-
mended, but others are also supported); see Section
5.6 of its documentation.

The standalone conversion is done by an ex-
ternal image converter program, which you need to
install, and when you compile your document you
have to use the -shell-escape option. By default,
ImageMagick’s conversion program is used.

The tools of ImageMagick can also be used di-
rectly and can be useful if you need to convert more
than one piece of a document, for example running:

convert -density 300 yourfile.pdf yourfile.png

you will get a .png file for each page of your .pdf.
Of course, the convert command has many options
to improve the quality of your image, for more info
see www.imagemagick.org/script/convert.php.

If your document has many pages and it is useful
to attach all of them to your post, the pdfpages

package may help you. It can arrange more than
one page of another PDF document on one sheet of
paper.

Suppose you have a document of four pages,
let us call it duckument.pdf. You can create a new
one-page document in this way:

\documentclass{article}

\usepackage{pdfpages}

\begin{document}

\includepdf[pages=-,nup=2x2]{duckument.pdf}

\end{document}

and then include this one page document (see Fig-
ure 2) to your post with one of the methods shown
above.

3 https://ctan.org/pkg/standalone

Chapter 1

A document with four pages

1.1 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.2 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.3 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as

1

2 CHAPTER 1. A DOCUMENT WITH FOUR PAGES

it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.4 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.5 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.6 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.7 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.

1.8. DUCK SECTION 3

Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.8 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.9 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.10 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.11 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that

4 CHAPTER 1. A DOCUMENT WITH FOUR PAGES

the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

1.12 Duck section

There once was a very smart but sadly blind duck. When it was still a small
duckling it was renowned for its good vision. But sadly as the duck grew older
it caught a sickness which caused its eyesight to worsen. It became so bad, that
the duck couldn’t read the notes it once took containing much of inline math.
Only displayed equations remained legible. That annoyed the smart duck, as
it wasn’t able to do its research any longer. It called for its underduckling and
said: “Go, find me the best eye ducktor there is. He shall heal me from my
disease!”

Figure 2: Example of pdfpages output.

For more info, see the posts “How does one add
a LaTeX output to a question/answer?”4 on Meta
and “Compile a LaTeX document into a PNG image
that’s as short as possible”5 on the main site.

4 Conclusions

I hope TEX.SE formatting rules don’t worry you any
more. However, if you are in trouble, remember:

♪
♪

♪ All we need is duck! ♪
♪

♪

⋄ Herr Professor Paulinho van Duck
Quack University Campus
Sempione Park Pond
Milano, Italy
paulinho dot vanduck (at) gmail

dot com

4 tex.meta.stackexchange.com/questions/2781/how-

does-one-add-a-latex-output-to-a-question-answer.
5 tex.stackexchange.com/questions/11866/compile-a-

latex-document-into-a-png-image-thats-as-short-as-

possible.

The DuckBoat—News from TEX.SE: Formatting posts

182 TUGboat, Volume 39 (2018), No. 3

Managing the paper trail of student
projects: datatool and more

B. Tomas Johansson

Abstract

It is described how the paper trail for final year
undergraduate projects can be handled using the
package datatool and a master file of student data.
In particular, it is shown how to generate a list of
students and supervisors, a randomised mark sheet
and timetable for project presentations, and how to
sum the marks. To achieve this, the ifthen and lcg

packages are used as well.

1 Introduction

At our institution, being responsible (or coordina-
tor) for a final year undergraduate report writing
module typically involves keeping track of around
a hundred students, their project titles, supervisors
and examiners. Moreover, various documents have
to be produced, for example, a list of students with
accompanying project titles and supervisors, a mark
sheet as well as a timetable for the oral presentations,
and a document having the final marks, to mention
only a few. Naively setting up those documents in
LATEX by copying in student data, one finds that as
the term goes by, students drop out or are added,
supervisors turn up informing you that a project
title has changed, or it is suddenly agreed that the
timetable for the oral presentations should not be
in name order but randomised. Starting feverishly
to make changes to each document, most of us soon
lose track of which data one has changed for what
student and in what document.

A remedy is given by the package datatool [4].
Then only a master file of student data is needed,
and documents are generated by reading from that
file. Focus here is on basic constructions relevant
for managing undergraduate projects; examples of
handling marks of students and printing them out
can be found in [4].

A csv-file with student data first needs to be
constructed. It is a text file with comma-separated
items on each line (other separators are also allowed).
We’ll give examples using this sample students.csv:
FirstName,Surname,Title,Supervisor,Examiner

Joe,Allen,Prime Numbers,Gert Li,Abbie Wan

Deeksha,Bhai,Inverse Problems,Alice Ince,Ma Ren

Gina,Gil,Algebraic Notes,Gert Li,Bob Al Turner

The first row consists of key words to be used when
constructing documents, and the remaining rows are
filled with student names and their data. For simplic-
ity, only the students’ names are split into first name
and surname. One can easily add more keywords to

the file such as ReportMark and VivaMark, and fill
in the corresponding marks.

To generate a list of students, their supervisors
and the titles of the projects, one can proceed as
follows. In the preamble of a .tex file put

\usepackage{datatool}

\DTLloaddb{students}{students.csv}

\newcounter{nrstudents}

The command starting with \DTLloaddb has the
effect of storing the database from the csv-file in a
variable named students. The counter nrstudents
will be used to number the students.

The lines below generate a table with student
names and their corresponding supervisors, also num-
bering each student:

\begin{tabular}{rll}

& Student & Supervisor\\

\DTLforeach{students}

{\firstname=FirstName,\surname=Surname,

\supervisor=Supervisor}

{\stepcounter{nrstudents} \thenrstudents.

& \firstname \space \surname

& \supervisor\\}

\end{tabular}

Here, the command \DTLforeach goes through each
line in students and stores the surname, first name
and the supervisor’s name of that line in the variables
firstname, surname and supervisor, respectively.
The keywords to pick out the data are given in the
first line of the file students.csv. The number
1, 2, . . ., is in the first column thanks to the counter
studentnr. A basic table is the result, as below; the
design of such tables is a separate issue not dealt
with here.

Note that if, for example, the name of the ex-
aminer should also be present in the table, then
simply adjust to include \examiner=Examiner in
the \DTLforeach command, and put \examiner in
a separate column.

Student Supervisor
1. Joe Allen Gert Li
2. Deeksha Bhai Alice Ince
3. Gina Gil Gert Li

To get a corresponding list of titles, use

\setcounter{nrstudents}{0}

\noindent\\

\DTLforeach{students}

{\title=Title}

{\stepcounter{nrstudents}

\thenrstudents. \title \\}

where again \DTLforeach is the key part. The result:
1. Prime Numbers
2. Inverse Problems
3. Algebraic Notes

If changes are made to the data in students.csv,
it is only necessary to run the file having the above

B. Tomas Johansson

TUGboat, Volume 39 (2018), No. 3 183

commands to obtain an updated list of students,
supervisors and project titles. This is a clear advan-
tage compared to copying in the data in the file itself,
especially as the number of files grow.

A typical question is how many projects a super-
visor has, to check that there is a fair work load. To
count and print out the number of projects assigned
to a supervisor, do

\def\sumpr{0}

\DTLforeach[\DTLiseq{\supervisor}{Gert Li}]

{students}{\supervisor=Supervisor}

{\DTLadd{\sumpr}{\sumpr}{1}}

\sumpr

Here, a sum variable \sumpr is defined and declared
to be zero. The data in students is sifted through
\DTLforeach, where \supervisor is defined equal to
Gert Li via \DTLiseq. If the conditional statement
\supervisor=Supervisor is true, add one to the
variable \sumpr (done via the command \DTLadd).
The number of projects for the given supervisor is
then printed with \sumpr.

Rather than counting the number of projects
for each supervisor, it can be helpful to sort the data
with respect to the name of the supervisors (it would
have been more realistic to split supervisor names
into first name and surname but to keep it simple a
list is obtained here sorted with respect to the first
name of the supervisors). Sorting is done with

\DTLsort{Supervisor}{students}

The data in students is now sorted and using the
commands above, a table can be generated with the
rows in alphabetical order of the supervisors; it is
left for the reader to try.

For the oral presentations, staff need a mark
sheet to score each student. This mark sheet should
contain the name of the student, project title and
time of the presentation, and have a table for scoring:
the level of the content, mastery of the subject, qual-
ity of the slides, and presentation skills. Moreover, an
overall mark should be given. A complication is that
the order of the presentations shall be randomised.

The package lcg [2] generates random numbers.
Put in the preamble of a .tex file for the mark sheet,

\usepackage{lcg}

\usepackage{ifthen}

\usepackage{datatool}

\DTLloaddb{students}{students.csv}

\newcounter{hour}\setcounter{hour}{1}

\newcounter{minutes}

The counters keep track of the time of a presentation.
Assume that each presentation is 10 minutes, with a
10 minute break after 50 minutes. The hour is set
to one to have an afternoon session starting at 1 pm.

To generate the mark sheet, first a column
Random of random numbers is appended (on the

fly) to the database. The command \rand from the
package lcg [2] is invoked to generate random num-
bers. The data is then sorted with respect to this
new column,

\DTLforeach{students}{}

{\rand \DTLappendtorow{Random}{\arabic{rand}}}

\DTLsort{Random}{students}

It does not matter much to us if some random num-
bers are equal, the mixing in the database is still
sufficiently far from name order. Then continue with

\DTLforeach{students}

{\firstname=FirstName,\surname=Surname,\title=Title}

{\noindent\\

Student name: \firstname \space \surname \\

Project Title: \title\\

Time: \thehour.\theminutes 0 pm \\

\addtocounter{minutes}{1}

If a presentation is to happen for example at 1.20 pm
then \thehour=1 and \theminutes=2. Since the pre-
sentations are 10 minutes each, the counter \minutes
has to be increased by 1 (adding 0 to it manually).

The next part of the mark sheet is a table for
scoring. This does not contain any real complication
and is only included here for completeness

\begin{center}

\begin{tabular}{|l|c|c|c|c|}

\hline

& Poor & Fair & Good & Excellent \\ \hline

Level of content & & & & \\ \hline

Mastery of subject & & & & \\ \hline

Slides & & & & \\ \hline

Presentation skills & & & & \\ \hline

\end{tabular}

\end{center}

Please give overall mark between 0 (lowest) to

100 (highest):

\begin{center}\thicklines

\framebox[.98\textwidth][c]{

\parbox{.95\textwidth}

{Additional Comments:\noindent\\[0.3cm]}}

\end{center}

A conditional statement is written at the end
of the file using the ifthen package [1], checking
whether five talks in a row have been given (that is,
if \theminutes=5). If five talks have been presented,
the counter for the hour is increased by one and the
counter for the minutes is reset to zero. Otherwise
nothing additional is done. This is coded as

\ifthenelse{\equal{\theminutes}{5}}

{\addtocounter{hour}{1}\setcounter{minutes}{0}}

{}

}% end group from \noindent above

and this ends the construction of an elementary mark
sheet for scoring oral presentations. A part of the
file is shown at the top of the next page.

A timetable for the presentations also needs to
be generated. Put the same commands in the pream-
ble as for the mark sheet, and keep the randomisation.

Managing the paper trail of student projects: datatool and more

184 TUGboat, Volume 39 (2018), No. 3

Student name: Gina Gil
Project Title: Algebraic Notes
Time: 1.40 pm

Poor Fair Good Excellent
Level of content
Mastery of subject
Slides
Presentation skills

Please give overall mark between 0 (lowest) to 100 (highest):

Additional Comments:

Figure 1: Simple mark sheet example output.

Students are traversed writing out the data in a table
and increasing the time of the presentation:

\begin{tabular}{lr}

\DTLforeach{students}

{\firstname=FirstName,\surname=Surname}

{\firstname \space \surname

& \thehour.\theminutes 0 pm --

\addtocounter{minutes}{1}

\thehour.\theminutes 0 pm\\

Following this, if five consecutive talks have been
given, the text “Break” and the time of the break
are stated, otherwise a new line is started,

\ifthenelse{\equal{\theminutes}{5}}

{\\ \setcounter{minutes}{0}

Break \thehour.50 pm --

\addtocounter{hour}{1} \thehour.00 pm

& \\ \\}

{\\[-0.4cm]}

}% ends \firstname... group above

\end{tabular}

This finishes a timetable for oral presentations, and
part of such a file is this:

Gina Gil 1.40 pm – 1.50 pm

Break 1.50 pm – 2.00 pm

Joe Allen 2.00 pm – 2.10 pm

Deeksha Bhai 2.10 pm – 2.20 pm

The automatic process for the randomised mark
sheet and timetable takes away the painstaking job
of manually assigning students and their timeslots.
Having to make possible changes in the files makes
the manual approach even less amusing. Instead only
the csv-file needs to be updated (data for that file can
often be generated from the student administration).

Let us mention one further construction. Ex-
pand the above csv-file with two columns named
ReportMark and VivaMark, and fill in the corre-
sponding marks. That is, a mark for the written
report and a separate mark for the oral presenta-
tion. The total mark is the weighted sum of these

two marks, with the written report counting for, say,
90% and the oral presentation for 10%. A file report-
ing the student names, marks and the total mark is
to be constructed. In the preamble, put
\usepackage{datatool}

\DTLloaddb{students}{students.csv}

The remaining lines are
\begin{tabular}{rccc}

Student & Report Mark & Viva Mark & Final Mark\\

\DTLforeach{students}

{\firstname=FirstName,\surname=Surname,

\reportmark=ReportMark,\vivamark=VivaMark}

{ \firstname \space \surname

& \reportmark & \vivamark

& \FPeval{\result}

{round(0.9*\reportmark+0.1*\vivamark,0)}

\result \\}

\end{tabular}

Here \FPeval (a wrapper in datatool of a command
from the package fp [3]) stores in \result the value,
first rounded to zero decimals, of the weighted sum
0.9*\reportmark+0.1*\vivamark (more advanced
calculations of marks and how to write them directly
into the csv-file is given in [4, Sections 6.6–9]). An
example of the outcome is

Student Report Mark Viva Mark Final Mark
Joe Allen 68 82 69

Deeksha Bhai 60 65 61
Gina Gil 28 38 29

Other documents can be generated similarly
with datatool, for example, a certificate for each
student with their individual name and final mark,
and an attendance sheet with the name of a student
and supervisor filled in (to be used to record meetings
with the supervisor). Personalized e-mail messages
can also be produced.

Limitations of datatool, such as being slow on
sorting, are stated in the documentation [4]. For our
moderately sized documents, no problems have been
experienced.

To conclude, involving the package datatool,
managing the paper trail of student projects becomes
manageable.

References

[1] David Carlisle, The ifthen package,
ctan.org/pkg/ifthen

[2] Erich Janka, The lcg package, ctan.org/pkg/lcg

[3] Michael Mehlich, The fp package, ctan.org/pkg/fp

[4] Nicola L. C. Talbot, The datatool package,
ctan.org/pkg/datatool

⋄ B. Tomas Johansson
School of Mathematics, Aston University
Birmingham, B4 7ET, UK
b.t.johansson (at) fastem dot com

ORCID 0000-0001-9066-7922

B. Tomas Johansson

TUGboat, Volume 39 (2018), No. 3 185

Interview with Kris Holmes

David Walden

Kris Holmes is one-half of the Bigelow & Holmes de-
sign studio. She has worked in the areas of typeface
design, calligraphy, lettering, signage and graphic
design, screenwriting, filmmaking, and writing about
the preceding. The Kris Holmes Dossier, a keepsake
for the April 2012 presentation of the Frederic W.
Goudy Award to Kris, reviews her career to that
point.

The interview is a chronological oral history
interleaved with discussions of examples of Kris
Holmes’ work. The interview took place on June 25,
2018, at the Cary Graphic Arts Collection at the
Rochester Institute of Technology (RIT).1

1 Youth, calligraphy, and lettering

David Walden, interviewer: A few years ago, you
told me you were raised on a fruit ranch in the San
Joaquin Valley of California. Please tell me a little
bit about your family, the ranch, and your education
through high school.

Kris Holmes, interviewee: The farm that my par-
ents lived on when I was born was a 90-acre farm on
Zediker Avenue in a little town called Parlier, Califor-
nia. The nearest hospital was in Reedley, California,
so that’s where I was born. I have five brothers and
sisters. My parents came to California from Okla-
homa as part of the dust bowl migration, and they
worked their way to eventually being farm owners
in the San Joaquin Valley. So my early school years
were spent at a little school called Riverview Elemen-
tary School, and then Reedley High School. It was a
very nurturing environment. I had very sincere teach-
ers, who encouraged me to work toward a college
scholarship. My parents were not that enthusiastic
about education. I think they assumed I would do
what my sisters did, which was marry a local guy
and stay in the area. But I was just born a curious
person and I worked really hard in high school, and
I ended up getting a very nice scholarship to Reed

College in Portland, Oregon. So that would’ve been
in the spring of 1968 when I got the notice from
Reed, and in the fall of 1968 my brother drove me
up to Portland with my bicycle in the back of the car.
And that was the beginning of my adult life.

D: During your youth, did you do sports or have
hobbies?

K: I didn’t do sports too much. I had many hobbies.
I loved to draw, I loved to do art, I loved sewing — I
sewed almost everything that I wore, as did many
of my girlfriends. Nobody in that area had much
money so all of us were taught to sew and we all
enjoyed sewing. In fact, we had little competitions
to see who could sew a dress for the least amount
of money. We would recycle our mothers’ dresses
and things. We kind of made a fun life for ourselves
without money. We had televisions but other than
that, we didn’t have much entertainment. Everybody
worked on their family farm, and then we just did
kid stuff the rest of the time. It was a nice way to
grow up.

D: When we talked by e-mail a few years ago, you
mentioned your teacher, Roland Jenkins, who intro-
duced you to the American transcendentalists, and
you said that had an influence on you. Can you tell
me a bit about that influence and how it went on?

K: Mr. Jenkins was one of my — I get a little emo-
tional thinking about him — he was a teacher at Reed-
ley High School and every teacher there got one pe-
riod a day which was their free period, and he was a
smoker so he liked to go to the faculty lounge and
smoke during his free period. One year he had a
group of students who were trying for college schol-
arships, and so he decided that he would use his
free period to teach our first conference-style class
on American Literature. And we read everything;
we read Stephen Crane, we read Walden, we read
Thomas Wolfe, we read Moby Dick; we just spent
the whole semester reading all of these magnificent
American authors. And because it was a conference-
style class, we talked about what we had read and we
each presented papers that focused on something
we loved. Mr. Jenkins introduced all of us to the idea
of independent thinking. To read Walden at age 16
is a perfect time to read it because you’re kind of
thinking that way, anyhow, and this idea of a guy
that built his own house in the woods and lived delib-
erately is such a powerful idea, especially to a young
person. Mr. Jenkins is the best example of what I
mean about teachers that were so encouraging and
that really changed everybody’s life.

Interview with Kris Holmes

186 TUGboat, Volume 39 (2018), No. 3

D: How did you find Reed College? You had the
whole California college and university system to
choose from, and Fresno State couldn’t have been
very far away.

K: Nope, I could’ve driven over there. Well, I had
Plan A, Plan B, Plan C, and Plan D when I applied
to college. Plan A was Reed College because two of
the girls that were my best friends at home had an
uncle who taught there, Professor Wiest. He taught
psychology at Reed and they went to visit Reed and
they came back with a glowing description of a place
where everybody’s smart and you just sit around ta-
bles and talk about things, and people wear serapes
to class and you go barefoot, and they just thought
it was heaven. So I did some more research on it and
I felt that it was a place that would be very different
than the San Joaquin Valley, which is certainly true,
but a place that would be maybe more like Mr. Jenk-
ins’ class. I think he affected my life in that way, too.
My Plan B was UC Santa Cruz, which at that time
was called the “Poet’s Campus.” My Plan C was UC
Berkeley. My Plan D was Fresno State. I was going to
go to college, one way or another. But luckily I got a
nice scholarship to Reed, and so I was on my way to
my first choice.

D: You have said you went there in 1968.

K: I went there in the fall of 1968, and I went there
for two and a half years; and then I left. It was going
to be a temporary leave of absence, but it turned out
to be permanent. I left Reed, I think, for kind of the
same reason that Steve Jobs said that he left Reed.
At that time, you got a scholarship when you went
in but the tuition kept getting higher and higher. At
some point, if you came from a working class family
or a farm family, it was very, very hard for them
to keep up with tuition hikes, even with loans and
jobs and everything. It was just so expensive that I
started thinking that I wanted to leave and just start
working.

D: You were studying liberal arts at Reed?

K: Yes. I was majoring in literature when I went
there. However, in my second semester, I took an
energizing and intelligent Modern Dance class from
Judy Massee, the dance professor, and quickly be-
came devoted to studying modern dance. Then I met
Lloyd Reynolds, and that changed everything for me.

D: It was a calligraphy course, presumably?

K: That’s right. I had always liked to draw, and I
especially had always liked drawing lettering. But
when I got to Reed, Lloyd Reynolds was this lumi-
nous presence at Reed College, and everybody took
his class. If you were a chemistry major, you took

his class; if you were pre-med you took his class;
if you were an art major you took his class; and in-
terestingly enough, many of the people that I know
who took his class way back in 1968, when I talk to
them today, they still sit down and practice calligra-
phy sometimes. He really had this lifelong influence
on so many of us. When I was a freshman, I was
only there a few weeks and somebody said, hey, you
know you can’t get into Lloyd Reynolds’ class but he
teaches a little private workshop on Tuesday after-
noons. Reynolds would stay a couple of hours after
class to teach people that couldn’t get into the class.
I ran right over there, and somebody loaned me a
pen, and then Lloyd loaned me a better pen, and he
just sat down and put it in my hand and showed me
how to do calligraphy. So that would’ve been the fall
of 1968, so 50 years ago.

D: And his motivation? What do you think drove
him to help so many people?

K: He wanted to change the world with calligraphy.
He was very discouraged by the fact that you had to
go to an art museum to see art, and that it was all
kind of run by somebody else. He thought art should
be in the hands of the people. He was a fan of the
philosopher Ananada Coomaraswamy and William
Morris, and so he wanted to give us art that we could
do with our own hands. To make a beautiful laundry
list, he used to say, is as important as anything you
see in a museum. And I think he succeeded in that;
he certainly succeeded in presenting the whole world
to us through the history of writing and the history
of calligraphy.

D: I have looked up on the Web many things you’ve
said, and you say somewhere that what you learned
from Lloyd Reynolds, you use in everything you de-
sign. Please say a few more words about that.

K: When Chuck [Charles Bigelow2] and I design a
typeface, we start out with just a blank place there
on the screen or on the paper. In our case, we like to
start with paper. So where do you start? Since both
Chuck and I studied with Lloyd Reynolds, we have
this common language, and we start with the letter
forms that he taught us. We get out calligraphy tools
and we sit there and we draw, and we talk to each
other; for instance, “Okay, this is a correct lower
case ‘e’ for the Renaissance, how does it need to be
different for modern technology?” For us, what we
learned from Reynolds is the common ground that
we start from. And you know, I don’t think we’ve
ever argued about a design decision. We make a
decision, based on our common ground and if we
disagree we say okay, let’s try it both ways. It’s very

David Walden

TUGboat, Volume 39 (2018), No. 3 187

smooth sailing for designing for us, and Reynolds
really is in everything.

D: You have said that Reynolds followed the first
canon of Chinese brush painting; “heavenly breath’s
rhythm vitalizes movement.” What does that mean?

K: I wish I could say it in Chinese. Well, the other
thing that Reynolds used to say is a quote from an
old jazz tune, “it don’t mean a thing if it ain’t got
that swing.” And that’s a pretty good translation of
“heavenly breath’s rhythm vitalizes movement.” And
what it means is that these letters aren’t still. You
look at any one of these letters that we see around
us, and what you’re really looking at is the path of
the moving hand of the person that did it. Even
in modern type, although we don’t do it by writing
in a stroke, those characters are outlines based on
stroked letters and it gives them a certain vitality.
It’s like when somebody sees your handwriting they
say, “oh, that’s Dave’s handwriting; oh, that’s Kris’
handwriting.” How do they know that? Because it’s
been vitalized by some energy in yourself. So to me,
that’s what that phrase means.3

D: I’ve also read that you studied calligraphy and
brush writing with Robert Palladino at Reed.

K: I did. What happened is that the summer af-
ter my freshman year when I really had just been
taking that little workshop with Reynolds, Reynolds
decided to retire and so he needed to choose some-
body to take over his classes and he chose Robert
Palladino.4 Robert Palladino had been a Trappist
monk and he had gone, on Reynolds’ recommenda-
tion, to Iowa to study with Father Edward Catich
from whom Palladino learned the art of brush writ-
ten Roman capitals.5 Catich wrote a very inspiring
book called Origin of the Serif, and he was the per-
son who carefully examined the actual inscription
and figured out that the characters from the Trajan
column were not drawn as outlines on the side of
the column, they were actually first written with a
brush like this one, which is a sign painter’s brush.6

I brought my brush so you can see that it has a
broad edge like a calligraphy pen, but it’s a brush.
It’s called a Bright’s brush.

Robert Palladino had studied with Catich; and
also because of his studies in the priesthood, he
could read Latin. So Reynolds chose him to take
over his teaching at Reed College, and I took two
years of classes with him. We stayed in touch and in
the 80s Chuck arranged for Palladino to give a work-
shop at the Imagen Corporation in Silicon Valley.

Steve Matteson and Tom Rickner, now of Monotype,
remember that Palladino workshop with happiness.

D: You said that you left Reed because you needed
to work. What work did you find?

K: Some pretty awful jobs, really. [Laughs.] And
actually, briefly, I had a job at Hallmark Cards out in
Kansas City, doing lettering for them.

D: Remotely?

K: No, I lived there for two months, but didn’t like
it very much so I moved back to Portland, scraped by
doing calligraphy jobs, and I went back to Portland
State University to try and get a teaching certificate.
This turned out to be a good thing, as this was how
I met up with Chuck again.

I had first met Chuck when I was a sophomore
at Reed, in a mime class taught by an Italian mime
named Carlo Mazzone[-Clementi]. I was taking the
class, and Chuck had already graduated but he came
down to Reed to take it too. So that was where I
met him, and for the first five years that we knew
each other, we were just part of a great big group of
friends at Reed or in Portland who all had common
interests in theater, dance, art, . . . So, we had known
each other about five years, and there I was in Port-
land again trying to make a living, and I went down
to a monthly magazine called the Oregon Times. And
Chuck was the art director there and I said, “Well,
do you need any help?” It turned out that he needed
help, so we started working together once a month
putting this magazine together and one thing led
to another, and pretty soon we were an item, which
delighted all of our friends. Everybody said, “Oh,
that’s great.” It was because I had to scrape together
a living that I met Chuck again, so something good
came out of it.

D: But then, if I have the chronology right, you left
Portland and went off to New York City.

K: That’s correct.

D: And Chuck was still in Portland?

K: Yes. Because of the inspiring teaching of Judy
Massee, I had this idea in my head that I really
wanted to be a dancer and I thought if I didn’t go
and take a shot at it I would always regret that,
so I moved to Manhattan for about nine months, al-
though I always I felt like I had left something behind
in Portland; that was Chuck. I immediately saw that
I could never be a professional dancer; you had to be
much better technically than I was. But I did some
good things in New York. I got a job at Harcourt,
Brace, Jovanovich as a paste-up girl where I learned
about publishing, and then I took Ed Benguiat’s let-
tering class at night. Ed Benguiat was the teacher

Interview with Kris Holmes

188 TUGboat, Volume 39 (2018), No. 3

who kind of took me from stroke-based calligraphic
letters to drawn letters.

D: Can you say a word about the distinction be-
tween calligraphy and lettering?

K: Yes, I can. People say that calligraphy literally
means “beautiful writing,” but to me it also means
efficient writing. When you write something calli-
graphically, every major part of a letter is a single
stroke. For instance, if I were calligraphing an “R”,
I would do the left vertical stroke, then the serif on
the bottom left of that stroke, then the bowl, then
short horizontal stroke, then the diagonal leg and,
bam, this complex letter is done in just five strokes.

1
3

4
5

2

See the animation by Holmes at
tug.org/interviews/holmes-BrushCapR.m4v

But if I was going to hand letter an “R”, I would
take a pointed instrument, not an instrument with
a broad edge, and I would draw the outline in many
short careful stokes. It is a much slower process.
This is how I draw our typefaces, because they’re not
calligraphy, they’re outlines. As you can see — I’m
mimicking it on the table — it takes a long time to
do that.

Figure 1. Of this image, Holmes says, “In the
background is that same brush written R. The outline
is of a Lucida Bright capital R. Obviously it is different,
but the differences are only the technical alterations
that we make as type designers. The basic letterform
remains.”

Calligraphy was really developed for the repro-
duction of books before the invention of printing,
and it’s a very, very efficient way to write. Also, of
course, completely flexible. With type, you only have
the choice of the characters that are in your font
that you’re using. But calligraphically, if the spirit
moves you, or the layout demands it, you can put a
swash on a letter.

D: A digression, please. In high school, I spent
three years doing mechanical drawing and therefore,

architectural or mechanical drawing lettering. What
is that? I thought of it as lettering.

K: Did you use a template?

D: No, we had to learn to letter and we used that
funny architectural style with the long tails on the
“R”s, “H”s would have a little horizontal squiggle, . . .

K: Did you do it freehand? You just went one, two
three?

D: Freehand. One down, two around, and three the
long tail.

K: I would say that’s calligraphy. It’s not based
on a historical style but it’s based on modern archi-
tectural lettering, and you’re doing it by hand, and
you’re doing it very fast and efficiently; I would say
it’s more calligraphic than lettered.

D: That’s an interesting distinction, thank you.

K: I don’t know if everybody agrees with me on that.
[Laughs.]

D: It’s your interview.

K: Okay!

2 Bigelow & Holmes

D: As I understand your chronology from Chuck,
after his mentor Jack Stauffacher [see “Remembering
Jack Stauffacher” on bigelowandholmes.typepad.

com7] invited him to San Francisco to attend slide
lectures by three Swiss type designer-teachers, it
came to him that he could be in the type design
business, too, but he would need a partner.

K: Yup.

D: And he called you in New York. Was this a sur-
prise that you were going to become a partner? I
mean, you knew Chuck already. Had you anticipated
this in any way?

K: Well, I knew Chuck already, and I knew that I
really would like to figure out some way to be back
in Portland with him, but I didn’t want to go back
to scraping together a living as I had been doing.
As I was saying, the whole dance thing in New York
wasn’t working out, and I took the class from Ed
Benguiat, and Chuck had this idea that I would move
back to Portland and we would start our studio,
Bigelow & Holmes. And that’s exactly what we did. I
came back to Portland, I got a job teaching part time,
and we opened a little studio on Southeast Salmon
Street in Portland.

David Walden

TUGboat, Volume 39 (2018), No. 3 189

D: Teaching part time where?

K: Portland State University, and the Museum Art
School in Portland.

K: I think Chuck probably told you the story of how
we got our first commission and he got a grant from
the National Endowment to add the phonetic char-
acters for Native American languages to a typeface
called Syntax, designed by Hans Ed. Meier. We did
that job; and then, Andrew Hoyem was looking for
somebody to design special initial letters for his big
limited-edition printing of Moby Dick. The Cary Col-
lection has a copy of that Moby Dick here, so you
can look at that if you want.

D: Let’s step back a second to the addition to Syntax.
Is this it (Figure 2) here in this little 4-page keepsake
brochure you gave me?8

Figure 2. Calligraphy relating to Victoria Howard, from
a keepsake given out by Bigelow & Holmes at a 1983
ATypI seminar.

K: This is not the Syntax typeface; it is my calli-
graphic research for that project. We were going to
design the special phonetic characters to go along
with Syntax; and Hans Meier, the designer of Syn-
tax (Chuck wrote to him and he wrote back), was
very enthusiastic and willing to help. He was really
one of the people that opened the door for us. So
I researched these characters by developing a calli-
graphic hand that included all the special characters,
and this was it.

D: And both lines in each pair of lines are yours?

K: The whole thing is all hand done. The lines writ-
ten in black are done in a special calligraphic hand
that I developed for this project. This was done first,
before we did the font with the special phonetic
characters. Hans Meier’s Syntax design is a very
pure sans-serif, different from my calligraphy, but
handwriting the characters was a way to understand
them better. And that’s a way that I like to work
whenever I come across a project that I need to do
something new with. When we were going to design
the Greek characters to go with Lucida, the first thing
I did was get out my pen and look at Greek manu-
scripts and figure out how to write that with a pen;
because once I can write it with a pen, or marker, or
a brush, I feel completely secure. It’s like learning a
language. I think, “okay, now, I can go from there.”
Otherwise, you’re just copying what some other type
designer did. This way I’m going right to the source
of the characters, and it’s a really efficient way to
work. (By the way, this calligraphic hand I used for
the Syntax study that later became the inspiration
for a typeface called Sierra [Figure 11].)

D: While we’re on this page, let’s digress momentar-
ily and look at the other pages in the 4-page keep-
sake. In it you have three examples of pieces that
the brochure says are from the series you did of cal-
ligraphy based on women poets, I guess throughout
history. Please say a few more words about that. The
example we were just looking at says it is from text
from Victoria Howard (c. 1865–1930) as transcribed
by Melville Jacobs — I guess from Victoria Howard
speaking in the Clackamas-Chinook language. How
many pieces were there in that series about women
poets?

Go to tug.org/interviews/holmes-bigelow-

clackamas.mp3 to hear Chuck Bigelow reciting
the text from Figure 2 in Clackamas-Chinook (also

known as Kiksht), as he typically does when
showing that figure in talks.

K: I think there were five or six total, I’m not sure. I
started that project because we were working with
these stories by Victoria Howard. And I thought well
here’s this brilliant woman but illiterate in English,
so her brilliance as a great storyteller was nearly
unknown and ephemeral. Then I realized there are
a lot of other women like that. Peig Sayers [another
page in the keepsake brochure] is well known in
Ireland; illiterate in Irish, very poor, but a fabulous
storyteller in Irish. People said you’d sit and listen to
her tell stories, and you’d just walk out the door, and
you didn’t even know where you were, you had been

Interview with Kris Holmes

190 TUGboat, Volume 39 (2018), No. 3

so lost in her stories. And also there were women
troubadours. So I thought I’d do a series of pieces of
calligraphy that were based on the work of women
who got no little or no credit — because little was
preserved of their work. I thought I would preserve
it in the best possible way, by calligraphing it.

D: And in each of these three examples — Victoria
Howard (c. 1870–1930), Peig Sayers (1873–1958),
Lombarda (c. 1190) — both pairs of lines are yours?

K: Everything.

D: So here in the Peig Sayers piece (Figure 3) is your
interpretation of Irish lettering?

Figure 3. Calligraphy for the Peig Sayers page of the
1983 ATypI keepsake.

K: That’s my interpretation of the formal hand used
in the Book of Kells. The English is in chancery cur-
sive. In the Lombarda piece [the third example in the
1983 ATypI keepsake], the capitals hand is an origi-
nal hand I developed, a hand that is based on Roman
square capitals, which is a historical style. This is
a pretty good example of how I work because you
see me copying historical styles and then inventing
something that’s new.

D: In each of these cases your practice was to find
some originals, try to figure out how it was written,
and get comfortable with writing it?

K: Yes. And I just did that for the piece that I
contributed to the book The Cary Collection did in
honor of Hermann Zapf, which we can show you
before you leave, and I can send you a copy of it
(Figure 4).

Figure 4.

This is my favorite thing to do with calligraphy — to
learn a new hand, not just copying it letter by letter,
but to learn it so I can just sit down and write it out.

D: And this is your calligraphy in this statement
by Friedrich Neugebauer, on the first page of the
keepsake?

K: That’s my calligraphy. I think those characters
were originally written on wax tablets. They are the
informal cousins to the beautiful formal letters on
the Trajan Inscription.

D: And you’ve done the calligraphy using a style
from history, a style that, for instance, has these
extreme “r”s and “s”es is the word “resulting”.

Very interesting.

K: I found an image of a wax tablet written in this
style, and I sat down and learned it. By the way, I
taught a class at University of the Arts in Philadel-
phia, a one-week workshop, and I had my students
do the same thing. I brought in manuscripts, ev-
erybody picked out a manuscript and they just sat
there for 12 hours straight learning how to write it.
And then they did their own personal piece based
on that.

D: It says in this quote from Friedrich Neugebauer
(in your calligraphy) that the words express a design
philosophy of Bigelow & Holmes. I transcribed it into
my writing so I could tell you what it says.

K: [Laughing] Say it.

David Walden

TUGboat, Volume 39 (2018), No. 3 191

D:

we as individuals
and lettering artists can
help to preserve our oral

tradition by choosing texts
that are meaningful to us and
that shed light onto our lives.
the resulting written language

will have significance and integrity.
this approach to work and art

could be a new beginning:
a reaffirmation of our

own age-old linguistic traditions
and the establishment of
positive directions for our

future use of language.

K: Yes. I’m so glad you reminded me that we had
said that was our statement, and we still stand by
that. You know, I was just talking to Chris Myers,
who is the head of that program at University of the
Arts, about why calligraphy is now considered kind
of an artsy craftsy thing. To Chuck and me it’s not;
to us it’s the root of everything that we do. That
statement by Neugebauer really says it much better
than I ever could. That is our philosophy.

D: Before I interrupted you a while back, you began
to talk about the capital letters font Leviathan.

K: Yes, for that Moby Dick project.

D: You gave me another handout, which was a keep-
sake from a recent exhibit here at the Cary Collection
(Figure 5).

Figure 5. Cropped from a keepsake from Bigelow &
Holmes for “Leviathan: A Typeface After 40 Years”
(2018).

K: Yes. The exhibit was in February [2018], to cele-
brate the 40-year anniversary of this typeface. The
Cary Collection put on a presentation and they put
it right here, at this place on the table, their copy
of the Moby Dick book; and Chuck and I gave a talk
about how we designed the set of initial letters. It
was a beautiful event.9

D: What led you to decide to have a 40-year anniver-
sary of this?

K: I think it was our close relationship with the
curators here at the Cary. You know, we mentioned
that gee, it was 40 years ago that we did this. And
the associate curator here, Amelia [Hugill-Fontanel],
said, “Hey, let’s have a 40-year celebration.” And
soon after we did that, Steve Matteson came out
from Monotype because he was releasing his new
revivals of Goudy types that he has done, and The
Cary Collection had a similar celebration. The Cary
Collection is kind of getting to be a place where you
can announce a new type or celebrate an old typeface.
There is a nice lettering and type community around
here, so it’s a really beautiful event in the evening.
Everybody gets together.

D: Perhaps it’s a more reflective phase in your ca-
reer?

K: Maybe. I don’t think that this means we’re mov-
ing into a reflective phase; Chuck jokes that thirty-
five years ago, everybody used to ask him about the
future, now they ask him about the past.

3 Working and learning: Cambridge, MA,

San Francisco Bay Area, Hawaii, UCLA

D: Let’s go back, if you don’t mind, to your educa-
tion. We started at Reed, you did some studying in
New York City; you didn’t mention it but I read that
you were at the School of Visual Arts. I guess that’s
where Ed Benguiat was. Then in 1979, you studied
here at RIT — a brief summer course, I believe.

K: It was a two-week summer course. Hermann
Zapf came from Germany and taught for two weeks.
Those [big blue pages of letters on the next table
being prepared for an upcoming Zapf exhibit at the
Cary Collection] are samples Zapf made as he taught
(Figure 6).

We came to Rochester, and that was another
turning point in our careers — to meet Zapf and
watch how he worked, and hear him talk about his
work. It was just a great experience. So we’ve always
thought of RIT as a stronghold of good lettering and
good typography.

D: And, somewhere along the line, you finished your
Bachelor’s degree at Harvard Extension.

Interview with Kris Holmes

192 TUGboat, Volume 39 (2018), No. 3

Figure 6. Photo taken by Chuck Bigelow during 1979
course by Zapf.

K: I finished it in 1982. Chuck was teaching at RISD
and I had a job at Compugraphic up in Wilming-
ton, Massachusetts. We wanted to live together, and
so we found a place that was kind of in the middle,
though it turned out to have torturous commutes for
each of us. I would work all week at Compugraphic;
then on Tuesday and Thursday nights I hightailed
it down to Harvard Square and took classes there,
and finished my degree. That was another great ex-
perience in my life; wonderful professors; I studied
linguistics with Calvert Watkins, Islamic Art with
Sheila Blair. I had a great life drawing teacher, so I
was drawing all the time; and finished my degree just
before Chuck got his job at Stanford, so I finished it
up just before we left.

It was fun living in Cambridge. In the end,
Chuck left his job at RISD and I left my job at Compu-
graphic, and then we were really in heaven. We had
a little studio in our apartment on Irving Street, near
Julia Child. We’d see her in the nearby market. We
spent every evening working on ideas for typefaces.

D: Your type design at Compugraphic was for pho-
totypesetters?

K: Yes. Compugraphic was the first place in the
U.S. to install the Ikarus system, which is why I was
interested in working there.

D: And you knew they had that already and there-
fore sought out the job?

K: I had sought out the job earlier. I wasn’t sure
what I wanted to do, but then they installed that
Ikarus system just before I went to work there. So I
was able to kind of do my analog drawing job and
then sneak over and see how the digital system was
working.

D: Did you already know the people in Germany
who had done the Ikarus system?

K: Peter Karow at URW. We didn’t know him yet.

D: Back to your education. Somewhere along the
line you ended up at UCLA studying for an MFA.

K: Yes I did, years later. But in 1982, by the time
I finished my degree at Harvard, I had already got-
ten a commission from Hell, the inventor of digital
typesetting, to design some original typefaces for
them.

D: How did they find you?

K: They found me because the Hell-Digiset typeset-
ter was being introduced to the American market,
and they wanted people to design some new types
that would show off the high quality that it had
for a typesetter at that time, and they wanted high
quality versions of some historical typefaces. They
had heard about Chuck and wanted him to be their
American typographic consultant. Chuck was going
to go on a job interview with Max Caflisch, who was
Hell-Digiset’s European type consultant. And before
he went on the interview Chuck said, “look, they’re
looking for type designers, why don’t you just put
together your portfolio and come with me.” And I
said, “it’s your interview, I can’t go.” He said, “Oh
come on, it’ll be fun.” [Laughs.]

So he brought me along on the interview and
Max Caflisch was kind of surprised to see a second
person there, but then I pulled out of my portfolio all
these letters that I had learned to do from Robert Pal-
ladino based on the Trajan Inscription. At that time,
it was a very, very unusual skill and Max Caflisch
looked at it and said. “Oh! This is interesting.” So
that was how I got the invitation to present propos-
als for original typefaces, and they also hired me to
do a revival of Baskerville and a revival of Caslon
especially for their digital typesetting machine. So
that was how I got that commission, which I was still
working on in 1982 when we moved to California.

D: And at that time you were communicating by
airmail?

K: Yes. That is when I started a technique that I
still use. What was happening is they had the Ikarus
system at Hell in Kiel, Germany, and I was doing the
drawings. I sent a first set of drawings on paper but
they said that the size wasn’t right, and I realized
that this is a piece of paper traveling over damp
atmosphere and dry atmosphere, and the paper was
changing size and the digital constraints were too
tight for that. So I started drawing on dimensionally
stable Mylar, and it’s a very nice surface to draw on,
you can get a really beautiful fine line. I would draw
the typefaces, sometimes based on material Max
Caflisch had sent me, sometimes based on material
that I had had blown up, or just my original sketches

David Walden

TUGboat, Volume 39 (2018), No. 3 193

from specimens in the Harvard Houghton library.
I would make the drawings, I would make a nice
blue-line copy of them, and then I would mail the
originals to Germany, and they would digitize them
on their Ikarus system there and then send me the
bitmap versions for me to correct. It was a long, slow
process but it was the only way to do it at that time.

D: How did you feel about doing a re-enactment
of Baskerville or Caslon, as opposed to doing an
original typeface?

K: I felt really good about it. You know, I learned
so much. I had big blowups of the characters that
were at the size I was going to draw out. But I also
had my little printed specimen of the type and I had
a magnifying system, almost like a little microscope.
I would sit there and look through that microscope
at the original printed samples, and then draw; look
and then draw; and I did that for months and I
learned so much that I felt just fine about doing that
because there are so many decisions that you need to
make. For example, Baskerville cut a different type
for every size that was going to be printed. Well,
if you’re going to do a new Baskerville now, which
size do you go by? What size is your model? You
can’t just say I’m going to use the 12 point model.
That might be one of the sizes Baskerville or his
punch-cutter didn’t even cut so there are a lot of
decisions that have to be made. I didn’t even call it
a redrawing, I would call it a revival.

D: Revival. Back to UCLA, this was after you were
at Stanford? While you were at Stanford?

K: Chuck was at Stanford from 1982, and then we
worked in the Bay Area for I think 14 years. And
then, everything was going fine and we decided we
wanted an adventure and we moved to rural Maui for
four years. We lived up on the side of Haleakalā, the
volcano, and we studied the native plants in Hawaii.
We were still drawing type and doing business with
people, but we were just doing it from rural Maui. So
we studied native plants, I studied traditional hula
and chanting, and we studied Hawaiian language and
music; so we just did a few years of study.

D: But always running your studio.

K: Always running the studio. We thought we could
do it from afar because of the Internet, but it was
hard to do on Maui because they had an antiquated
electrical system, so whenever there was a storm it
would blow out our fax machine; and it turned out
to be very difficult to run our business from Maui at
that time.

D: I heard from Karl Berry, who I guess heard it
from Chuck, that in Hawaii you grew roses . . .

K: Yes. Chuck had a vast collection of, I think, over
600 different kinds of roses. He was studying rose
fragrances.

D: It was just part of the adventure.

K: Just part of the adventure. We’ve always been
avid gardeners; you may have seen my short film La

Bloomba (Figure 7).

D: [I had not, but now I have; it is here: tinyurl.
com/holmes-bloomba]

K: That was my thesis film for UCLA and it was
based on time lapse video I did of flowers opening
and every flower in that movie is a flower from our
garden. We just always loved gardening, both of us
have. It’s kind of our mutual hobby.

Figure 7. Title slide from La Bloomba film. Kris says,
“. . . a special version of Lucida Casual which I prepared
so I could animate the title from light to bold lettering,
like all of the flowers blooming in the film.”

D: So you went to Stanford, you were in the Bay
Area for 14 years, you spent four years in Hawaii,
and now do we get to UCLA?

K: Now we get to UCLA. By the end of about two
years on Maui, we had really done everything we
wanted to do there. It’s a very isolated lifestyle.
And so we started thinking about what’s next, and
Chuck said, “you know, I’ve always wanted to write
screenplays,” and I said, “I’ve always wanted to be an
animator.” So we decided that we would each apply
to UCLA film school, we’d probably get rejected and

Interview with Kris Holmes

194 TUGboat, Volume 39 (2018), No. 3

that would be the end of that. But we both got
accepted into film school and so we moved to Los
Angeles to be students again, which was one of the
greatest experiences of my life.

It was just such a wonderful place; my depart-
ment was headed up by Dan McLaughlin, he used
to work for Charles and Ray Eames at their studio.
Everybody was so supportive, the students were bril-
liant, everybody was working on great projects; it
was an exciting atmosphere. Chuck was able to audit
a linguistics class on the Mayan language K’iche’, in
which the greatest surviving epic of Native American
literature had been written in its native script. It was
just such an exciting campus to be around, and we
absolutely loved it.

D: Meanwhile, your studio is at home and you’re
working.

K: Yes, and we’re working. In fact, near the end of
my first year at UCLA, Sun Microsystems’ Java group
asked me to design a Devanagari font used for Hindi,
Marathi, and Sanskrit languages; so I had to stop
coming to class for a few weeks while I worked on
that. But it was okay; you know, it worked out in the
end. So that was a great, great experience, going to
film school.

D: Yes. But you said that you studied animation
and Chuck studied screen writing, but the literature
I found on you says that you wrote an award-winning
screenplay, so you did some screen writing as well?

K: I did. I thought, “well, here I am at film school,
why not try everything?” At the film school you
could take classes in anything; it’s just that you
had to work hard and keep up. I took a class in
costume design taught by Deborah Lynn Scott who
had designed the costumes for the Titanic movie, I
took screenwriting with Richard Walter, who taught
Academy Award winners. I wrote a screenplay about
Nikolai Vavilov, who was a botanist working under
Stalin, who ended up starving to death in prison. It
won a Sloan Foundation prize, for screenplays about
science.

4 Operating a design studio

D: When you formed your company, way back in
1976, what was the image of how the two of you were
going to work together; and how has that evolved
over time?

K: Oh boy, I don’t know that we had an image of
how we would work together. I think that what we
wanted is we wanted to be able to design type. I’m
not sure that we have an image of that now. We just
kind of take each job as it comes along. And the

thing is that both of us can do everything required,
so that I could do the whole thing by myself and
Chuck could do the whole thing by himself. When we
get a new job, we say “okay, who’s really interested in
this; who wants to do this; you want to do sketches,
okay, how ’bout you do this, let’s try this.” Every job
is a new, a new definition of what Bigelow & Holmes
is. And we enjoy that.

D: I don’t know where what I am about to say is
from, but whoever wrote it says, “as principal artist
at Bigelow & Holmes, Holmes is responsible for cre-
ation of over 100 digital typefaces, including con-
ception, research, drawing, computer input, digital
editing and production management.” What does
Chuck do?

K: [Laughing.] Chuck does some of that, too. Chuck
does some of all of that.

D: You both do it all.

K: We both do it all. We do divide up some of
the tasks of our business; I’m the president and
accountant, he’s the vice president and lawyer, stuff
like that. He does much more writing than I do,
which is fine by me. I do more calligraphy.

D: But I was interested to find papers written by
you in your dossier that you gave me. Very interest-
ing.10,11

K: Thank you.

D: This person, whoever it is, says you’ve designed
100 digital typefaces. I found other people saying
70, 300,12 . . . — different numbers in different things
I read.

K: It’s even worse than that because now, when we
design something, we can do multiple master setups
(Figure 8), so I can design poles, two or three poles,
and then I can interpolate a hundred weights in be-
tween, if I want to. I’m not even sure how I would
come up with a count. There are individual fonts,
and families of fonts, and so on. A few years ago, we
established a little online store to offer simple ver-
sions of our Lucida designs, and we put around 300
of our fonts on it, in different families like Lucida
Sans, Lucida Casual, with different styles, and many
weights in each style.

D: Perhaps it is not a relevant measurement any-
more.

K: Maybe you could say I’ve done so many families
of fonts. I have no idea what that number is. I don’t
have time to stop and count them all.

David Walden

TUGboat, Volume 39 (2018), No. 3 195

Figure 8. A series of weights of lower case Lucida
Sans. Theoretically, in the multiple master approach to
font development, a few master designs can be done,
e.g., UltraThin, Normal, and UltraBlack, and the other
weights can be derived by interpolation.

D: Back to your job history, in a sense; once you
started the company. It seems to me that you do
three different things. You teach sometimes . . .

K: Yes.

D: . . . so really that’s kind of individual; your com-
pany sometimes does work for hire, . . .

K: Yes.

D: . . . and then sometimes you do things on spec-
ulation and then license. Are those the three cate-
gories?

K: Those are three categories. We also do consult-
ing; Chuck does more of that than I do. But I’ll give
you an example. Sometimes we do a typeface on
commission, for instance, Apple Chancery. Apple
was developing the TrueType GX program, which
would enable a font to do what is now called char-
acter substitution in OpenType. Apple wanted a
typeface to show off its new technology, so we de-
signed Apple Chancery for them. It had all kinds
of character substitutions: the lower case “e” has a
regular “e”, a descending “e”, an “e” with a swash
at the end, an “e” with a swash at the beginning; de-
pending on where this “e” fell in the text, you would
use different versions of the character. When we fin-
ished that project, it came up to a character count of
1001. I said, “I want to call it Scheherazade because
of “The Thousand and One Nights” which I had read
to prepare for Sheila Blair’s class at Harvard.” But
Apple said, “no, Scheherazade won’t fit on a drop
down menu,” so they called it Apple Chancery. So

that was an example of a company saying we want
you to do something for a specific reason.

D: And then they own it.

K: That’s correct. In fact, we’re embarking upon a
similar project here with the Cary. We’re doing a
revitalization, a revival, of Baskerville. So it will be
the second time that I’ve done this.

D: And why does Cary want to do that?

K: For their own use. We are going to design the
typeface, and they’ll be able to use it for labeling and
cards and signs and posters and everything. They
will own it, and we won’t sell it through our store
or any other way. On the other hand [years ago]
for Lucida, Chuck had the idea that it would be nice
to have serif and sans serif matching families, and
because digital typesetting was just emerging, we
wanted to design something that would look good at
low resolution, like 300 dpi. So we just did it, and it’s
ours, and we license it. But we did it on speculation;
nobody paid us to do that; it was just an idea that
we had.

D: Yet you keep adding to it.

K: Oh yes, we do.

D: So somebody must be buying it.

K: Yes, somebody’s licensing it; they’re not buying
it.

D: How do you sell something like that — mostly
through your website, or through Myfonts, or . . .

K: No, we license mostly to corporations that want
to bundle the font in their equipment or their soft-
ware. We also license a large set of Lucida fonts to
the TEX Users Group for mathematical typesetting.

D: I see. How does dealing with a big giant like
Microsoft compare with dealing like with a tiny thing
like TUG?

K: It’s not that different. It’s not like you make your
presentation to all of Microsoft. You’re usually only
dealing with a core set of people, a group of two to
five or six people. You get to know them well and
they know you. So it’s not as different as it might
seem. But sometimes the core group of people leave
and you get a new core group of people, and you
just hope they’re as good as the original set.

5 How Kris works

D: If I can digress again back to one of these hand-
outs, was this (Figure 9) in the Illiterate Women’s
Poet series, too, or is this different?

K: This is by an ancient Greek woman poet, Anyte.
She was literate. It was part of the research I did for

Interview with Kris Holmes

196 TUGboat, Volume 39 (2018), No. 3

Figure 9. A keepsake from Bigelow & Holmes for
the Face/Interface conference, Stanford University,
December, 2017.

the Lucida Greek project. I was in London and I was
in a little shop, and there was a book called Greek

Literary Hands A.D. 400–1600. It wasn’t professional
calligraphy, it was handwriting by scribes who were
preserving literature; and there was a very lovely
script in there. So I did the thing I love to do. I
sat down with the script and a piece of paper, and I
figured out how to use it and how the letters change
as they’re next to each other. And then I found
that very charming poem by Anyte and so I wrote
it out. You know, Lloyd Reynolds used to say that
“I calligraphed it” sounds pretentious. “Just say, ‘I
wrote it out’.” And the older I get, the more I think
yeah, he’s right; “I wrote it out.”

D: What you described is really interesting.

K: And the capitals typeface on there is Lucida
Grande, so that keepsake actually has a font mixed
in with the calligraphy.

D: That’s the red?

K: Yes, that’s the red.

D: A question back, I guess this design [below] was
for Hell?

Why did they want that?

K: They didn’t know they wanted it. Hell was going
to have a meeting in Basel where they wanted me
to show them the beginnings of the redrawings of
Caslon and Baskerville, and then they wanted me
to make proposals for two totally original typefaces
that would show off the resolution abilities of the

DigiSet. I went over to the Houghton Library in Cam-
bridge and I was looking at some manuscripts, and
there was a manuscript that had a lower case “p”
that [gesturing] came down like this, and then it just
sort of looped back up like this. All done in one
stroke so that the stem was like a double stroke
(Figure 10).

Figure 10. The original sketch Kris did in the Houghton
Library.

And I thought gee, what if I designed a font where
every character worked that way. That would really
show off their abilities with the typesetter. So I did
it. I just sketched it out and put together a keyword.
And I did the finished art by cutting the characters
in Amberlith, because I didn’t have any other way
to proof the characters at that time. Now, you just
type it on the screen, but I couldn’t do that at that
time. So I cut the characters out of Amberlith, and
I put together a presentation (Figure 9) that was
the beginning of the typeface Isadora. The other
typeface I presented was based on the Chinookan
calligraphy, and it was called Sierra, and I put it
together the same way.

By that time, we had already taken Hermann
Zapf’s class at RIT and I had worked on an article
for Fine Print about Zapf Chancery.10

So we went to the type review meeting in Basel
and, of course, I was just shaking with nervousness.
There at the type review meeting was Hermann Zapf,
Max Caflisch, and a couple of other people; and we
sit down, and so I said, “this is my proposal for
Isadora.” Hermann Zapf said, “First of all, Kris, I’d
like to thank you for that beautiful article in Fine

Print. You know more about that typeface [Zapf
Chancery] than I do.” I could tell that one of the
other people in the group was not crazy about my
proposal for Isadora, so I was really getting nervous;
I thought they’re going to turn Isadora down. But
then, Hermann Zapf picked it up, looked at it, and
said “Yes, this is top quality, we’ll take it.” And
that was it. I was on my way thanks to Hermann
Zapf. I don’t think I would’ve gotten the commission
otherwise, but he was so influential that the other
people in the meeting just went along with the idea,
and he also said that he liked Sierra, so I did that
one as well.

David Walden

TUGboat, Volume 39 (2018), No. 3 197

D: Wow!

K: Yeah, I know. [Laughs.] Isn’t that a cool story?

D: Great story, but I need you to explain what a
keyword is, and what is Amberlith?

K: When type designers design a font, they don’t
start with A and go straight through to Z. The first
step is to design an “n” and an “o”. Once you have
those two letters looking the way you want, you have
a lot of information — x-height, stem weight, round
weight, serif structure, bracket structure. So in de-
signing Isadora, I first designed an “n” and an “o”.
The next step is to design a keyword — meaning a
word that contains letters that give you more infor-
mation about the shapes of all the letters (Figure 11).
You choose a keyword that contains a cap and a
lowercase (to determine how the stem weights need
to differ), an ascender and descender (to fill out your
vertical parameters), a diagonal (to determine the
weight for that) and “two story” letters like “e” and
“a”. I always say that once you have a keyword that
really works, your design is at least 75 percent com-
plete.

Isadora started with drawings, as do all of my
typefaces. But how to take those big drawings and
see what they will look like at reading size. In those
days for me, the most efficient way to do that was to
put a piece of Amberlith over the drawing and cut
the image in it. Amberlith is clear acetate coated with
a photo-opaque translucent film. I did thousands
of these Amberlith cuttings in my early years as a
designer. Once you have a good Amberlith cutting,
you can simply photocopy it into a black and white
image and paste letters together. You can then hang
the big images on the wall for a first look and then
have them photo-reduced down to see your design
in a size closer to the size it might be used at.

Figure 11. Presentation of characters cut in Amberlith.

As you might imagine, this was a tedious process.
But over the years I got very good at cutting those
Amberliths — people often thought they were cut by
some kind of machine. It was really the only way
to proof my keywords at that point. In designing
Isadora for Hell in Germany, I would do the above
keyword process and then send the final keyword
drawings off to Germany to be digitized by their
crew. They would mail the bitmap images back to
me, and then I could go forward and design the
whole typeface. So a keyword can be a way to either
illustrate a completed typeface, or, more importantly
for me, a way to test my ideas.

D: A big part of your world has been Lucida. There
is so much; we can point to all kinds of articles and
examples.11,13 But is there something you’d like to
say about it? I’d certainly like to hear why you chose
the name.

K: Chuck chose the name Lucida because the type-
face would be made of light. I think the guiding
light of Lucida is that we wanted to design some-
thing that was legible, that’s always our number
one priority. Every time we look at a letter, is it re-
ally legible? We never skimp on that. Gary Munch,
a former student of Chuck’s and now a respected
type designer and now dear friend, described Lu-
cida to me as a workhorse typeface. I thought, I like
that; it is a workhorse typeface and that is what we
wanted. We didn’t want something too fancy; we
didn’t want something unapproachable; we wanted
something based on traditional pen-drawn letter-
forms but something that was modern and clear.

D: Do you ever just get tired of one more Lucida
font or typeface? Or does it remain interesting? You
get to choose what you do so presumably you choose
it because you want to do it.

K: There’s always a new challenge, like variation.
We have Lucida Handwriting, for which the basic
height and weight measurements match Lucida, but
in every other way it’s totally different. I don’t really
get tired of it, and it’s very handy to always have
this basic set of measurements so I know what I’m
dealing with — even if I don’t always match it, at
least I have a starting point.

D: Did or do the issues of the “font wars” — all the
different type formats, . . . , Type 1 and Type 3, and
OpenType, and all of that — affect you when you’re
designing a font or is that some kind of a post pro-
cessing problem?

K: I don’t think it affects me one bit when I’m de-
signing a font. You know when I’m designing a new
font, I actually kind of live in isolation. I never look

Interview with Kris Holmes

198 TUGboat, Volume 39 (2018), No. 3

at other typefaces because I don’t want them to get
in my mind’s eye. So even just looking at that let-
tering over there, it’s kind of getting into my mental
visual space. So when I’m working on a new design,
I don’t look at other people’s designs. But I’m al-
ways thinking. Chuck once asked Adrian Frutiger
[designer of Univers and many other typefaces], what
do you think about when you’re doing a new design?
And Adrian Frutiger said the most perfect thing, “I
think about what it will look like in the mind of
the reader.” I’m thinking about that. I’m thinking
about how it’s going to work with the technology
I’m designing for. I’m thinking what it’s going to be
like to look at. But the business end of things, pfft,
absolutely not thinking of it at all. How could you?

D: I don’t know, I don’t do type design.

K: [Laughing.] Well there’s so many twists and turns
in the business end of things. Really good products
get dropped; really bad products get not dropped;
and so you just can’t think of that.

D: In our correspondence a few years ago, you noted
that you and Chuck are one of the few design teams
that have worked with both phototypesetting and
digital.

K: Yes.

D: Is the design process different for any of that, or
is it still you sit there with your paper in isolation?

K: [Laughs.] Well, I think it’s different in that I’m
thinking how the technology will affect the finished
image because, you know, the way something looks
printed in phototype is going to be very different
from something printed digitally. And we have not
only worked in photo and digital type, we did that
first typeface Leviathan for metal type and letter-
press printing.

D: So that does have to affect what you draw.

K: It does have to affect what I’m doing. But the
basic design process is sitting there in isolation.

D: Since Ikarus, what other design systems have
you used?

K: I want to say that I am very sorry to have had to
give up Ikarus. I used it for I think about 27 years,
during which time I think I had a total of two crashes.
It was very, very stable; and it had a very, very high
resolution. Everybody kept saying, “oh, you need to
move on to Fontographer” or something. But I was
very happy with the accuracy that I could achieve
with Ikarus and the solidity of the system. So I was
sorry to give it up. There was an Ikarus on Mac for
a while and we used that. But once we got into the

big Unicode character sets we really had to move to
FontLab, and now maybe we’re moving on to Glyphs.

D: Glyphs, that’s the name of a system?

K: Yes, G-L-Y-P-H-S. It’s a font design and editing
application that I think many type designers are
moving to now, it’s a really excellent system. I’m
just always in the middle of a job so it’s hard to pull
up stakes and learn something new, but at some
point I’ll get around to it.

D: Let’s go to another piece of this literature that
you gave me last night, which is this brochure from
Imagen, “Imagen Presents Lucida: the First Typeface
Design for Laser Printers.”14 Somewhere in some-
thing Chuck told me he said that Michael Sheridan
designed and produced this. Am I right? This was
produced by Michael Sheridan?

K: Yes, that’s right. He was Director of Typography
for Imagen and previously had worked for Grant
Dahlstrom at the Castle Press, which produced finely
printed books.

D: And your role in it was . . . ?

K: Was to design the font. I didn’t do any of the
book design, or production, or anything.

D: Okay. In that year, it talks about 11 different
sizes of fonts; 6, 7, 8, 9, 10, 11, 12, 14, 18, 24, and a
Roman that’s something bigger than that, 36. They
weren’t scalable fonts back then or what?

K: It sounds like they were still rasterizing the fonts,
doesn’t it? You’ll have to ask Chuck about that detail.

Chuck explained: At the time, mid-1984, Im-
agen used bitmap font technology. No laser
printers had scalable outline font technology
until the Apple LaserWriter with PostScript
outline fonts was launched in March 1985.

At B&H, we drew the Lucida characters
at a large size, around 166 mm, and dig-
itized them as scalable outlines with Peter
Karow’s Ikarus system, which used Hermite
cubic curves. We designed only one mas-
ter size, intended to work well at around
10 point, plus or minus a few points. For
instance, at 10 point at 300 dots per inch,
the vertical stems are almost exactly 4 pixels
thick.

From Ikarus, we output scalable outlines
in a circular arc & vector format. Again, just
one master design. Imagen scan-converted
our Ikarus arc/vector outlines to bitmaps,
which they hand-edited. In a way, then, the
original Imagen Lucida fonts were hand ad-
justed for each print size, because the bitmap

David Walden

TUGboat, Volume 39 (2018), No. 3 199

editors made visual decisions about details
of pixel placement as they edited the fonts.

D: It also says in here, “this is for low and mod-
est resolution output devices”. So how have things
changed for Lucida now that we have higher res-
olution output devices, on practically everybody’s
desktop?

K: It means that we can design fonts a little dif-
ferently. If you look at the original Lucida in that
booklet, you’ll see that the hairlines are quite thick
compared to the stem weight. So, let’s see, the stems
were 16 mm on a drawing size of 166 mm; the hair-
lines were like half, 8 mm — something like that — of
the stem weight. And that’s because you’re working
at low resolution, so you don’t want that hairline
to fall apart. You’ve seen characters where they’re
just breaking up. We didn’t want that to happen, so
we made nice thick serifs, nice thick hairlines. For
a higher resolution machine, you can make very thin
delicate hairlines, and very thin delicate serifs and
the whole face will have a slightly lighter look to it.
So the different resolution really does change the
design.

D: Have you gone back to any of the earlier Lucida
fonts or typefaces and redone them?

K: Well that’s kind of what Lucida Bright is; Lucida
Bright is a redrawing of the original Lucida, but for
high resolution. It has rounded bracketing on serifs;
thinner hairlines, thinner serifs. So I would say Lu-
cida Bright is a redoing of Lucida. I ran into a girl at
Wells College, which has a very nice book arts pro-
gram, and she had printed letterpress a whole book
in Lucida Fax. And I said, “gee, we never thought
it’d be printed letterpress.” And she said, “oh, it was
just perfect for what I wanted to do, so I just had
polymer plates made and printed the whole thing in
Fax.” You never know how your typeface is going
to be used, and this is something that bothers a lot
of type designers — “Oh gee, they’re spacing it too
tightly” or “they’ve taken the italic and slanted it
even more.” But it never really bothers me. I feel
like, “okay, you bought your font; if you want to
change the styling that’s fine.” I don’t approve when
people go back in and actually change the individual
characters, which happens a lot.

D: I guess I don’t understand the distinction. How
do they change the font to, as you say, slant it more?
What do they do?

K: Using Word styling, you can slant an alphabet,
so they start with an italic and then think, “I need to
slant it more.” That’s something you do within the
word processing.

D: At a high level, where it just does the same thing
to everything.

K: Exactly. I see it all the time, and it is a choice
made by the layout designer. What I object to are
changes made to individual characters, sometimes
called glyphs, right in the source code of the font,
especially if someone calls it a new design.

D: Have you seen where typefaces that you have
designed have influenced other peoples’ typefaces,
other than messing with your typefaces?

K: [Laughs.] I think so. I think there are many
humanist san serifs that were probably influenced
by Lucida. I think Lucida’s big x-height has been a
big influence. You see typefaces with a big x-height
all the time. I think our idea of including non-Latin
alphabets in with the Latin alphabet — a lot of people
have worked in that direction but we were the first
designers to coordinate Latin and non-Latin to the
extent that we did. We wrote a paper about it, and
a recent scholarly paper talks about that, 23 years
later. I do think we’ve been influential.

D: I think you’ve answered this already but let me
ask it explicitly. You have your calligraphy skills,
and you do your type design work, and presumably
calligraphy influences type design?

K: Oh absolutely. That’s always where we start. It’s
this tool that influences it.

D: The brush?

K: No, it’s not even the brush; that’s why I brought
all of these things (Figure 12).

Figure 12. Four calligraphy tools. See tug.org/

interviews/holmes-4-tools.mp4 for a video.

Here we have a brush [rightmost] but the thing
that’s distinctive is this broad edge; it’s called a
broad edge tool. This is a marker [second from right],
and the thing that sets it apart from the marker
that you’re writing with is it’s not a point, it’s got a

Interview with Kris Holmes

200 TUGboat, Volume 39 (2018), No. 3

broad edge. Here’s a really big marker [second from
left]; same thing, the broad edge. Here’s a pencil
[leftmost]; same thing, the broad edge. So it’s this
broad edge that is really the basis for our way of
thinking about type, and it’s because now you’re
writing not with the point like you are with your
marker, you’re writing with a line so it’s almost like
a 3D quality in the character. The tool automatically
creates the thicks and the thins in the letter. I almost
feel like this tool does 50 percent of the work for
me, and then my hand just kind of automatically
pushes it around based on my study of historical
calligraphy. That’s my starting point, then I have
a nice, calligraphed — to use that word Reynolds
hated — nice calligraphed letter.

Whenever Chuck and I discuss lettering between
ourselves, we always end up getting out one of these
pens and say, “if you go like this and like this, that’s
how it needs to work right there.” And every decision
big or little is based on this tool. When I say “based”
on, I mean that we go a long way from this tool and
sometimes we use a slightly different tool. For ex-
ample, Lucida Handwriting, that was based on some
sketches I did with a really old marker, a pointed
marker, but it was wearing out, so it was almost like
half brush, half pen. So sometimes we move to a
different tool and certainly go far afield from this
analysis, but that’s really the root, right there.

D: Forgive me for not completely grasping, but let’s
say you’re designing something; you draw a letter;
then do you somehow digitize that? Or are you
mostly working on a screen rather than with a brush?

K: The way I work is that I start with my sketches
and my rough things with a brush or with a pen; and
then I put a piece of paper on top of that, and I’ve
done it to the size that I want or I blow it up to work
it to the drawing size that I want, about 166 mm tall.
Then put a blank piece of paper on top, put down
some guidelines, and then I do an outline around
that sketch, or around that calligraphic letter. I have
an illustration that shows this perfectly (Figure 13).
And this is where I get to go far afield. So when I
make a serif with this brush, well it’s a very delicate
little thing — you can see up there [on a wall poster]
on that first “R” you can barely see the serif — but
for type, you don’t want a serif that thin, it would
break off. So that’s where I get to make some ma-
jor changes with my pencil and I just beef up that
hairline a little bit, beef up the serif.

D: And somehow that gets into a computer.

K: Yes it does. When I was using the Ikarus system
we actually had a little Aristograph tablet, a little
electronic board with a puck on it and we would

Figure 13. Illustration of the process. The typeface is
Sierra — based upon her calligraphic studies for the
Syntax Phonetic project. The tool she used was a broad
edged pencil (leftmost in Figure 10), a carpenter’s
pencil.

digitize that way. Now what I do is that I scan the
drawing into a background and I fit splines on it on
a screen (Figure 14).

Figure 14. The letter Q from Lucida Handwriting
showing chosen spline points.

D: So this is in Glyphs?

K: I’ve actually been doing this part of the job in
Illustrator. You can do it in FontLab or Glyphs or re-
lated applications, but I kind of like working in Illus-
trator for the first pass because you get a really nice
background image in that. When I say fitting splines,

David Walden

TUGboat, Volume 39 (2018), No. 3 201

I mean that type designers have a very specific way
that we lay out the spline outlines on a character. A
designer can take a letter and just autofit splines in
Illustrator, and that’s fine if you’re doing a lettering
job. But autofitting gives you way too many points
and they are positioned illogically, not recognizing
the structure of the characters. But for something
that we do, which may be a system font, it’s going
to have hints put on it that adjust the outlines to fit
raster grids; it’s going to be used at lots of different
sizes, so we have a very specific way that we arrange
those points so that shapes and the structure are
logical. All the extreme points are marked, in the
X and Y axes, and the stems and bowls, x-heights,
base lines, capital heights, and so on, are marked,
so when you put hints on them, the rasterizer can
adjust those to the output raster easily.

D: How does what you have in Illustrator get into
Glyphs?

K: Okay. So now I have the calligraphic sketch, and
then I do the real fine line drawing on a piece of
Mylar, then I scan that, put it in the background in
Illustrator, I fit the splines in Illustrator, so I have
a nice spline-based outline. I just simply copy and
paste that into a window in FontLab or Glyphs.

D: Ah ha!

K: And if I set everything up right, to all the exact
measurements, it all goes very smoothly.

D: How long does it take you to do a letter?

K: I don’t know, I don’t even want to know. When
I was doing really fast jobs for somebody, I would
time it based on half an hour a letter. But you know,
I don’t know anymore because sometimes you spend
. . . like a “w”, which is always so difficult to do;
I might spend two or three hours on a “w”. But
you know, a capital “I”, well, not so much. And
sometimes it takes years to finish a typeface just the
way I want it.

D: Chuck talks about harmonized families of Lu-
cida; serif, sans serif, and typewriter. What does
harmonized mean?

K: I can explain that. I have a little lecture that I give
when I teach type design. For a type design to be
effective and legible, you have to achieve a balance of
sameness and differentness. Think of a ransom note;
really hard to read, right? It takes you a long time to
struggle through it. Or think of plain block lettering
where you have a square and every letter fits into
the square; also very, very difficult to read. So on the
one hand, the letters are too different in the ransom
note; and too similar in plain block lettering. It’s

not as bad as a ransom note, but you wouldn’t want
to read a whole book like that because the letters
are too much alike. So when you design typefaces,
you’re not just designing a beautiful “a” and then
a beautiful “b” and so on, you’re designing a whole
system of characters that work together — that are
different enough so that you can tell an “o” from
an “e” but are alike enough so that your reading
experience is smooth.

Then between different weights and styles of
a typeface, it means that you have to have some-
thing that’s holding those together. Maybe the stem
weights are matching. Maybe the slant of the italic
is matching. Maybe the thick/thin ratio is match-
ing. But you want certain aspects that are matching
so that your eye can go smoothly from, say, a sans
serif to a script font without that horrible jarring
effect that you get from the ransom note. So that’s
harmony. Does that make sense?

D: It does make sense, and I can see it in my mind’s
eye that reading a book where the titles are in some
different font from the text, if it’s too different, it’s
jarring.

K: Yes, you’ve seen that, I’m sure.

6 TUG, teaching, conclusion

D: Since this is an interview for the TEX Users Group,
I need to ask you something about TEX, LATEX, Meta-
font, Computer Modern, and the TEX community
more widely. How do you see any of that and its
relevance to the world at large, or its relevance to
you?

K: Well, to be frank, I don’t know that much; I
couldn’t design a metafont. I greatly admire it be-
cause I think it opened up this whole world of type-
setting mathematics, which I wouldn’t have even
understood was a problem, except mathematicians
have told me how it used to be and that it was a
problem. I will tell you that at some point, back
in the early 1980s, when we had a studio in San
Francisco on Vandewater Street, I picked up a copy
of Knuth’s — I guess it’s his Metafont book — and I
stayed up all night reading it. I was just completely
enchanted that you could . . . the way he lays every-
thing out. You just start from the beginning and you
just move through. I thought “wow, this is great;
I’m going to start designing everything as a meta-
font now.” But then I found out that actually it’s a
lot more complicated than using Ikarus so I never
followed up on it, but I’m enchanted by the idea. I
think Knuth has done a lot of good with this system.
It is just one of those things I’m probably not going
to get around to in this lifetime. [Laughs.]

Interview with Kris Holmes

202 TUGboat, Volume 39 (2018), No. 3

D: Why is Bigelow & Holmes bothering with a rela-
tionship with TUG? TUG is such a minor entity.

K: ’Cause we love you guys. [Laughs.] No, it’s really
true; because we like and respect you. We’ve always
enjoyed working with Karl Berry over many years,
and the same with others in TUG. Why work with
people if you think it’s going to be a problem? With
you guys, we know it’s not going to be a problem.
And if there’s a problem, we can work it out. You’re
all such interesting people. I mean, this is why we’re
independent. You know, I don’t think Chuck or I,
either of us, would want a job that was unhappy. We
want to be really happy in what we do, and part of
being happy is hanging around with people where we
enjoy their company. Not only just on a professional
level, but it seems we all have personal things that
we have in common. I guess it’s like the big group of
friends that Chuck and I were part of when we first
met. You’re part of our big group of friends that we
have as adults. And you do a good job.

D: Well, we could go with this interview for a long
time, and we can add to it as I sort this out, and you
say you have some other materials. That would be
great.

K: Yes, I have illustrations.

D: Before we stop for today, I would like to ask a
few final questions. For instance, you teach; you’ve
taught a lot. Why do you teach?

K: I’ve taught a lot. But I don’t actually teach any-
more.

D: Why did you teach?

K: I felt it was my duty. You know, I had good
teachers and people who passed on to me this amaz-
ing knowledge that I could never have gotten from
a book when I started out, or now. And so I felt
that it’s my duty to pass on what I’ve learned; and
also, when you’re teaching, you also learn from your
students. One thing I’ve learned is to not be so up-
tight about type design. [Laughs.] You know, I was
teaching type design here at RIT and the first year
I thought, “Oh wow, they’re not doing everything
[right], they’re not restricted enough.” I had taken
it too far on a perfectionist side, but I could loosen
up a little bit like them, and that was a very good
feeling.

D: Have you also mentored people who thought
about going into type design?

K: Yes, and we’ve mentored people who did go into
type design.

D: What do you recommend for them? How do you
tell them to do this?

K: I think in the past, we’ve mostly told them by
example. We teach them how to do the craft, and
we just conduct our lives as we do, and they learn.
Actually, at this point, I wouldn’t really recommend
that anybody go into type design exclusively because
the business model at this point is just so . . . ; it’s not
really something that you could make a living out of
very easily; it would be a very hard living. So these
days more often I recommend that people become
general designers, maybe specializing in lettering
design, and specializing in font design. I know that
when I was teaching type design here, a lot of my
students were graphic designers and they would
write to me and say, “oh, I put my typeface into my
portfolio, and when I pulled that out, ‘Wow!’, The
recruiter was so excited, they said, ‘you designed a
typeface?! I don’t know how to do that!’ ” So it was a
nice addition to their overall portfolio.

I talked to Hermann Zapf years ago at a meeting,
and he said he doesn’t teach calligraphy and lettering
any more. He said, “If I ever taught again, I would
teach craftspeople like bakers to do nice lettering on
cakes, or woodworkers to do good lettering.” He said
that he was disillusioned with the typeface design
business.

D: What should an amateur typesetter, who may not
know much about type, but uses what’s there, tries
to put a hyphen in the right place, tries to remember
when you’re supposed to use slanted instead of em-
phasis or italic. What do you recommend for such a
person; what’s the minimum they should know?

K: That’s a good question. I think you should know
the difference between roman, italic, oblique. You’d
be amazed how many people don’t know the differ-
ence between italic and oblique.

D: I’m one of them.

K: You know the difference. Italic is a different
letter form, while oblique is just a slanted roman.
You know it, you just don’t know that you know it.
[Lucida italic vs. Lucida oblique.]

I think you should also know about the differ-
ent slants; you should know about weights, what’s a
normal weight, what’s a bold weight, what’s a light
weight. You should know some basic styles: this is
an old style, this is a sans serif, this is a slab serif;
and you could buy a simple book about typography.
There are several now. Alexander Lawson wrote
a good book about type that explains all of these
things, the title is Anatomy of a Typeface. Jan Tschi-
chold’s Asymmetric Typography is another great
book that kept me up all night reading.

David Walden

TUGboat, Volume 39 (2018), No. 3 203

And then I think that you should just look at
things and read things, and just ask yourself ques-
tions about what I’m reading. There’s your handwrit-
ing on that page; you laid that handwriting out in a
certain way for a reason. You want it all on parallel
lines so it’s easier to read, you made it a certain size
in relation to the page. If you were going to translate
that into a typeset piece, what would you do? Well,
maybe you’d make the letters a little smaller because
type is easier to read than handwriting. You’d have
to look at the space between lines. Just think about
what you’re doing and what it means. What kind
of feeling does flush left give as opposed to a cen-
tered piece of type or a justified column (flush left
and right). I think just thinking about what you are
saying is a good start.

Also finding something that you really want to
do a good job on. You know, I think that Chinookan
calligraphy really turned me around as a designer
because I wanted to do a good job. So I worked
really hard and thought it all through from the very
basics, and I invented that new script that I was
using, because it really meant a lot to me. So I think
that rather than just doing alphabet after alphabet
or something, just find literature that you love and
typeset it, and see how it feels. It’ll feel great.

D: I will try your advice.

D: I have to go back to a prior question I forgot
to ask. Last night at dinner, you and Chuck were
talking about the Go typeface (Figure 15).15 It’s a
free typeface apparently.

K: That’s correct. Free and open source.

return func() *DenseMatrix {

return func() *DenseMatrix {

return func() *DenseMatrix {

return func() *DenseMatrix {

Figure 15. Go font examples: (top to bottom) Go mono,
Go regular, Go medium, Go medium with color.

D: But that presumably means that somebody paid
you to do it so it could be free.

K: It was a commissioned typeface, by the Go lan-
guage people at Google. They said that they wanted
a really nice font to bundle with the Go language
or “Golang”. One of them was Rob Pike, who co-
invented the Plan 9 from Bell Labs operating system,
which used Lucida fonts. But for Go, which is free
and open source and has good handling of TrueType
fonts, they wanted something nice for people to use
that could also be free and open source.

D: Final question: what do you see in your future?

K: I think I’d like to just be able to continue what I
have been doing all along. Designing for Bigelow &
Holmes. Honoring my wonderful, generous teachers.
Encouraging sincere young designers. And putting a
little swing into things. [Laughs]

D: Thank you so much for taking the time to partic-
ipate in this interview. I’m honored to meet you in
person.

K: It’s my pleasure.

Notes and references
1 See the article on the Cary Graphic Arts Collection

elsewhere in this issue (pp. 169–170).
2 Yue Wang, Interview with Charles Bigelow, TUGboat,

volume 34, number 2, 2013, pp. 136–167, tug.org/
TUGboat/tb34-2/tb107bigelow-wang.pdf

3 For more about Reynolds’ teaching and legacy, see
reed.edu/calligraphy/history.html

4 Laura Lindquist, The Music of the Words, Reed Magazine,
August 2003, reed.edu/reed_magazine/aug2003/
features/music_of_words/index.html

5 Robert J. Palladino, Inscribed in Stone — The Masterful
Work of Edward M. Catich, Reed Magazine, March 2010,
tinyurl.com/reed-magazine-2010-catich

6 artlegacyleague.blogspot.com/p/about-catich.html
7 Also see the interview of Charles Bigelow in IEEE Annals of

the History of Computing, vol. 40, no. 3, pp. 95–103.
8 The image in Figure 2 was cropped from an image that was

50 percent wider and somewhat taller on a 5.5x9 inch
page of the keepsake brochure. Other images in this
interview have also been cropped from their original
presentations.

9 See library.rit.edu/cary/exhibitions/leviathan-

typeface-surfaces-after-40-years which shows
the letter C from the font, used in “Call me Ishmael”.

10 Kris Holmes, ITC Zapf Chancery, Fine Print, January
1980, pp. 26–29, scroll down to the last part at
tinyurl.com/holmes-chancery.

11 Charles Bigelow and Kris Holmes, The Design of a Unicode
Font, Electronic Publishing, volume 60, number 3,
September 1993, pp. 289–305, cajun.cs.nott.ac.uk/
compsci/epo/papers/volume6/issue3/bigelow.pdf

12 There are many example fonts at luc.devroye.org/
fonts-26292.html

13 Charles Bigelow, A Short History of the Lucida Math Fonts,
TUGboat, volume 37, number 2, 2016, pp. 154–160,
tug.org/TUGboat/tb37-2/tb116bigelow-

lucidamath.pdf
14 tug.org/interviews/holmes-imagen-lucida.pdf
15 Go mono and Go regular also come in italic, bold, and

bold italic; Go medium also comes in italic. For more
about the Go fonts, see tug.org/interviews/holmes-

bigelow-gofonts.pdf. The code sample in the figure
was provided by the Go language developers.

⋄ David Walden
tug.org/interviews

[Editor’s note: Many of the illustrations use color; for the
full effect, please see the online version of the article at
tug.org/TUGboat/tb39-3/tb123holmes-walden.pdf.]

Interview with Kris Holmes

204 TUGboat, Volume 39 (2018), No. 3

Science and history behind the design of Lucida

Charles Bigelow & Kris Holmes

1 Introduction

When desktop publishing was new and Lucida the
first type family created expressly for medium and
low-resolution digital rendering on computer screens
and laser printers, we discussed the main design de-
cisions we made in adapting typeface features to
digital technology (Bigelow & Holmes, 1986).

Since then, and especially since the turn of the
21st century, digital type technology has aided the
study of reading and legibility by facilitating the
development and display of typefaces for psycho-
logical and psychophysical investigations. When we
designed Lucida in the early 1980s, we consulted
scientific studies of reading and vision, so in light of
renewed interest in the field, it may be useful to say
more about how they influenced our design thinking.

The application of vision science to legibility
analysis has long been an aspect of reading research.
Two of the earliest and most prominent reading
researchers, Émile Javal in France and Edmund Burke
Huey in the US, expressed optimism that scientific
study of reading would improve the legibility and
economy of written and typographic forms.

“The object [of study] is the characters in
use. We shall have to investigate their size,
their form, their spacing.” (Javal, 1878)

“We therefore should seek to improve
legibility without reducing the number of
letters on the page.” (Javal, 1905)

“Certainly the letter-forms that have
come down to us through the ages have
never been pruned to meet the reader’s
needs, though the writer and printer have
made conservative changes for their own
convenience. There is not the slightest
doubt that forms can be devised which will
be much more legible than these ancient
traditional symbols.” (Huey, 1908).

A few years later, Barbara Roethlein, in her M.A.
thesis at Clark University, formalized the questions
to be asked of typographic legibility:

“Every reader has observed that all of
these variants of letter-forms are not
equally legible — an observation which
raises the theoretical question: What
are the factors upon which legibility
depends? And the practical question:
How should one proceed if one set out to
improve the legibility of printed letters?”
(Roethlein, 1912)

Figure 1: Earliest known type specimen sheet (detail),
Erhard Ratdolt, 1486. Both paragraphs are set at
approximately 9 pt, but the font in the upper one has a
larger x-height and therefore looks bigger. (See text.)

Despite such early optimism, 20th century type
designers and manufacturers continued to create
type forms more by art and craft than by scientific
research. Definitions and measures of “legibility”
often proved recalcitrant, and the printing and ty-
pographic industries continued for the most part to
rely upon craft lore and traditional type aesthetics.
Moreover, the craft of type punch-cutting involved
visual knowledge that vision science had not yet en-
compassed. For five centuries, type punch-cutters —
type designers before the term — carved extremely
tiny forms that had to be effortlessly recognizable
by the greatest number of readers, and as well be
visually pleasing to the casual glance. Renowned
punch-cutters like Garamond, Granjon, Van Dijck,
Bodoni, and others, though not scientists in the mod-
ern sense, were cognizant of some of the most re-
fined aspects of visual perception.

2 Body size and x-height

The most universal feature of type is size. The abil-
ity to compose type at nearly any size is taken for
granted today, but not in the early years of typogra-
phy. The laborious creation of many sizes of type,
the punches cut by hand, was the life work of highly
skilled artisans over generations and centuries.

In the incunabula era, printing through 1500,
very early books were printed in single sizes and
styles of type, but later printers did employ a broader
range of sizes. In 1486, Erhard Ratdolt, a German
printer established in Venice, printed the first known
type specimen sheet, showing 14 different typefaces
(fig. 1). Ten were gothic rotunda fonts in sizes from
36 to 9 point (Ratdolt, 1486).1

1 These measurements in point sizes are rounded to integers.
The actual body sizes are a few fractions of points bigger or

Charles Bigelow & Kris Holmes

TUGboat, Volume 39 (2018), No. 3 205

A remarkable feature of Ratdolt’s range of ro-
tunda fonts is that at three of the sizes, 18, 13, and
9 point, he displayed two versions, one with a large
x-height relative to the body, and one with a small
x-height. Ratdolt’s larger x-height versions look sub-
stantially bigger to us than the smaller x-height ver-
sions at the same body size. Ratdolt left no expla-
nation, but we may reasonably suppose that visible
differences between the different x-height versions
appeared the same to the printer and his readers
in the 15th century as they do to us today. A side
observation is that Ratdolt’s gothic fonts, as with
most gothic types of the era, had larger x-heights
than the roman types produced by printers in Italy
at the time, yet the roman style soon replaced the
gothic in Italian printing, and thence proceeded to
do the same in French and eventually English and
Dutch printing.

During the 16th century, average type sizes in
use decreased by a few points. The main economic
factor was cost of paper. Smaller type sizes enabled
smaller page sizes, less paper, cheaper editions, and
a larger market. Other factors have been suggested.
One is greater production and usage of eyeglasses,
to make smaller type more legible for older readers
or others with vision difficulties. Another is techni-
cal improvement in the methods of punch-cutting
and type casting, including improvements in met-
allurgy to produce harder, more durable type. A
religious reason may also have been a factor dur-
ing the Protestant Reformation and the Counter-
Reformation: smaller type enabled books to be more
economically printed and transported, and, if the
contents were proscribed by religious authorities,
easier to conceal.

But, as roman type body sizes decreased in the
16th and 17th centuries, their x-heights increased.
For example, in 1569, Robert Granjon cut a “Gros
Cicero” (“Big 12 point”) in the style of Garamond but
with a bigger x-height that made it look almost as
big as the next larger body size, the St. Augustine
(14 point) (Vervliet, 2010; M. Carter, 1985). In the
17th century, Dutch punch-cutters and typefounders
continued the trend toward bigger x-heights, and in
the 18th century, Pierre Simon Fournier cut alterna-
tive faces with large, medium, or small x-heights, in
several sizes. He called certain of his large x-height,
slightly narrow faces “in the Dutch style” (Fournier,
1766).

It has been said that Granjon’s Gros Cicero was
the eventual model for the Monotype face “Plantin”

smaller. Typographic point systems were not promulgated until
the 18th century and not stabilized until the 19th and 20th
centuries (Ovink, 1979).

of 1913, which may have been the starting point for
Times New Roman of 1931 (Carter, 1985).

Commenting on the longstanding trend to larger
x-heights, Stanley Morison lamented the lack of doc-
umentation on the “development of type design con-
sciously viewed as a means of reducing the real
space occupied by the letters while maintaining their
apparent size” (Morison, 1968).

In an influential essay on the “optical scale” in
typefounding, Harry Carter (1937) pointed out that
types intended for different reading sizes were tra-
ditionally designed differently. In particular, types
for newspapers and other continuous texts com-
posed at small sizes often had abbreviated descend-
ing strokes or “tails”, as well as shortened ascending
strokes, to increase the x-height fraction in relation
to the body size. By “x-height fraction” we mean
the portion of the total body height occupied by the
x-height.

Although it had been evident for 500 years that
larger x-height fractions made type appear bigger, in
the 1980s we did not know of studies that proved
that types with bigger x-height fractions were actu-
ally more legible in terms of speed of reading or
degree of comprehension. Apparently, when type
looked bigger, that was good enough to persuade
printers and readers of its value, but several early
20th century legibility studies focused on the mini-
mum sizes that were easily readable.

Javal (1905) stated that nine point type was
most used for books and newspapers in France;
the 9-point type in his book had an x-height of
1.5 millimeters. Huey (1908) recommended a min-
imum x-height of 1.5 mm for fast reading. Roeth-
lein (1912) tested 10-point fonts, the majority of
which had x-heights in the range of 1.4 to 1.5 mm
(insofar as the heights could be determined).

Miles Tinker’s Legibility of Print (1963) summa-
rized decades of meticulous legibility research by
Tinker and Donald Paterson on type size and legi-
bility. Using body size in points as their measure,
they found that type sizes of 10 and 11 point were
read most quickly. By the early 1980s, many of the
types tested by Tinker and Paterson a half-century
earlier were no longer in common usage, but our
measurements of those types and sizes in catalogs
indicated that the x-heights averaged 1.5 mm.

Those early assertions of minimum type size
for fluent reading were confirmed in a series of rig-
orous psychophysical reading studies by Legge et
al. (1985, 2007), which found the “critical print size”
below which reading speeds decrease markedly, but
above which increases in type size do not apprecia-
bly increase reading speeds. Legge et al. measured

Science and history behind the design of Lucida

206 TUGboat, Volume 39 (2018), No. 3

RQENbaegn (Lucida Bright)
RQENbaegn (Nimbus Roman)

RQENbaegn (Nimbus Mono)

Figure 2: Lucida, URW Nimbus Roman (Times design),
and URW Nimbus Mono (Courier design) compared at
10 point.

the physical size of printed type and the distance
at which it is read, defining psychophysical size as
degree of visual angle subtended by the object — in
this case x-height — at the retina of the reader’s eye.
Legge (2007) states that across a range of studies,
the critical print size is around 0.20 degrees. This
is equivalent to a 1.4 mm x-height read at 40 cen-
timeters. For example, with familiar Times Roman,
critical print size would be 9-point type read at a dis-
tance of 16 inches. Greater reading distances need
larger type sizes for easy reading; closer distances
allow reading at smaller sizes, as when teenagers
easily read small text on smart phones at distances
of 12 inches or less.

When we designed Lucida in 1983–1984, we
were not aware of Legge’s studies of print size. We
determined Lucida’s large x-height fraction by a less
rigorous method. Some ergonomic recommenda-
tions of the early 1980s specified that 20 to 24 inches
was a suitable distance for reading text on a com-
puter monitor, and although there were other recom-
mendations, they all suggested that reading distance
for screen displays should be greater than average
reading distances for text on paper. When we viewed
10-point printed samples of popular typefaces like
Times Roman and Courier at 20 to 24 inches, they
seemed too small. A 12-point size seemed easier
to read. But, as with paper in Renaissance printing,
computer screen area was expensive, so simply en-
larging type size on screen was not an ideal solution.
We thought it would be better to give Lucida a big
x-height, so that when set at a 10-point body size, it
would look as big as Times or Courier at 12 point.
(This article is set in 9-point Lucida Bright.)

We made the Lucida x-height fraction 53% of
the body size. In other words, when Lucida is set at
10 point, its x-height is 5.3 points high. In compar-
ison, the x-height fraction of Times Roman is 45%
of body sizes and that of Courier nearly the same.
Thus, at 10 point, Lucida appears bigger than Times
or Courier, by roughly 17%, although the visual im-
pression is affected by average letter widths. Times
on average is narrower than Lucida, and Courier, a
monospaced design, is wider than Lucida.

At 10 point, Lucida read at a distance of 16
inches has a visual angle of 0.26 degrees, well above
the critical print size found by Legge et al. At a dis-
tance of 20 inches, 10-point Lucida has an x-height
of 0.21 degrees, still above critical print size.

We wondered about drawbacks to such a big x-
height. As ascenders and descenders are decreased
in length in order to increase the x-height of the
font, there must eventually be a stage at which as-
cenders and descenders are too short for readers to
distinguish letter pairs like b/p, d/q, h/n, v/y. We
did not know at what point such illegibility would
occur. Some 32 years later, in an elegant study of
design proportions and legibility, Larson & Carter
(2016) tested different x-height fractions of a single
typeface design and found that, indeed, beyond a
certain point, reduced descenders impaired letter
recognition.

Another reason for our choice of a big x-height
was related to digital screen resolution. In the early
1980s, computer screens had resolutions around
72 to 75 pixels per inch, too low at text sizes to
render more than a pixelated impression of letter
shapes. Before deciding on the final forms and pro-
portions of Lucida high-resolution outline characters,
we hand-sketched bitmaps of letters at various reso-
lutions on graph paper, to study how high resolution
forms devolve into minimalist pixelations at low res-
olutions. The x-height portion always seemed more
important for letter recognition than the ascenders
and descenders; observations going back to Javal
and Huey supported that view.

Later, using interactive bitmap editing tools, we
produced hand-edited bitmap font sets, named “Pel-
lucida”, for screen displays (Bigelow, 1986). These
had somewhat larger x-heights than the outline Lu-
cida high-resolution fonts, and were used as user
interface fonts on the DEC VAXstation 100, the Tek-
tronix Smalltalk workstation, and in the operating
system Plan 9 from Bell Labs.

A side trip to the future: in 2011, one of us
(Bigelow) co-authored a review article with Legge,
with illustrations of x-height and letterforms cre-
ated by Kris Holmes (Legge & Bigelow, 2011). That
paper reviews reasons in favor of x-height as the
main indicator of perceived type size, cites histori-
cal, practical, and laboratory evidence to explain the
“critical print size” and other aspects of type size
in relation to reading. It should be noted, however,
that some reading scientists and typographers favor
capital height as an indicator of legibility, notably
Arditi (1996) and the German DIN 16507–2 standard
of 1999.

Charles Bigelow & Kris Holmes

TUGboat, Volume 39 (2018), No. 3 207

3 Open spacing

Lucida Sans (including Lucida Grande), and the orig-
inal Lucida seriffed faces have slightly more space
between letters than most modern types. In partic-
ular, Lucida Sans has more inter-letter spacing than
popular sans-serif typefaces in the “neo-grotesque”
style dating from the 1960s and 1970s, e.g., Hel-
vetica and its clones. In the 1970s, there was a fad
for very close or “sexy” letterspacing in seriffed as
well as sans-serif typefaces intended for advertising
typography. This was partly based on a hypothesis
that we read by word shapes, not letters, which led
to assaults on readers with dense tangles of crowded
words. That hypothesis has since been discredited
by further research (Pelli et al., 2003).

Lucida took a different approach. Its letterspac-
ing was influenced by the open spacing of early ro-
man typefaces, like Jenson’s Venetian romans from
1470 to 1480, which remained legible despite the
“noisy” environment of rough paper, easily worn
types, and uneven pressures of early printing tech-
nology. The spacing of early roman typefaces tended
to equalize the apparent space between letters with
the space inside letters, an aesthetic practice be-
lieved to contribute to legibility, followed by later
type punch-cutters and type designers through the
20th century. Equalized spacing was a visual judg-
ment, not an exact measure of distance or area.

Related to the concept of “optical scale”, types
intended for small sizes often have slightly wider
inter-letter spacing, which can be seen in contempo-
rary as well as historical types.

Another influence on Lucida letterspacing was
a tremendously influential paper by Campbell & Rob-
son (1968) which showed that the human visual sys-
tem is more sensitive to certain spatial frequencies —
alternating light and dark band patterns — than to
others. Peak sensitivity occurs around 3 to 6 cycles
per degree of visual angle, and becomes less sensi-
tive as frequencies increase, that is, as the alternat-
ing bands are more tightly packed. At higher spatial
frequencies, contrast between light and dark stripes
must be increased for better perception. Campbell
and Robson demonstrated this as a contrast sensi-
tivity function, “CSF” (Ohzawa, 2008).

Type printed on light paper with black ink is
generally high-contrast, but type rendered on the
phosphors of cathode-ray-tube screens by a soft
scanning spot is lower in contrast and fuzzier, so
we tried to adjust the horizontal spacing frequency
of Lucida characters at 10 and 12 point to fall near
the peak visual sensitivity range of 3 to 6 cycles per
degree. At 12 point, Lucida Sans has a vertical stem

Figure 3: The Campbell-Robson contrast sensitivity
function (from Ohzawa, 2008). Perception of the bands
typically shifts as you view the image at closer or
farther distances or scale the image larger or smaller.

spatial (stem) frequency of roughly 5.5 cycles per
degree of visual angle, and at 10 point, the frequency
is around 6.7 cycles per degree — not quite ideal
with reference to the Campbell & Robson CSF, but
reasonably close.

The contrast sensitivity function concerns vis-
ual acuity, but a different aspect of letter spacing
is the reader’s ability to recognize objects, namely
letters, that are closely juxtaposed, as in standard
typographic text strings. Herman Bouma called this
“interaction effects in letter recognition” in Bouma
(1970) and “visual interference” in Bouma (1973).
Bouma found that the ability to perceive fine details
is impaired when contours are close to the details to
be recognized. In particular, recognition of letters
is impaired when flanking letters are close by, and
impairment worsens the farther the letters are from
the fixation point of central vision. This effect is now
commonly called “crowding” (Pelli et al., 2007; Levi,
2008). Bouma’s observations caused us to think that
generous spacing could ameliorate some problems
in recognizing type on screens. We already believed
that the tight letter spacing of popular grotesque
faces was a hindrance to reading at small sizes, and
Bouma’s research tended to reinforce our impres-
sions.

Crowding is the difficulty of recognizing letters
near each other. It has two main factors: (a) the
closer the letters are to each other; and (b) the farther
off-center they are on the retina. (The “center” being
the small, high-acuity region called the “fovea”.) In
reading, our central vision fixates briefly on words
or letters and then jumps several letters ahead to
fixate again, and so on. During fixation, the more
peripheral the letters are — that is, the farther they
are from central vision — and the closer they are to

Science and history behind the design of Lucida

208 TUGboat, Volume 39 (2018), No. 3

each other, the harder they are to identify. The more
crowded the letters, the slower the reading.

Although wider letterspacing may seem to im-
prove recognition of text at a given type size at a
certain distance, wider letter spacing also expands
the whole text string, driving subsequent letters or
characters further toward peripheral vision, where
crowding becomes progressively worse.

In the era when we designed Lucida, texts would
be read on computer screens at greater distances
than on paper, and thus the type would look smaller
and its inter-letter spacing tighter. Therefore, we
made the spacing slightly wider, hoping it would
reduce the risk of crowding and make reading easier
despite the greater reading distance.

We also noted that a little extra spacing avoided
some localized problems when errors in rasteriza-
tion and fitting caused adjacent letters to acciden-
tally merge, on screen or in print. This often hap-
pened with a popular grotesque sans-serif in early
laser printers; the letter ‘r’ often collided with a fol-
lowing ‘n’ to make a spurious ‘m’, turning “fern” into
“fem”, “warn” into “wam”, and so on.

The trade-off of loose letter spacing was that at
larger text sizes on paper, Lucida text seemed airy
compared to densely fitted grotesques. The higher
resolution LCD and LED displays of modern smart
phones, tablets, and laptops have made some of
these Lucida adjustments unnecessary, but Lucida
fonts still perform well on high resolution screens
and e-ink readers at small sizes.

Much later research doubted that more space
between letters ameliorates crowding. “There is no
escape,” declared Pelli et al. (2007). So, did generous
letter spacing of Lucida make it more legible? Anec-
dotally, yes. Lucida (Sans) Grande functioned well as
the system screen fonts on Macintosh OS X for 13
years at sizes ranging from 9 to 14 point, and users
complained when the system fonts were changed
from Lucida to a grotesque sans-serif. Monospaced
Lucida Console has been a terminal and program-
ming font in Windows operating systems since 1993.
But, does generous letter spacing actually improve
reading speed or comprehension? Perhaps, at best,
only for certain sizes, reading distances, and readers.
A recent paper by Xiong et al. (2018) compared legi-
bility of fonts intended to ameliorate effects of mac-
ular degeneration and found that interletter spacing
was a beneficial factor.

4 Open counter-forms

Counter-forms are the spaces inside letters; some
are totally enclosed as in ‘b’, others non-enclosed
as in ‘c’. A few letters have both enclosed and non-

aces (Lucida Sans)

aces (Nimbus Sans)

Figure 4: counter-form comparisons of Lucida and URW
Nimbus Sans (Helvetica design), left; Landolt C, right.

enclosed counters, as in roman ‘a’, ‘e’, and ‘g’. En-
closed counters can clog up in printing, so in giving
Lucida a large x-height, we also made the enclosed
areas relatively big. Wherever possible, we opened
up counters in ‘a’, ‘c’, ‘e’, ‘g’ in the roman styles (fig. 4,
left). In the italics, we adopted a chancery cursive
style with a characteristic counter-form for a, d, g,
q in one orientation, and a rotationally contrasting
counter in b and p, to help distinguish letters easily
confused. We thought of widening the letters as
well, but this would have reduced economy of fitting,
because we were also increasing the spaces between
letters.

The nearly enclosed counter-forms of ‘c’ and ‘e’
in “grotesque” style faces, while stylish at big sizes,
appeared to close up the gap (also called “channel”
or “aperture”) separating the two terminals of ‘c’,
and the eye and lower terminal of ‘e’, which tend
to get blurred, get clogged or blurred, making them
confusable with ‘o’. There is a vision test that uses
a circular figure called the “Landolt C”, devised by
a 19th century Swiss ophthalmologist (fig. 4, right).
The Landolt C is a circular ring with a precisely cut
gap equal to the thickness of the ring. Test subjects
are asked to name the position of the gap but do not
need to name letters. It resembles, in a rigidly geo-
metric way, the aesthetic of several Swiss grotesque
sans-serifs.

5 Distilled humanist letterforms

Because we were designing Lucida for text sizes and,
often, coarse resolutions, we tried to distill the letter
shapes to minimalist forms that we felt would be
recognizable under most imaging conditions. We
wanted Lucida typefaces to be without distracting
details, essentially transparent as conveyors of in-
formation. Lucida Grande, Lucida Sans, and original
Lucida seriffed have forms and thick-thin propor-
tions derived from pen-written letter shapes written
and read in the 15th century by Italian humanists,
whose handwriting was the model for the first ro-
man typefaces. A fellow typographer commented
that Lucida is a “workhorse” design. We took that
as a compliment. Lucida true italics are somewhat
showier, exhibiting traces of the fast Humanist hand-
writing styles still called “cursive” or “running”.

Charles Bigelow & Kris Holmes

TUGboat, Volume 39 (2018), No. 3 209

We had studied Humanist handwriting as stu-
dents of Lloyd Reynolds and other calligraphy teach-
ers, including Hermann Zapf. The Humanists based
their writing on what they thought was the most
legible ancient handwriting, written by scribes in
the court of Charlemagne 600 years earlier. Early
Humanist letterforms were simple and unadorned,
crafted to be easy to write and easy to read, even by
older scholars with declining vision, in an era when
eyeglasses were rare and expensive. The Humanist
style was therefore extensively “user tested” in two
different historical eras. Of course, nearly all roman
types descend from one or another era in the long
evolution of type forms that began with Humanist
bookhands in the 15th century, but the “humanist”
sans-serifs pioneered by English lettering artists Ed-
ward Johnston and Eric Gill, and later refined by
Swiss designers Hans Ed. Meier and Adrian Frutiger,
followed the Renaissance style, not the 19th century
English machine-like “grotesques”. Influenced by
the calligraphic teaching of Lloyd Reynolds and im-
pressed by Meier’s elegant Syntax and his persuasive
reasoning (Schulz-Anker, 1970) that the humanist
forms were inherently more legible, we followed the
humanist aesthetic in Lucida Sans.

6 Differentiated details

A problem at low resolutions is that letters begin to
look alike because there isn’t enough information to
distinguish shapes quickly and easily. Type styles
that assimilate forms, like geometric and grotesque
sans-serifs, are particularly prone to this problem, es-
pecially along the upper region around the x-height,
where traditional typefaces rely on details of shaping
to differentiate letters.

For example, in an ostensibly simple sans-serif
‘n’, there is a white cut or crevice where the arch joins
the left stem. This cut, along with the square corner
of the left stem, keeps ‘n’ from being confused with
‘o’. At low resolutions, these differentiating details
can get obscured or lost, so we lowered the arch join,
cutting more deeply into the shape. This also tended
to increase the thickness of the arch, further distin-
guishing ’n’ from ‘o’. H. Carter (1937) noted both that
the 18th century punch-cutter Fleischman made low
cuts in the joins of h m n, and that Times Roman em-
phasized the strong arches of those same letters, so
our decisions on these features had historical prece-
dents as well as contemporary technical reasons.

We cut off terminals of curved strokes and di-
agonals vertically, to align with the vertical axes of
digital rasters. However, we kept the serif-like ter-
minal on ‘a’, to differentiate it from other letters.
We tried to use the elegant Humanist ‘g’ with closed

lower loop, but our bitmap tests showed that the
letter shape did not survive at low resolutions and
small sizes, so we settled on the “grotesque” style
‘g’ in Lucida Sans and Lucida Grande. As in Aldine
humanist typefaces, we drew ascenders taller than
capitals, to distinguish lower-case ‘l’ from capital ‘I’,
and also to de-emphasize capitals slightly so that
all-capital composition like acronyms, common in
high-tech prose, and texts with frequent capitals, as
in German orthography that capitalizes nouns, did
not unduly interrupt the pattern of text. At lower
resolutions, the distinguishing difference in height
between capital ‘I’ (Eye) and lowercase ‘l’ (el) was
neutralized, so for some purposes in later Lucida
designs, we added serifs to capital I. These can still
be found in Lucida Grande in Apple OS X, but are
not the default forms.

7 Adjusted contrast of thick/thin strokes

We observed that in early laser printing and screen
displays, thin hairlines were often “broken” by white
gaps because of errors in rasterization. Such breaks
made letters difficult to recognize and text annoy-
ing to read, so we thickened hairlines and serifs to
avoid breakage and drop-outs. In the original Lucida
seriffed faces, the thickness ratio of main stems to
hairlines was 2 to 1, much thicker than in a face
like Times Roman, giving Lucida a low contrast and
less bright look. For Lucida Sans and its twin sib-
ling, Lucida Grande, we used a thin-thick contrast
of roughly 3 to 4, echoing the ductus of pen-written
Renaissance roman and italic hands. As noted above,
this also helped distinguish ‘o’ from ‘n’ because of
the difference in thickness between the arch of ‘n’
and the curve of ‘o’ at the x-line.

In terms of laser-printer technology, the slightly
thinner “hairlines” (which weren’t very hair-like) of
Lucida Sans helped keep the text from darkening too
much on write-black laser printers. Aesthetically, we
wanted to give our sans-serif more graphical mod-
ulation in its thick-thin contrast than in the stolid
sans-serifs.

8 Regularization & repetition

We drew Lucida by hand but digitized it with the
Ikarus software system developed by Peter Karow at
URW in Germany. We edited the digital outlines to
achieve precise regularity of base-line, x-line, capital
line and other alignments, and to ensure that repeat-
able letter elements like stems, bowls, and serifs
were digitally identical. This made it easier for soft-
ware to recognize and adjust outlines, as was first
achieved in Ikarus modules, and later implemented

Science and history behind the design of Lucida

210 TUGboat, Volume 39 (2018), No. 3

in the “hints” of PostScript Type 1 and “instructions”
of TrueType font rendering technologies.

Following research done by Philippe Coueignoux
(1975) in his MIT PhD dissertation, we experimen-
tally decomposed Lucida letter shapes to a small
set of repeatable component parts from which all
the letters could be assembled, in case extreme data
compression was needed. This intriguing and in-
structive sort of data reduction turned out to be
unneeded in the dominant commercial font formats
for Latin fonts, so we didn’t pursue it further.

Although regularization and repetition remain
popular approaches in type design more than three
decades later, there are sometimes objections to the
homogeneous look. Against this tendency, in 1992
we explored an opposite path, freely written forms
of expressive letters in Lucida Handwriting, a con-
necting, casual script that we see often, especially in
France, on Parisian bistro awnings, French perfume
bottles and other Gallic expressions of charming
exuberance.

9 Weight

The ratio of x-height to vertical stem thickness in Lu-
cida normal weight fonts is 1 to 5.5. This is slightly
heavier than many seriffed text faces. Although
Times Roman has about the same stem to x-height
ratio, it has thin hairlines and serifs that lighten the
overall tone. The normal or regular stem weights
of several popular grotesque sans-serifs are slightly
lighter than Lucida Sans normal or regular weights,
but the corresponding hairlines are slightly thicker,
so the weight of Lucida seems comparable.

When we designed the first Lucida fonts, we
chose a slightly dark weight to compensate for ero-
sion around the edges of black letters on white
background-illuminated screens and on write-white
laser printers, which visually reduce weight, mak-
ing text look weak in small sizes. The slightly dark
weight made Lucida well adapted to most screen
displays for almost 30 years, but printing on 300
dot-per-inch write-black laser printers had a slightly
darker tone than we desired. When common printer
resolutions increased to 600 dpi, this darkening ten-
dency was mostly alleviated, because the percentage

of weight added by write-black laser technology was
reduced at the higher resolution. A fortuitous out-
come of our choice of stem weight was that at 10
point, our target size, the main stems were four pix-
els thick when printed at 300 dots per inch, enabling
thinner strokes to be 3, 2, or 1 pixel thick and a
greater gamut of thickness modulation.

In 2014, we developed more than a dozen addi-
tional weights, ranging from UltraThin (1:22) to Ultra-
Black (1:2.3). With Ikarus we interpolated and extrap-
olated digital outlines of the hand-drawn weights,
and with FontLab we hand-edited the results. The
interpolations needed mostly minor editing but the
extrapolations needed extensive editing. Both the
interpolations and extrapolations first required the
outlines to be edited so their spline point structures
were isomorphic, that is, having the same numbers
and kinds of points in the same orders. The whole
process involved several iterations.

UltraThin ExtraThin Thin ExtraLite

Lite Book Text Normal Thick

ExtraThick Dark ExtraDark Bold

ExtraBold UltraBold Black

ExtraBlack UltraBlack

10 1984: First showing

Lucida was first shown at a meeting of the Associ-
ation Typographique Internationale (ATypI) in Lon-
don, September 1984, in the form of a type speci-
men chapbook from Imagen Corporation, a Silicon
Valley laser printer manufacturer that was the first
to license Lucida fonts. The Lucida booklet was
designed by Michael Sheridan, Imagen’s type direc-
tor whose appreciation of fine typography stemmed
from his prior experience working at Grant Dahl-
strom’s Castle Press, a Pasadena, California print-
ing firm renowned for fine typography and printing.
(The booklet is available at tug.org/interviews/
holmes-imagen-lucida.pdf.)

Today, new and original typefaces are released
in an unceasing flood, so it may be hard to recall
that three decades ago, there were nearly none. As
typography shifted from analog to digital technol-
ogy in the 1970s and 1980s, typefaces for digital
typesetters and printers were, with very few excep-
tions, digitizations of existing typefaces from previ-
ous eras of metal or photo-typography. (Among the
few instances of original designs for high-resolution
digital typesetters were the Marconi (1976) and Edi-
son (1978) type families intended for use in newspa-

Charles Bigelow & Kris Holmes

TUGboat, Volume 39 (2018), No. 3 211

pers, designed by Hermann Zapf for the Hell-Digiset
firm, which had invented and demonstrated the first
digital typesetter.) In the article “Digital Typogra-
phy”, Bigelow and colleague Donald Day wrote (1983)
that the initial, imitative phase of digital typography
would eventually be followed by a creative phase of
original design, but that had not happened by 1984.
So one more reason we developed Lucida was to
show that original digital designs could be effective
and successful.

References

Arditi, A. (1996). Typography, print legibility, and low
vision. Remediation and Management of Low Vision,
Cole, R., ed., 237–248.

Bigelow, C. (1986). Principles of Type Design
for the Personal Workstation. Gutenberg-Jahrbuch,
61, 253–270.

Bigelow, C. & Day, D. (1983). Digital typography.
Scientific American, 249(2), 106–119.

Bigelow, C. & Holmes, K. (1986). The design of
Lucida: An integrated family of types for electronic
literacy. Text Processing and Document Manipulation,
1986, 1–17.

Bigelow, C.A. & Holmes, K. (1993). The design of a
Unicode font. Electronic Publishing, 6(3), 289–305.

Bigelow, C.A. & Zanibbi, R. (2015). Analysis of
typographical trends in European printing
1470–1660: Comparison of automated methods
to palaeotypographical approaches. Presentation,
American Printing History Association Conference:
Printing on the Handpress & Beyond, 2015.

Bouma, H. (1970). Interaction effects in parafoveal letter
recognition. Nature, 226(5241), 177.

Bouma, H. (1973). Visual interference in the parafoveal
recognition of initial and final letters of words.
Vision Research, 13(4), 767–782.

Campbell, F.W. & Robson, J.G. (1968). Application of
Fourier analysis to the visibility of gratings. The Journal

of Physiology, 197(3), 551–566.

Carter, H. (1937). Optical scale in type founding.
Typography 4. Reprinted in Printing Historical

Society Bulletin, 13, 144–148, 1984. issuu.com/
letterror/docs/harry_carter_optical_scale_in_

typefounding

Carter, M. (1985, December). Galliard: A revival of types
of Robert Granjon. Visible Language, 19(1).

Coueignoux, P. J.-M. (1975). Generation of Roman
printed fonts, Ph.D. dissertation, Massachusetts
Institute of Technology. http://dspace.mit.edu/
handle/1721.1/27408

Fournier, P.S. (1764). Manuel typographique utile aux

gens de Lettres (etc.), Vol. 1. L’auteur. (1766: Vol. 2.)

Huey, E.B. (1908). The Psychology and Pedagogy of

Reading. The Macmillan Company.

Javal, E. (1879). Essai sur la physiologie de la lecture.

Annales D’Oculistique 82, 242–253. [English translation:
“Essay on the physiology of reading”, Ciuffreda, K.J. &
Bassil, N. (1990, October). Ophthalmic and Physiological

Optics, Vol. 10.]

Javal, E. (1905). Physiologie de la lecture et de l’écriture.

Félix Alcan.

Larson, K. (2004). The science of word recognition.
microsoft.com/typography/ctfonts/

WordRecognition.aspx

Larson, K., & Carter, M. (2016). Sitka: A collaboration
between type design and science. In Digital Fonts and

Reading, Dyson, M. & Suen, C.Y., eds., 37–53, World
Scientific Publishing Co.

Legge, G.E. (2006). Psychophysics of Reading in Normal

and Low Vision. Lawrence Erlbaum Assoc., CRC Press.

Legge, G.E., & Bigelow, C.A. (2011, August). Does
print size matter for reading? A review of findings
from vision science and typography. Journal of Vision,
11(5), 8. jov.arvojournals.org/article.aspx?
articleid=2191906

LiVolsi, R., Zanibbi, R., & Bigelow, C. (2012, November).
Collecting historical font metrics from Google books.
In Proceedings of the 21st International Conference

on Pattern Recognition (ICPR2012), 351–355, IEEE.

Morison, S. (1997). Letter forms: typographic and
scriptorial: two essays on their classification, history
and bibliography (Vol. 45). Hartley & Marks Publishers.

Ohzawa, I. (2008). ohzawa-lab.bpe.es.osaka-u.ac.
jp/ohzawa-lab/izumi/CSF/A_JG_RobsonCSFchart.html

Ovink, G.W. (1979). From Fournier to metric, and from
lead to film. Quaerendo, 9(2), 95–127.

Pelli, D.G., Farell, B., & Moore, D.C. (2003).
The remarkable inefficiency of word recognition.
Nature, 423(6941), 752.

Pelli, D.G., Tillman, K.A., Freeman, J., Su, M., Berger,
T.D., & Majaj, N.J. (2007, October). Crowding and
eccentricity determine reading rate. Journal of Vision,
7(2), 20. jov.arvojournals.org/article.aspx?
articleid=2122073

Ratdolt, E. (1486). bsbipad.bsb.lrz.de/nas/
einblattdrucke/300001993_0_r.pdf

Rubinstein, R., Bigelow, C., Baudin, F., Lynch, E., &
Levy, D. (1985). Proceedings of the typography interest
group ACM CHI’85. ACM SIGCHI Bulletin, 17(1), 9–15.

Schulz-Anker, E. (1970). Syntax-Antiqua, a sans-serif on
a new basis. Gebrauchsgraphik, 7, 49–56.

Tinker, M. (1963). Legibility of Print. Iowa State U. Press.

Vervliet, H.D.L. (2010). French Renaissance Printing

Types: A Conspectus. The Bibliographical Society,
The Printing Historical Society, Oak Knoll Press.

Xiong, Y.Z., Lorsung, E.A., Mansfield, J.S., Bigelow, C.,
& Legge, G.E. (2018). Fonts Designed for Macular
Degeneration: Impact on Reading. Investigative

ophthalmology & visual science, 59(10), 4182–4189.

⋄ Charles Bigelow & Kris Holmes
lucidafonts.com

Science and history behind the design of Lucida

212 TUGboat, Volume 39 (2018), No. 3

TEX Gyre text fonts revisited

Bogusław Jackowski, Piotr Pianowski,
Piotr Strzelczyk

1 Introduction

The collection of the TEX Gyre (TG for short) family
of text fonts, an extensive revision of the freely avail-
able 35 base PostScript fonts, was released by the
GUST e-foundry in 2006–2009 [4, 6]. Having finished
this task, the GUST e-foundry team started to work
on the math companion (in the OpenType, OTF, for-
mat [7]) for the TG text fonts [5]. Work on the math
companion was finished two years ago. It resulted
in the broadening of the repertoire of glyphs that
could be used not only in math mode but also in text
mode in technical documents. Hans Hagen, inde-
fatigably coming up with interesting ideas, proposed
to migrate the relevant glyphs to the text TG fonts.
Needless to say, we seized on Hans’s suggestion.

The first step was to decide which glyphs are
to be migrated (and/or improved). Obviously, the
list of candidates grew and grew. All in all, about
1000 glyphs were designated to be added, mostly
geometrical and math symbols. A math companion,
so far, was provided only for serif fonts, thus the
consistent enhancement of the repertoire of the sans-
serif fonts was a working test for our font generator —
cf. Section 2 below.

We started with two fonts — the serif TG Pagella
and the sans-serif TG Adventor. The results were
satisfying. Now we are ready for the next step: to en-
hance similarly the rest of the TG family (TG Chorus,
which is hardly suitable for technical texts, needs
an individual approach). We believe, however, that
we’re over the hump. Below, we describe the most
difficult and thus most interesting (to us) aspects of
this stage of the TG project.

2 The MetaType1 engine

The scheme of the new workflow for the authors’
MetaType1 software is depicted in Figure 1.

The main change in the engine consists of the
replacement of several components (AWK plus Perl
plus T1utils) by Python code with the FontForge
library (finally, the library is available both under
Unix and Windows). However, the FontForge library
does not allow for sufficiently detailed control over
the contents of the AFM and PFM files being gener-
ated, necessitating additional steps for fine tuning
these files (dashed arrows in Figure 1).

First published in Die TEXnische Komödie 3/2018, pp. 11–20.
Reprinted with permission.

METAPOST

font base

METAPOST

source(s)

configuration

files

PFB file

TFM file

ENC and MAP

files (for dvips)

AFM file

fixed AFM file

PFM file

fixed PFM file

OpenType

font file (OTF)

FFDKO, i.e., Python scripts

employing FontForge library

EPS file 1

EPS file 2

EPS file n

auxiliary(OTI)file

...

Python

Python

METAPOST

Figure 1: New MetaType1 engine: working scheme

The converter from Type 1 fonts to MetaType1
sources, implemented in AWK plus T1utils, has not
yet been rewritten. We plan to rewrite it in Python
with the FontForge library and enhance it to also
process TrueType and OpenType files.

Of course, MetaPost is still the main module for
generating glyph shapes. However, instead of spread-
ing the auxiliary information into several output files
(including EPS files), a single auxiliary output file,
containing all the information needed for further pro-
cessing, is generated. We will refer to this file as
an Olio Typographic Information file, OTI. (Olio is
a traditional name for a potpourri; it appears, e.g.,
in Robert Burns’s Address to a Haggis — “French
ragout or olio”). An OTI file is a container of “as-
sorted bites and fragrances”, indeed. Below is a
fragment of an OTI file for TG Pagella Regular.

FNT FAMILY_NAME TeX Gyre Pagella

FNT HEADER_BYTE49 TeX Gyre Pagella

FNT GROUP_NAME TeX Gyre Pagella

FNT STYLE_NAME Regular

. . .

FNT WEIGHT Regular

FNT ITALIC_ANGLE 0

. . .

GLY A CODE 65

GLY A EPS 165

GLY A ANCHOR INBAS ALT.ogonek 623 -143

GLY A ANCHOR INBAS BOT_MAIN 392 -143

GLY A ANCHOR INBAS TOP_MAIN 392 819

GLY A WD 778 HT 692 DP 0 IC 6 GA 392

GLY A HSBW 778

GLY A BBX 15 -3 756 700

. . .

FNT FONT_DIMEN7 0.83

FNT DIMEN_NAME7 (extra space)

FNT FONT_DIMEN22 2.5

FNT DIMEN_NAME22 (math axis)

FNT HEADER_BYTE72 234

Bogusław Jackowski, Piotr Pianowski, Piotr Strzelczyk

TUGboat, Volume 39 (2018), No. 3 213

Each line of the OTI file contains either global
information, concerning the whole font (prefix FNT),
or local, concerning a given glyph (prefix GLY fol-
lowed by the glyph name). We will not dwell too
much on the details of the structure of OTI files as
it will be documented elsewhere.

3 The glyph repertoire

As mentioned above, one of the important reasons
for the “face-lifting” of the TG text fonts was our
efforts on TG math fonts. Many symbols do not need
the mathematical extension of the font structure (the
MATH table in OTF files), but still prove useful in
typesetting technical texts; for example, mathemati-
cal symbols (operators, relational symbols), arrows,
geometrical symbols, etc. — see Figures 2 and 3.
The number of glyphs grew from circa 750 to more
than 1600, and may grow further in the future (see
Section 5).

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

Figure 2: Sampling of added glyphs: TG Pagella
regular (top) and bold (bottom)

The symbolic glyphs in the TG math fonts were
designed only for regular serif variant fonts. The
code, however, turned out to be flexible enough that
with a few changes it was possible to generate bold
and sans-serif variants.

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

Figure 3: Sampling of added glyphs: TG Adventor
regular (top) and bold (bottom)

Apart from enriching the repertoire, many glyphs
were amended, due to, among other reasons, employ-
ing FontForge which, by default, minutely checks

Figure 4: Default math-oriented glyphs (left) vs.
old glyphs produced by the OTF ss10 feature (right)

glyph outlines. For example, a tilde in TG Adventor
was drawn from scratch, axes in several glyphs were
corrected and so on.

Math-oriented glyphs existing already in the
text fonts have been replaced with slightly differ-
ent forms, better suited for math formulas. The
old forms can be reached, if required, by using the
OTF mechanism called features [2, 7, 8], namely, the
‘stylistic set’ feature ss10. Moreover, the Pagella
Greek alphabet was taken from TG Pagella Math,
that is, from Diego Puga’s excellent Mathpazo with
the kind permission of the author who agreed to
let us use a fragment of his font under the GUST

Font License (GFL [3]). The latter change involves
significant change of the metric data. We are gen-
erally very reluctant to introduce such changes, but
believe that the elegance of the Mathpazo Greek
alphabet justifies that decision. Some glyphs from
the Greek alphabet of TG Adventor (programmed
in MetaType1) required improvements which also
implied changes in metric data.

Rolling with the punches, we decided to abandon
our initial idea of full compatibility with the metrics
of the renowned Adobe 35 fonts [1]. The reason is two-
fold: first, Adobe metric data is, as we pointed out in
the documentation of the TG fonts [4], itself inconsis-
tent in several cases; second, preserving full compati-
bility makes sense only when the relevant metric files
are used for previewing PostScript files to be printed
on a printer with built-in Adobe Type 1 fonts. The
TG fonts might have been used for such previewing,
but, as it turned out, they have not (either in Ghost-
script or in TEX Live; for example, the URW replace-
ments for the Adobe 35 are typically used). Eventu-
ally, we decided to tune the TG metric data according
to our experience whenever required. We believe that
we will manage to avoid such changes in the future.

4 The font structure

The structure of the OTF fonts has been enhanced
with the “backward compatible math style” feature
(ss10) mentioned above and, moreover, with the
mechanism of anchors, although the name “snaps”
seems to us to be more accurate. Anchors enable
putting accents precisely over glyphs. Roughly speak-
ing, the anchor mechanism can be considered the
analogue of the TEX \accent mechanism. Anchors,
however, are implemented in a much more intricate

TEX Gyre text fonts revisited

214 TUGboat, Volume 39 (2018), No. 3

way: three features, obscurely documented in [2, 8],
namely, ccmp (glyph composition / decomposition),
mark (mark positioning, precisely, accent-to-base or
mark-to-base positioning), and mkmk (mark-to-mark
positioning, or, in other words, accent-to-accent posi-
tioning)1 are used for this purpose, and yet the OTF

anchor mechanism turns out insufficiently efficacious.
We were surprised by the complexity and la-

boriousness of the implementation of such a simple
concept. Having read the explanations below, the
reader and our virtual successors should feel fore-
warned and thus be less surprised.

“Anchors” or “marks” are actually pairs of num-
bers (planar points); the features mark and mkmk are
supposed to position two glyphs in such a way that
the respective anchors of the accent and accentee
coincide. The former feature is used to position ac-
cents over or below base glyphs, the latter to position
accents over or below accents. In the TG fonts, fol-
lowing common practice, only so-called combining
accents (a subset of the block of combining diacriti-
cal marks [9]; that is, zero-width glyphs, protruding
entirely to the left) are used for accenting and, thus,
are equipped with anchors. In order to reduce the
amount of anchor data, we decided to use as anchored
accentees only accentless Latin letters plus letters
“welded” with cedilla, horn, ogonek, and, additionally,
l·, L·, ł, Ł, ø, and Ø.

The ccmp feature enables the transformation of
the input stream, namely: replacing glyphs and as-
sembling a series of glyphs into a composed character
or disassembling a composed character into a series
of glyphs. The respective substitutions, in principle,
must be defined in the font. Some engines, however,
know better and perform such substitutions even if
the font lacks relevant data. For example, Microsoft
Word replaces ‘i’ (U+0069) followed by a combining
top accent, say ‘caroncomb’ (U+030C), by a single
glyph ‘icaron’ (U+01D0), provided that the latter is
available in a given font; no further information, in
particular, no ccmp feature, is required. Similarly,
X ETEX joins accents with the base glyph into a single
glyph, provided that the assembled form is present in
the font; otherwise, accents are placed using anchors.
This behaviour cannot be turned off — X ETEX simply
uses system libraries which know better. . .

In the TG fonts, the ccmp feature is used to disas-
semble accented glyphs (but not glyphs with cedilla,
ogonek, or horns) and to join into a single glyph let-
ters followed by combining cedilla, ogonek, or horn
(provided that the resulting glyph belongs to the

1 There is yet one more anchor feature mset (mark posi-
tioning via substitution) meant for handling peculiarities of
the typesetting of Arabic texts.

repertoire of the font); otherwise, anchors are used.
Moreover, ccmp is used to replace certain base glyphs
and accents by their alternative forms; for example,
‘i’ and ‘j’ in the vicinity of top combining accents are
replaced by their dotless forms, while top combining
accents following an uppercase letter or ascender are
replaced by their ‘high’ (flattened) variants.

The process of accenting using anchors, seem-
ingly a trivial task, is, in fact, quite sophisticated.
The Unicode standard recommends that if a text
processor is being fed with a stream of text data
containing a glyph, having assigned a Unicode slot,
which is followed by a series of combining accents,
then the text processor may position these accents
over the main glyph [10], provided that the font con-
tains the relevant positioning information. A typical
example of the application of the anchor mechanism
involving the ccmp+mark+mkmk features (as imple-
mented in the new TG fonts) is depicted in Figure 5.

Figure 5: Anchor mechanism scheme — an example
(explanations in text)

In the picture, feature names written in a small size
denote the type of anchor (mark), large ones denote
application of the respective features, labels ‘TOP’
and ‘BOT’ are defined by the user; the assumed input
string is: ‘i’, ‘macronbelowcomb’, ‘caroncomb’, ‘tilde-
comb’ (that is: U+0069 U+030C U+0331 U+0303).
The anchors have descriptors given in braces: donor
and acceptor (taken from physical chemistry).

The process of accenting works here as follows:

• first, the ccmp feature enters the scene: the letter
‘i’, when followed by a combining upper accent,
is replaced with ‘dotlessi’;

• next, the mark feature acts: the ‘caroncomb’
glyph is placed over ‘dotlessi’ in such a manner
that its ‘TOP’ donor anchor coincides with the
‘TOP’ acceptor anchor of the glyph ‘dotlessi’; as
a result, both anchors become inactive;

• next, the mark feature enters once again: the
‘macronbelowcomb’ glyph is placed below ‘dot-
lessi’ in such a manner that its ‘BOT’ donor

Bogusław Jackowski, Piotr Pianowski, Piotr Strzelczyk

TUGboat, Volume 39 (2018), No. 3 215

Figure 6: Peculiar positioning of certain accents (TEX
source — right; the result — left)

anchor coincides with the ‘BOT’ acceptor an-
chor of the letter ‘dotlessi’; as a result both
anchors become inactive;

• finally, the mkmk feature intervenes: the ‘tilde-
comb’ glyph is placed above the newly placed
‘caroncomb’ in such a manner that its ‘TOP’
donor anchor coincides with the ‘BOT’ acceptor
anchor of the ‘caroncomb’ glyph; as a result,
both anchors become inactive;

• the resulting assembled glyph still has two active
anchors, ‘TOP’ and ‘BOT’, that could be used
by the mkmk feature, provided that the relevant
glyphs appear in the input stream (immediately
after ‘tildecomb’ in this case).

As one can see, the process of assembling glyphs
using anchors is fairly complex. It should be admit-
ted, however, that it enables handling such peculiar-
ities as replacing a caron glyph with a comma-like
variant if glyphs ‘l’, ‘L’ or ‘J’ are to be accented with
caron, replacing a comma accent by a turned comma
accent above ‘g’ (normally comma accent goes below
a letter), or a singular positioning of a dot below
accent at a letter ‘y’, as shown in Figure 6.

Unfortunately, not all cases of practical impor-
tance can be reliably handled. A notable example is
the replacement of letters ‘i’ and ‘j’ by their dotless
forms: the result depends to a large extent on the
order of the glyphs in the input stream. In Figure 7,
six cases are shown with different orders of glyphs
in the input stream, namely (here, i stands for the
letter ‘i’, c stands for ‘caroncomb’, and m stands
for ‘macronbelowcomb’): 1. ic ; 2. imc ; 3. immc ;
4. immmc ; 5. immmmc; 6. icccmmmm. Observe a
malpositioned caron in case 5 — it is the result of our
“design decision”. The replacement ‘i’→‘dotlessi’ is
performed only if the top accents occur close to the
letter ‘i’, preferably immediately after it. The OTF

feature specification permits contextual replacements,
that is, a certain number of bottom accents may pre-
cede the top one, but the preceding sequences must
be enumerated explicitly. We decided to limit the
length of the context to three glyphs (case 4 in Fig-
ure 7). If more bottom accents intervene between the
letter ‘i’ and the top accent, the replacement is not

Figure 7: Troublesome replacement of ‘i’ by ‘dotlessi’
(explanations in the text)

performed and the glyphs are just overlapped (case 5
in Figure 7; as mentioned, combining accents have
zero width and protrude to the left). Some fonts de-
fine longer contexts (for example, Charis SIL), but we
decided that for practical purposes three is enough.

In order to avoid such situations, we recommend
that the top accents go first, then the bottom ac-
cents (case 6 in Figure 7). The problem with our
recommendation is that the order can be reversed by
a text processing agent: according to the Unicode
Standard recommendation, the bottom accent should
go first and “canonical ordering behavior cannot be
overridden by higher-level protocols” [11]. Some text
processing agents apply the algorithm defined in [11]
at the phase of reading the Unicode stream. In
general, a typesetter cannot rely safely on the text
processor. Even in TEX, the same text may be pro-
cessed differently depending on the implementation.

In TEX, selected features, such as ccmp, mark,
mkmk, etc., can be switched on or off on demand. Not
all text processors offer such a possibility. A notable
example is Microsoft Word which has these features
switched on by default (it is not obvious whether it
makes use of the Unicode ordering algorithm). As
was mentioned, not all engines (in particular Micro-
soft Word, but also X ETEX) obey rules coded in the
features ccmp, mark, mkmk. Incidentally, Figure 7
was created using LuaTEX.

In our opinion, the complexity of the implemen-
tation of anchors, resulting in a variety of approaches
and implementations, is caused by the oversimpli-
fied mechanism of the OTF specification: the only
allowed operations on a glyph are (re)positioning
and substitution which is directly related to the OTF

table structure and the basic tables, namely, GPOS

and GSUB. The former operation is restricted merely
to shifting, the latter to one-to-one, one-to-multiple
and multiple-to-one replacements (which excludes
reordering). Replacements can be either explicit or
contextual, which adds complexity and does not help
too much. In particular, fairly aged, not to say fos-
sil, regular expressions are not allowed in contextual
replacements.

TEX Gyre text fonts revisited

216 TUGboat, Volume 39 (2018), No. 3

5 Plans for the future

The next step (besides obvious cleaning of the sources,
both Python and MetaPost) will undoubtedly be ex-
tending in a similar way the remaining TG text fonts,
both sans-serif (Heros) and serif (Bonum, Cursor,
Schola, and Termes). TG Chorus, as a chancery font,
is not suitable for such an extension. We consider
naming the stylistic features used in the TG fonts —
it needs consideration, however; wrong names may
likely introduce mess rather than order.

Having gathered experience with the text fonts,
we would like to revisit the TG math fonts, with
attention paid to sidebearings and math “staircase”
kerns.

Moreover, we plan to remove all non-Python
modules. As was mentioned, the path MetaType1
sources → OTF and Type 1 fonts is governed by
Python; the reverse path, OTF and Type 1 fonts
→ MetaType1 sources, currently employs AWK and
T1utils, thus, it cannot be used for converting TTF

and OTF fonts to MetaType1 sources. We believe
that the employing of FontForge (as a Python library)
is the remedy.

We have no clear answer to the question of
whether “small figures”, accessible by features subs

(subscripts), sups (superscripts), sinf (scientific infe-
riors) numr (numerators), and dnom (denominators),
should be included in the text fonts; in math fonts
math sub- and superscripts can be used instead. If
we include these glyphs, then the next question arises:
do we need special figures for small caps, smcp, other
than, traditional in the TEX realm, old-style figures,
also dubbed nautical? And do the small figures need
variants commonly used for “normal” figures, that is,
lnum (lining figures), onum (old-style figures), pnum

(proportional figures), and tnum (tabular figures)?
We are somewhat reluctant to add such a hodgepodge
to an already intricate font structure.

6 Acknowledgements

We are indebted to all people and TEX groups that
have supported our font enterprises. Almost all the
GUST e-foundry projects were kindly supported by
the Czechoslovak TEX Users Group CS TUG, the
German-speaking TEX Users Group DANTE, the
Polish TEX Users Group GUST, the Dutch-speaking
TEX Users Group NTG, TUG India, UK-TUG, and,
last but not least, TUG. In a few cases, GUTenberg,
the French-speaking TEX Users Group, supported
us too.

The exceptional, personal thanks we owe to
our friends who have kept our spirits up for many
years and tirelessly encouraged us to work on fonts:
Hans Hagen, Johannes Küster, Jurek Ludwichowski,
Volker RW Schaa, Jola Szelatyńska, Ulrik Vieth —
hearty thanks! All trademarks belong to their respec-
tive owners and have been used here for informational
purposes only.

References

[1] Adobe Systems Inc. Adobe metric files.
ftp://ftp.adobe.com/pub/adobe/type/win/all/

afmfiles/base35/

[2] Adobe Systems Inc. Feature file syntax.
adobe.com/devnet/opentype/afdko/topic_

feature_file_syntax.html

[3] GUST e-Foundry. GUST Font License.
gust.org.pl/projects/e-foundry/licenses

[4] B. Jackowski, J. M. Nowacki, and P. Strzelczyk.
TEX Gyre fonts collection.
gust.org.pl/projects/e-foundry/tex-gyre

[5] B. Jackowski, P. Strzelczyk, and P. Pianowski.
TEX Gyre math fonts collection.
gust.org.pl/projects/e-foundry/tg-math

[6] B. Jackowski, P. Strzelczyk, and P. Pianowski.
GUST e-foundry font projects.
TUGboat 37(3):317–336, 2016.
tug.org/TUGboat/tb37-3/tb117jackowski.pdf

[7] Microsoft Corp. OpenType Font Format, ver. 1.60,
ISO/IEC 14496-22.
microsoft.com/typography/otspec160/

[8] Microsoft Corp. Registered features. microsoft.

com/typography/otspec/featurelist.htm

[9] Unicode Consortium. Combining diacritical marks.
unicode.org/charts/PDF/U0300.pdf

[10] Unicode Consortium. The Unicode Standard
10.0.0; chapters 2.3 Compatibility Characters,
2.11 Combining Characters, 2.12 Equivalent
Sequences and Normalization.
unicode.org/versions/Unicode10.0.0/ch02.pdf

[11] Unicode Consortium. The Unicode Standard
10.0.0; chapter 3.11 Normalization Forms.
unicode.org/versions/Unicode10.0.0/ch03.pdf

⋄ Bogusław Jackowski
Piotr Pianowski
Piotr Strzelczyk

Rzeczypospolitej 8
80-369 Gdańsk, Poland
b_jackowski ,

p.pianowski ,
p.strzelczyk

(at) gust dot org dot pl

Bogusław Jackowski, Piotr Pianowski, Piotr Strzelczyk

HINT: Reflowing TEX output

Martin Ruckert

Introduction

Current implementations of TEX produce .pdf (por-
table document format) or .dvi (device indepen-
dent) files. These formats are designed for printing
output on physical paper where the paper size and
perhaps even the output resolution is known in ad-
vance. If these conditions are met, TEX, in spite of
its age, still produces results of unsurpassed quality.

Due to improvements in display size, resolution,
and technology over the past decades, it has become
common practice to read TEX output on screen not
only before printing but also instead of printing. For
viewing TEX output before printing, excellent pro-
grams [4, 5] for “pre-viewing” are available. The
prefix “pre” indicates that these programs intend to
provide the user with a view that matches, as close
as possible, the “final” appearance on paper. If,
however, there is no intention of printing, for exam-
ple if we read during a train ride on a mobile device,
then matching the appearance on paper is of no im-
portance, and we would rather prefer that the TEX
output instead adapt to the size and resolution of
our mobile device. Anyone who has been forced to
read a PDF file designed for output on letter paper
on a 5′′ smartphone screen knows the problem.

For this reason, web browsers or ebooks use a
reflowable text format. The HTML format, however,
was never designed as a format for book printing,
and epub, the ebook file format based on it, has in-
herited its deficiencies. Microsoft’s PDF reflow solu-
tion—converting PDF files to Word documents— is
an indication of the need for reflowable file formats
but is a proprietary surrogate at best.

Considering that the TEX engine is able to re-
flow whole documents just by assigning new values
to hsize and vsize, it seems long overdue to put
this engine to use for that purpose.

The HINT project does just that. It defines a file
format and provides two utilities: HiTEX, a special
version of TEX to produce such files, and HINT, a
standalone viewer to display them.

What is HINT?

Adopting the usual free software naming convention,
HINT is a recursive acronym for “HINT is not TEX”.
But then, what is it? One answer could be: It‘s 90%
TEX and the rest is a mixture of good and bad luck.
So let me start explaining the details.

TUGboat, Volume 39 (2018), No. 3 217

A first overview can be obtained by looking at
Figures 1–3. The first figure is a simplified depic-
tion of TEX’s structure: A complex input process-
ing part translates TEX input files into lists of 16-
bit integers, called tokens, which form the machine
language of TEX. The main loop of TEX is an inter-
preter that executes these programs, which eventu-
ally produce lots of boxes—most of them character
boxes—and glue (and a few other items) that end
up on the so-called contribution list. Every now and
then, the page builder will inspect the contribution
list and moves items to the current page. As soon
as it is satisfied with the current page, it will invoke
the (user-defined) output routine, again a token list,
which can inspect the proposed page, change it at
will, add insertions like footnotes, floating images,
page headers and footers, even store it for later use,
and eventually “ship out” the page to a .dvi file.

HINT splits this whole machinery into two sep-
arate parts: frontend and backend. The backend
is the HINT viewer. The design goal is to reduce
the processing in the backend as much as possi-
ble because we expect the viewer to run on small
mobile devices where reduced processing implies re-
duced energy consumption and thus longer battery
life. The frontend is the HiTEX version of TEX which
is prevented from doing the full job of TEX because
it does not know the values of hsize and vsize. As
a first approximation of this split, HiTEX can write
the contribution list to a file and HINT can read this
file and feed it to the page builder as shown in Fig-
ures 2 and 3.

As an overall design goal, the HiTEX and HINT

combination should produce exactly the same ren-
dering as TEX for a given hsize and vsize.

A closer look at Figure 3 reveals that the “Out-
put” arrow, representing the user’s output routine,
has disappeared; instead a new arrow, labeled “Tem-
plates”, has taken its place. Keeping the full power
of TEX’s output routines would imply keeping the
full TEX interpreter, all the token lists generated
from the TEX input file, and possibly even the files
that such an output routine might read or write in
the viewer. This seemed to be too high a price and
therefore output routines have been replaced by the
template mechanism described below. This was the
single most important design decision guided by the
desire to allow lightweight viewers to run efficiently
with a minimum amount of resources.

Several iterations were necessary to arrive at a
suitable file format that was compact, easy to digest,
and sufficiently expressive to provide the necessary
information to the viewer. Finally, many smaller

HINT: Reflowing TEX output

M
a
th

In
se

rts

P
a
ra

g
ra

p
h

Input Contributions Page DVI

O
u
tp

u
t

Tokens

Interpreter

TEX

Figure 1: The structure of TEX

In
se

rts

HINT fi le

M
a
th

P
a
ra

g
ra

p
h

ContributionsInput Tokens

Interpreter

TEX

Figure 2: The structure of HiTEX

Screen

In
se

rts

P
a
ra

g
ra

p
h

PageHINT fi le

T
e
m

p
la

te
s

G
U

I

Figure 3: The structure of HINT

components of TEX needed to be moved back and
forth between front- and backend before a satisfac-
tory separation was accomplished.

Before I begin to describe these in more detail,
I want to emphasize that the current state of the
file format and the two utilities is not the end-point
of development but a starting point. While I hope
that the current specification provides enough func-

218 TUGboat, Volume 39 (2018), No. 3

tionality to attract a first small community of users,
I see it more as a test-bed for experimentation with
reflowable TEX output leading to better concepts,
better formats, and better implementations.

Further, I consider the HINT viewer and its file
format, while derived from TEX, as TEX indepen-
dent. Why should not, for example, OpenOffice
have a plug-in producing HINT output files?

Martin Ruckert

HINT 1.0

<directory 4 (lists resources)

<section 3 ’TeXfonts/cmr10.tfm’>

<section 4 ’TeXfonts/cmr10.600pk’>

>

<definitions (lists definitions)

<max > (using just font 0)

<font *0 ’cmr10’ 3 4

<glue *13 (space skip)>

<hyphen "-" 0 (default hyphen)>>

>

<content (a paragraph showing a kern)

<par *0 "Hello w<kern -0x0.471D pt>orld!">

>
Figure 4: Example HINT file in long format

File formats

There are two file formats: a short form that rep-
resents HINT files as a compact byte stream for the
viewer and a long form that represents HINT files in
a readable form for editing and debugging. Figure 4
gives an example of the latter. Note the hexadeci-
mal floating point notation in the kern node which
is an exact representation of TEX’s “scaled points”.

After reading a HINT file, we have a byte stream
in memory. This stream contains the directory, the
definitions, the content stream, and finally resources.
In the definition part, we define fonts and associate
them with font-numbers for compact reference and
do similar things for glues and other units that are
used frequently. We supplement the definitions by
setting suitable defaults. Then follows a content
stream of at most 4GB. The latter restriction en-
sures that positions inside the content stream can
be stored in 32 bits. The content stream consists of
a list of nodes; each node representing a glue, a kern,
a ligature, a discretionary hyphen, . . . , or a box. Of
course the content of boxes is again a list of nodes.
After the content stream, we store file resources, for
example image and font files.

If we want the viewer to support changing the
page size while moving around in the stream—going
to the next or previous page, following a link or using
an index—practically any position in the stream
can be the start of a page. This makes precomputing
page starts impossible.

As a consequence, we need to be able to parse
the content stream forward and backward. A node
in the content stream therefore has a start byte, from
which the parser can infer the structure and size
of the node, and the same byte again as an end
byte. Given an arbitrary position in the stream, it
is possible to check if the current byte is a start byte
or an end byte by computing the node-length from
it and check the stream at the computed position

TUGboat, Volume 39 (2018), No. 3 219

for a matching byte. To be sure that the match is
not a coincidence, the process can be repeated for a
sequence of several nodes.

Start and end bytes contain a 5-bit “kind” and
a 3-bit “info” field. This allows for 32 different kinds
of nodes. The info bits can be used for small param-
eters or flags, or indicate the absence of certain fields
in the node.

Lists. A special case is nodes describing lists of
nodes. The method described above to distinguish
start and end bytes is not feasible for a list of nodes
because it is not possible to compute the size of the
list from the start or end byte. Therefore, we store
the size of the list content after the start byte and
before the end byte. The three info bits are used to
indicate whether the size is stored as 0, 1, 2, 3, or
4 bytes. This scheme enables a parser to find the
corresponding start or end byte. Specifying 0 bytes
for the size implies an empty list.

Texts. Because many lists consist mostly of char-
acters, there is a special list format optimized for
storing character nodes. We call such a list a “text”.
The start and end bytes of a text are like those of
ordinary lists, but they are of kind “text”. Only for-
ward parsing is supported for a text node. Using the
size information, we can skip easily to the beginning
of a text.

A text can be thought of as a list of integers.
Small integers in the range 0 to 127 are stored as sin-
gle bytes; for larger integers the multi-byte encod-
ing from UTF-8 is used. The integers from 0 to 32
are considered control codes, and all other integers
are considered character codes—or rather glyph-
numbers, to be more precise. The control codes are
used for a variety of purposes. For example, a glyph-
number in the range 0 to 32 can be specified by using
the control code 0x1D followed by the glyph-number;
or arbitrary nodes can be inserted in the text after
the control code 0x1E.

A glyph-number references a specific glyph in
the current font; the current font in a text is given
implicitly. The control codes 0x00 to 0x07 can be
used to select the 8 most common fonts; other fonts
can be selected by using the control code 0x08 fol-
lowed by the font number.

hsize and vsize

TEX treats hsize and vsize like any other dimen-
sion register; you can set them to any value and do
all kinds of computations with them. HiTEX is more
restrictive. At the global level, you cannot change
hsize and vsize at all, because they denote the

HINT: Reflowing TEX output

dimensions given in the viewer. TEX, however, al-
lows local modifications of dimension registers; for
instance you can say \vbox{\hsize = 0.5\hsize

\advance \hsize by -8pt . . . } to obtain a verti-
cal box, and inside this box, the value of hsize is
just a bit smaller than half its global size. Hence,
paragraphs inside this box are broken into lines that
are almost half a page wide. The value of hsize will
return to its old value once the box is completed. To
make this possible, HiTEX treats dimensions as lin-
ear functions α+β ·hsize+γ ·vsize, where α, β, and
γ are constants. Computations are allowed as long
as they stay inside the set of linear functions. For
example \multiply \hsize by \hsize would not
work. For lack of a better name, such a linear func-
tion is called an “extended dimension”. The good
news is that the viewer can convert an “extended di-
mension” immediately to a normal dimension since
in the viewer hsize and vsize are always known.

Paragraphs

Breaking paragraphs into lines is TEX’s most sophis-
ticated and complex function. Fortunately the im-
plementation is very efficient (it used to run fairly
smoothly on my 8MHz 80286). It needs to be present
in the frontend and in the backend. If hsize = α
is a known constant (with β = γ = 0), the frontend
can perform the line breaking; if β 6= 0 or γ 6= 0,
line breaking must be performed in the backend.

On the other hand, we do not want the back-
end to perform hyphenation. Hyphenation is an
expensive operation; it requires hyphenation tables
to be present; and then it would be impossible for
an author or editor to check the correctness of hy-
phenations. Therefore HiTEX will always insert all
the discretionary hyphens that TEX would compute
normally in the second pass of its line breaking al-
gorithm. To reproduce the exact behavior of TEX’s
line breaking algorithm, the discretionary hyphens
found in this way are marked and are used only dur-
ing the second pass in the viewer. This gives pref-
erence to line breaks that do not use hyphenation
(or only user specified discretionary hyphens) in the
same way as TEX.

The paragraph shape is controlled by the vari-
ables hangindent, hangafter, and parshape which
can be used to specify an individual indentation
and length for any line in the paragraph. Obvi-
ously, these computations must be performed in the
viewer. A complication arises if the viewer needs to
start a page in the middle of a paragraph: the line
number of the first line on the new page, and with
it its indentation and length, then depends on how

220 TUGboat, Volume 39 (2018), No. 3

the previous page was formatted. This might not be
known, for example if paging backward or if the page
size has changed since the viewer had formatted the
previous page. It remains an open question what
gives the best user experience in such a situation.

Packing boxes and alignment

TEX knows two kinds of boxes: horizontal boxes,
where the reference points of the content are aligned
along the baseline; and vertical boxes, where the
content is stacked vertically. Let’s look at horizontal
boxes; vertical boxes are handled similarly.

TEX produces horizontal boxes with the func-
tion hpack. The function traverses the content list
and determines its total natural height, depth, and
width. Furthermore, it computes the total stretcha-
bility and shrinkability. From these numbers it com-
putes a glue ratio such that stretching or shrinking
the glue inside the box by this ratio will make the
box reach a given target width. HiTEX faces two
problems: It might not be possible to determine the
natural dimensions of the content, because, for ex-
ample, the depth of a box can depend on how the
line breaking algorithm forms the last line of a para-
graph. In this case packing the box with hpackmust
be done in the viewer. But even if the natural di-
mensions of the content can be determined, a target
width that depends on hsize will prevent HiTEX
from computing a glue ratio. Therefore the HINT

format knows three kinds of horizontal boxes: those
that are completely packed, those that just need the
computation of a glue ratio, and those that need a
complete traversal of the box content.

Handling TEX’s alignments introduces a little
extra complexity. When TEX encounters a horizon-
tal alignment, it packs the rows into unset boxes
adding material from the alignment template and
the appropriate tabskip glue. After all rows are
processed, TEX packs the rows using the hpack func-
tion. At that point HiTEX can use the mechanisms
just described for ordinary calls of hpack.

Baseline skips

When TEX builds vertical stacks of boxes, typically
lines of text, it tries to keep the distances between
the baselines constant, that is: independent of the
actual depth of descenders or height of ascenders.
Three parameters govern the insertion of glue be-
tween two boxes in vertical mode: TEX will insert
glue to make the distance between baselines equal
to baselineskip unless this would make the glue
smaller than lineskiplimit; in the latter case, the

Martin Ruckert

glue is set to lineskip. Additional white space be-
tween boxes, for instance a \vskip 2pt, does not
interfere with this computation. Instead, TEX uses
the variable prev_depth, containing the depth of
the last box added to the list, for the computa-
tion. This offers a convenient lever for authors and
macro designers to manipulate TEX’s baseline cal-
culations. For example setting prev_depth to the
value ignore_depth will suppress the generation of
a baselineskip for the next box on the list. This is
of course a fact that the viewer should know about.

The HINT format is designed to be “stateless”,
that is: given the position of a page break in the
stream, it is possible to read, understand, and for-
mat the page starting at that position or the page
ending at that position. This turns the insertion of
baseline skips into an interesting problem: In sim-
ple cases, when all relevant information is at hand,
HiTEX can insert the correct glue directly. If some
information is missing, a baseline node is generated.
To process such a baseline node, the current val-
ues of the parameters mentioned before are required,
and these parameters do change occasionally.

Storing the current values in every baseline node
would require up to 54 bytes per node. HINT uses
a more space-efficient approach: It defines default
values that are constant for the entire stream. A
baseline node using the defaults does not need to
specify parameters. Further, the definition part of
the stream can specify up to 256 baseline definitions,
each defining the full set of parameters; such a pa-
rameter set can be used by specifying its number
in a single byte. Only in the rare case that these
two mechanisms are not sufficient must the base-
line node contain the necessary values directly. The
same approach is used for glues, extended dimen-
sions, paragraphs, and displays. It can be general-
ized to arbitrary parameter sets.

Displayed equations

The positioning of displayed equations in TEX is
no simple task. Usually the formula is centered on
the line, but if hsize is so small that the formula
would come too close to the equation number, it is
centered in the remaining space between equation
number and margin; if hsize is even smaller, the
equation number will be moved to a separate line.
Vertical spacing around the formula depends on the
length of the last line preceding the display, which
in turn depends on the outcome of the line break-
ing algorithm. If the line is short enough, TEX will
use the abovedisplayshortskip glue, otherwise it
uses abovedisplayskip. Of course there is also

TUGboat, Volume 39 (2018), No. 3 221

belowdisplayshortskip and belowdisplayskip to
go with them. In addition, the variables control-
ling the paragraph shape influence the positioning
of the displayed equation. The required computa-
tions must be done in the viewer; they are not very
expensive but the code is complicated. HINT uses
display nodes to describe displayed formulas. For-
tunately, none of the math mode processing need be
done in the viewer.

Images

Native TEX does not define a mechanism for includ-
ing images, instead providing a generic extension
mechanism. For the HINT viewer to be able to open
and display any correct HINT file, we need to specify
the image types that a viewer is required to support
and the exact format of the image nodes. Image
files are included in the resource part of the HINT

file and are referenced by defining an image number,
its position, and its size in the definition part.

For simplicity, the HINT viewer will not do any
image manipulation except scaling. Scaling will be
necessary to display the same HINT file on a wide
variety of devices in a user friendly way. Various
designs for the syntax and semantics of image nodes
are possible and only the experience of real users
will tell what is good or useless.

At present, images are treated like two dimen-
sional glue: you can specify a width or a height, a
stretchability, and a shrinkability. If neither width
nor height are given, the natural width and height
will be taken from the image file. When an image is
part of the content of a box, it will stretch or shrink
together with other glue to achieve the target size of
the box. This mechanism works surprisingly well in
practice; the image and the white space surrounding
it scale in a consistent way to fill the space that is
assigned to it by the enclosing box.

Page building

TEX’s page builder starts at the top of a new page
and collects vertical material, keeping track of its
natural height, stretchability, and shrinkability until
the page is so full that possible page breaks can only
get worse. Then it uses the best page break found
so far and moves remaining material back to the
contribution list. Of course it also accounts for the
size of inserts, and it uses the penalties found to
estimate the goodness of a page break. HINT uses
the same algorithm, complementing it with a reverse
version that starts at the bottom of a new page. The
reverse version is used when paging backward.

HINT: Reflowing TEX output

At the point where TEX calls the output rou-
tine, a new mechanism is needed, because (as men-
tioned above) we want the viewer to be simple, thus
precluding the use of the TEX interpreter that would
be necessary to execute a general output routine.
HINT replaces output routines by page templates,
but before we can describe this mechanism, it is nec-
essary to see how HINT handles insertions.

Insertions. The TEX page builder identifies differ-
ent insertions by their insertion number. It accounts
for the contribution of inserted material to the to-
tal page height by weighting the insertion’s natural
height by the insertion scaling factor. There is also
a constant overhead that needs to be added if the in-
sertion is nonempty, for example the space occupied
by a footnote rule and the space surrounding it.

HINT uses the concept of content streams for
this. Stream number zero is used for the main page
content; other stream numbers are defined in the
definition part of the HINT file along with stream
parameters such as the insertion scaling factor and
the maximum vertical extent e that the stream con-
tent is allowed to occupy on the page. HiTEX maps
insertion numbers to stream numbers and appends
the insertion nodes to the content stream.

Streams have some more parameters: a list b of
boxes that is used before and a list a that is used
after the inserted material if it is not empty; the
topskip glue g that is inserted between b and the
first box of inserted material reduced by the height
of this box; a stream number p, where the mate-
rial from this stream should go if there is still space
available for stream p; a stream number n, where
the material from this stream should go if there is
no more space available for the stream but still space
available for stream n; a split ratio r that, if posi-
tive, specifies how to split the material of the stream
between streams p and n.

The latter stream parameters are new and offer
a mechanism to organize the flow of insertions on
the page. For example, when plain TEX encounters
a floating insertion, it decides whether there is still
enough space on the current page and if so makes
a mid-insert; otherwise a top-insert. HiTEX needs
to postpone this decision. It will channel such an
insertion to a stream with e = 0, p = 0, and n equal
to the stream of top-inserts. When such an inser-
tion arrives at the HINT page builder, it will check
whether there is still space on stream 0, the main
page, and if so moves the insertion there. Other-
wise, setting the maximum extent e to zero forces
the page builder to move the insertion to the stream
n of top-inserts.

222 TUGboat, Volume 39 (2018), No. 3

If the split ratio r is nonzero, the splitting of the
stream will be postponed even further: The page
builder will collect all contributions for the given
stream and will split it in the given ratio between
streams p and n just before assembling the final
page. For example it is possible to put all the foot-
notes in one stream with an insertion scaling factor
of 0.5 and split the collected footnotes into two col-
umns using a split ratio of 0.5; with a cascade of
splits, three or more columns are also possible.

Marks. TEX implements marks as token lists, and
the output routine has access to the top, first, and
bottom mark of the page. Sophisticated code can be
written to execute these token lists producing very
flexible headers or footers. In HINT we cannot use
token lists but only boxes. Consequently, HINT uses
the stream concept, developed for insertions, and
extends it slightly. A flag can be added to a stream
designating it as a “first” or ”last” stream. Such a
stream will retain at most one insertion per page.
Now a package designer can open a stream for first
marks and a stream for bottom marks, put TEX’s
marks into boxes, and add them into both streams.
The implementation of top marks is difficult because
it requires processing the preceding page. Top marks
are not part of the present implementation.

Templates. Once the main page and all insertions
are in place, HINT needs to compose the page. For
this purpose it is possible in HiTEX to specify one or
more page templates. A page template is just a vbox
with arbitrary content: boxes, glue, rules, align-
ments, . . . , and, most importantly, inserts. HiTEX
will store the output template in the definition part
together with its valid range of stream positions.
When HINT needs to compose the page, it will search
for an output template that includes the stream po-
sition of the current page in its range. It makes a
copy of the template replacing each insert node by
the material accumulated for it— insert node 0 will
be replaced by the content of the main page. Mate-
rial given as parameters a and b of an insert stream
will be copied as necessary. After repacking the re-
sulting vbox and all its subboxes, the vbox will be
rendered on the display.

Implementation

For the work described above, I needed to make sub-
stantial changes to the TEX source code. The com-
mon tool chain from TEX Live uses tangle to con-
vert tex.web into Pascal code (tex.pas) which is
then translated by web2c [6] into C code. Already
the translation to Pascal code expands all macros

Martin Ruckert

and evaluates constant expressions, because neither
is supported by Pascal. As a result, the generated
Pascal code, let alone the further translation to C,
becomes highly unreadable and cannot be used as
a basis for any further work. So I wrote a transla-
tor converting the original WEB source code of TEX
into cweb source code [2, 3]. This cweb source is the
basis of the development of HiTEX and HINT.

For the implementation of HiTEX and HINT, I
had only limited time at my disposal: my sabbatical
during the fall semester of 2017/2018. As a conse-
quence, I often moved on as soon as the current re-
search problem had changed— in my view— into an
engineering problem. This allowed me to make fast
progress but left lots of “loose ends” in the code.

The current prototype has the functionality of
Knuth’s TEX with the adaptations described above,
and without added features like search paths for in-
put files or PDF specials. It is capable of generating
format files for plain TEX or LATEX and it can handle
even large files. The code for paging backwards is
buggy because I occasionally implemented new fea-
tures in the forward page builder and neglected to
update the backwards page builder accordingly.

Open questions and future work

Conditionals. It seems reasonable to implement
different output templates depending on screen size
and aspect ratio. Also conditional content, for ex-
ample a choice between a small and a wide table lay-
out, might be useful. For a whole list of ideas, see [1].

Macros for LATEX support. Since the input part
of HiTEX is taken directly from TEX, basic LATEX
is supported. But since LATEX uses complex output
procedures, many macros might need changes with
variable page sizes now in mind. Templates are still
an experimental feature of HINT that might need
changes to better support LATEX.

Usage of control codes. Three control codes used
in texts are indispensable: based on the bytes that
follow, one control code switches to any of 256 pos-
sible fonts, one specifies an arbitrary character code,
and one specifies an arbitrary node. The remaining
30 control codes provide plenty of room for exper-
iments. Currently 8 of them are dedicated to font
selection, 8 to reference globally predefined nodes,
and 14 to reference font-specific predefined nodes.
This should allow a convenient and compact encod-
ing that can accomplish the most common opera-
tions with a single byte and use two or more bytes
for less common operations. To decide whether the
current dedication is optimal in this respect is an

TUGboat, Volume 39 (2018), No. 3 223

open question. A statistical analysis using a large
collection of TEX documents should give an answer.

Images. The implementation of glue-like images is
experimental. Another obvious ideas is the speci-
fication of background (and foreground) properties
of boxes. The background could be a color (making
rules a special case of boxes), a shading, or an image
that can be stretched, or tiled, or positioned to fill
the box. Certainly this would extend the capabili-
ties of HINT beyond the necessities for TEX. Is this
a direction worth considering?

Because it was easy to implement, currently
only Windows bitmaps are supported. A full imple-
mentation should certainly support also JPEG and
PNG files, and some form of vector graphic, probably
SVG. I think it is better to have a small collection of
formats that is well supported across all implemen-
tations than a long list of formats that enjoy only
limited support. But how about sound and video?
Should there be support? How could an extension
mechanism look that keeps the HINT format open
for future development?

Platforms. Currently the HINT viewer is written
for the Windows platform just because this was con-
venient for me. Since HINT targets mobile devices,
a HINT viewer for Android would be a next logical
step. I also think that ebook readers deserve a better
rendering engine and HINT would be a candidate.

References

[1] H. Hagen. Beyond the bounds of paper and
within the bounds of screens; the perfect match
of TEX and Acrobat. In Proceedings of the Ninth
European TEX Conference, vol. 15a of MAPS,
pp. 181–196. Elsevier Science, September 1995.
ntg.nl/maps/15a/09.pdf

[2] M. Ruckert. Converting TEX from WEB to cweb.
TUGboat 38(3):353–358, 2017. tug.org/TUGboat/
tb38-3/tb120ruckert.pdf

[3] M. Ruckert. web2w: Converting TEX from WEB
to cweb, 2017. ctan.org/pkg/web2w

[4] C. Schenk. Yap: Yet another previewer.
miktex.org

[5] P. Vojta. Xdvi.
math.berkeley.edu/~vojta/xdvi.html

[6] Web2C: A TEX implementation. tug.org/web2c

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München, Germany
ruckert (at) cs dot hm dot edu

HINT: Reflowing TEX output

224 TUGboat, Volume 39 (2018), No. 3

Axessibility: Creating PDF documents with
accessible formulae

D. Ahmetovic, T. Armano, C. Bernareggi,
M. Berra, A. Capietto, S. Coriasco, N. Murru,
A. Ruighi

Abstract

PDF documents containing formulae generated by
LATEX are usually not accessible by assistive tech-
nologies for visually impaired people (i.e., by screen
readers and braille displays). The LATEX package
axessibility.sty that we have developed allevi-
ates this issue, allowing one to create PDF documents
where the formulae are read by these assistive tech-
nologies, since it automatically generates hidden com-
ments in the PDF document (using the /ActualText
attribute) in correspondence to each formula. This
actual text is hidden in the PDF document, but the
screen readers JAWS, NVDA and VoiceOver read it
correctly. Moreover, we have created NVDA and
Jaws dictionaries (in English and in Italian) that
provide reading in the natural language in case the
user does not know LATEX commands. The package
does not generate PDF/UA.

1 Introduction

In this paper, we describe axessibility.sty, a
LATEX package which allows automatic generation of
a PDF document with formulae accessible by assis-
tive technologies for visually impaired people. The
package was first introduced in [3] and we took the
material presented there as the starting point for the
results presented here. Assistive technologies (screen
readers and braille displays) perform satisfactorily
with regard to digital documents containing text, but
they still have a long way to go as far as formulae and
graphs are concerned. A comprehensive overview of
this problem can be found in [1, 2, 4].

Many studies have been conducted in order to
improve the accessibility of digital documents with
mathematical content. For instance, MathPlayer
ensures accessibility of formulae inserted by using
MathType in Word documents [13]. Another way to
create accessible mathematical documents is given
by the MathML language (see [7] for further infor-
mation). However, accessibility of such documents is
heavily affected by the versions of browsers, operat-
ing systems and screen readers, making this solution
very unstable.

A system used by blind people for reading and
writing mathematics is the LAMBDA system (Linear
Access to Mathematics for Braille Device and Audio-
synthesis). Mathematical language in LAMBDA is

designed so that every symbol can be directly trans-
lated into words. For further details on LAMBDA

we refer to [6]. Unfortunately, this system does not
help to spread accessible digital documents, since
it is used only by visually impaired people and is
not a standard for the realization of documents by
sighted people. Regarding LATEX, assistive technolo-
gies can directly manage LATEX documents. In this
case, visually impaired people need to learn LATEX in
order to understand the commands. However, there
is software which facilitates LATEX comprehension
and usability; one such is BlindMath [12]. Moreover,
some converters from LATEX to braille exist, see, e.g.,
[5] and [11].

In general, the most widespread digital docu-
ments are in PDF format. However, in the case of
mathematical contents, they are not accessible at all,
since formulae are usually unreadable by screen read-
ers because they are bidimensional as images. None
of the above systems directly support production of
accessible formulae in PDF documents. This could be
possible only performing specific tasks. For instance,
using the Word editor, if each formula is manually
tagged by the author (by using the alternative text),
such a comment will be kept when the corresponding
PDF file is generated and it will be read by the screen
reader. However, this procedure does not help to
improve the presence of accessible PDF documents,
since it is a tedious and time-consuming method. It
is difficult to imagine an author or editor performing
these actions for the realization, e.g., of a book.

Currently, a standard and fast method for insert-
ing accessible formulae into PDF documents is still
lacking, despite it being a crucial issue for spread-
ing accessible digital scientific documents. In [14],
standard guidelines for accessibility of PDF docu-
ments are presented. Moreover, in [8], [9] and [10],
an overview about accessibility of PDF documents is
provided with a focus on mathematical contents.

In this paper, we describe the features of our
package axessibility.sty, which provides the first
method for an automated production of accessible
PDF documents with mathematical contents. We
would like to highlight that this package does not pro-
duce fully tagged PDF, such as the standard PDF/UA,
but it does allow obtaining a PDF where formulae
are described using the /ActualText attribute.

2 Problem statement

When a PDF document is generated starting from
LATEX, formulae are not accessible by screen readers
and braille displays. They can be made accessible
by inserting a hidden comment, i.e., actual text, sim-
ilar to the case of web pages or Word documents.

D. Ahmetovic, T. Armano, C. Bernareggi, M. Berra, A. Capietto, S. Coriasco, N. Murru, A. Ruighi

TUGboat, Volume 39 (2018), No. 3 225

Figure 1: PDF document generated using the package
pdfcomment.sty

This can be made, e.g., by using the LATEX package
pdfcomment.sty or using an editor for PDF files like
Adobe Acrobat Pro. In any case, this task must be
manually performed by the author and thus is surely
inefficient, since the author must write the formulae
and, in addition, insert a description for each formula.
Note also that the package pdfcomment.sty does not
allow insertion of special characters like backslash,
brace, etc., in the comment. Moreover, with these
solutions, the reading is bothersome, since the screen
reader first incorrectly reads the formula and then
the comment provided for the formula. In Figure 1,
we show the PDF document generated from the fol-
lowing LATEX code containing a simple formula with
a manually inserted comment:

\documentclass{article}

\usepackage{pdfcomment}

\begin{document}

A simple formula:

\begin{equation}

\pdftooltip{

\frac{1 + \sqrt{5}}{2}

}{

begin fraction numerator 1 +

square root of 5 over 2 end fraction

}

\end{equation}

\end{document}

When the screen reader accesses the PDF document,
the formula will be read

square root 1 plus 5 2 begin fraction numera-
tor 1 plus square root of 5 over 2 end fraction

i.e., before reading the correct comment

begin fraction numerator 1 plus square root
of 5 over 2 end fraction

the screen reader reads incorrectly the formula

square root 1 plus 5 2.

There are also some LATEX packages that try to
improve the accessibility of PDF documents produced
by LATEX. Specifically, the packages accsupp.sty

(ctan.org/pkg/accsupp) and accessibility.sty

(github.com/AndyClifton/AccessibleMetaClass)
have been developed in order to obtain tagged PDF

documents. However, neither package solves the
problem of accessibility of formulae.

3 axessibility.sty LATEX package

Our package, named axessibility.sty, solves the
problem described in the previous section. It achieves
this by inserting a hidden comment in the PDF file
corresponding to any given formula. This comment,
named /ActualText, contains the original LATEX
commands used to generate the formula. The hid-
den comment is read by screen readers and braille
displays instead of the ASCII representation of the
formula, which is often incorrect. We tested our pack-
age using Acrobat Reader together with the screen
readers JAWS and NVDA for Windows and the native
VoiceOver on macOS and iOS.

3.1 Usage

To create an accessible PDF document for visually im-
paired people, authors need only include the package
axessibility.sty in the preamble of their LATEX
project. Mathematical environments automatically
produce the /ActualText content and include it in
the produced PDF file.

We handle the most common environments for
inserting formulae, i.e., equation, equation*, \[,
\(. Hence, any formula inserted using one of these
environments is accessible in the corresponding PDF

document. Additionally, the package enables copying
the formula’s LATEX code from the PDF reader and
pasting it elsewhere.

To preserve compatibility with Acrobat Reader,
our package discourages the use of the underscore
character _, which is not correctly read using screen
readers in combination with this PDF reader. We
suggest using the equivalent command \sb.

In-lined and display mathematical modes ($,
$$) are not supported in this version of the pack-
age. However external scripts provided as companion
software can also address these use cases.

If we use the package axessibility.sty ap-
plied to the previous example, we obtain the follow-
ing LATEX code:

\documentclass{article}

\usepackage{axessibility}

\begin{document}

A simple formula:

\begin{equation}

\frac{1 + \sqrt{5}}{2}

\end{equation}

\end{document}

We observe that, in this case, the author has to write
the formula without adding anything else. Moreover,

Axessibility: Creating PDF documents with accessible formulae

226 TUGboat, Volume 39 (2018), No. 3

inside the source code of the PDF file, we find an
/ActualText tag with the LATEX code, automatically
generated by the axessibility.sty package.

/S/Span<</ActualText(\040\040\\frac

\040{1\040+\040\\sqrt

\040{5}}{2}\040)

>>

BDC

The screen reader reads correctly the LATEX com-
mand \frac{1+\sqrt{5}}{2}. Moreover, we have
created JAWS and NVDA dictionaries that provide
the reading in the natural language in the case that
the user does not know the LATEX commands.

3.2 Technical overview

axessibility.sty first defines a pair of internal
commands (\BeginAxessible and \EndAxessible)
modelled on \BeginAccSupp and \EndAccSupp from
the accsup package as follows:

\newcommand*{\BeginAxessible}[1]{%

\begingroup

\setkeys{ACCSUPP}{#1}%

\edef\ACCSUPP@span{%

/S/Formula<<%

\ifx\ACCSUPP@Alt\relax

\else

/Alt\ACCSUPP@Alt

\fi

\ifx\ACCSUPP@ActualText\relax

\else

/ActualText\ACCSUPP@ActualText

\fi

>>%

}%

\ACCSUPP@bdc

\ACCSUPP@space

\endgroup

}

Specifically, as seen, \BeginAxessible adds a hid-
den comment that starts with /S/Formula instead
of /Span. Then, to close:

\newcommand*{\EndAxessible}{%

\begingroup

\ACCSUPP@emc

\endgroup

}

The second building block of this package is the
wrapper. This routine takes the LATEX code inside
the formula, removes the tokens and passes it to
\BeginAxessible:

\long\def\wrap#1{%

\BeginAxessible{method=escape,

ActualText=\detokenize\expandafter{#1},

Alt=\detokenize\expandafter{#1}}%

#1%

\EndAxessible

}

Finally, using the wrapper, we can redefine the math-
ematical environments using the command above.
Here is an example using equation:

\renewenvironment{equation}{%

\incr@eqnum

\mathdisplay@push

\st@rredfalse \global\@eqnswtrue

\mathdisplay{equation}%

\collect@body\wrap\auxiliaryspace}{%

\endmathdisplay{equation}%

\mathdisplay@pop

\ignorespacesafterend}

4 Conclusions and future work

We have developed a LATEX package that automati-
cally generates comments for formulae when the PDF

document is produced by LATEX. The comments are
hidden in the PDF document and they contain the
LATEX commands that generate the formulae. In this
way, an accessible PDF document containing formu-
lae is generated. Indeed, screen readers are able to
access the comment when processing a formula and
reading it. Moreover, we have created JAWS and
NVDA dictionaries that provide for reading in natu-
ral languages in case the user does not know LATEX
commands.

There are a few issues that are yet to be solved
with a pure LATEX solution. Namely,

• Math environments delimited with $, $$.

• User-defined macros.

• Multi-line environments such as \align and
\eqnarray.

• Semantic description of formulae.

• PDF/UA.

We address the first two problems using an exter-
nal script— axesscleaner.py, from github.com/

integr-abile/axesscleaner—coded in Perl and
Python. We successfully “cleaned” two entire books
using it. The script also replaces all underscore char-
acters _ with \sb. Using this solution we are now
able to apply axessibility.sty to entire textbooks
that were written without using the package in the
first place. Multi-line environments are going to be

D. Ahmetovic, T. Armano, C. Bernareggi, M. Berra, A. Capietto, S. Coriasco, N. Murru, A. Ruighi

TUGboat, Volume 39 (2018), No. 3 227

treated using a LATEX solution that is currently in
the test phase.

Concerning the last two problems, more in-depth
research is in order. The authors are currently ini-
tiating the investigation to address these issues in
future work.

The authors are also aware that the use of
/S/Formula is in conflict with the internal struc-
ture of the PDF—the document is fully readable but
it does not pass the so-called pre-flight test. This is
not intended to be a final solution as the authors’
goal is to create a PDF/UA with accessible formulae.
However, we point out that this is an operative and
reproducible solution, which automatically creates
scientific material that is successfully used by people
with visual impairment.

5 Acknowledgements

The authors wish to thank ‘Fondazione Cassa di
Risparmio di Torino’, LeoClub (Biella, Italy) and the
several volunteers with visual impairment who pro-
vided their fundamental contribution. We are grate-
ful to U. Fisher for pointing us in the right direction
concerning the use of the package accsupp. Specifi-
cally, she suggested not redefining BeginAccSup, but
rather using a new environment. We also thank R.
Moore for the fruitful discussion on the PDF struc-
ture and the suggestions to improve the manuscript.

References

[1] D. Ahmetovic, T. Armano, et al. Axessibility:
A LATEX package for mathematical formulae
accessibility in PDF documents. In Conference on
Computers and Accessibility. ACM, 2018.

[2] D. Archambault, B. Stöger, et al. Access to
scientific content by visually impaired people.
Upgrade, 2007.

[3] T. Armano, A. Capietto, et al. An automatized
method based on LATEX for the realization of
accessible PDF documents containing formulae.
In Computers Helping People with Special Needs,
vol. 1089 of Lecture Notes in Computer Science.
Springer, 2018.

[4] T. Armano, A. Capietto, et al. An overview on
ICT for the accessibility of scientific texts by
visually impaired students. In SIREM-SIE-L
Conference, 2014.

[5] M. Batusic, K. Miesenberger, and B. Stöger.
Labradoor, a contribution to making mathematics
accessible for the blind. In International
Conference on Computers Helping People with
Special Needs. Springer, 1998.

[6] C. Bernareggi. Non-sequential mathematical
notations in the LAMBDA system. In Computers
Helping People with Special Needs. Springer, 2010.

[7] C. Bernareggi and D. Archambault. Mathematics
on the Web: Emerging opportunities for visually
impaired people. In Conference on Web
accessibility. ACM, 2007.

[8] M. Borsero, N. Murru, and A. Ruighi. Il LATEX
come soluzione al problema dell’accesso a testi con
formule da parte di disabili visivi. ArsTEXnica
22:12–18, Oct. 2016. guitex.org/home/images/

ArsTeXnica/AT022/murru-2016.pdf

[9] R. Moore. Ongoing efforts to generate tagged
PDF using pdfTEX. TUGboat 30(2):170–175, 2009.
tug.org/TUGboat/tb30-2/tb95moore.pdf

[10] R. Moore. PDF/A-3u as an archival format for
accessible mathematics. In S. Watt et al., eds.,
CICM. Springer, 2014.

[11] A. Papasalouros and A. Tsolomitis. Direct
TEX-to-braille transcribing method. Science
Education for Students with Disabilities, 2017.

[12] A. Pepino, C. Freda, et al. “BlindMath”, a new
scientific editor for blind students. In Computers
Helping People with Special Needs. Springer, 2006.

[13] N. Soiffer. MathPlayer: Web-based math
accessibility. In Conference on Computers and
Accessibility. ACM, 2018.

[14] A. Uebelbacher, R. Bianchetti, and M. Riesch.
PDF accessibility checker (PAC 2): The first tool
to test PDF documents for PDF/UA compliance.
In Computers Helping People with Special Needs.
Springer, 2014.

⋄ D. Ahmetovic
T. Armano

Dipartimento di Matematica
“G. Peano”, Università di Torino

dragan.ahmetovic ,
tiziana.armano

(at) unito.it

⋄ C. Bernareggi
Dipartimento di Informatica,

Università di Milano
cristian.bernareggi (at)

unimi.it

⋄ M. Berra
A. Capietto
S. Coriasco
N. Murru
A. Ruighi

Dipartimento di Matematica
“G. Peano”, Università di Torino

michele.berra ,
anna.capietto ,
sandro.coriasco ,
nadir.murru ,
alice.ruighi

(at) unito.it

Axessibility: Creating PDF documents with accessible formulae

228 TUGboat, Volume 39 (2018), No. 3

Improving the representation and
conversion of mathematical formulae
by considering their textual context∗

Moritz Schubotz, André Greiner-Petter,
Philipp Scharpf, Norman Meuschke,
Howard S. Cohl, Bela Gipp

Abstract

Mathematical formulae represent complex semantic
information in a concise form. Especially in Science,
Technology, Engineering, and Mathematics, mathe-
matical formulae are crucial for communicating in-
formation, e.g., in scientific papers, and to perform
computations using computer algebra systems. En-
abling computers to access the information encoded
in mathematical formulae requires machine-readable
formats that can represent both the presentation and
content, i.e., the semantics, of formulae. Exchang-
ing such information between systems additionally
requires conversion methods for mathematical repre-
sentation formats.

We analyze how the semantic enrichment of for-
mulae improves the format conversion process and
show that considering the textual context of formu-
lae reduces the error rate of such conversions. Our
main contributions are: (1) providing an openly avail-
able benchmark dataset for the mathematical format
conversion task consisting of a newly created test col-
lection, an extensive, manually curated gold standard
and task-specific evaluation metrics; (2) performing
a quantitative evaluation of state-of-the-art tools for
mathematical format conversions; (3) presenting a
new approach that considers the textual context of
formulae to reduce the error rate for mathematical
format conversions.

Our benchmark dataset facilitates future re-
search on mathematical format conversions as well
as research on many problems in mathematical infor-
mation retrieval. Because we annotated and linked
all components of formulae, e.g., identifiers, opera-
tors and other entities, to Wikidata entries, the gold
standard can, for instance, be used to train methods
for formula concept discovery and recognition. Such
methods can then be applied to improve mathemati-
cal information retrieval systems, e.g., for semantic
formula search, recommendation of mathematical
content, or detection of mathematical plagiarism.

∗ A version of this paper was published at JCDL 2018:
M. Schubotz et al., “Improving the Representation and
Conversion of Mathematical Formulae by Considering
their Textual Context”, in Proceedings of the
ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL), Fort Worth, USA, 2018.

1 Introduction

In STEM disciplines, i.e., Science, Technology, Engi-
neering, and Mathematics, mathematical formulae
are ubiquitous and crucial for communicating infor-
mation in documents such as scientific papers, and to
perform computations in computer algebra systems
(CAS). Mathematical formulae represent complex
semantic information in a concise form that is inde-
pendent of natural language. These characteristics
make mathematical formulae particularly interesting
features to be considered by information retrieval
systems.

In the context of digital libraries, major informa-
tion retrieval applications for mathematical formulae
include search and recommender systems as well as
systems that support humans in understanding and
applying mathematical formulae, e.g., by visualizing
mathematical functions or providing autocomple-
tion and error correction functionality in typesetting
and CAS.

However, the extensive, context-dependent poly-
semy and polymorphism of mathematical notation
is a major challenge to exposing the knowledge en-
coded in mathematical formulae to such systems.
The number of mathematical concepts, e.g., mathe-
matical structures, relations and principles, is much
larger than the set of mathematical symbols available
to represent these concepts. Therefore, the meaning
of mathematical symbols varies in different contexts,
e.g., in different documents, and potentially even in
the same context. Identical mathematical formulae,
even in the same document, do not necessarily rep-
resent the same mathematical concepts. Identifiers
are prime examples of mathematical polysemy. For
instance, while the identifier E commonly denotes
energy in physics, E commonly refers to expected
value in statistics.

Polymorphism of mathematical symbols is an-
other ubiquitous phenomenon of mathematical nota-
tion. For example, whether the operator · denotes
scalar multiplication or vector multiplication depends
on the type of the elements to which the operator
is applied. In contrast to programming languages,
which handle polymorphism by explicitly providing
type information about objects to the compiler, e.g.,
to check and call methods offered by the specific
objects, mathematical symbols mostly denote such
type information only implicitly, so that they need
to be inferred from the context.

Humans account for the inherent polysemy and
polymorphism of mathematical notation by defin-
ing context-dependent meanings of mathematical
symbols in the text that surrounds formulae, e.g.,

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp

TUGboat, Volume 39 (2018), No. 3 229

for identifiers, subscripts and superscripts, brackets,
and invisible operators. Without such explanations,
determining the meaning of symbols is challenging,
even for mathematical experts. For example, reliably
determining whether [a, b] represents an interval or
the commutator [a, b] = ab − ba in ring theory re-
quires information on whether [] represent the Dirac
brackets.

Enabling computers to access the full informa-
tion encoded in mathematical formulae mandates
machine-readable representation formats that cap-
ture both the presentation, i.e., the notational sym-
bols and their spacial arrangement, and the content,
i.e., the semantics, of mathematical formulae. Like-
wise, exchanging mathematical formulae between ap-
plications, e.g., CAS, requires methods to convert and
semantically enrich different representation formats.
The Mathematical Markup Language (MathML) al-
lows one to encode both presentation and content
information in a standardized and extensible way
(see section 3).

Despite the availability of MathML, most Digi-
tal Mathematical Libraries (DML) currently exclu-
sively use presentation languages, such as TEX and
LATEX to represent mathematical content. On the
other hand, CAS, such as Maple, Mathematica and
SageMath,1 typically use representation formats that
include more content information about mathemat-
ical formulae to enable computations. Conversion
between representation formats entails many concep-
tual and technical challenges, which we describe in
more detail in section 2. Despite the availability of
numerous conversion tools, the inherent challenges
of the conversion process result in a high error rate
and often lossy conversion of mathematical formulae
in different representation formats.

To advance research on mathematical format
conversion, we make the following contributions,
which we describe in the subsequent sections:

1. We provide an openly available benchmark data-
set to evaluate tools for mathematical format
conversion (cf. section 3). The dataset includes:

• a new test collection covering diverse research
areas in multiple STEM disciplines;

• an extensive, manually curated gold standard
that includes annotations for both presenta-

1 The mention of specific products, trademarks, or brand
names is for purposes of identification only. Such mention
is not to be interpreted in any way as an endorsement or
certification of such products or brands by the National In-
stitute of Standards and Technology, nor does it imply that
the products so identified are necessarily the best available
for the purpose. All trademarks mentioned herein belong to
their respective owners.

tion and content information of mathematical
formulae;

• tools to facilitate the future extension of the
gold standard by visually supporting human
annotators; and

• metrics to quantitatively evaluate the quality
of mathematical format conversions.

2. We perform an extensive, quantitative evaluation
of state-of-the-art tools for mathematical format
conversion and provide an automated evaluation
framework to support easily rerunning the evalu-
ation in future research (cf. section 4).

3. We propose a novel approach to mathematical for-
mat conversion (cf. section 5). The approach imi-
tates the human sense-making process for mathe-
matical content by analyzing the textual context
of formulae for information that helps link sym-
bols in formulae to a knowledge base, in our case
Wikidata, to determine the semantics of formulae.

2 Background and related work

In the following, we use the Riemann hypothesis (1)
as an example to discuss typical challenges of convert-
ing different representation formats of mathematical
formulae:

ζ(s) = 0 ⇒ ℜs = 1

2
∨ ℑs = 0. (1)

We will focus on the representation of the formula
in LATEX and in the format of the CAS Mathemat-
ica. LATEX is a common language for encoding the
presentation of mathematical formulae. In contrast
to LATEX, Mathematica’s representation focuses on
making formulae computable. Hence the content
must be encoded, i.e., both the structure and the
semantics of mathematical formulae must be taken
into consideration.

In LATEX, the Riemann hypothesis can be ex-
pressed using the following string:

\zeta(s) = 0 \Rightarrow \Re s

= \frac12 \lor \Im s=0

In Mathematica, the Riemann hypothesis can be
represented as:

Implies[Equal[Zeta[s], 0], Or[Equal[Re[s],

Rational[1, 2]], Equal[Im[s], 0]]]

The conversion between these two formats is
challenging due to a range of conceptual and technical
differences.

First, the grammars underlying the two rep-
resentation formats differ greatly. LATEX uses the
unrestricted grammar of the TEX typesetting system.
The entire set of commands can be re-defined and
extended at runtime, which means that TEX effec-
tively allows its users to change every character used

Improving the representation and conversion of mathematical formulae

230 TUGboat, Volume 39 (2018), No. 3

for the markup, including the \ character typically
used to start commands. The high degree of free-
dom of the TEX grammar significantly complicates
recognizing even the most basic tokens contained
in mathematical formulae. In contrast to LATEX,
CAS use a significantly more restrictive grammar
consisting of a predefined set of keywords and set
rules that govern the structure of expressions. For
example, in Mathematica function arguments must
always be enclosed in square brackets and separated
by commas.

Second, the extensive differences in the gram-
mars of the two languages are reflected in the result-
ing expression trees. Similar to parse trees in natural
language, the syntactic rules of mathematical nota-
tion, such as operator precedence and function scope,
determine a hierarchical structure for mathematical
expressions that can be understood, represented, and
processed as a tree. The mathematical expression
trees of formulae consist of functions or operators and
their arguments. We used nested square brackets to
denote levels of the tree and Arabic numbers in a gray
font to indicate individual tokens in the markup. For
the LATEX representation of the Riemann hypothesis,
the expression tree is:
[

ζ1

l (
2

l s
3

l)
4

l =
5

l 0
6

l ⇒7

l

ℜ8

l s
9

l =
10

l

[

11
·
·
112

l 213

l

]

14

e ∨15

l ℑ16

l s17

l =18

l 019

l

]

.

The tree consists of 18 nodes, i.e., tokens, with a
maximum depth of two (for the fraction command
\frac12). The expression tree of the Mathematica
expression consists of 16 tokens with a maximum
depth of five:
[

20

⇒

[

21

=

[

22

ζ s23

l

]

024

n

]

[

25

∨

[

26

=

[

27

ℜ s28

l

]

[

29

Q 130

n 231

n

]

]

[

32

=

[

33

ℑ s34

l

]

035

n

]

]]

.

The higher complexity of the Mathematica expression
reflects that a CAS represents the content structure
of the formula, which is deeply nested. In contrast,
LATEX exclusively represents the presentational lay-
out of the Riemann hypothesis, which is nearly linear.

For the given example of the Riemann hypothe-
sis, finding alignments between the tokens in both
representations and converting one representation
into the other is possible. In fact, Mathematica and
other CAS offer a direct import of TEX expressions,
which we evaluate in section 4.

However, aside from technical obstacles, such
as reliably determining tokens in TEX expressions,

conceptual differences also prevent a successful con-
version between presentation languages, such as TEX,
and content languages. Even if there was only one
generally accepted presentation language, e.g., a stan-
dardized TEX dialect, and only one generally ac-
cepted content language, e.g., a standardized input
language for CAS, an accurate conversion between
the representation formats could not be guaranteed.

The reason is that neither the presentation lan-
guage nor the content language always provide all
the information required to convert an expression to
the respective language. This can be illustrated by
the simple expression: F (a + b) = Fa + Fb. The
inherent content ambiguity of F prevents a deter-
ministic conversion from the presentation language
to a content language. F might, for example, repre-
sent a number, a matrix, a linear function or even a
symbol. Without additional information, a correct
conversion to a content language is not guaranteed.
On the other hand, the transformation from content
language to presentation language often depends on
the preferences of the author and the context. For
example, authors sometimes change the presentation
of a formula to focus on specific parts of the formula
or to improve its readability.

Another obstacle to conversions between typical
presentation languages and typical content languages,
such as the formats of CAS, are the restricted set of
functions and the simpler grammars that CAS offer.
While TEX allows users to express the presentation
of virtually all mathematical symbols, thus denot-
ing any mathematical concept, CAS do not support
all available mathematical functions or structures.
A significant problem related to the discrepancy in
the space of concepts expressible using presentation
markup and the implementation of such concepts
in CAS are branch cuts. Branch cuts are restric-
tions of the set of output values that CAS impose for
functions that yield ambiguous, i.e., multiple mathe-
matically permissible outputs. One example is the
complex logarithm [14, eq. 4.2.1], which has an in-
finite set of permissible outputs resulting from the
periodicity of its inverse function. To account for
this circumstance, CAS typically restrict the set of
permissible outputs by cutting the complex plane of
permissible outputs. However, since the method of
restricting the set of permissible outputs varies be-
tween systems, identical inputs can lead to drastically
different results [5]. For example, multiple scientific
publications address the problem of accounting for
branch cuts when entering expressions in CAS, such
as [7] for Maple.

Our review of obstacles to the conversion of
representation formats for mathematical formulae

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp

TUGboat, Volume 39 (2018), No. 3 231

Listing 1: MathML representation of the Riemann
hypothesis (1) (excerpt).

<math><semantics><mrow>. . .

<mo id=”5” xref=”20”>=</mo>

<mn id=”5” xref=”21”>0</mn>

<mo id=”7” xref=”19”>⇒</ci>. . .</mrow>

<annotation-xml encoding=”MathML-Content”>

<apply><implies id=”19” xref=”7”/>

<apply><eq id=”20” xref=”5”/>. . .

<apply><csymbol id=”21” xref=”1”

cd=”wikidata”>Q187235 . . .

</annotation-xml></semantics></math>

highlights the need to store both presentation and
content information to allow for reversible transfor-
mations. Mathematical representation formats that
include presentation and content information can
enable the reliable exchange of information between
typesetting systems and CAS.

MathML offers standardized markup function-
ality for both presentation and content information.
Moreover, the declarative MathML XML format is
relatively easy to parse and allows for cross references
between presentation language (PL) and content lan-
guage (CL) elements. Listing 1 represents excerpts of
the MathML markup for our example of the Riemann
hypothesis (1). In this excerpt, the PL token 7 corre-
sponds to the CL token 19, PL token 5 corresponds
to CL token 20, and so forth.

Combined presentation and content formats,
such as MathML, significantly improve the access
to mathematical knowledge for users of digital li-
braries. For example, including content information
of formulae can advance search and recommenda-
tion systems for mathematical content. The quality
of these mathematical information retrieval systems

crucially depends on the accuracy of the computed
document-query and document-document similari-
ties. Considering the content information of mathe-
matical formulae can improve these computations by:

1. Enabling the consideration of mathematical equiv-
alence as a similarity feature. Instead of exclu-
sively analyzing presentation information as in-
dexed, e.g., by considering the overlap in pre-
sentational tokens, content information allows
modifying the query and the indexed information.
For example, it would become possible to rec-

ognize that the expressions a(b
c
+ d

c
) and a(b+d)

c

have a distance of zero.

2. Allowing the association of mathematical tokens
with mathematical concepts. For example, linking
identifiers, such as E, m, and c, to energy, mass,
and speed of light, could enable searching for
all formulae that combine all or a subset of the
concepts.

3. Enabling the analysis of structural similarity. The
availability of content information would enable
the application of measures, such as derivatives
of the tree edit distance, to discover structural
similarity, e.g., using λ-calculus. This functional-
ity could increase the capabilities of math-based

plagiarism detection systems when it comes to
identifying obfuscated instances of reused mathe-
matical formulae [10].

Content information could also enable interac-
tive support functions for consumers and producers of
mathematical content. For example, readers of math-
ematical documents could be offered interactive com-
putations and visualizations of formulae to accelerate
the understanding of STEM documents. Authors of
mathematical documents could benefit from auto-
mated editing suggestions, such as auto-completion,
reference suggestions, and sanity checks, e.g., type
and definiteness checking, similar to the functionality
of word processors for natural language texts.

Related work

A variety of tools exists to convert format repre-
sentations of mathematical formulae. However, to
our knowledge, Kohlhase et al. [26] presented the
only study evaluating the conversion quality of tools.
Many of the tools evaluated in that study are no
longer available or out of date. Watt [27] presents
a strategy to preserve formula semantics in TEX to
MathML conversions. His approach relies on en-
coding the semantics in custom TEX macros rather
than to expand the macros. Padovani [15] discusses
the roles of MathML and TEX elements for man-
aging large repositories of mathematical knowledge.
Nghiem et al. [13] used statistical machine trans-
lation to convert presentation to content language.
However, they do not consider the textual context of
formulae. We will present detailed descriptions and
evaluation results for specific conversion approaches
in section 4.

Youssef [28] addressed the semantic enrichment
of mathematical formulae in presentation language.
He developed an automated tagger that parses LATEX
formulae and annotates recognized tokens very sim-
ilarly to part-of-speech (POS) taggers for natural
language. Their tagger currently uses a predefined,
context-independent dictionary to identify and an-
notate formula components. Schubotz et al. [19, 20]

Improving the representation and conversion of mathematical formulae

232 TUGboat, Volume 39 (2018), No. 3

proposed an approach to semantically enrich for-
mulae by analyzing their textual context for the
definitions of identifiers.

With their ‘math in the middle’ approach, De-
haye et al. [6] envision an entirely different approach
to exchanging machine readable mathematical ex-
pressions. In their vision, independent and enclosed
virtual research environments use a standardized
format for mathematics to transfer mathematical
expressions and numerical results between different
systems.

For an extensive review of format conversion
and retrieval approaches for mathematical formulae,
refer to [18, Chapter 2].

3 Benchmarking MathML

This section presents MathMLben—a benchmark
dataset for measuring the quality of MathML markup
of mathematical formulae appearing in a textual con-
text. MathMLben is an improvement of the gold
standard provided by Schubotz et al. [24]. The data-
set considers recent discussions of the International
Mathematical Knowledge of Trust (imkt.org) work-
ing group, in particular the idea of a ‘Semantic Cap-
ture Language’ [9], which makes the gold standard
more robust and easily accessible. MathMLben:

• allows comparisons to prior works;

• covers a wide range of research areas in STEM

literature;

• provides references to manually annotated and
corrected MathML items that are compliant with
the MathML standard;

• is easy to modify and extend, i.e., by external
collaborators;

• includes default distance measures; and

• facilitates the development of converters and tools.

In section 3.1, we present the test collection
included in MathMLben. In section 3.2, we present
the encoding guidelines for the human assessors and
describe the tools we developed to support assessors
in creating the gold standard dataset. In section 3.3,
we describe the similarity measures used to assess
markup quality.

3.1 Collection

Our test collection contains 305 formulae (more pre-
cisely, mathematical expressions ranging from indi-
vidual symbols to complex multi-line formulae) and
the documents in which they appear.

Expressions 1 to 100 correspond to the search
targets used for the ‘National Institute of Informat-
ics Testbeds and Community for Information ac-
cess Research Project’ (NTCIR) 11 Math Wikipedia

Task [24]. This list of formulae has been used for
formula search and content enrichment tasks by at
least 7 different research institutions. The formulae
were randomly sampled from Wikipedia and include
expressions with incorrect presentation markup.

Expressions 101 to 200 are random samples
taken from the NIST Digital Library of Mathematical
Functions (DLMF) [14]. The DLMF website contains
9,897 labeled formulae created from semantic LATEX
source files [3, 4]. In contrast to the examples from
Wikipedia, all these formulae are from the mathe-
matics research field and exhibit high quality pre-
sentation markup. The formulae were curated by
renowned mathematicians and the editorial board
keeps improving the quality of the markup of the
formulae.2 Sometimes, a labeled formula contains
multiple equations. In such cases, we randomly chose
one of the equations.

Expressions 201 to 305 were chosen from the
queries of the NTCIR arXiv and NTCIR-12 Wikipedia
datasets. 70% of these queries originate from the
arXiv [1] and 30% from a Wikipedia dump.

All data are openly available for research pur-
poses and can be obtained from mathmlben.wmflabs.

org.3

3.2 Gold standard

We provide explicit markup with universal, context-
independent symbols in content MathML. Since the
symbols from the default content dictionary (CD) of
MathML4 alone were insufficient to cover the range
of semantics in our collection, we added the Wikidata
content dictionary [17]. As a result, we could refer
to all Wikidata items as symbols in a content tree.
This approach has several advantages. Descriptions
and labels are available in many languages. Some
symbols even have external identifiers, e.g., from
the Wolfram Functions Site, or from StackExchange
topics. All symbols are linked to Wikipedia articles,
which offer extensive human-readable descriptions.
Finally, symbols have relations to other Wikidata
items, which opens a range of new research oppor-
tunities, e.g., for improving the taxonomic distance
measure [25].

Our Wikidata-enhanced, yet standard-compliant,
MathML markup facilitates the manual creation of
content markup. To further support human asses-
sors in creating content annotations, we extended the
VMEXT visualization tool [21] to develop a visual
support tool for creating and editing the MathMLben
gold standard.

2 dlmf.nist.gov/about/staff
3 Visit mathmlben.wmflabs.org/about for a user guide.
4 www.openmath.org/cd

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp

TUGboat, Volume 39 (2018), No. 3 233

Table 1: Special content symbols added to LATEXML

for the creation of the gold standard.

No rendering meaning example ID

1 [x, y] commutator 91
2 xy

z tensor 43, 208, 226
3 x† adjoint 224, 277
4 x′ transformation 20
5 x◦ degree 20
6 x(dim) contraction 225

For each formula, we saved the source document
written in different dialects of LATEX and converted
it into content MathML with parallel markup us-
ing LATEXML [11, 8]. LATEXML is a Perl program
that converts LATEX documents to XML and HTML.
We chose LATEXML because it is the only tool that
supports our semantic macro set. We manually an-
notated our dataset, generated the MathML repre-
sentation, manually corrected errors in the MathML,
and linked the identifiers to Wikidata concept entries
whenever possible. Alternatively, one could initially
generate MathML using a CAS and then manually
improve the markup.

Since there is no generally accepted definition
of expression trees, we made several design decisions
to create semantic representations of the formulae in
our dataset using MathML trees. In some cases, we
created new macros to be able to create a MathML

tree for our purposes using LATEXML.5 Table 1 lists
the newly created macros. Hereafter, we explain
our decisions and give examples of formulae in our
dataset that were affected by the decisions.

• did not assign Wikidata items to basic mathe-
matical identifiers and functions like factorial,
\log, \exp, \times, \pi. Instead, we left these
annotations to the DLMF LATEX macros, because
they represent the mathematical concept by link-
ing to the definition in the DLMF and LATEXML

creates valid and accurate content MathML for
these macros [GoldID 3, 11, 19, . . .];

• split up indices and labels of elements as child
nodes of the element. For example, we represent
i as a child node of p in p_i [GoldID 29, 36, 43,
. . .];

• create a special macro to represent tensors, such
as for Tαβ [GoldID 43], to represent upper and
lower indices as child nodes (see table 1);

• create a macro for dimensions of tensor contrac-
tions [GoldID 225], e.g., to distinguish the three

5 dlmf.nist.gov/LaTeXML/manual/customization/

customization.latexml.html#SS1.SSS0.Px1

dimensional contraction of the metric tensor in
g(3) from a power function (see table 1);

• chose one subexpression randomly if the original
expression contained lists of expressions [GoldID
278];

• remove equation labels, as they are not part of
the formula itself. For example, in

E = mc2, (⋆)

the (⋆) is the ignored label;

• remove operations applied to entire equations,
e.g., applying the modulus. In such cases, we
interpreted the modulus as a constraint of the
equation [GoldID 177];

• use additional macros (see table 1) to interpret
complex conjugations, transformation signs, and
degree-symbols as functional operations (identi-
fier is a child node of the operation symbol), e.g.,
* or \dagger for complex conjugations [GoldID
224, 277], S’ for transformations [GoldID 20],
30^\circ for thirty degrees [GoldID 30];

• for formulae with multiple cases, render each case
as a separate branch [GoldID 49];

• render variables that are part of separate branches
in bracket notation. We implemented the Dirac
Bracket commutator [] (we omitted the index
_\text{DB}) and an anticommutator { } by defin-
ing new macros (see table 1). Thus, there is a
distinction between a (ring) commutator

[a,b] = ab - ba

and an anticommutator

{a,b} = ab + ba,

without further annotation of Dirac or Poisson
brackets [GoldID 91];

• use the command \operatorname{} for multi-
character identifiers or operators [GoldID 22].
This markup is necessary because most of the
LATEX parsers, including LATEXML, interpret multi-
character expressions as multiplications of the
characters. In general, this interpretation is cor-
rect, since it is inconvenient to use multi-character
identifiers [2].

Some of these design decisions are debatable.
For example, introducing a new macro, such as
\identifiername{}, to distinguish between multi-
character identifiers and operators might be advanta-
geous to our approach. However, introducing many
highly specialized macros is likely not a viable ap-
proach. A borderline example of this problem is ∆x
[GoldID 280]. Formulae of this form could be an-
notated as \operatorname{}, \identifiername{}

Improving the representation and conversion of mathematical formulae

234 TUGboat, Volume 39 (2018), No. 3

Figure 1: Graphical user interface to support the creation of our gold standard. The
interface provides several TEX input fields (left) and a mathematical expression tree
rendered by the VMEXT visualization tool (right).

or more generally as \expressionname{}. We in-
terpret ∆ as a difference applied to a variable, and
render the expression as a function call.

Similar cases of overfeeding the dataset with
highly specialized macros are bracket notations. For
example, the bracket (Dirac) notation, e.g., [GoldID
209], is mainly used in quantum physics. The angle
brackets for the Dirac notation, 〈 and 〉, and a verti-
cal bar | is already interpreted correctly as “latexml—
quantum-operator-product”. However, a more pre-
cise distinction between a twofold scalar product,
e.g., 〈a|b〉, and a threefold expectation value, e.g.,
〈a|A|a〉, might become necessary in some scenarios
to distinguish between matrix elements and a scalar
product.

We developed a Web application to create and
cultivate the gold standard entries, which is available
at mathmlben.wmflabs.org. The Graphical User
Interface (GUI) provides the following information
for each GoldID entry.

• Formula Name: name of the formula (optional)

• Formula Type: one of definition, equation, rela-
tion or General Formula (if none of the previous
names fit)

• Original Input TEX: the LATEX expression as
extracted from the source

• Corrected TEX: the manually corrected LATEX
expression

• Hyperlink: hyperlink to the position of the for-
mula in the source

• Semantic LATEX Input: manually created se-
mantic version of the corrected LATEX field. This
entry is used to generate our MathML with Wiki-
data annotations.

• Preview of Corrected LATEX: preview of the
corrected LATEX input field rendered as SVG in
real time using Mathoid [23], a service to generate
SVG and MathML from LATEX input. It is shown
in the top right corner of the GUI.

• VMEXT Preview: rendering of the expression
tree based on the content MathML. The symbol
in each node is associated with the symbol in the
cross-referenced presentation markup.

Figure 1 shows the GUI for manual modifica-
tion of the different formats of a formula. While
the other fields are intended to provide additional
information, the pipeline to create and cultivate a
gold standard entry starts with the semantic LATEX
input field. LATEXML will generate content MathML

based on this input and VMEXT will render the gen-
erated content MathML afterwards. We control the
output by using the DLMF LATEX macros [12] and

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp

TUGboat, Volume 39 (2018), No. 3 235

our developed extensions. The following list contains
some examples of the DLMF LATEX macros.

• \EulerGamma@{z}: Γ(z): gamma function,

• \BesselJ{\nu}@{z}: Jν(z): Bessel function of
the first kind,

• \LegendreQ[\mu]{\nu}@{z}: Qµ
ν (z):

associated Legendre function of the second kind,

• \JacobiP{\alpha}{\beta}{n}@{x}: P (α,β)
n (x):

Jacobi polynomial.

The DLMF web pages, which we use as one of
the sources for our dataset, were generated from se-
mantically enriched LATEX sources using LATEXML.
Since LATEXML is capable of interpreting semantic
macros, generates content MathML that can be con-
trolled with macros, and is easily extended by new
macros, we also used LATEXML to generate our gold
standard. While the DLMF is a compendium for spe-
cial functions, we need to annotate every identifier
in the formula with semantic information. Therefore,
we extended the set of semantic macros.

In addition to the special symbols listed in Ta-
ble 1, we created macros to semantically enrich iden-
tifiers, operators, and other mathematical concepts
by linking them to their Wikidata items. As shown
in Figure 1, the annotations are visualized using yel-
low (grayscaled in print) info boxes appearing on
mouseover. The boxes show the Wikidata QID, the
name, and the description (if available) of the linked
concept.

In addition to naming, classifying, and semanti-
cally annotating each formula, we performed three
other tasks:

• correcting the LATEX string extracted from the
sources;

• checking and correcting the MathML generated
by LATEXML;

• visualizing the MathML using VMEXT.

Most of the extracted formulae contained con-
cepts to improve human readability of the source
code, such as commented line breaks (%〈newline〉),
in long mathematical expressions, or special macros
to improve the displayed version of the formula, e.g.,
spacing macros, delimiters, and scale settings, such
as \!, \, or \>. Since they are part of the expres-
sion, all of the tested tools (including LATEXML) try
to include these formatting improvements into the
MathML markup. For our gold standard, we focus on
the pure semantic information and forgo formatting
improvements related to displaying the formula. The
corrected TEX field shows the cleaned mathematical
LATEX expression.

Using the corrected TEX field and the semantic
macros, we were able to adjust the MathML out-

put using LATEXML and verify it by checking the
visualization from VMEXT.

3.3 Evaluation metrics

To quantify the conversion quality of individual tools,
we computed the similarity of each tool’s output and
the manually created gold standard. To define the
similarity measures for this comparison, we built
upon our previous work [25], in which we defined
and evaluated four similarity measures: taxonomic
distance, data type hierarchy level, match depth, and
query coverage.

The measures taxonomic distance and data type
hierarchy level require the availability of a hierarchi-
cal ordering of mathematical functions and objects.
For our use case, we derived this hierarchical ordering
from the MathML content dictionary. The measures
assign a higher similarity score if matching formula
elements belong to the same taxonomic class. The
match depth measure operates under the assump-
tion that matching elements, which are more deeply
nested in a formula’s content tree, i.e., farther away
from the root node, are less significant for the overall
similarity of the formula, hence are assigned a lower
weight. The query coverage measure performs a sim-
ple ‘bag of tokens’ comparison between two formulae
and assigns a higher score the more tokens the two
formulae share.

In addition to these similarity measures, we also
included the tree edit distance. For this purpose,
we adapted the robust tree edit distance (RTED)
implementation for Java [16]. We modified RTED to
accept any valid XML input and added math-specific
‘shortcuts’, i.e., rewrite rules that generate lower dis-
tance scores than arbitrary rewrites. For example,
rewriting a

b
to ab−1 causes a significant difference

in the expression tree: Three nodes (∧,−, 1) are in-
serted and one node is renamed ÷ → ·. The ‘cost’
for performing these edits using the stock implemen-
tation of RTED is c = 3i + r. However, the actual
difference is an equivalence, which we think should
be assigned a cost of e < 3i+ r. We set e < r < i.

4 Evaluation of context-agnostic
conversion tools

This section presents the results of evaluating exist-
ing, context-agnostic conversion tools for mathemat-
ical formulae using our benchmark dataset MathML-
ben (see section 3). We compare the distances be-
tween the presentation MathML and the content
MathML tree of a formula yielded by each tool to the
respective trees of formulae in the gold standard. We
use the tree edit distance with customized weights
and math-specific shortcuts. The goal of shortcuts is

Improving the representation and conversion of mathematical formulae

236 TUGboat, Volume 39 (2018), No. 3

eliminating notational-inherent degrees of freedom,
e.g., additional PL elements or layout blocks, such
as mrow or mfenced.

4.1 Tool selection

We compiled a list of available conversion tools from
the W3C6 wiki, from GitHub, and from questions
about automated conversion of mathematical LATEX
to MathML on Stack Overflow. We selected the
following converters:

• LATEXML: supports converting generic and se-
mantically annotated LATEX expressions to XML/
HTML/MathML. The tool is written in Perl [11]
and is actively maintained. LATEXML was specifi-
cally developed to generate the DLMF web page
and can therefore parse entire TEX documents.
Notably, LATEXML supports conversions to con-
tent MathML.

• LATEX2MathML(a.k.a. LATEX2MML): a small Py-
thon project to generate presentation or content
MathML from generic LATEX expressions.7

• Mathoid: a service using Node.js, PhantomJS

and MathJax (a JavaScript display engine for
mathematics) to generate SVG and MathML from
LATEX input. Mathoid is currently used to render
mathematical formulae on Wikipedia [23].

• SnuggleTEX: an open-source Java library devel-
oped at the University of Edinburgh.8 The tool
can convert simple LATEX expressions to XHTML

and presentation MathML.

• MathToWeb: an open-source Java-based web ap-
plication that generates presentation MathML

from LATEX expressions.9

• TEXZilla: a JavaScript web application for LATEX
to MathML conversion capable of handling Uni-
code characters.10

• Mathematical: an application written in C and
wrapped in Ruby to provide a fast translation
from LATEX expressions to the image formats SVG
and PNG. The tool also provides translations to
presentation MathML.11

• CAS: we included a prominent CAS capable of
parsing LATEX expressions.

• Part-of-Math (POM) Tagger: a grammar-based
LATEX parser that tags recognized tokens with
information from a dictionary [28]. The POM

6 www.w3.org/wiki/Math_Tools
7 github.com/Code-ReaQtor/latex2mathml
8 www2.ph.ed.ac.uk/snuggletex/documentation/

overview-and-features.html
9 www.mathtowebonline.com

10 fred-wang.github.io/TeXZilla
11 github.com/gjtorikian/mathematical

305 305
288

295 305

229

290
305 305

0

50

100

150

200

250

300

0

10

20

30

40

50

60

70

80

S
u

cc
e

ss
fu

ll
y

 P
a

rs
e

d
 E

x
p

re
ss

io
n

s

Tr
e

e
 E

d
it

 D
is

ta
n

ce

Average Distance of Presentation Subtree

Average Distance of Content Subtree

Successfully Parsed LaTeX Expressions

Average of Structural Distances & Successfully

Parsed Expressions

Figure 2: Overview of the structural tree edit
distances (using r = 0, i = d = 1) between the
MathML trees generated by the conversion tools
and the gold standard MathML trees.

tagger is currently under development. In this
paper, we use the first version. In [5], this version
was used to provide translations LATEX to the CAS

Maple. In its current state, this program offers
no export to MathML. We developed an XML

exporter to be able to compare the tree provided
by the POM tagger with the MathML trees in the
gold standard.

4.2 Testing framework

We developed a Java-based framework that calls the
programs to parse the corrected TEX input data
from the gold standard to presentation MathML,
and, if applicable, to content MathML. In case of the
POM tagger, we parsed the input string to a general
XML document. We used the corrected TEX input
instead of the originally extracted string expressio
(see section 3.2).

Executing the testing framework requires the
manual installation of the tested tools. The POM

tagger is not yet publicly available.

4.3 Results

Figure 2 shows the averaged structural tree edit dis-
tances between the presentation trees (blue) and
content trees (orange) of the generated MathML files
and the gold standard. To calculate the structural
tree edit distances, we used the RTED [16] algorithm
with costs of i = 1 for inserting, d = 1 for deleting
and r = 0 for renaming nodes. Furthermore, the

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp

TUGboat, Volume 39 (2018), No. 3 237

372,76

29,65

20,77

9,57

4,17

3,69

1,79

1,41

1,00 10,00 100,00 1000,00

LatexML

Mathoid

Mathematical

Latex2MML

MathToWeb

POM

SnuggleTeX

TeXZilla

Performance of Tools

 Duration in Seconds

Figure 3: Time in seconds required by each tool to
parse the 305 gold standard LATEX expressions in
logarithmic scale.

figure shows the total number of successful transfor-
mations for the 305 expressions (black ticks).

We consider differences of the presentation tree
to the gold standard as deficits, because the mapping
from LATEX expressions to rendered expressions is
unique (as long as the same preambles are used). A
larger number indicates that more elements of an
expression were misinterpreted by the parser. How-
ever, certain differences between presentation trees
might be tolerable, e.g., reordering commutative ex-
pressions, while differences between content trees are
more critical.

Also note that improving content trees may not
necessarily improve presentation trees and vice versa.
In case of f(x + y), the content tree will change
depending whether f represents a variable or a func-
tion, while the presentation tree will be identical in
both cases. In contrast, a

b
, a/b, and a/b have different

presentation trees but identical content trees.
Figure 3 illustrates the runtime performance of

the tools. We excluded the CAS from the runtime
performance tests, because the system is not pri-
marily intended for parsing LATEX expressions, but
for performing complex computations. Therefore,
runtime comparisons between a CAS and conversion
tools would not be representative. We measured the
times required to transform all 305 expressions in the
gold standard and write the transformed MathML

to the storage cache. Note that the native code of
LATEX2MML, Mathematical and LATEXML were called
from the Java Virtual Machine (JVM) and Math-
oid was called through local web-requests, which
increased the runtime of these tools. The figure
is scaled logarithmically. We would like to empha-

size that LATEXML is designed to translate sets of
LATEX documents instead of single mathematical ex-
pressions. Most of the other tools are lightweight
engines.

In this benchmark, we focused on the structural
tree distances rather than on distances in semantics.
While our gold standard provides the information
necessary to compare the extracted semantic infor-
mation, we will focus on this problem in future work
(see section 6).

5 Towards a context-sensitive approach

In this section, we present our new approach that
combines textual features, i.e., semantic information
from the surrounding text, with the converters to
improve the outcome. Figure 4 illustrates the process
of creating the gold standard, evaluating conversions,
and how we plan to improve the converters with
tree refinements (outside the MathMLben box). Our
improvement approach includes three phases.

1. In the first phase, the Mathematical Language
Processing (MLP) approach [19] extracts semantic
information from the textual context by providing
identifier-definiens12 pairs.

2. The MLP annotations self-assess their reliabil-
ity by annotating each identifier-definiens pair
with its probabilities. Often, the methods do
not find highly ranked semantic information. In
such cases, we combine the results from the MLP

with a dictionary-based method. In particular,
we use the dictionaries from the POM tagger [28]
that associate context-free semantics with the
presentation tree. Since the dictionary entries are
not ranked, we use them to drop unmentioned
identifier-definiens pairs and choose the highest
rank of the remaining pairs.

3. Based on the chosen semantic information, we
redefine the content tree by reordering the nodes
and subtrees.

Currently, the implementation is too immature
to release it as a semantic annotation package. In-
stead, we discuss the method using the following
selected examples that represent typical classes of
disambiguation problems:

• Invisible operator disambiguation for the times
vs. apply special case.

• Parameter vs. label disambiguation for subscripts.
• Einstein notation discovery.
• Multi-character operator discovery.

12 In a definition, the definiendum is the expression to be
defined and definiens is the phrase that defines the definien-
dum. Identifier-definiens pairs are candidates for an Identifier-
definition. See [19] for a more detailed explanation.

Improving the representation and conversion of mathematical formulae

238 TUGboat, Volume 39 (2018), No. 3

SwitchSwitch

POM-Tagger
Dictionaries

β

β

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

Documents

Formula

a+b

Semantic
Formula

a+b

Manual 
Refinements

Gold Standard
MML

Multiple
Cycles

Random 
Selection

Annotated MMLAnnotated MML

LaTeXML
MML ComparisonMML Comparison

VS

® Vecteezy.com

&

Converter

XML

β β 

Mathematical 
Language Processor

Identifier & 
Definiens

Tree
Refinements

MathMLben
#422f2d908725a379336f2c6083c5b6edf69157ca

β 
π ζ 

Figure 4: Mathematical language processing is the task of mapping textual
descriptions to components of mathematical formulae (Part-of-Math tagging).

Learning special notations like the examples above
is subject to future work. However, we deem it
reasonable to start with these examples, since our
manual investigation of the tree edit distances showed
that such cases represented major reasons for errors
in the content MathML tree.

Previously, the MLP software was limited to ex-
tracting information about identifiers, not general
mathematical symbols. Moreover, the software was
optimized for the Wikipedia dataset. We thus ex-
panded the software for this study to enable parsing
pure XHTML input as provided by the NTCIR tasks
and the DLMF website. Achieving this goal required
realizing a component for symbol identification. We
chose the strategy of considering every simple ex-
pression that is not an identifier as a candidate for a
symbol.

For our first experiments we tried to improve
the output by LATEXML, since LATEXML performs
best in our tests and it was able to generate content
MathML. Moreover, with the newly developed se-
mantic macros, we are able to optimize MathML in
a pre-processing step by enhancing the input LATEX
expression. Consequently, we do not need to develop
complex post-processing algorithms to manipulate
content MathML.

As part of this study, we created a custom style
sheet that fixes the following problems: (1) use of
the power symbols for superscript characters unless
Einstein notation was discovered, (2) interpretation
of subscript indices as parameters, unless they are
in text mode; for text mode, the ensemble of main
symbol and subscript will be regarded as an identifier,
(3) symbols that are considered as a ‘function’ are
applied to the following identifier, rather than being
multiplied with the identifier.

First experiments using these refinement tech-
niques have proven to be very effective. We have
chosen a small set of tem functions for performing
the refinements and to show the potential of the
techniques. Of those 10 cases, with simple regular
expression matching, our MLP approach found four
cases, where the highest ranked identifier-definiens
pair was ‘function’ for at least one identifier in the
formula. In these four cases, the distances of the
content trees decreased to zero with all previously
explained refinements enabled.

While this is just a first indication for the suit-
ability of our approach, it shows that the long chain
of processing steps shows promise. Therefore, we are
actively working on the presented improvements and
plan to focus on the task of learning how to generate

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp



TUGboat, Volume 39 (2018), No. 3 239

mappings from the input PL encoding to CL encod-
ing without general rules for branch selection as we
applied them so far.

6 Conclusion and future work

We make available the first benchmark dataset to
evaluate the conversion of mathematical formulae
between presentation and content formats. During
the encoding process for our MathML-based gold
standard, we presented the conceptual and techni-
cal issues that conversion tools for this task must
address. Using the newly created benchmark data-
set, we evaluated popular context-agnostic LATEX-to-
MathML converters. We found that many converters
simply do not support the conversion from presen-
tation to content format, and those that did often
yielded mathematically incorrect content representa-
tions even for basic input data. These results under-
score the need for future research on mathematical
format conversions.

Of the tools we tested, LATEXML yielded the
best conversion results, was easy to configure, and
highly extensible. However, these benefits come at
the price of a slow conversion speed. Due to its
comparatively low error rate, we chose to extend the
LATEXML output with semantic enhancements.

Unfortunately, we failed to develop an auto-
mated method to learn special notation. However,
we could show that the application of special selec-
tion rules improves the quality of the content tree,
i.e., allows choosing the most suitable tree from a
selection of candidates. While the implementation of
a few selection rules fixes nearly all issues we encoun-
tered in our test documents, the long tail of rules
shows the limitations of a rule-based approach.

Future work

We will focus our future research on methods for au-
tomated notation detection, because we consider this
approach as better suited and better scalable than
implementing complex systems of selection rules. We
will extract the considered notational features from
the textual context of formulae and use them to ex-
tend our previously proposed approach of construct-
ing identifier name spaces [19] towards constructing
notational name spaces. We will check the integrity
of such formed notational name spaces with meth-
ods comparable to those proposed in our previous
publication [22] where we used physical units as a
sanity check, if semantic annotation in the domain
of physics are correct.

Acknowledgments. We would like to thank Abdou
Youssef for sharing his Part-of-Math tagger with us
and for offering valuable advice. We are also indebted

to Akiko Aizawa for her advice and for hosting us as
visiting researchers in her lab at the National Insti-
tute of Informatics (NII) in Tokyo. Furthermore, we
thank Wikimedia Labs for providing cloud comput-
ing facilities and hosting our gold standard dataset.
This work was supported by the FITWeltweit pro-
gram of the German Academic Exchange Service
(DAAD) as well as the German Research Foundation
(DFG, grant GI-1259-1).

References

[1] A. Aizawa, M. Kohlhase, et al. NTCIR-11 math-2
task overview. In Proc. 11th NTCIR Conf. on
Evaluation of Information Access Technologies,
Tokyo, Japan, 2014.

[2] F. Cajori. A History of Mathematical Notations,
vol. 1. Courier Corporation, 1928.

[3] H. S. Cohl, M. A. McClain, et al. Digital
repository of mathematical formulae. In Conference
on Intelligent Computer Mathematics (CICM),
Coimbra, Portugal, pp. 419–422, 2014.
doi:10.1007/978-3-319-08434-3_30

[4] H. S. Cohl, M. Schubotz, et al. Growing the
digital repository of mathematical formulae with
generic sources. In M. Kerber, J. Carette, et al.,
eds., CICM, Washington, DC, USA, vol. 9150, pp.
280–287, 2015.
doi:10.1007/978-3-319-20615-8_18

[5] H. S. Cohl, M. Schubotz, et al. Semantic
preserving bijective mappings of mathematical
formulae between document preparation systems
and computer algebra systems. In CICM,
Edinburgh, UK, 2017.
doi:10.1007/978-3-319-62075-6_9

[6] P. Dehaye, M. Iancu, et al. Interoperability in the
OpenDreamKit project: The math-in-the-middle
approach. In M. Kohlhase, M. Johansson, et al.,
eds., CICM, Bialystok, Poland, vol. 9791, pp.
117–131, 2016.
doi:10.1007/978-3-319-42547-4_9

[7] M. England, E. S. Cheb-Terrab, et al. Branch
cuts in Maple 17. ACM Comm. Comp. Algebra
48(1/2):24–27, 2014.
doi:10.1145/2644288.2644293

[8] D. Ginev, H. Stamerjohanns, and M. Kohlhase.
The LATEXml daemon: Editable math on the
collaborative web. In LWA 2011, Magdeburg,
Germany, pp. 255–256, 2011.

[9] P. D. F. Ion and S. M. Watt. The global digital
mathematical library and the international
mathematical knowledge trust. In CICM,
Edinburgh, UK, vol. 10383, pp. 56–69, 2017.

[10] N. Meuschke, M. Schubotz, et al. Analyzing
mathematical content to detect academic
plagiarism. In Proc. CIKM, 2017.

Improving the representation and conversion of mathematical formulae



240 TUGboat, Volume 39 (2018), No. 3

[11] B. Miller. LaTeXML: A LATEX to XML converter.
http://dlmf.nist.gov/LaTeXML/

[12] B. R. Miller and A. Youssef. Technical aspects of
the digital library of mathematical functions. Ann.
Math. Artif. Intell. 38(1-3):121–136, 2003.
doi:10.1023/A:1022967814992

[13] M.-Q. Nghiem, G. Yoko, et al. Automatic approach
to understanding mathematical expressions using
mathml parallel markup corpora. In 26th Annu.
Conf. Jap. Society for Artificial Intell., 2012.

[14] NIST Digital Library of Mathematical Functions.
http://dlmf.nist.gov/, Release 1.0.17 of
2017-12-22. F. W. J. Olver et al., eds.

[15] L. Padovani. On the roles of LATEX and MathML
in encoding and processing mathematical
expressions. In A. Asperti, B. Buchberger, and
J. H. Davenport, eds., Mathematical Knowledge
Management (MKM), Bertinoro, Italy, vol. 2594,
pp. 66–79, 2003.
doi:10.1007/3-540-36469-2_6

[16] M. Pawlik and N. Augsten. RTED: A robust
algorithm for the tree edit distance. CoRR
abs/1201.0230, 2012.
http://arxiv.org/abs/1201.0230

[17] M. Schubotz. Implicit content dictionaries in the
NIST digital repository of mathematical formulae.
Talk presented at the OpenMath workshop CICM,
2016. http://cicm-conference.org/2016/cicm.

php?event=&menu=talks#O3

[18] M. Schubotz. Augmenting Mathematical
Formulae for More Effective Querying & Efficient
Presentation. PhD thesis, TU Berlin, Germany,
2017. http://d-nb.info/1135201722

[19] M. Schubotz, A. Grigorev, et al. Semantification
of identifiers in mathematics for better math
information retrieval. In R. Perego, F. Sebastiani,
et al., eds., SIGIR, Pisa, Italy, pp. 135–144, 2016.
doi:10.1145/2911451.2911503

[20] M. Schubotz, L. Krämer, et al. Evaluating
and improving the extraction of mathematical
identifier definitions. In G. J. F. Jones, S. Lawless,
et al., eds., Conference and Labs of the Evaluation
Forum (CLEF), Dublin, Ireland, vol. 10456, pp.
82–94, 2017.
doi:10.1007/978-3-319-65813-1_7

[21] M. Schubotz, N. Meuschke, et al. VMEXT: A
visualization tool for mathematical expression
trees. In CICM, Edinburgh, UK, pp. 340–355,
2017.
doi:10.1007/978-3-319-62075-6_24

[22] M. Schubotz, D. Veenhuis, and H. S. Cohl.
Getting the units right. In A. Kohlhase,
P. Libbrecht, et al., eds., Workshop and
Work in Progress Papers at CICM 2016,
Bialystok, Poland, vol. 1785, pp. 146–156, 2016.
http://ceur-ws.org/Vol-1785/W45.pdf

[23] M. Schubotz and G. Wicke. Mathoid: Robust,
scalable, fast and accessible math rendering for
Wikipedia. In CICM, Coimbra, Portugal, pp.
224–235, 2014.
doi:10.1007/978-3-319-08434-3_17

[24] M. Schubotz, A. Youssef, et al. Challenges
of mathematical information retrieval in the
NTCIR-11 math Wikipedia task. In R. A.
Baeza-Yates, M. Lalmas, et al., eds., Special
Interest Group on Information Retrieval (SIGIR),
Santiago, Chile, pp. 951–954, 2015.
doi:10.1145/2766462.2767787

[25] M. Schubotz, A. Youssef, et al. Evaluation of
similarity-measure factors for formulae based on
the NTCIR-11 math task. In N. Kando, H. Joho,
and K. Kishida, eds., 11th NTCIR, Tokyo, Japan,
2014. http://research.nii.ac.jp/ntcir/

workshop/OnlineProceedings11/pdf/NTCIR/

Math-2/04-NTCIR11-MATH-SchubotzM.pdf

[26] H. Stamerjohanns, D. Ginev, et al. MathML-aware
article conversion from LATEX. In Towards a Digital
Mathematics Library. Grand Bend, Ontario,
Canada, pp. 109–120, 2009.
http://eudml.org/doc/220017

[27] S. M. Watt. Exploiting implicit mathematical
semantics in conversion between TEX and
MathML. Proc. Internet Accessible Math.
Commun., 2002.

[28] A. Youssef. Part-of-math tagging and applications.
In CICM, Edinburgh, UK, pp. 356–374, 2017.
doi:10.1007/978-3-319-62075-6_25

⋄ Moritz Schubotz
André Greiner-Petter
Philipp Scharpf
Norman Meuschke

Universitätsstraße 10
78464 Konstanz, Germany
moritz.schubotz , andre.greiner-petter ,

philipp.scharpf , norman.meuschke
(at) uni-konstanz.de

⋄ Howard S. Cohl
National Institute of Standards and

Technology
Mission Viejo, CA 92694, U.S.A
howard.cohl (at) nist dot gov

⋄ Bela Gipp
Universitätsstraße 10
78464 Konstanz, Germany
bela.gipp (at) uni-konstanz dot de

Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp



TUGboat, Volume 39 (2018), No. 3 241

Dednat6: An extensible (semi-)preprocessor
for LuaLATEX that understands diagrams
in ASCII art

Eduardo Ochs

1 Prehistory

Many, many years ago, when I was writing my mas-
ter’s thesis, I realized that I was typesetting too many
natural deduction trees, and that this was driving
me mad. The code (in proof.sty) for a small tree
like this one

[a]1 a → b

b b → c

c

a → c
1

was this:

\infer[{1}]{ a\to c }{

\infer[{}]{ c }{

\infer[{}]{ b }{

[a]^1 &

a\to b } &

b\to c } } }

This was somewhat manageable, but the code
for bigger trees was very hard to understand and to
debug. I started to add 2D representations of the
typeset trees above the code, and I defined a macro
\defded to let me define the code for several trees
at once, and a macro \ded to invoke that code later:

% [a]^1 a->b

% -----------

% b b->c

% ------------

% c

% ----1

% a->c

%

% ^a->c

%

\defded{a->c}{

\infer[{1}]{ a\to c }{

\infer[{}]{ c }{

\infer[{}]{ b }{

[a]^1 &

a\to b } &

b\to c } } }

%

$$\ded{a->c}$$

Then I realized that if I made the syntax of my
2D representations a bit more rigid, I could write a
preprocessor that would understand them directly,
and write all the ‘\defded’s itself to an auxiliary
file. If a file foo.tex had this (note: I will omit all

header and footer code, like \begin{document} and
\end{document}, from the examples),

\input foo.dnt

%: [a]^1 a->b

%: -----------

%: b b->c

%: ------------

%: c

%: ----1

%: a->c

%:

%: ^a->c

$$\ded{a->c}$$

then I just had to run “dednat.icn foo.tex;latex

foo.tex” instead of “latex foo.tex”.

2 dednat.lua

A few years after that, I learned Lua, fell in love with
it, and ported dednat.icn from Icon — which was a
compiled language — to Lua.

The first novel feature in dednat.lua was a way
to run arbitrary Lua code from the .tex file being
preprocessed, and so extend the preprocessor dynam-
ically. dednat.lua treated blocks of lines starting
with ‘%:’ as specifications of trees, and blocks of lines
starting with ‘%L’ as Lua code. More precisely, the
initial set of heads was {"%:", "%L", "%D"}, and
dednat.lua processed each block of contiguous lines
starting with the same head in a way that depended
on the head.

The second novel feature in dednat.lua was a
way to generate code for categorical diagrams, or
“2D diagrams” for short, automatically, analogous
to what we did for trees. I wanted to make the
preprocessor write the ‘\defdiag’s seen here itself:

% LA <-| A

% | |

% v v

% B |-> RB

%

\defdiag{adj_L-|R}{

\morphism(0,0)/<-|/<400,0>[LA`A;]

\morphism(0,0)/->/<0,-400>[LA`B;]

\morphism(400,0)/->/<0,-400>[A`RB;]

\morphism(0,-400)/|->/<400,0>[B`RB;]

}

$$\diag{adj_L-|R}$$

where ‘\morphism’ is the main macro in diagxy,
Michael Barr’s front-end for XY-pic.

After months of experimentation I arrived at a
good syntax for 2D diagrams. This code:

Dednat6: An extensible (semi-)preprocessor for LuaLATEX that understands diagrams in ASCII art



242 TUGboat, Volume 39 (2018), No. 3

%D diagram adj_L-|R

%D 2Dx 100 +25

%D 2D 100 LA <-| A

%D 2D | |

%D 2D | |

%D 2D v v

%D 2D +25 B |-> RB

%D 2D

%D (( LA A <-|

%D LA B -> A RB ->

%D B RB |->

%D ))

%D enddiagram

%D

$$\diag{adj_L-|R}$$

generates this:

LA Aoo ✤LA

B
��

A

RB
��

B RB
✤ //

The lines with ‘%D 2Dx’ and ‘%D 2D’ define a grid
with coordinates and nodes, and the lines between
‘%D ((’ and ‘%D ))’ connect these nodes with arrows.

2.1 A Forth-based language for 2D
diagrams — low-level ideas

The article “Bootstrapping a Forth in 40 lines of
Lua code” [1] describes how a Forth-like language
can be reduced to a minimal extensible core, and
bootstrapped from it. The most basic feature in [1] is
“words that eat text”; the fact that Forth is a stack-
based language is secondary — stacks are added later.
The code for ‘%D’-lines is based on [1].

A “Forth” — actually the “outer interpreter” of
a Forth, but let’s call it simply a “Forth” — works on
one line of input at a time, reads each “word” in it
and executes it as soon as it is read. A “word” is any
sequence of one of more non-whitespace characters,
and an input line is made of words separated by
whitespace. The “outer interpreter” of Forth does
essentially this on each line, in pseudocode:

while true do

word = getword()

if not word then break end

execute(word)

end

Note that word is a global variable. The current
input line is stored in subj and the current position
of the parser is stored in pos; subj and pos are also
global variables — which means the execute(word)

can change them!
The function getword() parses whitespace in

subj starting at pos, then parses a word and returns

it, and advances pos to the position after that word.
There is a similar function called getrestofline()

that returns all the rest of the line from pos onwards,
and advances pos to the end of the line.

One of the simplest Forth words is ‘#’ (“com-
ment”). It is defined as:

forths["#"] = function ()

getrestofline()

end

It simply runs getrestofline(), discards its
return value, and returns. We say that # “eats the
rest of the line”.

In a “real” Forth we can define words using ‘:’
and ‘;’, like this:

: SQUARE DUP * ;

but the Forth-based language in dednat.lua is so
minimalistic that we don’t have ‘:’ and ‘;’ — we
define words by storing their Lua code in the table
forths.

2.2 A Forth-based language for 2D
diagrams — code for diagrams

Let’s look at an example. This code

%D diagram T:F->G

%D 2Dx 100 +20 +20

%D 2D 100 A

%D 2D /|\

%D 2D v v v

%D 2D +30 FA --> GA

%D 2D

%D (( A FA |-> A GA |->

%D FA GA -> .plabel= b TA

%D A FA GA midpoint |->

%D ))

%D enddiagram

%D

$$\diag{T:F->G}$$

yields this:

A

FA

❏

��✡✡
✡✡
✡✡
✡✡
A

GA

t

��
✹✹

✹✹
✹✹

✹✹

FA GA
TA

//

A

��
✤
✤
✤
✤

The word diagram eats a word — the name of
the diagram — and sets diagramname to it. The
word 2Dx eats the rest of the line, and uses it to
attribute x-coordinates to some columns. The word
2D also eats the rest of the line; when it is followed
by nnn or +nnn that number gives the y-coordinate
of that line, and the words that intersect a point
that has both an x-coordinate and a y-coordinate
become nodes. When a 2D is not followed by an nnn

Eduardo Ochs



TUGboat, Volume 39 (2018), No. 3 243

or +nnn then this is a line without a y-coordinate,
and it is ignored.

In a sequence like “A FA |->”, both A and FA

put nodes on the stack, and |-> creates an arrow
joining the two nodes on the top of the stack, without
dropping the nodes from the stack. In a sequence like
“FA GA midpoint” the midpoint creates a phantom
node halfway between the two nodes on the top of the
stack, drops (pops) them and pushes the phantom
node in their place. The word .plabel= eats two
words, a placement and a label, and modifies the
arrow at the top of the stack by setting the arrow’s
label and placement attributes with them. The word
‘((’ remembers the depth of the stack — 42, say —
and the word ‘))’ pops elements from the top of
the stack; if the depth at ‘))’ is 200 then ‘))’ pops
200 − 42 elements to make the depth become 42
again.

The word enddiagram defines a diagram with
the name stored in diagramname; each arrow that
was created, even the ones that were dropped from
the stack, becomes a call to \morphism— the main
macro in diagxy— in the body of the diagram.

A good way to understand in detail how every-
thing works is to inspect the data structures. Let’s
modify the code of the example to add some ‘print’s
in ‘%L’-lines in the middle of the ‘%D’-code:

%D diagram T:F->G

%D 2Dx 100 +20 +20

%L print("xs:"); print(xs)

%D 2D 100 A

%D 2D /|\

%D 2D v v v

%D 2D +30 FA --> GA

%L print("nodes:"); print(nodes)

%D 2D

%D (( A FA |-> A GA |->

%D FA GA -> .plabel= b TA

%D A FA GA midpoint -->

%L print("ds:"); print(ds)

%D ))

%L print("arrows:"); print(arrows)

%D enddiagram

The preprocessor outputs this on stdout:
xs:

{12=100, 16=120, 20=140}

nodes:

{ 1={"noden"=1, "tag"="A", "x"=120, "y"=100},

2={"noden"=2, "tag"="FA", "x"=100, "y"=130},

3={"noden"=3, "tag"="-->", "x"=120, "y"=130},

4={"noden"=4, "tag"="GA", "x"=140, "y"=130},

"-->"={"noden"=3, "tag"="-->", "x"=120, "y"=130},

"A"={"noden"=1, "tag"="A", "x"=120, "y"=100},

"FA"={"noden"=2, "tag"="FA", "x"=100, "y"=130},

"GA"={"noden"=4, "tag"="GA", "x"=140, "y"=130}

}

ds:

12={"arrown"=4, "from"=1, "shape"="-->", "to"=5}

11={"TeX"="\\phantom{O}", "noden"=5, "x"=120,

"y"=130}

10={"noden"=1, "tag"="A", "x"=120, "y"=100}

9={"arrown"=3, "from"=2, "label"="TA",

"placement"="b", "shape"="->", "to"=4}

8={"noden"=4, "tag"="GA", "x"=140, "y"=130}

7={"noden"=2, "tag"="FA", "x"=100, "y"=130}

6={"arrown"=2, "from"=1, "shape"="|->", "to"=4}

5={"noden"=4, "tag"="GA", "x"=140, "y"=130}

4={"noden"=1, "tag"="A", "x"=120, "y"=100}

3={"arrown"=1, "from"=1, "shape"="|->", "to"=2}

2={"noden"=2, "tag"="FA", "x"=100, "y"=130}

1={"noden"=1, "tag"="A", "x"=120, "y"=100}

arrows:

{ 1={"arrown"=1, "from"=1, "shape"="|->", "to"=2},

2={"arrown"=2, "from"=1, "shape"="|->", "to"=4},

3={"arrown"=3, "from"=2, "label"="TA",

"placement"="b", "shape"="->", "to"=4},

4={"arrown"=4, "from"=1, "shape"="-->", "to"=5}

}

3 Semi-preprocessors

dednat.icn, dednat.lua and all its successors until
dednat5.lua were preprocessors in the usual sense —
they had to be run outside latex and before latex.
With dednat6 this changed; dednat6 can still be run
as a preprocessor, but the recommended way to run
it on, say, foo.tex, is to put a line like

\directlua{dofile "dednat6load.lua"}

somewhere near the beginning of foo.tex, add some
calls to \pu at some points — as we will explain
soon — and compile foo.tex with lualatex instead
of latex, to make foo.tex be processed “in paral-
lel” by TEX and by Lua. That “in parallel” is a
simplification, though; consider this example:

%:

%: a b

%: ----

%: c

%:

%: ^my-tree

%:

$$\pu\ded{my-tree}$$

%:

%: d e f

%: -------

%: g

%:

%: ^my-tree

%:

$$\pu\ded{my-tree}$$

Suppose that this fragment starts at line 20. (As
mentioned above, we are omitting the header and
footer — e.g., \begin{document} and \directlua

{dofile "dednat6load.lua"}.)

Dednat6: An extensible (semi-)preprocessor for LuaLATEX that understands diagrams in ASCII art



244 TUGboat, Volume 39 (2018), No. 3

We have a %:-block from lines 20–26, a call to
\pu at line 27, another %:-block from lines 28-34,
and another call to \pu at line 35.

The output of the first %:-block above is a
\defded{my-tree}, and the output of the second
%:-block above is a different \defded{my-tree}.

‘\pu’ means “process until” — or, more precisely,
make dednat6 process everything until this point that

it hasn’t processed yet. The first \pu processes the
lines 1–26 of foo.tex, and “outputs” — i.e., sends to
TEX — the first \defded{my-tree}; the second \pu

processes the lines 28–34 of foo.tex, and “outputs”
the second \defded{my-tree}. Thus, it is not tech-
nically true that TEX and dednat6 process foo.tex
in parallel; dednat6 goes later, and each \pu is a
synchronization point.

3.1 Heads and blocks

In order to understand how this idea — “semi-prepro-
cessors” — is implemented in dednat6 we need some
terminology.

The initial set of heads is {"%:", "%L", "%D"}.
It may be extended with other heads, but we may
only add heads that start with ‘%’.

A block is a set of contiguous lines in the current
.tex file. This code

Block {i=42, j=99}

creates and returns a block that starts on line 42 and
ends on line 99. The Lua function Block receives
a table, changes its metatable to make it a “block
object”, and returns the modified table.

A head block is a (maximal) set of contiguous
lines all with same head. Head blocks are imple-
mented as blocks with an extra field head. For ex-
ample:

Block {i=20, j=26, head="%:"}

A block is bad when it contains a part of a head
block but not the whole of it. We avoid dealing with
bad blocks — dednat6 never creates a block object
that is “bad”.

Each head has a processor. Executing a head
block means running it through the processor associ-
ated with its head. Executing an arbitrary (non-bad)
block means executing each head block in it, one at a
time, in order. Note: the code for executing non-bad
arbitrary blocks was a bit tricky to implement, as
executing a ‘%L’-block may change the set of heads
and the processors associated to heads.

A texfile block is a block that refers to the whole
of the current .tex file, and that has an extra field
nline that points to the first line that dednat6 hasn’t
processed yet. If foo.tex has 234 lines then the
texfile block for foo.tex starts as:

Block {i=1, j=234, nline=1}

We saw in sections 1 and 2.2 that the “output” of
a %:-block is a series of ‘\defded’s and the “output”
of a %D-block is a series of ‘\defdiags’s. We can
generalize this. For example, the “output” of

%L output [[\def\Foo{FOO}]]

%L output [[\def\Bar{BAR}]]

is

\def\Foo{FOO}

\def\Bar{BAR}

The output of a head block is the concatenation
of the strings sent to output() when that block
is executed. The output of an arbitrary (non-bad)
block is the concatenation of the strings sent to
output() by its head blocks when the arbitrary block
is executed.

A \pu-block is created by dednat6 when a \pu

is executed, pointing to the lines between this \pu

and the previous \pu. If foo.tex has a \pu at line
27 and another at line 35 then the first \pu creates
this block,

Block {i=1, j=26}

and the second \pu creates this:

Block {i=28, j=34}

As ‘\pu’s only happen in non-comment lines,
\pu-blocks are never bad.

3.2 The implementation of \pu

The macro \pu is defined as

\def\pu{\directlua{

processuntil(tex.inputlineno)

}}

in LATEX, and processuntil() is this (in Lua):

processuntil = function (puline)

local publock =

Block {i=tf.nline, j=puline-1}

publock:process()

tf.nline = puline + 1

end

Here’s a high-level explanation. When dednat6
is loaded and initialized it creates a texfile block for
the current .tex file — with nline=1— and stores
it in the global variable tf. The macro \pu creates
a \pu-block that starts at line tf.nline and ends
at line tex.inputlineno - 1, executes it, and ad-
vances tf.nline— i.e., sets it to tex.inputlineno

+ 1.
The code above looks simple because the line

publock:process() does all the hard work.

Eduardo Ochs



TUGboat, Volume 39 (2018), No. 3 245

4 Creating new heads

New heads can be created with registerhead, and
they are recognized immediately. For example, this

%L eval = function (str)

%L return assert(loadstring(str))()

%L end

%L expr = function (str)

%L return eval("return "..str)

%L end

%L

%L registerhead "%A" {

%L name = "eval-angle-brackets",

%L action = function ()

%L local i,j,str = tf:getblockstr()

%L str = str:gsub("<(.-)>", expr)

%L output(str)

%L end,

%L }

%A $2+3 = <2+3>$

\pu

produces “2 + 3 = 5”; that looks trivial, but it is
easy to write bigger examples of ‘%A’-blocks with
pict2e code in them, in which the Lua expressions in
‘<...>’s generate ‘\polyline’s and ‘\puts’s whose
coordinates are all calculated by Lua.

5 A read-eval-print-loop (REPL)

Dednat6 uses only one function from the LuaTEX
libraries — tex.print— and two variables, status.
filename and tex.inputlineno, but it includes a
nice way to play with the other functions and vari-
ables in the libraries.

Dednat6 includes a copy of lua-repl (by Rob
Hoelz, github.com/hoelzro/lua-repl), and we can
invoke it by running luarepl(). If we put this in
our foo.tex,

\setbox0=\hbox{abc}

\directlua{luarepl()}

then running lualatex foo.tex will print lots of
stuff, and then the prompt ‘>>>’ of the lua-repl

inside dednat6; if we send these commands to the
REPL,

print(tex.box[0])

print(tex.box[0].id, node.id("hlist"))

print(tex.box[0].list)

print(tex.box[0].list.id, node.id("glyph"))

print(tex.box[0].list.char, string.byte("a"))

print(tex.box[0].list.next)

print(tex.box[0].list.next.char,

string.byte("b"))

we get this in the terminal:
>>> print(tex.box[0])

<node nil < 35981 > nil : hlist 2>

>>> print(tex.box[0].id, node.id("hlist"))

0 0

>>> print(tex.box[0].list)

<node nil < 6107 > 6114 : glyph 256>

>>> print(tex.box[0].list.id, node.id("glyph"))

29 29

>>> print(tex.box[0].list.char, string.byte("a"))

97 97

>>> print(tex.box[0].list.next)

<node 6107 < 6114 > 32849 : glyph 256>

>>> print(tex.box[0].list.next.char,

>>>> string.byte("b"))

98 98

>>>

The best way to use luarepl()— in my not
so humble opinion — is from Emacs, with the eev

library. The tutorial of eev at

http://angg.twu.net/eev-intros/

find-eev-quick-intro.html

explains, in the section “Controlling shell-like pro-
grams”, how we can edit the commands to be sent to
lualatex in a buffer, called the “notes buffer”, and
send them line by line to another buffer that runs
lualatex foo.tex in a shell — the “target buffer”;
each time that we type the F8 key Emacs sends the
current line to the program running in the target
buffer, as if the user had typed it.

6 Availability

Dednat6 is not in CTAN yet (as of October, 2018).
Until it gets there you can download it from:

http://angg.twu.net/dednat6.html

References

[1] E. Ochs: Bootstrapping a Forth in 40 Lines of Lua

Code. Chapter 6 (pp. 57–70) of Lua Programming

Gems, L.H. de Figueiredo, W. Celes, and R. Ierusa-
limschy, eds. lua.org/gems, 2008. Available from
http://angg.twu.net/miniforth-article.html.

⋄ Eduardo Ochs

eduardoochs (at) gmail dot com

http://angg.twu.net/dednat6.html

Dednat6: An extensible (semi-)preprocessor for LuaLATEX that understands diagrams in ASCII art



246 TUGboat, Volume 39 (2018), No. 3

Managing forlorn paragraph lines
(a.k.a. widows and orphans) in LATEX

Frank Mittelbach

Contents

1 The name of the game 246

2 The problem 246

3 Fixing the problem 247

4 Using TEX’s \looseness approach 249

5 Identifying pages with widows or orphans 250

1 The name of the game

Splitting off the first or last line of a paragraph at
a page or column break is considered bad practice
in typesetting circles. It is thus not surprising that
the craftspeople have come up with fairly descriptive
names for such lines when they appear in typeset
documents.

Commonly used are the terms “widow” for the
last and “orphan” for the first line. These are, for
example used in English, French (“veuve” and “or-
pheline”), Italian (“Vedova” and “Orfano”), Spanish
(“ĺınea huérfana” and “ĺınea viuda”), or to a lesser
extent in German (“Witwe” and “Waise”).

One way to remember them is to think of or-
phaned lines appearing at the start (birth) and wid-
ows near the end (death) of a paragraph or by using
Bringhurst’s mnemonic, “An orphan has no past; a
widow has no future” [6].

German typesetters coined some more profane
descriptions by calling the widow line a “Hurenkind”
(child of a whore) and the orphan line a “Schuster-
junge” (son of a shoemaker) allegedly because these
boys have been notoriously meddlesome. For Ger-
man practitioners these are still the predominantly
used terms, though “Witwen” and “Waisen” are also
well understood. Dutch uses “hoerenjong” and “wees-
kind” which translates to son of a whore and orphan,
i.e., somewhere in between the German usage and
the other languages.

Don Knuth catered for this typographic detail in
the TEX program by providing parameters whose val-
ues are used as penalties if the pagination algorithm
considers breaking in such a place. Widow lines
are penalized via \widowpenalty; however, orphans
are not controlled by \orphanpenalty as one might
expect, but by a parameter named \clubpenalty.

There have been some queries about this choice
of names on Stack Exchange and after a little Internet
searching I found a listing for “club line” in the
Collins English Dictionary Digital Edition [1], listing

it as a British (!) term used in printing for an orphan
line. Further checks through the first dozen or so
pages of google hits for “club line” by its own, and the
same with additional restrictions such as “printing”
or “typography” revealed a handful of additional
references (two of which mentioned that Knuth used
the term — thus circular references). So on the whole
it was a meager result and all except one indicated
a use of the term in British not American English.

Contrast this with a search for “orphan line” in
google: Now we will find that nearly all the results
in the first five pages are relevant, with only two or
three near the end being unrelated.

However, what we also see from following them
up is that about a third of them give the terms
different meanings, either by swapping the defini-
tion of orphan and widow lines or by giving them
a slightly different meaning altogether: The last
line of a paragraph being nearly empty, i.e., con-
taining only a single word or even part of a single
word.1

Most of the time, though, the forlorn lines we
want to deal with are called widows and orphans and
this is what we will call them in the remainder of
the article, even if we have to set a \clubpenalty

to deal with one of them.

2 The problem

Essentially everyone in typography circles agrees that
widows and orphans are very distracting to the reader
as well as a sign of bad craftsmanship, and should
therefore be avoided. In fact, most writing guides and
other books on typography generally suggest that a
document should have no such lines whatsoever, e.g.,
in older editions of the Chicago Manual of Style [2]
we find “A page should not begin with the last line
of a paragraph unless it is full measure and should
not end with the first line of a new paragraph.”

However, that is easier said than done, so in a
newer edition of that guide [4] we now find “A page
should not begin with the last line of a paragraph
unless it is full measure. (A page can, however, end
with the first line of a new paragraph.)” instead.

As a result of this sort of guidance many journal
classes for LATEX completely forbid widows and or-
phans by setting \widowpenalty and \clubpenalty

to 10000 which prohibits a break at such points —
TUGboat being no exception.

1 . . . as demonstrated here. In TEX this kind of typo-
graphical issue can also be dealt with, although by differ-
ent means and somewhat more manually: The parameter
\finalhyphenpenalty can make hyphenation in the last line
unattractive, and using unbreakable spaces will ensure that
there is more than one word in the last line; \parfillskip

can also help.

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 247

But doing this introduces severe problems: As
LATEX (and in fact all major typesetting systems
to date) use a greedy algorithm to determine the
pagination of a document, it will recognize problems
with orphan or widow lines late in the game and
will have only the current page to work with. This
means the best it can do to avoid the situation is
to push an orphan to the next page if there is not
enough room to squeeze in another line. The same
happens with widows; here LATEX is forced to move
the second-last line to the next page even though it
would still nicely fit.

As a result the current page will have an addi-
tional line-height worth of white space that needs to
be distributed somewhere on the page. If there are
headings, displays, lists or other objects for which
the design allows some flexibility in the surrounding
white space, then this extra space may not create
much of an issue. If, however, the page consists
only of text or objects without any flexibility, then
all LATEX can do is run the page or column short,
generating a fairly ugly hole at the bottom.2

Related problems

Besides widows and orphans there are a number
of similar issues that typography manuals mandate
eliminating if at all possible. One is a paragraph split
across pages at a hyphenation point so that only a
part of the word is visible at any time; another is
a widow line with a following display formula. For
both, TEX offers parameters to control the unde-
sirability of the scenario. By default Don Knuth
considered them of lesser importance and provided
default values of 100 and 50 for \brokenpenalty

and \displaywidowpenalty, respectively while he
specified 150 for orphans and widows. However, if
your style guide (or your class file) wants to avoid
them at all cost then you are in precisely the same sit-
uation as with widows and orphans discussed above.

A special variation of the last issue is a display
formula starting a page, that is, with the introductory
material completely on the previous page or column.
That is considered a no-go by nearly everybody so in
TEX the controlling \predisplaypenalty parameter
has by default a value of 10000. But again, there
may be valid reasons to ignore this advice in a special
situation, e.g., when the space constraints are high.

3 Fixing the problem

The alternative to preventing widows and orphans (or
hyphens across page boundaries, etc.) automatically

2 This can be observed on the first page of this article,
where an orphan line was pushed onto the current page. For-
tunately, the resulting hole is partly masked by the footnote.

and at all costs is to manually resolve the issues when
they arise. For this one finds a number of suggestions
in the typography literature; a good collection is
given in the guidelines section of the Wikipedia page
on “Widows and Orphans” [5]. We will look at them
one by one below and discuss their applicability and
possible implementation in a LATEX document.

◮ Forcing a page break early, producing a
shorter page

This is what LATEX and most other typesetting tools
automatically do if you completely forbid widows
and orphans and if often leads to badly filled pages
as discussed above.

However, if you force the page break manually,
you can lessen the impact by also explicitly forcing
earlier breaks and thereby shifting the extra white-
space to a page or column where it can be absorbed
by the available flexibility on that page.

◮ Adjusting the leading, the space between lines
of text (although such carding or feathering
is usually frowned upon)

That is indeed frowned upon and for good reason.
The human eye is tuned to notice even small dif-
ferences in the vertical spacing of lines and across
columns or pages such changes, even if they are small,
are very noticeable and distracting. Besides, man-
aging such a change in a LATEX document would
be, while possible, quite cumbersome, so this is not
particularly useful advice for us.

◮ Adjusting the spacing between words to pro-
duce ‘tighter’ or ‘looser’ paragraphs

This is certainly a practical option if you choose the
right paragraph or paragraphs, e.g., those that are
somewhat longer and that have a last line that is
either nearly full (for lengthening) or nearly empty
(for shortening). In that case squeezing the word
spaces might result in one line less and extending it
might get you an additional line (with just a word
or two). In many cases the resulting gray value is
still of acceptable quality so this is a typical trick
of the trade. In LATEX this is achieved by using the
\looseness parameter that is discussed in Section 4.

Note that you do not necessarily need to ma-
nipulate one of the paragraphs of the problem page;
there might be a better candidate on an earlier page.

◮ Adjusting hyphenation within the paragraph

This is a variation of the “change the number of para-
graph lines” type of approach. However, given that
LATEX is usually good in considering most of the pos-
sible hyphenation points when breaking paragraphs,
one is unlikely to gain much if anything. Thus, this
suggestion might have some merits in a system that

Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX



248 TUGboat, Volume 39 (2018), No. 3

does not hyphenate well (or at all) but with LATEX
one is better off applying \looseness.

If you have a very badly broken paragraph be-
cause of a missed hyphenation point you should fix
that anyway (by adding \- or a \hyphenation ex-
ception) regardless of whether or not there is a widow
or orphan nearby.

◮ Adjusting the page’s margins

Now this is an interesting approach. In contrast to
changes in \baselineskip small changes in the line
width are virtually undetectable without a ruler —
unless you make it a huge change. Unfortunately, it
is not really an option when using LATEX as the un-
derlying TEX engine essentially assumes a fixed line
width throughout, so it is fairly difficult to change
that at arbitrary places.

In other words, this advice is really geared to-
wards interactive systems where you can change the
width of a text region and get an immediate reflow
as a visual feedback.

◮ Subtle scaling of the page, though too much
non-uniform scaling can visibly distort the
letters

In principle, that would be possible with LATEX
though so far nobody has implemented the necessary

“An orphan has no past;

a widow has no future”

changes to the output routine. That
is, when a column or page runs short
it will be scaled to the right height
before attaching headers and foot-
ers. Instead of a non-uniform scaling, one could do
uniform scaling and adjust the horizontal widths of
headers and footers accordingly.

However, that approach has issues already dis-
cussed: Scaling means we get a different leading
(though this time the characters will also grow). And
if we do non-linear scaling, i.e., only vertically, then
we will distort characters and from a certain point
onwards this will also be noticeable. So it is question-
able whether this will actually improve the situation.

◮ Rewriting a portion of the paragraph

This is obviously something you can do only if you are
the author and not typesetting some text written by
others. But if so, it is a valid strategy since it enables
you to easily shorten or enlarge a paragraph so that
your orphan or widow is reunited with other lines.

Again, there is no requirement to do this rewrite
with the paragraph causing the issue (as implied by
the advice); you can choose any3 earlier paragraph
to achieve the desired effect.

3 Well, “any” is an exaggeration: If you change a paragraph
on an earlier page the gained (or extra) space might get
swallowed up by available flexibility on some intermediate
page and your widow or orphan thus stays put.

◮ Reduce the tracking of the words

Tracking in this context means adjusting the spacing
between characters in a uniform way (in contrast to
kerning, which means adjusting the spacing between
individual glyph pairs, e.g., “AV” cf. “AV”).

Figure 1 shows a line of text with different
amounts of tracking (negative and positive) applied.
Clearly by applying tracking one can shorten or
lengthen a text. However, when comparing the lines
side by side it is also obvious that the gray value of
words changes fairly rapidly too. Thus even with
small tracking values, changes may become notice-
able and thus distracting. To illustrate the point
this article contains one manipulated paragraph; see
if you can spot it — perhaps it was on an earlier
page and you thought: hmm that doesn’t look quite
right.4

On the whole, common typographical advice is
to not use tracking for such purposes or, if there
is no better alternative, then only with very small
tracking values in which case there may not be any
noticeable effects on the paragraph length unless you
are lucky. It is possible to experiment in LATEX if
you load the microtype package and use, for example,
\textls.

◮ Adding a pull quote to the text
(more common for magazines)

Pull quotes are catch phrases from
the text that are “pulled out” and

typeset prominently again in a different place, typi-
cally in a larger and often different font. They serve
as eye catchers and if carefully chosen will give the
reader a preview of the content or main points of an
article.

The design needs to clearly distinguish them
from other display material, e.g., there should be
no way to confuse them with headings, etc. In two-
column texts this is often done by placing them in
a window with both columns flowing around them
(as shown on this page), but placing them into the
content of one column is also often done.

Placing them within a single column is fairly
easy in TEX, all you need to do is to define an envi-
ronment that places the material between paragraph
lines (using \vadjust if used inside paragraph text).

Producing pull quotes with the column texts
flowing around it, is more manual work and fairly
cumbersome, but doable. On the present page, we
used the wrapfig package. The approach, as well as
a few others are discussed in answers to a question
on Stack Exchange [3].

4 The answer is given at the end of the article.

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 249

Tracking is the uniform increase or decrease of spacing between glyphs. −0.05 em

Tracking is the uniform increase or decrease of spacing between glyphs. −0.03 em

Tracking is the uniform increase or decrease of spacing between glyphs. −0.02 em

Tracking is the uniform increase or decrease of spacing between glyphs. −0.01 em

Tracking is the uniform increase or decrease of spacing between glyphs. — LATEX’s default setting —
Tracking is the uniform increase or decrease of spacing between glyphs. +0.01 em

Tracking is the uniform increase or decrease of spacing between glyphs. +0.02 em

Tracking is the uniform increase or decrease of spacing between glyphs. +0.05 em

Tracking is the uniform increase or decrease of spacing between glyphs. +0.07 em

Figure 1: Tracking in action

As the above advice already mentions, these are
more commonly found in magazine type documents,
so this approach may or may not be applicable.

◮ Adding a figure to the text, or resizing an
existing figure

Just like adding a pull quote, resizing a figure will
obviously change the amount of material a column
can hold and thus will enable us to move an orphan
or widow out of harm’s way. Whether or not it is
a valid option depends on the figure in question;
often enough graphics do offer some freedom and
can be adjusted either by scaling (up or down) or by
cropping, etc.

Summary

To resolve issues with widows and orphans one has
to somehow adjust the amount of material typeset
in the respective column or page. For LATEX users
the most promising approaches are

• forcing material from one column to the next
through explicit page breaks;

• generating more or less material by lengthening
or shortening some paragraphs;

• rewriting paragraphs (if you are the author);

• or resizing a float.

Adjusting the line width for a single column is rather
difficult to achieve in LATEX and therefore not rec-
ommended, even though it can lead to good results.
Applying tracking seldom works well, it usually either
makes no difference or results in noticeable grey-level
differences.

Using pull quotes is similar to changing or re-
sizing floats or modifying paragraphs. However, the
quotes carry meaning and so you can’t simply add
one arbitrarily for the sake of better pagination.
Thus, adding or moving them around is a bit like
changing the document structure and you therefore
have to be careful not to sacrifice semantics for form.
This makes them a less desirable approach.

Scaling the page or changing the leading is ty-
pographically rather questionable, so these can’t be

recommended (besides their being rather complicated
to achieve with LATEX).

In any case, it should be noted though that all
approaches are manual and thus the adjustments
will become invalid the moment there is a document
change that modifies the amount of material typeset.
It is therefore of paramount importance to manually
fix widows and orphans only at the very last stage
of producing the final document. Otherwise all the
effort might be in vain and will need to be undone
or changed over and over again.

The situation would be somewhat different if
TEX was extended to globally optimize pagination
rather than applying a greedy algorithm as it cur-
rently does. Some theoretical work in that direction
has been carried out in recent years by the current au-
thor and it may eventually lead to a production-ready
system using LuaTEX [7, 8]. However, at present it is
available only in a private prototype implementation
and can’t be used with vanilla LATEX.

4 Using TEX’s \looseness approach

TEX (and therefore LATEX) uses a globally optimizing
line-breaking algorithm to find the best breaks for a
given paragraph based on a given set of parameters.
One can ask TEX to try to find a solution (within
given quality boundaries) that is a number of lines
longer or shorter than the optimal result. If such a
solution exists it will be used; if not, then TEX will
try to match the request as closely as possible.

The paragraph will still be optimized (under the
new conditions), i.e., its overall gray level will be
fairly uniform, etc., but, inevitably, the inter-word
spacing will get looser or tighter in the process.

To activate this feature you need to set the
parameter \looseness to the desired value. This
has to be done directly in front of (or within) the
paragraph text via low-level TEX syntax

\looseness=1 % to lengthen by one line

% % <- no blank line here!

The text that gets manipulated ...

as there is no LATEX interface available.

Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX



250 TUGboat, Volume 39 (2018), No. 3

TEX automatically resets the value to zero when-
ever a \par command or blank line is encountered;
thus it will affect at most one paragraph.

A value of -1 has the best chance to work if the
last line is already nearly empty (and the paragraph
is of reasonable length). Lengthening is somewhat
easier as inter-word spaces can stretch arbitrarily (as
long as they do not exceed the \tolerance), whereas
they can shrink by only a fixed amount. But again
there is a better chance for success if the last line is
already (nearly) filled.

So far so easy, but there are a few pitfalls that
need to be avoided: First of all, with a positive value
of \looseness TEX will usually move only a single
word or even part of a single word into the last line, as
this way there is more material in the others and thus
less stretching of the inter-word spaces necessary. As
this usually looks rather ugly, it is best to tie the last
words together by using ˜ and if necessary prevent
hyphenation of the last word by placing an \mbox

around it.
Secondly, lengthening of a paragraph may go

horribly wrong (as shown here) if the document is set
with a high \tolerance value, e.g., most definitely
when a \sloppy declaration is in force.

The \tolerance defines how bad a line can
get while still being a candidate for the line-
breaking algorithm and \sloppy (or sloppypar)
simply sets this tolerance nearly5 to infin-
ity, i.e., arbitrarily bad lines are acceptable
and thus you might end up with a para-
graph like this one (where we asked for two
extra lines and got them). With a lower
\tolerance value that would never have hap-
pened: TEX would have refused to produce a result
like this.

Seeing the previous paragraph you might ask
yourself why one would want to use a high, let alone
infinite, \tolerance at all. The reason is that this
caters for situations where line breaking is very dif-
ficult. If there is a better solution with a lower
tolerance value TEX would use it, but if not it could
still proceed. So normally we wouldn’t see such bad
paragraphs even with a high tolerance in force (it just
means that TEX evaluates more candidate solutions).
But if we apply \looseness we explicitly ask TEX
to deviate from the optimal number of lines and to
fulfill this request TEX may resort to a solution with
bad lines that nobody would want.

5 In the early days of LATEX \sloppy used to set the toler-
ance to 10000 (i.e., TEX’s infinity) but that tended to produce
even more bizarre looking paragraphs: TEX then made one line
really, really bad and all others perfect,
as that looked to the optimizer to be the best solution.

5 Identifying pages with widows or
orphans

If the document class you use sets \widowpenalty

and \clubpenalty to 10000, then LATEX will auto-
matically prevent widows and orphans, i.e., an or-
phan is forced to the top of the next page or column;
and the same with the line preceding a widow. The
downside, as discussed previously, is partly empty
pages and if space is a premium (for example, if
your conference paper is not allowed to be more than
X pages in total) then this is a possible problem.
Thus you are better off allowing widows and orphans
(by changing the parameter values) and manually
correcting them in one way or another.

The question then becomes, how do you identify
the problematic page breaks without manually going
through the printout of your document and searching
for them? While that is certainly an option it is error
prone and it would be much nicer if LATEX (even if
it can’t automatically resolve the issues for you) at
least identifies them so that you only have to check
the problem pages.

This is possible by simply loading the package
widows-and-orphans.6 This package adjusts the pa-
rameter values slightly so that so that all possible
combinations lead to distinctive numbers. For ex-
ample, instead of the LATEX default values it would
choose

\widowpenalty = 150

\clubpenalty = 152

\displaywidowpenalty = 50

\brokenpenalty = 101

so that it can distinguish between a widow and an
orphan (\widowpenalty or \clubpenalty) or a dis-
play widow that comes together with a hyphen at the
break (\displaywidowpenalty + \brokenpenalty).
In case you wonder why 151 wasn’t used: that value
is already used by LATEX for \@medpenalty which
you get if you issue \nopagebreak[2]. By making
sure that all technically possible combinations lead
to unique numbers it is only necessary to look at the
penalty of the page break to determine whether or
not that break exhibits one or more of the problems.
So at any page or column break the \outputpenalty

is inspected and depending on the findings a warning
or error is generated that can then be checked and
corrected manually.

To ease this process further the package has
a number of key/value options. The check option
determines how findings are handled: the default

6 The implementation of the package (which is written in
the expl3 programming language) is documented in a separate
article in this TUGboat issue [9].

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 251

is warning in which case warnings are written to
the terminal and the .log file. In the last phase
of document development you may want to change
that to error in which case the package will stop at
each problem with an error message rather than just
a warning. In the opposite direction, info will not
clutter the terminal with messages and only writes
to the .log. And if you know for sure that all the
remaining issues have to stay, you can also use the
value none in which case no checks are done at all.

Why would one want the last option instead of
not loading the package? The reason is this: as the
package has to change the parameter settings slightly,
not loading it would mean running the document
with different values and even though those changes
are minimal, it is possible to construct examples
where the difference matters and leads to changed
results. So once you have fixed what is possible to
fix it’s safest to still load the package, even if you no
longer want the remaining warnings. Another reason
is that the package offers the command \WaOsetup

that allows you to change options mid-document, e.g.,
turn the warnings off for chapters already handled,
but turn them on again for others.

Instead of suppressing all checking for a part
of the document via \WaOsetup you can issue the
command \WaOignorenext somewhere in the docu-
ment, after which the next check — for the current
page or column — will be silenced. The check is still
performed and if no problems are found you will
receive an error message, because either you have
added it to the wrong page or your text has changed
and it is no longer needed.

The package also offers options to set individ-
ual parameters to “reasonable” values. These are
widows, orphans, hyphens that all accept default

(LATEX default), avoid (higher value but still possi-
ble) or prevent. And there are also the valueless
options default-all, avoid-all and prevent-all

to set all parameters in one go. Of course, as an
alternative one can always change the parameters
individually in the preamble or even in the middle of
the document by assigning explicit numerical values.

If you want to see the resulting parameter set-
tings (and the combinations that need to be unique
in order to allow the package to work) you can issue
the command \WaOparameters at any point after
the preamble, which will give you a somewhat terse
listing.

Answer to the riddle

The paragraph with negative tracking (−0.01 em) is
the first one after “◮ Rewriting a portion . . . ” on
page 248, toward the bottom of the first column.

Due to the tracking it needs one line less com-
pared to the default line breaks. But as a result
of the tracking, the characters are noticeably closer
to each other, for example, in the word “obviously”.
Depending on your aesthetic judgment, a value of
±0.02 em is roughly the borderline of what can be
considered acceptable, so if that or a lower value
works, it might be an option.

References

[1] Anonymous. Collins English dictionary —
complete & unabridged 2012 digital edition.
https://www.collinsdictionary.com/

dictionary/english/club-line.

[2] Anonymous. The Chicago Manual of Style.
University of Chicago Press, Chicago, IL, USA,
14th edition, 1993.

[3] Anonymous. How can you create
pullquotes?, 2012. https://tex.

stackexchange.com/questions/45709/

how-do-you-create-pull-quotes.

[4] Anonymous. The Chicago Manual of Style.
University of Chicago Press, Chicago, IL, USA,
17th edition, 2017.

[5] Anonymous. Widows and orphans, 2017.
https://en.wikipedia.org/wiki/Widows_

and_orphans.

[6] Robert Bringhurst. The Elements of
Typographic Style. Hartley & Marks Publishers,
Point Roberts, WA, USA and Vancouver, BC,
Canada, 1992.

[7] Frank Mittelbach. A general framework for
globally optimized pagination. In Proceedings
of the 2016 ACM Symposium on Document
Engineering, DocEng ’16, pages 11–20, New
York, NY, USA, 2016. ACM. Download
from https://www.latex-project.org/

publications.

[8] Frank Mittelbach. Effective floating
strategies. In Proceedings of the 2017 ACM
Symposium on Document Engineering,
DocEng ’17, pages 29–38, New York, NY,
USA, 2017. ACM. Download from https:

//www.latex-project.org/publications.

[9] Frank Mittelbach. The widows-and-orphans

package. TUGboat 39:3, 2018, 252–262.
https://ctan.org/pkg/widows-and-orphans

⋄ Frank Mittelbach
Mainz, Germany
frank.mittelbach (at)

latex-project dot org

https://www.latex-project.org

Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX



252 TUGboat, Volume 39 (2018), No. 3

The widows-and-orphans package

Frank Mittelbach

Abstract

The widows-and-orphans package checks page or column breaks for issues with widow or
orphan lines and issues warnings if such problems are detected. In addition, it checks
and complains about breaks involving hyphenated words and warns about display
formulas directly after a page break — if they are allowed by the document parameter
settings, which by default isn’t the case.

A general discussion of the problem of widows and orphans and suggestions for resolution
is given in [1].

Contents

1 Overview 252

1.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

1.2 User commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

1.3 Related packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

2 The implementation 253

2.1 Checking \outputpenalty . . . . . . . . . . . . . . . . . . . . . . . 254

2.2 Messages to the user . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

2.3 Adjusting parameter values . . . . . . . . . . . . . . . . . . . . . . . 258

2.4 The option setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

2.5 Document-level commands . . . . . . . . . . . . . . . . . . . . . . . 262

1 Overview

To determine if a widow or orphan has occurred at a column or page break, the
package analyzes the \outputpenalty that triggered the break. As TEX adds special
penalties to widow and orphan lines (\widowpenalty and \clubpenalty), we can
hope to identify them, provided the penalties have unique values so that we don’t end
up with false positives.

The package therefore analyzes the different parameter values and if necessary adjusts
the settings slightly so that all possible combinations that can appear in documents
have unique values and can thus be identified.

All that remains is to hook into the output routine check; if \outputpenalty has a
value that matches one of the problematic cases, issue a warning.

Besides widows and orphans it is possible to detect other cases controlled through
penalty parameters, e.g., \brokenpenalty that is added if a line ends in a hyphen. So
by including this parameter into the checks, we can identify when that happens at the
end of a column and issue a warning there too.

We also do this for \predisplaypenalty, which controls a break just in front of a
math display. This is normally set to 10000 so such breaks don’t happen in standard
LATEX, but if the value is lowered it becomes possible, and thus a possible issue.

1.1 Options

The package has a number of key/value options to adjust its behavior. The option check

defines what happens when an issue is found: default is warning, other possibilities
are error, info and none.

The options orphans and widows set reasonable parameter values; the default is to
use whatever the class defines. Possible values are prevent, avoid or default, the
latter meaning use standard LATEX defaults.

To set all parameters in one go you can use prevent-all, avoid-all or default-all.
These options also assign values to \brokenpenalty and \predisplaypenalty.

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 253

1.2 User commands

The package provides three user-level commands.

\WaOsetup 〈comma list〉

This command accepts any of the package options and allows adjusting the package
behavior in mid-document if necessary.

\WaOsetup

\WaOparameters

This command produces a listing of the parameter combinations and their values.

\WaOparameters

\WaOignorenext

This command directs the package to not generate warnings for the current page or
columns (if we know that they can’t be corrected).

\WaOignorenext

1.3 Related packages

Package nowidow: This package offers some commands to help pushing lines from
one page to another by locally requesting no widows or orphans — possibly for several
lines. In that respect it implements one of the possibilities discussed in the TUGboat

article [1]. This is, however, in many cases not the best solution to get rid of a widow
or orphan when the interest is to achieve high typographical quality.

2 The implementation

The package is implemented in expl3, so the first thing we do is to define a prefix for
our internal commands, so that we can write @@ in the source when we mean the prefix
__fmwao, indicating that something is internal.1

1 〈@@=fmwao〉

Then we check that we are running on top of LATEX 2ε and load the two packages we
want to use: xparse for the user interface and l3keys2e for key/value option syntax.
They load the needed expl3 code so we are ready to roll afterwards.

2 \NeedsTeXFormat{LaTeX2e} \RequirePackage{xparse,l3keys2e}

Then we announce the package to the world at large. This declaration will also tell
LATEX that this is an expl3 package and that from now on the expl3 conventions are to
be obeyed, e.g., _ and : can appear in command names and whitespace is automatically
ignored (so no need for % all over the place).2

3 \ProvidesExplPackage{widows-and-orphans}{2018/11/18}{v1.0b}

4 {Detecting widows and orphans (FMi)}

\@makecol As mentioned in the introduction we want to check the value of \outputpenalty inside
the output routine, and so we need to add some code to the output routine.

We add it to the front of \@makecol, the macro that assembles the actual column.
This way it only gets executed if we make a column or a page but not when the output
routine is triggered because of a float or \marginpar.

5 \tl_put_left:Nn \@makecol { \__fmwao_test_for_widows_etc: }

(End definition for \@makecol.)

1 l3docstrip expands that for us, so in the .sty file we get the longer names with double
underscores even though the real source just contains @@ all over the place. The same is done by the
l3doc class for the printed documentation you are currently reading.

2 Figure 1 gives a short introduction to the naming conventions of expl3 for those readers who
haven’t seen any code written in expl3. For more details refer to [2].

The widows-and-orphans package



254 TUGboat, Volume 39 (2018), No. 3

Commands in expl3 use the following naming convention:

\〈module〉_〈action〉:〈arg-spec〉 % externally available command
\__〈module〉_〈action〉:〈arg-spec〉 % internal command local to the package

〈module〉 describes the (main) area to which the command belongs,

〈action〉 describes the (main) action of the command, and

〈arg-spec〉 shows the expected command arguments and their preprocessing:
N means expect a single token;
n means expect a (normal) braced argument;
T and F also represent braced arguments, indicating “true” and “false” branches in a conditional;
V means expect a single token, interpret it as a variable and pass its value on to the command;
Finally, p stands for a (possibly empty) parameter spec, e.g., #1#2... in a definition.
There are a number of other argument types, but they aren’t used in the code described here.

Examples:

\cs_if_eq:NNTF is a conditional from the module cs (command names) implementing the action
if_eq (if equal) and expecting two single tokens (commands to compare) and a true and a false
branch (one of which is executed).

\tl_put_left:Nn is a function from the module tl (token lists) implementing put_left and
expecting a single token (a token list variable) and a braced argument (the data to insert at
the front/left in the variable).

Variables start with \l_ (for local) or \g_ (for global) and have the data type as the last part of the
name. Variables internal to the package use two underscores, e.g., \l__fmwao_gen_warn_bool.

Figure 1: Crash course in expl3 command name conventions

2.1 Checking \outputpenalty

\g__fmwao_gen_warn_bool To be able to suppress checking we define a global boolean variable which by default is
set to true (warnings enabled).

6 \bool_new:N \g__fmwao_gen_warn_bool

7 \bool_gset_true:N \g__fmwao_gen_warn_bool

(End definition for \g__fmwao_gen_warn_bool.)

\__fmwao_test_for_widows_etc: What are the different values related to orphans and widows and the like that can
appear in \outputpenalty? Here is the basic list:

\widowpenalty + \interlinepenalty → if the break happens on the second-last line
of a paragraph and the paragraph is not followed by a math display.

\displaywidowpenalty + \interlinepenalty → if the break happens on the second-
last line of a paragraph and the paragraph is followed by a math display.

\clubpenalty + \interlinepenalty → if the break happens after the first line of a
paragraph and the paragraph has more than two lines.

\clubpenalty + \widowpenalty + \interlinepenalty → if the break happens after
the first line of a paragraph in a two-line paragraph (thus this line is also the
second-last line).

\clubpenalty + \displaywidowpenalty + \interlinepenalty → if the break hap-
pens after the first line of a paragraph in a two-line paragraph and a math display
follows.

That’s it for widows and orphans. If we also consider hyphenated breaks then we get a
further set of cases, namely all of the above with \brokenpenalty added in and the
case of \brokenpenalty on its own (with just \interlinepenalty added).

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 255

8 \cs_new:Npn \__fmwao_test_for_widows_etc: {

So here is the main test. We compare \outputpenalty with each case until we have a
hit or run out of cases. Instead of adding \interlinepenalty to each case we subtract
it once from \outputpenalty to make the comparison a little more efficient.

If we get a hit, we execute the corresponding code: either \__fmwao_problem_

identified:n or \__fmwao_problem_identified:nn (i.e., one or two arguments)
to issue the warning. The arguments are to select the correct warning text and cus-
tomize it further if necessary. For example, in the first case it is a “widow” problem
and the text in the message should start with “Widow” while in the second case it is
also a “widow” problem but the text will say “Display~ widow”.3 This just saves a
bit of space when different cases share more or less the same message text.

9 \int_case:nnF { \outputpenalty - \interlinepenalty }

10 {

11 { \widowpenalty }

12 { \__fmwao_problem_identified:nn{widow}{Widow} }

13 { \displaywidowpenalty }

14 { \__fmwao_problem_identified:nn{widow}{Display~ widow} }

15 { \clubpenalty }

16 { \__fmwao_problem_identified:n{orphan} }

17 { \clubpenalty + \widowpenalty }

18 { \__fmwao_problem_identified:nn{orphan-widow}{} }

19 { \clubpenalty + \displaywidowpenalty }

20 { \__fmwao_problem_identified:nn{orphan-widow}{display} }

A similar issue comes from a hyphen at the end of a column or page in which case TEX
adds \brokenpenalty so we can test against that:

21 { \brokenpenalty }

22 { \__fmwao_problem_identified:n{hyphen} }

However, I said “TEX adds”, which means if a widow line also ends in a hyphen then
the penalty will be the sum of both individual penalties. So all the cases above need to
be repeated with \brokenpenalty added to the value. We generate the same warnings,
though — e.g., we will say “Widow detected” and not “Hyphenated widow line detected”
as the latter seems to be overkill.

23 { \brokenpenalty + \widowpenalty }

24 { \__fmwao_problem_identified:nn{widow}{Widow} }

25 { \brokenpenalty + \displaywidowpenalty }

26 { \__fmwao_problem_identified:nn{widow}{Display~ widow} }

27 { \brokenpenalty + \clubpenalty }

28 { \__fmwao_problem_identified:n{orphan} }

29 { \brokenpenalty + \clubpenalty + \widowpenalty }

30 { \__fmwao_problem_identified:nn{orphan-widow}{} }

31 { \brokenpenalty + \clubpenalty + \displaywidowpenalty }

32 { \__fmwao_problem_identified:nn{orphan-widow}{display} }

Finally there is \predisplaypenalty that we may as well check also (in case it was
set to a value lower than 10000). If it appears it means we have a display at the very
top of the page. We reuse the “widow” warning but this time say “Lonely~ display”
in the second argument. This case does not have \interlinepenalty added by TEX,
so we have to undo the optimization above.

33 { \predisplaypenalty - \interlinepenalty }

34 { \__fmwao_problem_identified:nn{widow}{Lonely~ display} }

35 }

3 If you haven’t seen much expl3 code you may wonder about the ~. As the code ignores spaces we
have to mark up real spaces and for this the tilde is used. In expl3 code this does not act as a tie, but
simply as a catcode 10 space character (while normal spaces are ignored).

The widows-and-orphans package



256 TUGboat, Volume 39 (2018), No. 3

The last argument of \int_case:nnF is executed in the “false” case, i.e., when no
match has been found. In that case we check the status of \g__fmwao_gen_warn_bool
and if that is also “false”, i.e., we have been asked not to generate warnings, we issue
an error message. Why? Because the user asked us explicitly to ignore problems
on the current page, but we found nothing wrong. This either means a problem got
corrected or the request was intended for a different page. Either way it is probably
worth checking.

36 { \bool_if:NF \g__fmwao_gen_warn_bool

37 { \msg_error:nn{widows-and-orphans}{no-problem} } }

Finally, we make sure that the next page or column is again checked.

38 \bool_gset_true:N \g__fmwao_gen_warn_bool

39 }

(End definition for \__fmwao_test_for_widows_etc:.)

\__fmwao_problem_identified:n

\__fmwao_problem_identified:nn

These commands prepare for generating a warning, but only if we are supposed to, i.e.,
if \g__fmwao_gen_warn_bool is true.

40 \cs_new:Npn \__fmwao_problem_identified:n #1 {

41 \bool_if:NT \g__fmwao_gen_warn_bool

42 { \msg_warning:nn{widows-and-orphans}{#1} }

43 }

44 \cs_new:Npn \__fmwao_problem_identified:nn #1 #2 {

45 \bool_if:NT \g__fmwao_gen_warn_bool

46 { \msg_warning:nnn{widows-and-orphans}{#1}{#2} }

47 }

(End definition for \__fmwao_problem_identified:n and \__fmwao_problem_identified:nn.)

2.2 Messages to the user

\__fmwao_this_page:

\__fmwao_next_page:

For displaying nice messages to the user we need a few helper commands. The two
here show the page number of the current or next page. They are semi-smart, that is
they will recognize if the document uses roman numerals and if so display the number
as a roman numeral (but in all other cases it uses arabic numerals).

48 \cs_new:Npn \__fmwao_this_page: { \__fmwao_some_page:n \c@page }

49 \cs_new:Npn \__fmwao_next_page: { \__fmwao_some_page:n { \c@page + 1 } }

(End definition for \__fmwao_this_page: and \__fmwao_next_page:.)

\__fmwao_some_page:n

\__fmwao_roman_thepage:

This macro first compares \thepage against the code that would be used in the case
of a roman numeral representation, and then displays its argument using either arabic
numbers or roman numerals.

50 \cs_new:Npn \__fmwao_some_page:n #1 {

51 \cs_if_eq:NNTF \thepage \__fmwao_roman_thepage:

52 { \int_to_roman:n } { \int_to_arabic:n }

53 { #1 }

54 }

\__fmwao_roman_thepage: just stores the default definition of \thepage if page num-
bers are represented by roman numerals for use in the comparison above.

55 \cs_new_nopar:Npn \__fmwao_roman_thepage: {\csname @roman\endcsname \c@page}

(End definition for \__fmwao_some_page:n and \__fmwao_roman_thepage:.)

\legacy_switch_if:nTF To evaluate LATEX 2ε boolean switches in a nice way, we need a conditional. Eventually
this will probably make it into the expl3 code in this or a similar form, but right now
it is missing.

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 257

56 \prg_new_conditional:Npnn \legacy_switch_if:n #1 {p, T , F , TF }

57 { \exp_args:Nc\if_meaning:w { if#1 } \iftrue \prg_return_true:

58 \else: \prg_return_false: \fi: }

(End definition for \legacy_switch_if:nTF.)

The first message is issued if we have been directed to ignore a problem and there
wasn’t one:

59 \msg_new:nnnn {widows-and-orphans} {no-problem}

60 { No~ problem~ to~ suppress~ on~ this~ page! }

61 { Suppression~ of~ a~ widow~ or~ orphan~ problem~ was~ requested~

62 but~ on~ the~ current~ page~ there~ doesn’t~ seem~ to~ be~ any.~

63 Maybe~ the~ text~ was~ changed~ and~ the~ request~ should~ get~

64 (re)moved?}

The next message is about orphans. They can appear at the bottom of the first or the
second column of the current page, if we are in two-column mode. So we check for this
and adjust the message accordingly.

65 \msg_new:nnnn {widows-and-orphans} {orphan}

66 { Orphan~ on~ page~ \__fmwao_this_page:

67 \legacy_switch_if:nT {@twocolumn}

68 { \space ( \legacy_switch_if:nTF {@firstcolumn}

69 { first~ } { second~ } column) }

70 }

71 { Check~ out~ the~ page~ and~ see~ if~ you~ can~ avoid~ the~ orphan.}

A hyphen at the end of a page or column requires more or less the same message, so
this could have been combined with the previous one.

72 \msg_new:nnnn {widows-and-orphans} {hyphen}

73 { Hyphen~ in~ last~ line~ of~ page~ \__fmwao_this_page:

74 \legacy_switch_if:nT {@twocolumn}

75 { \space ( \legacy_switch_if:nTF {@firstcolumn}

76 { first~ } { second~ } column) }

77 }

78 { Check~ out~ the~ page~ and~ see~ if~ you~ can~ get~

79 a~ better~ line~ break. }

Widows need a different logic since we detect them when cutting a previous page or
column but the widow is on the following one. This message works for “widows”,
“display widows” as well as math displays by just changing the first word (or words),
so here we use an additional argument:

80 \msg_new:nnnn {widows-and-orphans} {widow}

81 { #1~ on~ page~

82 \legacy_switch_if:nTF {@twocolumn}

83 { \legacy_switch_if:nTF {@firstcolumn}

84 { \__fmwao_this_page: \space (second~ }

85 { \__fmwao_next_page: \space (first~ }

86 column)

87 }

88 { \__fmwao_next_page: }

89 }

90 { Check~ out~ the~ page~ and~ see~ if~ you~ can~ avoid~ the~ widow.}

The case of both widow and orphan is similar, but we obviously need different text so
we made it its own message.

The widows-and-orphans package



258 TUGboat, Volume 39 (2018), No. 3

91 \msg_new:nnnn {widows-and-orphans} {orphan-widow}

92 { Orphan~

93 \legacy_switch_if:nTF {@twocolumn}

94 { \legacy_switch_if:nTF {@firstcolumn}

95 { and~ #1 widow~ on~ page~ \__fmwao_this_page: \space

96 (first~ and~ second~ }

97 { on~ page~ \__fmwao_this_page: \space (second~ column)~

98 and~ #1 widow~ on~ page~ \__fmwao_next_page: \space (first~ }

99 }

100 { on~ page~ \__fmwao_this_page: \space (second~ column)~

101 and~ #1 widow~ on~ page~ \__fmwao_next_page: \space (first~ }

102 column)

103 }

104 { Check~ out~ the~ page~ and~ see~ if~ you~ can~ avoid~ both~

105 orphan~ and~ widow.}

2.3 Adjusting parameter values

To avoid (a lot of) false positives during checking it is important that the parameter
values are chosen in a way that all possible combinations lead to unique \outputpenalty
values. At the same time, we want them to be as close as possible to the values that
have been initially requested by the user (or in the document class) and if we deviate
too much then this will likely alter the page breaks TEX finds. So here is an outline of
how we handle the parameters:

• We set up a property list to hold penalty values that can appear in \outputpenalty

inside the output routine. The penalties are the “keys” and the corresponding
property list value is the source of how they got produced. For example, the key
might be 150 and the value \widowpenalty.

• Initially the property list is empty. So adding the first item simply means taking
the value of one parameter, say 150 from \widowpenalty + \interlinepenalty,
as the key and this formula as the property list value.

• For the next parameter, say \clubpenalty, we check if its value (or more precisely
its value plus \interlinepenalty) is already a key in the property list. If that is
the case, then we have failed and must modify the parameter value somehow.

• If not, we also have to check any combination of the current parameter with any
parameter processed earlier. If that combination is possible, e.g., \clubpenalty
(new) and \widowpenalty (already processed) then we also have to check the sum.
If that sum is already a key in the property list then we have failed as well.

• If we have failed, we iterate by incrementing the current parameter value and try
again. Eventually we will get to a value where all combinations we test work, that
is, are not yet in the property list.

• We then change the parameter to this value and add all the combinations we
tried before to the property list (that is \clubpenalty + \interlinepenalty

both alone and together with \widowpenalty in our example). Thus from now
on those are also forbidden values.

• We do all this with a helper command that takes the new parameter as the first
argument and the list of different cases to try as a comma-separated list as a
second argument, e.g.,

\__fmwao_decide_penalty:Nn \clubpenalty

{ \clubpenalty + \interlinepenalty ,

\clubpenalty + \widowpenalty + \interlinepenalty }

• This way we are adding all relevant parameters to the property list and at the
same time adjusting their values if needed.

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 259

• Once all parameters are handled the property list is no longer needed as the
parameters got changed along the way, but we keep it around as it allows for a
simple display of all settings in one go.

\l__fmwao_penalties_prop Here is the property list for our process.

106 \prop_new:N \l__fmwao_penalties_prop

(End definition for \l__fmwao_penalties_prop.)

\__fmwao_initialize: Now we are ready to go. The first action is to clear the property list as the initialization
may happen several times.

107 \cs_new:Npn \__fmwao_initialize: {

108 \prop_clear:N \l__fmwao_penalties_prop

When TEX breaks a page at a glue item with no explicit penalty involved it sets
\outputpenalty to 10000 in the output routine to distinguish it from a case where
an explicit penalty of 0 was in the document. That means none of our parameters or
parameter combinations can be allowed to have that particular value, because otherwise
we would get a false match for each break at glue and report an issue. So we enter
that value first (by hand) so that it will not be used by a parameter or parameter
combination.

109 \prop_put:Nnn \l__fmwao_penalties_prop {10000} {break~ at~ glue}

The next thing is to add the values for \@lowpenalty, \@medpenalty, \@highpenalty
to the property list as they also may show up in \outputpenalty if a user says, for
example, \nopagebreak[2].

Such a penalty from an explicit page break request does not get \interlinepenalty
added in.

110 \__fmwao_decide_penalty:Nn \@lowpenalty { \@lowpenalty}

111 \__fmwao_decide_penalty:Nn \@medpenalty { \@medpenalty}

112 \__fmwao_decide_penalty:Nn \@highpenalty { \@highpenalty}

Then comes the first real parameter for the orphans:

113 \__fmwao_decide_penalty:Nn \clubpenalty

114 { \clubpenalty + \interlinepenalty }

followed by the one for the widows and the one for the display widows:

115 \__fmwao_decide_penalty:Nn \widowpenalty

116 { \widowpenalty + \interlinepenalty ,

117 \widowpenalty + \clubpenalty + \interlinepenalty }

118

119 \__fmwao_decide_penalty:Nn \displaywidowpenalty

120 { \displaywidowpenalty + \interlinepenalty ,

121 \displaywidowpenalty + \clubpenalty + \interlinepenalty }

\brokenpenalty can appear on its own, and also with each and every combination we
have seen so far:

122 \__fmwao_decide_penalty:Nn \brokenpenalty

123 { \brokenpenalty + \interlinepenalty ,

124 \brokenpenalty + \clubpenalty + \interlinepenalty ,

125 \brokenpenalty + \widowpenalty + \interlinepenalty ,

126 \brokenpenalty + \widowpenalty + \clubpenalty + \interlinepenalty ,

127 \brokenpenalty + \displaywidowpenalty + \clubpenalty

128 + \interlinepenalty }

Finally we have the parameter for lonely displays (again without \interlinepenalty
being added):

129 \__fmwao_decide_penalty:Nn \predisplaypenalty { \predisplaypenalty }

130 }

The widows-and-orphans package



260 TUGboat, Volume 39 (2018), No. 3

If we run the above code with LATEX’s default parameter settings in force it will make
a few adjustments and the property list will afterwards contain the following entries:

The property list \l__fmwao_penalties_prop contains the pairs (without

outer braces):

> {10000} => {break at glue}

> {51} => {\@lowpenalty }

> {151} => {\@medpenalty }

> {301} => {\@highpenalty }

> {150} => {\clubpenalty +\interlinepenalty }

> {152} => {\widowpenalty +\interlinepenalty }

> {302} => {\widowpenalty +\clubpenalty +\interlinepenalty }

> {50} => {\displaywidowpenalty +\interlinepenalty }

> {200} => {\displaywidowpenalty +\clubpenalty +\interlinepenalty }

> {100} => {\brokenpenalty +\interlinepenalty }

> {250} => {\brokenpenalty +\clubpenalty +\interlinepenalty }

> {252} => {\brokenpenalty +\widowpenalty +\interlinepenalty }

> {402} => {\brokenpenalty +\widowpenalty +\clubpenalty +\interlinepenalty }

> {300} => {\brokenpenalty +\displaywidowpenalty +\clubpenalty

+\interlinepenalty }

> {10001} => {\predisplaypenalty }.

(End definition for \__fmwao_initialize:.)

\l__fmwao_tmp_int

\l__fmwao_tmp_tl

\l__fmwao_success_bool

For doing the calculations and insertions into the property list, we will also need an
integer register, a token list variable and another boolean variable.

131 \int_new:N \l__fmwao_tmp_int

132 \tl_new:N \l__fmwao_tmp_tl

133 \bool_new:N \l__fmwao_success_bool

(End definition for \l__fmwao_tmp_int , \l__fmwao_tmp_tl , and \l__fmwao_success_bool.)

\__fmwao_decide_penalty:Nn This is the core command that does the real work of choosing values. Let’s recall that
its first argument is the parameter we are currently handling and the second argument
is a comma-separated list of cases for which we need to ensure that their results are
not yet in the property list.

134 \cs_new:Npn \__fmwao_decide_penalty:Nn #1 #2 {

We start by setting the boolean to false and then run a loop until we have found a
suitable parameter value that meets our criteria.

135 \bool_set_false:N \l__fmwao_success_bool

136 \bool_do_until:Nn \l__fmwao_success_bool

Inside the loop we start with the assumption that the current value of the parameter is
fine and then check if that assumption is true. If yes, we can exit the loop, otherwise
we will have to try with a different value.

137 { \bool_set_true:N \l__fmwao_success_bool

For the verification we try each item in the second parameter to see if that is already
in the property list. This means evaluating the expression to get the penalty value and
then looking it up in the property list. If it is there, we have failed. In this case we set
the boolean back to false and break out of the loop over the second argument since
there is no point in testing further.

138 \clist_map_inline:nn { #2 }

139 { \int_set:Nn \l__fmwao_tmp_int {##1}

140 \prop_get:NVNT

141 \l__fmwao_penalties_prop \l__fmwao_tmp_int \l__fmwao_tmp_tl

142 { \clist_map_break:n {\bool_set_false:N\l__fmwao_success_bool} }

143 }

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 261

Once we have finished, the boolean will tell us if we are successful so far. If yes, it
means there was no conflict. We therefore add all combinations with this parameter to
the property list, as from now on they are forbidden as well.

So we map once more over the second argument and enter them:

144 \bool_if:NTF \l__fmwao_success_bool

145 { \clist_map_inline:nn { #2 }

146 { \int_set:Nn \l__fmwao_tmp_int {##1}

147 \prop_put:NVn \l__fmwao_penalties_prop \l__fmwao_tmp_int {##1}

148 } }

If we failed we increment the parameter value and retry:

149 { \int_incr:N #1 }

150 }

151 }

One place where we will run this code is at the beginning of the document (so that
changes to the parameters in the document class or the preamble are picked up).
The other place is when the user changes any of the parameters in the middle of the
document via \WaOsetup.

152 \AtBeginDocument { \__fmwao_initialize: }

(End definition for \__fmwao_decide_penalty:Nn.)

2.4 The option setup

The options are fairly straightforward:

153 \keys_define:nn {fmwao} {

By default messages are given as warnings above. If anything else is wanted the option
check can be used which simply changes the message class used internally:

154 ,check .choice:

155 ,check / error

156 .code:n = \msg_redirect_module:nnn {widows-and-orphans}{warning}{error}

157 ,check / info

158 .code:n = \msg_redirect_module:nnn {widows-and-orphans}{warning}{info}

159 ,check / none

160 .code:n = \msg_redirect_module:nnn {widows-and-orphans}{warning}{none}

161 ,check / warning

162 .code:n = \msg_redirect_module:nnn {widows-and-orphans}{warning}{ }

The other options set parameters to some hopefully “reasonable” values — no real
surprises here. LATEX internally uses \@clubpenalty so we need to set this too, if we
change \clubpenalty.

163 ,orphans .choice:

164 ,orphans / prevent .code:n = \int_set:Nn \clubpenalty { 10000 }

165 \int_set:Nn \@clubpenalty { \clubpenalty }

166 ,orphans / avoid .code:n = \int_set:Nn \clubpenalty { 5000 }

167 \int_set:Nn \@clubpenalty { \clubpenalty }

168 ,orphans / default .code:n = \int_set:Nn \clubpenalty { 150 }

169 \int_set:Nn \@clubpenalty { \clubpenalty }

170 ,widows .choice:

171 ,widows / prevent .code:n = \int_set:Nn \widowpenalty { 10000 }

172 ,widows / avoid .code:n = \int_set:Nn \widowpenalty { 5000 }

173 ,widows / default .code:n = \int_set:Nn \widowpenalty { 150 }

174 ,hyphens .choice:

175 ,hyphens / prevent .code:n = \int_set:Nn \brokenpenalty { 10000 }

176 ,hyphens / avoid .code:n = \int_set:Nn \brokenpenalty { 2000 }

The widows-and-orphans package



262 TUGboat, Volume 39 (2018), No. 3

177 ,hyphens / default .code:n = \int_set:Nn \brokenpenalty { 50 }

178 ,prevent-all .code:n = \int_set:Nn \clubpenalty { 10000 }

179 \int_set:Nn \widowpenalty { 10000 }

180 \int_set:Nn \displaywidowpenalty{ 10000 }

181 \int_set:Nn \brokenpenalty { 10000 }

182 \int_set:Nn \predisplaypenalty { 10000 }

183 \int_set:Nn \@clubpenalty { \clubpenalty }

As an exception, avoid-all doesn’t set \predisplaypenalty; maybe it should.

184 ,avoid-all .code:n = \int_set:Nn \clubpenalty { 5000 }

185 \int_set:Nn \widowpenalty { 5000 }

186 \int_set:Nn \displaywidowpenalty { 2000 }

187 \int_set:Nn \brokenpenalty { 2000 }

188 % \int_set:Nn \predisplaypenalty { 9999 }

189 \int_set:Nn \@clubpenalty { \clubpenalty }

default-all reverts back to the standard LATEX default values:

190 ,default-all .code:n = \int_set:Nn \clubpenalty { 150 }

191 \int_set:Nn \widowpenalty { 150 }

192 \int_set:Nn \displaywidowpenalty { 50 }

193 \int_set:Nn \brokenpenalty { 100 }

194 \int_set:Nn \predisplaypenalty { 10000 }

195 \int_set:Nn \@clubpenalty { \clubpenalty }

196 }

Once declared we evaluate the options given to the package:

197 \ProcessKeysPackageOptions{fmwao}

2.5 Document-level commands

Finally we declare the user-level commands:

\WaOsetup This runs the key setup on the first argument and then reinitializes the parameter
setup:

198 \NewDocumentCommand\WaOsetup{m}

199 { \keys_set:nn{fmwao}{#1} \__fmwao_initialize: \ignorespaces }

(End definition for \WaOsetup. This function is documented on page 253.)

\WaOparameters This parameterless command outputs a display of the current parameter settings.

200 \NewDocumentCommand\WaOparameters{}{\prop_show:N \l__fmwao_penalties_prop}

(End definition for \WaOparameters. This function is documented on page 253.)

\WaOignorenext And here is the command that suppresses any warning on the current page or column:

201 \NewDocumentCommand\WaOignorenext{}

202 { \bool_gset_false:N \g__fmwao_gen_warn_bool }

(End definition for \WaOignorenext. This function is documented on page 253.)

References

[1] Frank Mittelbach. Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX.
TUGboat 39:3, 246–251, 2018.

[2] LATEX3 Project Team. A collection of articles on expl3.
https://latex-project.org/publications/indexbytopic/l3-expl3/

⋄ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org

https://ctan.org/pkg/widows-and-orphans

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 263

The dashundergaps package∗

Frank Mittelbach

Abstract

The dashundergaps package offers the possibility to replace material in running text
with white space in order to build up forms that can be filled in at a later time.

By default the gaps are underlined and followed by a gap number in parentheses, but
many other designs are possible, e.g., dashes or dots instead of the underline, no gap
numbers or a different format for them, gap widening for easier fill-in, etc.

There is also a teacher’s mode which shows the normally hidden text in a special
(customizable) format.

This is another article in a series of TUGboat articles describing small packages to
introduce coding practices using the expl3 programming language. See [1] for the first
article in the series. For more details on expl3 refer to [2].

Contents

1 Introduction 263

2 The user interface 264

2.1 Options to customize the gap display . . . . . . . . . . . . . . . . . 265

2.1.1 Gap modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

2.1.2 Gap formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

2.1.3 Gap numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

2.1.4 Gap widening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

3 Differences from the original package 266

4 Solution to the puzzle 267

5 The implementation 268

5.1 Loading and fixing/changing ulem . . . . . . . . . . . . . . . . . . . 268

5.2 The main implementation part . . . . . . . . . . . . . . . . . . . . . 269

5.2.1 User interface commands . . . . . . . . . . . . . . . . . . . . . 269

5.2.2 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

5.2.3 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.2.4 Option handling . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5.2.5 Closing shop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

1 Introduction

The dashundergaps package provides a single command \gap which takes one argument
and produces a gap of the width of that argument. To better mark this gap it is
underlined in some form (could be a solid line, a dashed or dotted line or even a

✿✿✿✿✿✿✿✿

wriggling
✿✿✿✿

line). Furthermore, gaps can be numbered to be able to easily refer to them.
Figure 1 shows an example in the form of a fill-in puzzle.

As you see there, some gaps are numbered with a superscript number (not the default
setting) while others aren’t. How this is done and how to change the result is explained
in the next section.

There also exists a “teacher mode” in which the gaps are filled with the text given in
the argument. This can be used to show the correct answers of a test (as we do in
Section 4) or to give a sample fill-in for a form, to help people fill it out correctly. The

∗ This is a reimplementation (using expl3, the LATEX3 programming language) of a package
originally written by Luca Merciadri in 2010.

The dashundergaps package



264 TUGboat, Volume 39 (2018), No. 3

The initial ‘E.’ in Donald E. Knuth’s name stands for (1). The well-known answer to

the Ultimate Question is 42 according to
(2). The first edition of (3) celebrates its silver anniversary

in 2019. Historically speaking, expl3 stands for
(4) even though it is a production language these days.

And here are some hints for the puzzle if you want to fill it out:

1. If only everything would be that easy
to answer.

2. The author of the book “Last Chance
To See” and of a famous radio show.

3. Back then known as the doggie book.

4. Old names die hard.

The answers are given in Section 4, showing the gaps filled in using the so-called teacher mode,
which can be activated or deactivated at any point in the document.

Figure 1: A fill-in puzzle using dashundergaps

“teacher mode” produces the same line breaks because it ensures that the fill-ins take
the same amount of space as the gaps.

Another important feature is the possibility to artificially widen the gaps, compared to
the textual material in the argument. After all, when a form is filled by hand people
typically need more space to write some text compared to the same text being typeset.
So making the gaps simply as wide as the material likely results in too little space.

2 The user interface

The dashundergaps package is built as a small application on top of the ulem package,
a package that defines several commands for underlining 〈simple-text〉 in various ways.

\uline{〈simple-text〉} \uwave{〈simple-text〉} ...

This means that by loading dashundergaps the ulem commands such as \uline, \uwave
and so forth are automatically made available. These commands are used to do most
of the work and the current package only makes sure that, instead of the words, empty
boxes of the same width are used by ulem. This way we get underlined gaps of the
right size.

By default, ulem changes \emph to underline text, so for this application, it is loaded
with the option normalem to prevent that from happening.

\uline

\uuline

\uwave

\dashuline

\dotuline

\gap*[〈style〉]{〈text〉}

Possible 〈style〉s:

u = \uline

d = \uuline

w = \uwave

b = 〈blank〉
- = \dashuline

. = \dotuline

The main command provided by the package is \gap which expects a mandatory 〈text〉
argument containing the material that is used to produce the gap (and is normally
invisible). By default the gap is underlined, though that can be changed.

\gap

The optional 〈style〉 argument explicitly defines a certain type of underlining: u stands
for normal underlining (via \uline), d for double underlining (via \uuline), w for a
wavy line (via \uwave), b for blank (i.e., no underlining whatsoever), “-” for a dash-line
(via \dashuline) and finally “.” for underlining with dots (via \dotuline).

In the default configuration gaps are numbered using the counter gapnumber and this
number is shown in parentheses after the gap. With the star form the generation of the
number is toggled, i.e., if it would be produced because of the current option settings

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 265

it will be suppressed; if it is suppressed through an option it will be typeset. This way
one can select the most convenient setting via an option for the whole document and
use * to toggle it as needed.

Since \gap uses ulem’s commands it inherits the limitations of these commands; notably,
only simple text can be used in the 〈text〉 argument. For example, a \footnote couldn’t
be used in the argument (but then that wouldn’t make much sense in a gap, would it?).

\TeacherModeOn % show gap material

\TeacherModeOff % do not show gap material

Also supported is a teacher mode in which the material for the gaps is visible. This can
be used to show the expected answers in case \gap is used for preparing tests, or to
show a sample fill-in of a form. The teacher mode can be turned on or off anywhere in
the document using \TeacherModeOn or \TeacherModeOff, respectively. Alternatively,
it can also be set via an option, as we will see below.

\TeacherModeOn

\TeacherModeOff

\dashundergapssetup{〈comma-separated key-value list〉}

The package can be loaded with a number of options (discussed in Section 2.1). A
likely better approach is to set any options with the declaration \dashundergapssetup

which is normally used in the preamble, but can be used throughout the document to
change settings on the fly. It only changes explicitly given options so it can be used to
overwrite some defaults but leave everything else unchanged.

\dashundergapssetup

2.1 Options to customize the gap display

All of the package options are implemented as key/value options. For boolean options
one can give just the option name as a short form for setting the option to true.
Most options can be specified during package loading in the optional argument of
\usepackage. However if the value requires some LATEX code (e.g., gap-font, which
expects a font declaration command) then this will not work due to some limitations in
the current LATEX package loader. For such options use \dashundergapssetup instead,
which will always work.

2.1.1 Gap modes

The general processing mode is defined through the following options:

teacher-mode Boolean that turns on teacher mode (i.e., the gap material will be
visible if set to true). Its default is false.

gap-mode Boolean that is the inverse of teacher-mode and just provided for conve-
nience, i.e., an abbreviation for teacher-mode=false.

teachermode Alternative name for teacher-mode because that is what it was called
in the first package release.

2.1.2 Gap formatting

Formatting of the gaps is handled by the following six options:

gap-format A choice option defining how the gap is marked. It accepts the following
values: underline (default), double-underline, dash, dot, wave, blank.

gap-format-adjust A boolean (default true). If set, the “line” below the gap is
raised to be roughly at the baseline, which normally looks better when there is no
text above the line.

teacher-gap-format Another choice option, with the same values as gap-format,
used when we are in “teacher mode”, but this time the default is blank as normally
the gap text is typeset in the bold font and is therefore already identifiable, with

The dashundergaps package



266 TUGboat, Volume 39 (2018), No. 3

no need for additional underlining. However, depending on the circumstances it
might be helpful to keep the underlining (or use a different kind of underlining)
while in “teacher mode”.

gap-font This option expects a font directive as its value, e.g., \bfseries (which
is also the default). Using this option without supplying a value is equivalent
to supplying an empty value. It will be used to determine the font for the gap
material regardless of the mode. This is important to ensure that the gaps always
have the same width regardless of whether or not the material is shown.

For the example puzzle above it was set to \itshape, which you can see in the
puzzle answer.

dash Short name for gap-format=dash.

dot Short name for gap-format=dot.

2.1.3 Gap numbers

Producing the gap numbers is handled by the following options:

gap-numbers Boolean that determines whether or not gap numbers are displayed.
Default is true.

gap-number-format Code that is executed when a gap number is produced. Default
is \textnormal{␣(\thegapnumber)}.

numbers Short name for gap-numbers.

There is also a way to control displaying the total number of gaps:

display-total-gaps Boolean to determine if the total number of gaps should be
shown at the very end of the document. Default is false.

displaynbgaps This is just another name for the same boolean; it was used in the
first version of the package.

2.1.4 Gap widening

Finally, for extending the gap width we have these options:

gap-widen Boolean that decides if the gaps should be made wider or not (default is
false but mainly for historical reasons).

gap-extend-minimum Minimum of extra space that should be added to each gap if
gap widening is active. Default is 20pt, i.e., 10pt on either side.

gap-extend-percent Percentage (as a number) by which the gap should be made
wider if widening is active. The result is compared to gap-extend-minimum and
the larger of the two is used. Default is 20.

widen Short name for gap-widen.

3 Differences from the original package

The main user interface of the two versions is identical, so it is possible to use the
new version as a drop-in replacement for the old. However, the feature set in form
of key/value options has been greatly extended, offering functionality previously
unavailable. Furthermore, a number of bugs have been corrected (and possibly new
ones introduced).

• Stray spaces in the definition of \gap (that showed up in the output) have been
eliminated.

• Various combinations of options that didn’t work are now possible.

• Explicit hyphenations \- showed up in gap mode, now they can be used.

• Nesting isn’t possible for obvious reasons, but the fact is now detected and catered
to by ignoring the inner gap requests after generating an error.

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 267

• Option names have been normalized (though the original names are still available).

• The option phantomtext is no longer necessary, though still supported (with a
warning) as a no-op.

• The names of the LATEX counters used have changed, so if you directly addressed
them that would need changing.

• The font used in teacher mode (by default boldface) is now also used if gap mode
is chosen, to ensure that the output in all modes produces identical line breaks;
for the same reason, the ulem machinery is always used, even if not underlining
(or dashing, etc.).

• The gaps can be extended by a percentage or by a minimum amount to ensure that
there is enough space to fill in the text (given that hand-written text is typically
wider than typeset material); the values are adjustable.

• \gap now has an optional argument through which you can explicitly request the
type of underlining you want to use.

• \gap also supports a star form which toggles the setting of gap numbers.

• The use of \label within the \gap command argument allows for later reference
to that gap by its number (provided a gap number is typeset).

• The implementation is done with expl3, the programming language for LATEX3.
Although invisible to the user, in some sense that was the main purpose of the
exercise: to see how easy it is to convert a package and use the extended features
of expl3.

4 Solution to the puzzle

Here we repeat the puzzle from above with \TeacherModeOn.

The initial ‘E.’ in Donald E. Knuth’s name stands for Ervin (5). The well-known answer to

the Ultimate Question of Life, the Universe, and Everything is 42 according to Douglas

Adams (6). The first edition of The LATEX Companion (7) celebrates its silver anniversary

in 2019. Historically speaking, expl3 stands for EXperimental Programming Language 3

(8) even though it is a production language these days.

This was produced using the following changes to the defaults:

\dashundergapssetup{

,gap-number-format = \,\textsuperscript{\normalfont

(\thegapnumber)}

,gap-font = \itshape

,teacher-gap-format = underline

,gap-widen

}

As you can see we use \itshape for the font (to be able to show the bold face in
one of the answers) and also force underlining in teacher mode to better show the
gap widening. The gap number is raised and we separate it a tiny bit from the gap
material. We also use \normalfont in the formatting to ensure that the gap number
is set upright and not in italic shape.

The dashundergaps package



268 TUGboat, Volume 39 (2018), No. 3

5 The implementation

5.1 Loading and fixing/changing ulem

The first thing to do is to load ulem without changing \emph or \em:

1 〈*package〉
2 \RequirePackage[normalem]{ulem}

The code in this section follows LATEX 2ε conventions, i.e., models the commands as
they look in the ulem package.

\dotuline The dots produced by \dotuline depend on the current font, which is a somewhat
questionable design — if you underline a text part with a single bold word somewhere
inside it will change the shape of the dot line. So we always use the \normalfont dot
(this is not done in the original definition).

3 \def\dotuline{\bgroup

4 \UL@setULdepth

5 \markoverwith{\begingroup

6 \advance\ULdepth0.08ex

7 \lower\ULdepth\hbox{\normalfont \kern.1em .\kern.04em}%

8 \endgroup}%

9 \ULon}

10 \MakeRobust\dotuline

(End definition for \dotuline. This function is documented on page 264.)

\uwave The original \uwave used a hard-wired value of 3.5pt for the lowering. We change
that to be based on the current value of \ULdepth so that the user (or this package
here) can change the placement.

11 \def\uwave{\bgroup

12 \UL@setULdepth

13 \advance\ULdepth 0.6\p@

14 \markoverwith{\lower\ULdepth\hbox{\sixly \char58}}\ULon}

15 \MakeRobust\uwave

(End definition for \uwave. This function is documented on page 264.)

\fmdug@ublank \fmdug@ublank underlines with blanks. Normally not especially useful (which is why
we make it internal), but if we want to have ulem acting, but without actually visibly
underlining, this is the command to use.

16 \def\fmdug@ublank{\bgroup\let\UL@leadtype\@empty\ULon}

(End definition for \fmdug@ublank.)

\UL@dischyp

\UL@putbox

We need to do a little patching to ensure that nothing is output by the ulem commands
if we don’t want it to. So the next two commands are from ulem with \box replaced
by \fmdug@box so that we can change the behavior.

17 \def\UL@dischyp{\global\setbox\UL@hyphenbox\hbox

18 {\ifnum \hyphenchar\font<\z@ \string-\else \char\hyphenchar\font \fi}%

19 \kern\wd\UL@hyphenbox \LA@penalty\@M

20 \UL@stop \kern-\wd\UL@hyphenbox

21 \discretionary{\fmdug@box\UL@hyphenbox}{}{}\UL@start}

22 \def\UL@putbox{\ifx\UL@start\@empty \else % not inner

23 \vrule\@width\z@ \LA@penalty\@M

24 {\UL@skip\wd\UL@box \UL@leaders \kern-\UL@skip}%

25 \fmdug@box\UL@box \fi}

(End definition for \UL@dischyp and \UL@putbox.)

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 269

\fmdug@box By default we output the box in the commands above, but when we don’t want to
output anything visible we change the definition to generate a box with empty content
but the right size.

26 \let\fmdug@box\box

(End definition for \fmdug@box.)

5.2 The main implementation part

The rest of the package is written in expl3. We use fmdug as our internal prefix.

27 〈@@=fmdug〉

We need the package xparse for specifying the document-level interface commands
and l3keys2e to use the expl3 key value methods within LATEX 2ε. These packages
automatically require expl3 so there is no need to load that explicitly.

28 \RequirePackage{xparse,l3keys2e}

Here we introduce the package and specify its version number:

29 \ProvidesExplPackage{dashundergaps}

30 {2018/11/09}

31 {v2.0d}

32 {Dashing and underlining phantom text}

5.2.1 User interface commands

\gap The \gap command parses for a star, optional and mandatory argument and then calls
\__fmdug_gap:nnn to do the work.

33 \DeclareDocumentCommand \gap { som } { \__fmdug_gap:nnn {#1}{#2}{#3} }

(End definition for \gap. This function is documented on page 264.)

\dashundergapssetup Change options anywhere.

34 \NewDocumentCommand \dashundergapssetup { m }

35 { \keys_set:nn {fmdug} {#1} \ignorespaces }

(End definition for \dashundergapssetup. This function is documented on page 265.)

\TeacherModeOn

\TeacherModeOff

We provide shortcuts for turning teacher mode on or off.

36 \DeclareDocumentCommand \TeacherModeOn {}

37 { \bool_set_true:N \l__fmdug_teacher_bool }

38 \DeclareDocumentCommand \TeacherModeOff {}

39 { \bool_set_false:N \l__fmdug_teacher_bool }

(End definition for \TeacherModeOn and \TeacherModeOff. These functions are documented on page

265.)

5.2.2 Counters

\c@gapnumber We have one user-level counter which is referenceable and holds the gap number of the
current gap. It can be reset to 0 to restart counting.

40 \newcounter{gapnumber}

(End definition for \c@gapnumber.)

\c@totalgapnumber We also keep track of all gaps ever made using another user-level counter. Since this
one is supposed to keep track of the total number of gaps, it makes little sense to
modify it at the document level. However, there may be use cases even for that and
more importantly, by making it a user-level counter it is possible to refer to the total

The dashundergaps package



270 TUGboat, Volume 39 (2018), No. 3

number of gaps easily, e.g., via \thetotalgapnumber.

41 \newcounter{totalgapnumber}

(End definition for \c@totalgapnumber.)

\l__fmdug_extend_dim A help register to calculate the gap width later on.

42 \dim_new:N \l__fmdug_extend_dim

(End definition for \l__fmdug_extend_dim.)

\l__fmdug_extra_left_gap_tl

\l__fmdug_extra_right_gap_tl

Two scratch token lists to enlarge the gap on the left or right side.

43 \tl_new:N \l__fmdug_extra_left_gap_tl

44 \tl_new:N \l__fmdug_extra_right_gap_tl

(End definition for \l__fmdug_extra_left_gap_tl and \l__fmdug_extra_right_gap_tl.)

\l__fmdug_gap_format_tl

\l__fmdug_teacher_gap_format_tl

The gap formatting is normally handled by a ulem command; which one depends on
the options used. To record the choice we store it in a token list (one for normal and
one for teacher mode).

45 \tl_new:N \l__fmdug_gap_format_tl

46 \tl_new:N \l__fmdug_teacher_gap_format_tl

(End definition for \l__fmdug_gap_format_tl and \l__fmdug_teacher_gap_format_tl.)

5.2.3 Messages

47 \msg_new:nnn {dashundergaps} {deprecated}

48 { The~ #1~ ‘#2’~ you~ used~ \msg_line_context: \ is~ deprecated~ and~

49 there~ is~ no~ replacement.~ Since~ I~ will~ not~ guarantee~ that~

50 #1~ ‘#2’~ will~ be~ kept~ forever~ I~ strongly~ encourage~ you~

51 to~ remove~ it~ from~ your~ document. }

52 \msg_new:nnnn {dashundergaps} {nested}

53 { The~ \gap command~ can’t~ be~ nested! }

54 { Nesting~ doesn’t~ make~ much~ sense~ as~ the~ inner~ one~

55 wouldn’t~ be~ visible.~ ~ To~ allow~ further~ processing~ it~ is~

56 handled~ as~ if~ it~ hasn’t~ been~ asked~ for. }

57 \msg_new:nnnn {dashundergaps} {gap-format-value}

58 { Unknown~ value~ for~ key~ ’#1 gap-format’! }

59 { Supported~ values~ are~ ’underline’,~ ’double-underline’,\\

60 ’dash’,~ ’dot’,~ ’wave’~ or~ ’blank’. }

5.2.4 Option handling

Here we define all the possible option keys for use either as package options or inside
\dashundergapssetup. These are all straightforward assignments to variables. These
internal variables are declared by the key declarations if unknown, so they are not
separately declared beforehand.

61 \keys_define:nn {fmdug}

62 {

63 % ====================================

64 ,teacher-mode .bool_set:N = \l__fmdug_teacher_bool

65 ,teacher-mode .default:n = true

66 ,teacher-mode .initial:n = false

67 % ------------------

68 ,gap-mode .bool_set_inverse:N = \l__fmdug_teacher_bool

69 % ====================================

70 ,gap-format

71 .choice:

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 271

In the case of dashes and even more so in the case of dots, it looks fairly ugly if they
are below the baseline as if there were text above. We therefore raise them up a bit if
the option gap-format-adjust is given (which is the default).

In the case of dots we undo exactly the amount by which they are lowered in ulem so
that they end up precisely at the baseline, in case they are followed by a real dot. In
other cases we stay a bit below the baseline.

The same is done below when the optional argument is evaluated. But we don’t do
this in teacher mode since there we will have text above and we don’t want to bump
into that.

72 ,gap-format / underline

73 .code:n = \tl_set:Nn \l__fmdug_gap_format_tl

74 { \__fmdug_gap_format_adjust:n{.4pt} \uline }

75 ,gap-format / double-underline

76 .code:n = \tl_set:Nn \l__fmdug_gap_format_tl

77 { \__fmdug_gap_format_adjust:n{2pt} \uuline }

78 ,gap-format / dash

79 .code:n = \tl_set:Nn \l__fmdug_gap_format_tl

80 { \__fmdug_gap_format_adjust:n{0pt} \dashuline }

81 ,gap-format / dot

82 .code:n = \tl_set:Nn \l__fmdug_gap_format_tl

83 { \__fmdug_gap_format_adjust:n{-.08ex} \dotuline }

84 ,gap-format / wave

85 .code:n = \tl_set:Nn \l__fmdug_gap_format_tl

86 { \__fmdug_gap_format_adjust:n{1pt} \uwave }

87 ,gap-format / blank

88 .code:n = \tl_set:Nn \l__fmdug_gap_format_tl { \fmdug@ublank }

89 ,gap-format / unknown

90 .code:n = \msg_error:nnn{dashundergaps}{gap-format-value}{}

91 ,gap-format

92 .initial:n = underline

93 % ====================================

This controls the raising of the gap underline by some amount. We implement it as a
.choice even though it looks like a boolean.

94 ,gap-format-adjust

95 .choice:

96 ,gap-format-adjust / true

97 .code:n = \cs_set:Npn \__fmdug_gap_format_adjust:n ##1

98 { \setlength\ULdepth {##1} }

99 ,gap-format-adjust / false

100 .code:n = \cs_set_eq:NN \__fmdug_gap_format_adjust:n \use_none:n

101 ,gap-format-adjust

102 .default:n = true

103 ,gap-format-adjust

104 .initial:n = true

105 ,adjust .meta:n = { gap-format-adjust }

106 % ====================================

107 ,teacher-gap-format

108 .choice:

109 ,teacher-gap-format / underline

110 .code:n = \tl_set:Nn \l__fmdug_teacher_gap_format_tl { \uline }

111 ,teacher-gap-format / double-underline

112 .code:n = \tl_set:Nn \l__fmdug_teacher_gap_format_tl { \uuline }

113 ,teacher-gap-format / dash

114 .code:n = \tl_set:Nn \l__fmdug_teacher_gap_format_tl { \dashuline }

115 ,teacher-gap-format / dot

116 .code:n = \tl_set:Nn \l__fmdug_teacher_gap_format_tl { \dotuline }

The dashundergaps package



272 TUGboat, Volume 39 (2018), No. 3

117 ,teacher-gap-format / wave

118 .code:n = \tl_set:Nn \l__fmdug_teacher_gap_format_tl { \uwave }

119 ,teacher-gap-format / blank

120 .code:n = \tl_set:Nn \l__fmdug_teacher_gap_format_tl { \fmdug@ublank }

121 ,teacher-gap-format / unknown

122 .code:n = \msg_error:nnn{dashundergaps}{gap-format-value}{teacher-}

123 ,teacher-gap-format

124 .initial:n = blank

125 % ====================================

126 ,gap-widen .bool_set:N = \l__fmdug_gap_widen_bool

127 ,gap-widen .default:n = true

128 ,gap-widen .initial:n = false

129 % ------------------

130 ,widen .meta:n = { gap-widen }

131 % ------------------

132 ,gap-extend-minimum .dim_set:N = \l__fmdug_gap_min_dim

133 ,gap-extend-minimum .initial:n = 20pt

134 % ------------------

135 ,gap-extend-percent .tl_set:N = \l__fmdug_gap_percent_tl

136 ,gap-extend-percent .initial:n = 20

137 % ====================================

138 ,gap-numbers .bool_set:N = \l__fmdug_number_bool

139 ,gap-numbers .default:n = true

140 ,gap-numbers .initial:n = true

141 % ------------------

142 ,numbers .meta:n = { gap-numbers }

143 % ------------------

144 ,gap-number-format .tl_set:N = \l__fmdug_gapnum_format_tl

145 ,gap-number-format .initial:n = \textnormal{\space (\thegapnumber)}

146 % ====================================

147 ,display-total-gaps .bool_gset:N = \g__fmdug_display_total_gaps_bool

148 ,display-total-gaps .default:n = true

149 ,display-total-gaps .initial:n = false

150 % ====================================

151 ,gap-font .tl_set:N = \l__fmdug_font_tl

152 ,gap-font .default:n =

153 ,gap-font .initial:n = \bfseries

And finally the original options, now as aliases:

154 % ====================================

155 ,teachermode .meta:n = { teacher-mode }

156 ,dash .meta:n = { gap-format = dash }

157 ,dot .meta:n = { gap-format = dot }

158 ,displaynbgaps .meta:n = { display-total-gaps }

159 % ------------------

160 ,phantomtext

161 .code:n = \msg_warning:nnnn{dashundergaps}{deprecated}

162 {option}{phantomtext}

163 % ====================================

164 }

\__fmdug_gap:nnn At last, here comes the action. \__fmdug_gap:nn expects two arguments: #1 indicates
what kind of “underlining” is wanted (anything not recognized is ignored, in particular
“–NoValue–” if \gap was used without an optional argument) and #2 is the material to
produce a gap for.

165 \cs_new:Npn\__fmdug_gap:nnn #1#2#3 {

166 \group_begin:

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 273

Define the font used inside the gap. We need to do this up front since we want to
measure the text (and that needs the correct font already).

167 \l__fmdug_font_tl

Nesting is not supported so inside the gap we redefine \__fmdug_gap:nnn to raise an
error and just return the third argument if it is encountered again.

168 \cs_set:Npn \__fmdug_gap:nnn ##1##2##3

169 {

170 \msg_error:nn{dashundergaps}{nested}

171 ##3

172 }

We always increment the counter for the total number of gaps, but increment the
gapnumber only if we are displaying it. For the latter one we use \refstepcounter to
make it referenceable.

173 \stepcounter{totalgapnumber}

174 \bool_xor:nnT { #1 } { \l__fmdug_number_bool }

175 { \refstepcounter{gapnumber} }

Next we prepare for widening if that is being asked for: Measure the width of the text
and then set \l__fmdug_extend_dim to be the requested percentage divided by two
of that width (since we add it later on both sides).

176 \bool_if:NTF \l__fmdug_gap_widen_bool

177 {

178 \settowidth \l__fmdug_extend_dim {#3}

179 \dim_set:Nn \l__fmdug_extend_dim

180 { \l__fmdug_gap_percent_tl \l__fmdug_extend_dim / 200 }

Then compare it to the minimum / 2 and choose whatever is larger.

181 \dim_compare:nNnT \l__fmdug_extend_dim < { .5\l__fmdug_gap_min_dim }

182 { \dim_set:Nn \l__fmdug_extend_dim { .5\l__fmdug_gap_min_dim } }

Now we prepare what needs to go to the left and the right of the gap.

183 \tl_set:Nn \l__fmdug_extra_left_gap_tl

184 { \hbox_to_wd:nn\l__fmdug_extend_dim{} \allowbreak }

185 \tl_set:Nn \l__fmdug_extra_right_gap_tl

186 { \allowbreak \hbox_to_wd:nn\l__fmdug_extend_dim{} }

187 }

And if no widening is asked for we clear these two token lists so they don’t do anything.

188 {

189 \tl_clear:N \l__fmdug_extra_left_gap_tl

190 \tl_clear:N \l__fmdug_extra_right_gap_tl

191 }

Next comes deciding the gap format. If in teacher mode it will be whatever is in \l__

fmdug_teacher_gap_tl. Otherwise, either it is based on the content of the optional
argument or, if that is not given or unknown, it will be \l__fmdug_gap_format_tl.

192 \bool_if:NTF \l__fmdug_teacher_bool

193 { \l__fmdug_teacher_gap_format_tl }

194 {

But before we execute any of the ulem commands we make sure that they do not
output text.

195 \cs_set:Npn \fmdug@box ##1 {\hbox_to_wd:nn{\box_wd:N ##1}{}}

196 \str_case:nnF {#2}

197 {

198 {u} { \__fmdug_gap_format_adjust:n{.4pt} \uline }

The dashundergaps package



274 TUGboat, Volume 39 (2018), No. 3

199 {d} { \__fmdug_gap_format_adjust:n{2pt} \uuline }

200 {w} { \__fmdug_gap_format_adjust:n{1pt} \uwave }

201 {b} { \fmdug@ublank }

202 {.} { \__fmdug_gap_format_adjust:n{-.08ex} \dotuline }

203 {-} { \__fmdug_gap_format_adjust:n{0pt} \dashuline }

204 }

205 { \l__fmdug_gap_format_tl }

206 }

Whatever was decided as the gap format, it needs one argument, i.e., the material
(with possible gap extension on both sides).

207 {\l__fmdug_extra_left_gap_tl #3 \l__fmdug_extra_right_gap_tl }

Finally we typeset the gap number if that was requested.

208 \bool_xor:nnT { #1 } { \l__fmdug_number_bool }

209 { \l__fmdug_gapnum_format_tl }

Close the group from above to keep any of the redefinitions confined.

210 \group_end:

211 }

(End definition for \__fmdug_gap:nnn.)

\__fmdug_display_total_gaps: This command will display the total number of gaps if requested. The hard-wired
formatting comes from the first version of the package.

212 \cs_new:Npn \__fmdug_display_total_gaps: {

213 \vfill \centering

214 \bfseries Total~ Gaps:~ \thetotalgapnumber

215 }

(End definition for \__fmdug_display_total_gaps:.)

5.2.5 Closing shop

At the end of the document we typeset the total number of gaps if requested.

216 \AtEndDocument{

217 \bool_if:NT \g__fmdug_display_total_gaps_bool

218 \__fmdug_display_total_gaps:

219 }

So what remains to be done is executing all options passed to the package via
\usepackage.

220 \ProcessKeysPackageOptions{fmdug}

221 〈*package〉

References

[1] Frank Mittelbach. The widows-and-orphans package. TUGboat 39:3, 252–262, 2018.
https://ctan.org/pkg/widows-and-orphans

[2] LATEX3 Project Team. A collection of articles on expl3.
https://latex-project.org/publications/indexbytopic/l3-expl3/

⋄ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org

https://ctan.org/pkg/dashundergaps

Frank Mittelbach



TUGboat, Volume 39 (2018), No. 3 275

State secrets in bibliography-style hacking

Karl Berry and Oren Patashnik

BibTEX output, in essence, consists of chunks of infor-
mation separated by punctuation. The information
chunks are things like the formatted author’s name,
the title of the work being cited, or its publication
date. And the punctuation separator between chunks,
in BibTEX’s standard styles, is either a comma or a
period.

But exactly how the bibliography styles (.bst
files) determine and then output that separating
punctuation, for even moderately experienced .bst-
file hackers, is somewhat of a mystery, or even a
complete secret. This short article demystifies the
process, and exposes a secret.

When the bibliography-style output routines are
ready to send a chunk of information to the output
(.bbl) file, they generally don’t know what punctu-
ation follows that chunk; it might be a comma or
it might be a period, depending on which chunk of
information comes next. So the output routines (for
BibTEX’s standard styles, and for many others) keep
the previous information chunk on its working stack,
and when the current chunk is ready for output—at
which point the correct separator between the previ-
ous and current chunks is known—they output that
previous chunk, along with the now-known separator,
to the .bbl file, leaving the current chunk on the
stack until the next chunk is ready for output. And
the process repeats.

And how do the output routines know what
separator to use?

The answer is in a comment in btxbst.doc,
BibTEX’s documentation (and template) file for the
standard styles (all code blocks here are reformatted
for TUGboat):

% To tell which separator is needed,

% we maintain an output.state.

(Aside: Much of the reason for the mystery/
secret is historical. Originally that documentation
line from btxbst.doc was stripped when the stan-
dard .bst files were generated. Over the years, other
styles— for example, those generated from makebst—
similarly did not contain that documentation line.
Thus it remained a sort of secret, hidden away in
btxbst.doc.)

So it’s the output.state variable that deter-
mines between-chunk punctuation.

And how does a style hacker who wants to in-
troduce a new punctuation mark implement that?

Answer: Create a new output state.

A recent IEEE-like bibliography style shows how
that’s done. That style wanted to separate any url
(which normally appears at the end of the entry)
from previous information with a semicolon.

An example formatted entry:

[1] H. Kopka and P.W. Daly, Guide to LATEX,
Addison-Wesley Professional, 4th edition,
2003; amazon.com/dp/0321173856.

It’s the semicolon before the url that’s new.
Here’s a description of the fairly straightforward
pieces of new code that ieeelike.bst uses to imple-
ment the new style. (Recall that the .bst language
is (mostly) stack-based and uses postfix notation,
something like PostScript.)

First there’s code to create a new output state,
say with the symbolic name after.url.separator,
so-named because the url chunk that’s being created
comes after the semicolon that separates it from the
previous chunk.

INTEGERS {

output.state before.all mid.sentence ...

after.url.separator } % new output state

...

#4 ’after.url.separator := % unique state value

Next, code to change the current output state
to our new one when the url chunk is created:

FUNCTION {url.block}

{ % change the output state appropriately:

output.state before.all =

’skip$ % if entry starts with url (rare)

{ after.url.separator ’output.state := }

if$

}

...

FUNCTION {format.url}

{ ...

url.block

〈code to format the url chunk〉
}

Finally, the output-routine code that, for the
desired output state, writes out the previous chunk
appended with the semicolon separator that will
precede the url:

{ output.state after.url.separator =

{ "; " * write$ }

See ieeelike.bst (linked from the TUGboat

contents page for this issue) for the full context.
And that, in a nutshell, is how to add the new

semicolon separator: by creating a new output state.
The output.state secret has been leaked.

⋄ Karl Berry and Oren Patashnik
https://tug.org/bibtex

State secrets in bibliography-style hacking



Experiments with \parfillskip

Udo Wermuth

Abstract

Plain TEX sets the glue parameter \parfillskip in
such a way that any length between 1 sp and the
full line width is accepted for the width of the ma-
terial printed in the last line of a paragraph. In cer-
tain circumstances, typesetting tradition objects to
a last line with text that has a width less than the
indentation or to completely filled last lines.

This article analyzes different specifications for
the \parfillskip glue based on experiments with
twelve one-, two-, or three-line paragraphs supported
by theoretical considerations. The analysis shows
how TEX’s line-breaking procedure acts on the last
line of a paragraph and how it can run into problem-
atic situations if \parfillskip has an injudicious
specification. This might lead to ugly output.

1 Introduction

TEX has a handful of glue parameters that affect
the typesetting of paragraphs. Two of these parame-
ters, \spaceskip and \xspaceskip, replace the two
\fontdimen values for the interword glue and the
extra space [11, p. 76]. The spaces in the paragraph
carry the glue characteristics that are specified by
these two parameters if they are nonzero. Two other
glue parameters change all the lines in a paragraph:
\leftskip and \rightskip add glue to the left or
right of every line [11, p. 100]. They are used, for
example, to typeset a paragraph narrower, i.e., jus-
tified but indented on both sides, or in a shape that
shows a straight margin only on one side. All four
parameters have the value 0 pt in plain TEX.

The fifth glue parameter is special as it is usu-
ally applied in a single place in a paragraph: It
is the \parfillskip glue, which has a direct ef-
fect only on the last line where it acts as an “ad-
ditional \rightskip” [11, p. 274]. However, it can
affect more than one line in a paragraph. If a para-
graph is interrupted by display math mode the line
before the display is treated like a last line of a para-
graph, although the paragraph has not ended yet.
TEX uses the value of \parfillskip that is current
when it starts to break either a part or the whole
paragraph into lines. So more than one specification
of \parfillskip might be applied in a single para-
graph. For example, the paragraph starts in a group
in which \parfillskip is locally changed and after
a displayed equation the group ends but more text

276 TUGboat, Volume 39 (2018), No. 3

follows. The last line before the display then uses a
different \parfillskip than the end of the text.

TEX does several things when it has to build
a last line: First either an infinite penalty is added
or, if the paragraph has a glue item at its end, TEX
changes this glue into an infinite penalty item. This
penalty prevents a line break in front of the horizon-
tal skip \hskip\parfillskip that is added by TEX
to finish the paragraph [12, §816].

Plain TEX sets the value of \parfillskip to
0pt plus 1fil [11, p. 100]. This specification gives
stretchability to the last line so that it can contain
text whose width is shorter than the line width. As
it is a glue parameter that an author is allowed to
manipulate any glue specification can be assigned to
\parfillskip, for example, a natural width differ-
ent from 0 pt, a nonzero shrinkability, or a stretch-
ability of finite order. A change in the value has an
impact on the line-breaking decisions made by TEX.

In the rest of the article the phrase “length of
the last line” means “length of the material in the
last line”. Normally, the width of the last line is
always \hsize (the command \parshape is not dis-
cussed in this article). So a “short last line” means
that the width of the text in the last line can be
called “short”. And this word means in this article
that the value of \parindent is larger or not much
smaller than the width of that text.

Additional \rightskip. The glue \parfillskip

is usually only applied to the last line of a paragraph.
Therefore it can be used to get special effects for this
line. For example, the assignments

\leftskip = 0pt plus 1fil

\rightskip = 0pt plus -1fil

\parfillskip = 0pt plus 2fil

sets the last line centered without affecting other
lines. In all but the last line the \rightskip neu-
tralizes the \leftskip so that there is a net con-
tribution of 0 pt. But the last line has a \leftskip

of 0pt plus 1fil and at the right side the sum of
\rightskip and \parfillskip which equals 0pt

plus 1fil, i.e., on both sides is the same amount
of infinite stretchability and the line is centered in
the output; see [4] (or [22]).

Of course, there are other ways to manipulate
the last line. For example, the end of a paragraph
can execute additional typesetting commands if the
control sequence \par is redefined. Peter Wilson de-
scribes such methods in his columns Glisterings [22,
23, 24]. This article analyzes what happens if solely
the glue specification of \parfillskip is changed
and this analysis already fills quite a few pages.

Udo Wermuth



Contents. First, the default setting of plain TEX
for \parfillskip is discussed in section 2. Then in
the next section the value of \parfillskip is set
to 0 pt either for a complete document or a single
paragraph. It presents also some effects that might
occur if the input for a paragraph contains negative
infinite stretchability.

In section 4, experiments with finite dimensions
for the stretchability of \parfillskip are executed.
First with a stretchability larger than \hsize, sec-
ond with one that is a fraction of \hsize, and third
with a negative finite stretchability. Section 5 adds
some theoretical results. The next section checks
what happens if \parfillskip has natural width
besides stretchability, and section 7 presents the re-
lated theory. It also shows how to make use of the
trace data written by \tracingparagraphs and how
different values for the stretchability can be com-
pared in a certain sense.

Specifications for \parfillskip that have nat-
ural width and shrinkability but no stretchability
are the topic of section 8. Theoretical results about
such settings are in section 9. In section 10 all three
dimensions of the glue \parfillskip are changed
to finite nonzero values.

Section 11 looks at a couple of specifications
for \parfillskip based on the facts learned in the
previous sections and compares them to some sug-
gestions made by others. The last section provides
a summary of the results.

2 Plain TEX’s default 0pt plus 1fil

The default setting is useful as it works with any last
line from normal text. The last line has either bad-
ness 0, i.e., it is decent, or it is tight with a badness
as high as 100. Therefore, no loose or very loose lines
are possible, i.e., glue never stretches. The default
\parfillskip cannot be the reason for an overfull
line and an underfull line can only appear if the last
line is empty, e.g., if the paragraph faultily ends with
a forced break entered by the author.

On the other hand, very short lines are possi-
ble; a hyphenated part of a word suffices to form a
tolerated last line. (According to [6, 3.11], the last
word of a paragraph should never be hyphenated.)
Typesetting tradition recommends having last lines
that are longer than the indentation of paragraphs if
the start of a paragraph is identified by indentation
(see [9, p. 142]), and that an indentation shall be at
least 0.5 em. Values of 1 em and 1\baselineskip—
the natural width of the \baselineskip—are rec-
ommended in [3, p. 40], and then [3, p. 42] demands
at least four letters in the last line. Plain TEX in-

TUGboat, Volume 39 (2018), No. 3 277

dents by 20 pt, i.e., 2 em in cmr10. This is a very high
value compared to the above recommendations.

A comment: A specification with the font re-
lated unit 1 em should be made after the font for
the text was selected. TEX uses for the unit em the
quad width of the font that is active when the spec-
ification of \parfillskip is processed. A switch to
a smaller font or a different face in the text does not
change \parfillskip.

Experiment 1: Description
Show that the last line of a paragraph can be shorter
than the indentation if the plain TEX default values for
\parindent and \parfillskip is used.

TEX input

1. Please answer if my topic is ‘‘in’’ or

‘‘out’’. \TeX: in

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
1. Please answer if my topic is “in” or “out”. TEX:

in

In the section “TEX output” of an experiment a
paragraph that starts with a bullet shows the specifi-
cation of \parfillskip that is used in the following
paragraphs either up to the end of the experiment
or up to another line that starts with a bullet. The
specification is written as a formula, not as a valid
TEX assignment. The symbol ‘ ’ that is printed in
the right margin marks the end of an experiment.

As mentioned above the spaces in the text of
the last line are either perfect or they shrink.

Experiment 2: Description
Show that the last line of a paragraph can end at the
right margin.

TEX input

2. Has the last line of this paragraph

badness~0 and has no interword space to

stretch? Do they shrink now?

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
2. Has the last line of this paragraph badness 0 and

has no interword space to stretch? Do they shrink now?

Of course, the first two experiments show sim-
ple things. They are presented mainly for compari-
son with later experiments that reuse the two texts.
Notice that each text starts with a number that
identifies the experiment where it was introduced
with plain TEX’s \parfillskip. The first experi-
ment is minimal, as TEX has only one valid way to
typeset the text. So no setting of \parfillskip can
produce a different second line, obeying the \hsize.
The last line of experiment 2 has badness 2 so its
glue shrinks. It will be useful to have a variant of
this experiment that has badness 100 in its last line
and a tie for the last word.

Experiments with \parfillskip



Experiment 2 continued: TEX input

$2’$. Has the last line of this paragraph

badness~0 and has no interword space to

stretch?\kern.557pt!

Do they shrink~now?\kern.557pt!

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
2′. Has the last line of this paragraph badness 0 and

has no interword space to stretch?! Do they shrink now?!

Here are the lines written by \tracingparagraphs

to show that the last line is maximally tight. (The
information is written to the transcript file of the run
if \tracingparagraphs is set to 1; see [11], pp. 98–
99, or [19] for a description of this data.)

Experiment 2 continued: Log file contents

1. @firstpass

2. []$\ninerm 2[]$. Has the last line

of this paragraph badness 0

3. @ via @@0 b=18 p=0 d=784

4. @@1: line 1.1 t=784 -> @@0

5. and

6. @ via @@0 b=64 p=0 d=5476

7. @@2: line 1.3 t=5476 -> @@0

8. has no interword space to stretch?!

Do they shrink now?!

9. @\par via @@2 b=100 p=-10000 d=12100

10. @@3: line 2.3- t=17576 -> @@2

If the \parindent is 0 pt and if the \parskip

does not separate paragraphs with a noticeable ver-
tical glue item a clear indication of the end of the
paragraph is missing. In [9, p. 143], white space of at
least 1 em is recommended at the end of the last line
of a paragraph with justified margins. Ragged-right
text requires much larger white space at the end of
the last line, which is of course dependent on the
amount that the right margin changes.

German typesetters learned the old rule never
to leave white space at the end of the last line that
is less than 1 em wide if paragraphs are indented. In
such a situation it was considered better to keep the
right margin straight. Nowadays the rule is not rec-
ommended anymore [9, p. 142] so it is ignored in this
article. (According to [5], or see [22], a similar rule
with \parindent instead of 1 em existed in Russia.)

Thus we have two observations of typographic
trouble that the default setting of \parfillskip can
create in some situations.

O1 (Short line): The last line might be shorter
than the \parindent and such an event leaves so
much white space that it can look like an empty
line between paragraphs.

O2 (Completely filled): The text fills the last
line completely without a visual indication that
it is the last line of the paragraph, especially, if

278 TUGboat, Volume 39 (2018), No. 3

the \parindent is 0 pt and the \parskip does
not separate paragraphs by an empty line. White
space of width 1 em should be at the end of the
last line in such a setup.

The first observation is especially bad if vertical
space is used to structure the text [9, p. 142].

The two observations can be formulated more
formally as recommendations that should be obeyed:

\parindent < length of last line (1)

length of last line ≤ \hsize− 1 em. (2)

These recommendations are extracted from dif-
ferent books by different experts. This is usually not
a good approach as each expert has a unique collec-
tion of typographical rules and two such collections
might contain conflicting rules. For example, page 21
of [3] ends with a first line of a paragraph; something
that [6, 3.11] forbids. On page 43 of [3] R. Bringhurst
explains why he accepts such lines.

The important point for the recommendations
(1) and (2) is that they are not suggested to be held
simultaneously. Therefore the two recommendations
should be treated independently.

In this article, sometimes the text of an experi-
ment is indented, often it starts flush left. Neverthe-
less every text is used for both recommendations as
only the last lines count.

Displays. Display math mode in a paragraph, i.e.,
material between a pair of doubled dollar signs, can
create a problem if the \parfillskip contains only
finite dimensions. TEX determines the length of the
line directly above such a display and depending
on its width either \abovedisplayshortskip or the
(usually wider) \abovedisplayskip is put between
text and formula except if it is an alignment display

[11, p. 190]. In this case TEX always applies the lat-
ter [12, §1206]. The short skip is used if, more or less,
the end of the text and the start of the formula do
not overlap and if no equation number is used on the
left side [11, p. 189]. After the math material is type-
set TEX adds either the glue \belowdisplayskip

or \belowdisplayshortskip if there was a decision
based on the length of the line before the display;
otherwise \belowdisplayskip is used.

Here is how TEX determines which skip to use.
As soon as two dollar signs occur TEX computes the
dimension \predisplaysize that contains, as one
summand, the width of the line before the display.
The other two summands are the width by which the
line is shifted, for example, if \leftskip is nonzero,
and a font-related constant of 2 em. But there are
two exceptions: If there is no previous line, i.e., the
display starts the paragraph, \predisplaysize is

Udo Wermuth



set to −\maxdimen. If the previous line contains
interword glue and that glue stretches or shrinks
\predisplaysize is set to \maxdimen [11, p. 188;
12, §1148]. This is necessary to guarantee that TEX
does not make machine-dependent decisions.

Discussion. Ok, in some use cases the default set-
ting of plain TEX fails to meet certain recommenda-
tions. And this “failure” is not reported by TEX as a
warning or an error message. An author who sees in
the output an unwanted effect can consider rewrit-
ing the paragraph, but also, sometimes a sequence
of commands at the end of the paragraph can be
used to avoid such a situation.

Recommendation (1) can be supported by two
simple rules during the input. First, use a tie in front
of the last word if it has fewer than four letters. Sec-
ond, put longer last words whose last fragment after
hyphenation has fewer than four letters in an \hbox.
If TEX is not able to typeset this paragraph it re-
ports an overfull line error message and the author
can fix the situation. The first rule is easy to follow if
the author is used to applying ties as recommended
by [11, pp. 91–93]. The second rule is harder to ob-
serve and it requires more typing.

People have suggested non-default settings for
\parfillskip in order to obey the two mentioned
recommendations better and without new rules for
the input. For example, P. Taylor [18, p. 388] sug-
gests using 0.7\hsize instead of 1 fil as the stretch-
ability of \parfillskip to make (1) more likely.
W. Schmidt [17] discusses the use of a nonzero nat-
ural width in a very special case: if \parindent is
0 pt, always end a paragraph with some white space,
i.e., to support (2). He uses the glue 2em plus 1fil.
And F. Mittelbach [16, p. 344] used natural width to-
gether with shrinkability to address both recommen-
dations. Let x := \hsize−1.5\parindent and y :=
x− 1 em and then set \parfillskip to x plus 0pt

minus y. This combination leaves white space at the
end of the paragraph and as the natural width does
not cover the whole line width, very short lines are
assumed to be unlikely. Of course, it is possible to
change all three dimensions of the glue specification.
P. Wilson suggests in [24, p. 340] the specification
0.75\hsize plus 0.06\hsize minus 0.75\hsize;
see also [1]. And in [10, p. 1156], Donald E. Knuth
and Michael F. Plass discuss the effect of the param-
eter \looseness and write “The penalty for adja-
cent lines of contrasting classes seems to work best
in connection with looseness if the finishing glue at
the paragraph end is set to have a normal space
equal to about half the total line width, stretching to
nearly the full width and shrinking to zero.” (In [14,

TUGboat, Volume 39 (2018), No. 3 279

p. 194], the text was changed to “. . . a normal space
equal to about one-third of the total line width,
stretching to the full width and shrinking to zero.”
I can only guess why the text was changed: more
experience with both parameters. \parfillskip be-
came a changeable parameter only a few months be-
fore the article was written, and at the same time
\looseness was added; see entries 457 and 459 in
[13, Ch. 11].) As mentioned before, this article only
discusses changes to \parfillskip, not the results
of varying two parameters at the same time.

The length of the last line seems to be com-
putable via the abovementioned \predisplaysize

if \parfillskip has its default setting. In example 2
of [16, p. 344], a macro is presented to measure the
length of the last line based on the idea of adding
display math at the end of a paragraph and out-
putting the \predisplaysize. As noticed by the
author, some aspects that the display introduces,
such as skips, can be reverted, but \tracingoutput
will still show them as their occurrence is not deleted
from TEX’s memory.

Summary. Short last lines cannot be prevented ex-
cept by rewriting the text or forcing a manual line
break, and at least one ugly looking line is accepted;
see experiment 1. Using ties and boxes an author
can help TEX avoid typesetting a short last line and
output a warning if it cannot be avoided.

Completely (or nearly so) filled last lines cannot
be completely prevented either except by the author
rewriting the text or adding white space at the end
of each paragraph using a tie and an empty \hbox, or
forcing a manual line break, and accepting at least
one non-perfect line in the paragraph. Or the au-
thor makes the simplest of all changes and gives the
natural width of \parfillskip a nonnegative value.
This last method is discussed in section 6 together
with the problems that such a change produces.

There is no general need to use finite dimensions
for the stretchability or to switch to shrinkability for
\parfillskip as has been suggested. Nevertheless,
it seems to be an interesting topic to study, whether
such settings have applications and what happens
if finite dimensions are used. On the other hand
it does not help to have a higher order of infinite
stretchability, i.e., 1 fill [11, p. 72]. It might be useful
if \leftskip, \rightskip, or the text contains in-
finite stretchability of the first or second order but
otherwise it has no effect different from 1fil.

3 Zero \parfillskip

The assignment of 0 pt to \parfillskip forces TEX
to finish the last line of the paragraph flush right if

Experiments with \parfillskip



this line contains at least one interword space. This
contradicts (2) but in some situations such a value
makes sense. For example, when \parshape is used
the last line should contain a zero \parfillskip.

This setting is also useful to split a very long
paragraph into smaller parts to avoid memory over-
flow as stated in the answer to exercise 14.15 of The
TEXbook [11]: Execute \par to end a paragraph and
use the setting \parfillskip=0pt. To keep the dis-
tance of lines at \baselineskip the glue that TEX
inserts between paragraphs must be set to 0 pt too.
All parameter changes should be done in a group to
avoid a global change. Therefore the complete an-
swer is given as:

{\parfillskip=0pt\par\parskip=0pt\noindent}

But that works only if it is either entered at a place
where TEX has found a valid line break before, or
if enough text is available to allow TEX to break at
almost any interword glue. Otherwise the spaces in
the line that are typeset before the break are often
extremely stretched.

Experiment 3: Description
Show that the interword glue of the last line can get
extremely stretched.

TEX input

3. A short text in 1 line. Or has the paragraph

2 or 3 lines?

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
3. A short text in 1 line. Or has the paragraph 2

or 3 lines?
• \parfillskip ← 0 pt:

3. A short text in 1 line. Or has the paragraph 2 or
3 lines?

The experiment’s text is typeset in the first pass
if plain TEX’s default \parfillskip is used. But
TEX reports that the last line of the last paragraph
is underfull with badness 10000. It was forced to ex-
ecute a second pass to check, without success, if the
paragraph can be typeset with lines whose badness
do not exceed the current tolerance. Plain TEX sets
the tolerance for the first pass to 100 and for the
second to 200 [11, p. 96]. So, more observations:

O3 (Glue stretches): Interword glue of finite order
stretches in the last line if all other glue has finite
stretchability and if the sum of \parfillskip’s
natural width and the width of the material is
shorter than \hsize.

O4 (2nd pass forced): If the glue in every pos-
sible last line of the first pass has to stretch so
much that the badness of this line must be larger
than \pretolerance then TEX is forced to exe-
cute a second pass. And depending on the value of

280 TUGboat, Volume 39 (2018), No. 3

\emergencystretch and the result of the second
pass a third pass might be executed.

O5 (Underfull line): The output paragraph has
an underfull line if the glue in the typeset last
line has to stretch so much that the badness of
that line becomes larger than \tolerance. With
the plain TEX value of 1000 for \hbadness this is
not reported for all cases.

The observation O4 about the execution of a
second pass can occur with the default setting of
\parfillskip too. But then it is the text that can-
not obey the limit \pretolerance. Using the plain
TEX default setting the text of experiment 3 is type-
set in the first pass. It is the changed \parfillskip

that is responsible for the text of this experiment
being typeset a second time in the second pass. So
in this article it is said that the default value of
\parfillskip never forces a second pass but it can
happen, for example, with a \parfillskip of 0 pt.

In contrast to the other observations, O4 states
a technical point and not a property of the new last
line. Of course, TEX might output the paragraph
with different line breaks and the last line that is
typeset in the second pass might not have a badness
larger than \pretolerance; actually all lines of the
paragraph might have badness values that are less
than or equal to that limit but then at least one
hyphen was inserted in the text.

A comparison of both outputs in experiment 3
shows that with plain TEX’s default settings three
words are placed in the last line but only two when
\parfillskip is 0 pt. This means that the second
output contains a first line with a larger badness
because with the plain TEX default settings TEX
must minimize the badness of the first line in this
experiment. TEX considers the break as forced. It
assigns the so-called artificial demerits [12, §854],
which \tracingparagraphs shows as d=* [12, §856].
Artificial demerits occur only in the final pass, i.e.,
usually the second or the third pass. When TEX falls
back to artificial demerits for a line this line does not
contribute to the total demerits of the paragraph:
TEX does not calculate the line demerits, they are
set to 0 [12, §855]; compare the t-values in lines 10
and 13 in the following trace.

Experiment 3 continued: Log file contents

1. @secondpass

2. []\ninerm 3. A short text in 1 line. Or

has the para-graph

3. @ via @@0 b=25 p=0 d=1225

4. @@1: line 1.1 t=1225 -> @@0

5. 2

6. @ via @@0 b=2 p=0 d=144

7. @@2: line 1.2 t=144 -> @@0

Udo Wermuth



8. or

9. @ via @@0 b=12 p=0 d=484

10. @@3: line 1.2 t=484 -> @@0

11. 3 lines?

12. @\par via @@3 b=10000 p=-10000 d=*

13. @@4: line 2.0- t=484 -> @@3

O6 (No demerits): If TEX is not able to find a
valid break for the last line of a paragraph it might
classify the break as forced. Then TEX avoids cal-
culating the line demerits and assigns to this line
artificial demerits which count as 0.

Note however that the paragraph is output dif-
ferently if \looseness is set to −1 because of the
sequence in which feasible breakpoints are listed by
TEX. An explanation is given in [19], p. 372.

Experiment 3 continued: TEX definitions

\looseness=-1

TEX output

• \parfillskip ← 0 pt:
3. A short text in 1 line. Or has the paragraph

2 or 3 lines?

An underfull line without demerits also occurs
when the text of experiment 1 is typeset with a zero
\parfillskip; the output is identical to the one
shown in experiment 1. But with a very short word
on the last line or more shrinkability in the penulti-
mate line a short last line might disappear.

Experiment 4: Description
Show that a short last line might be absorbed by the
penultimate line.

TEX input

\noindent 4. My keyboArd is broken. When I

press the key for the lowercAse A the screen

repeAts it severAl times: a a a a

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a
a
• \parfillskip ← 0 pt:
4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a a

O7 (Remove short line): To avoid infinite or high
badness values TEX might dissolve the original
last line and move its material into the formerly
penultimate line.

The last line is also absorbed in a second pass
even if \finalhyphendemerits get applied.

Experiment 4 continued: TEX input

\noindent $4’$. My keyboArd is broken; when I

press an ‘A’ in lowercAse (only) the screen

repeAts it four times: a a a a

TUGboat, Volume 39 (2018), No. 3 281

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
4′. My keyboArd is broken; when I press an ‘A’ in low-
ercAse (only) the screen repeAts it four times: a a a
a
• \parfillskip ← 0 pt:
4′. My keyboArd is broken; when I press an ‘A’ in low-
ercAse (only) the screen repeAts it four times: a a a a

A last line may also be extended, that is, it
receives some material from the penultimate line.

Experiment 5: Description
Show that a last line might be extended.

TEX input

\noindent 5. With enough interword glue as well

as short words at the end of the 1st line the

2nd can be extended.

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
5. With enough interword glue as well as short words at
the end of the 1st line the 2nd can be extended.
• \parfillskip ← 0 pt:
5. With enough interword glue as well as short words
at the end of the 1st line the 2nd can be extended.

The shifting of “at” from the penultimate line
into the last line allows TEX to typeset the second
paragraph in the second pass. Its last line has the
fitness class very loose and the first line stays in the
class decent, so \adjdemerits are applied to the
last line.

O8 (Extend last line): To avoid infinite or high
badness values TEX might pack more material into
the original last line to reduce its badness.

Changing \parfillskip once. The general so-
lution to assign 0 pt to \parfillskip for a single
paragraph is to enter

\hskip-\parfillskip\ \par

at its end. This technique can be used in situations
where

\hsize− 1 em < length of last line < \hsize

to obey the abovementioned (outdated) tradition
when (2) is violated.

Note the control space in front of the \par to
avoid the glue from our \hskip-\parfillskip, that
would otherwise appear at the end of the paragraph,
from being removed by TEX as described above.
Note also that \par is used here to signal the end of
the paragraph but an empty line does the job too;
the paragraph must only end after the control space.
And finally, note that the bare minus sign is allowed
but not -1, as any factor in front of the glue coerces
it into a dimension, that is, only the natural width
remains (see exercise 24.3 in [11]).

Experiments with \parfillskip



Negative infinite stretchability. TEX contains a
primitive command \hfilneg that provides a hori-
zontal skip with a stretchability of −1 fil. It cancels
the stretchability of a skip with 1 fil when it is used
in the same line. Therefore the above general solu-
tion to zeroize the default \parfillskip for a single
paragraph can be formulated shorter as

\hfilneg\ \par

(compare to exercise 14.13 of [11]).

A digression. The use of negative infinite stretch-
ability in a text—not just to cancel \parfillskip’s
stretchability—affects the list of break candidates
for the last line in probably unexpected ways.

Experiment X: Description
Show that negative infinite stretchability in the text can
make TEX typeset fewer or more lines if \parfillskip
is 0 pt.

TEX input

Xa. There’s no need to set interword space by

hand: a \penalty10000\hskip3.33333pt plus -1fil

b. And be careful with negative stretchability!

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
Xa. There’s no need to set interword space by hand:

a b. And be careful with negative
stretchability!
• \parfillskip ← 0 pt:

Xa. There’s no need to set interword space by hand:
a b. And be careful with negative stretchability!

TEX reports for the three-line paragraph 9804
demerits; 100 demerits more than for the two-line
solution. A line with positive or negative infinite
stretchability receives badness 0 [12, §852] if the glue
does not need to shrink.

It is possible to construct an experiment that
produces a longer paragraph when the stretchabil-
ity of \parfillskip is set to 0 pt. But as in experi-
ment Xa it contains some tricks.

Experiment X continued: TEX definitions

\def\X#1(#2)[#3+#4-#5]{% repeat a letter

\penalty10000

\xleaders\hbox to #1pt{\hss #2\hss}%

\hskip#3\hsize plus #4fil minus #5\hsize

\penalty10000 }

TEX input

\noindent Xb. \hbox{Myy}\X4.9(y)[0.16+1-0.15]\

\hbox{old electrical}\penalty5\

\hbox{typewriter see}\X3.9(e)[0.14+0-0.1]%

\hbox spread 1.5pt{ms to}

\hbox{hav}\X5(v)[0.13+1-0.13]\hbox{e a bad}

\hbox{bug. It repeats letters in mh}%

\X4.7(h)[0.185+1-0]\null\penalty5\

\vphantom{h}\X4.7(h)[0.18+{-1}-0.5]!

\hbox{an unpredictable way \dots\ !}

282 TUGboat, Volume 39 (2018), No. 3

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
Xb. Myyyyyyy old electrical typewriter seeeeeeeems to
havvvve a bad bug. It repeats letters in mhhhhhhhhh!
an unpredictable way . . . !
• \parfillskip ← 0 pt:
Xb. Myyyyyyyyyyyyyyyyyyyyyyyyyyyyy old electrical
typewriter seeeeeeeeeems to havvvvvvvvvvvvvve a bad
bug. It repeats letters in mhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhh! an unpredictable way . . . !

Although not the topic of this section a positive
natural width can be used with experiment Xb to
show a typographical disaster. The text sticks out
into the left margin!

Experiment X continued: TEX output

• \parfillskip ← 120 pt:
Xb. Myyyyyyyyyyyyyyyyyyyyyyyyyyyyy old electrical
typewriter seeeeeeeeeems to havvvvvvvvvvvvvve a bad
bug. It repeats letters in mhhhhhhhhhhhhhhhhhhhhhhhh

! an unpredictable way . . . !

And here is another anomaly: The paragraph
might have the same last line as with the default
setting but the number of lines is larger.

Experiment X continued: TEX definitions

\looseness=2

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
Xb. Myyyyyyyyyyyyyyyyyyyyyyyyyyyyy old electrical
typewriter seeeeeeeeeems to havvvvvvvvvvvvvve a bad
bug. It repeats letters in mhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh!
an unpredictable way . . . !

This new paragraph has 550 total demerits in-
stead of 525. No setting of \parfillskip alone will
force TEX to typeset these five lines.

In the rest of this article only “normal” texts are
considered. No text will contain spaces with infinite
stretchability, negative dimensions, or a shrinkabil-
ity larger than the natural width. Of course, in the
specification of \parfillskip such settings will still
be considered.

Discussion. A couple of observations were made
in this section: Some are bad, some neutral, some
are typographical, other just technical. An under-
full line with extremely stretched glue is typograph-
ically bad. A forced second pass is primarily tech-
nical, although now hyphenation and wider spaces
are possible. Normally, a second pass should only
be triggered either by content or by a command en-
tered by the author, not unpredictably because of
the setting of a parameter. But in this article the
influence of \parfillskip is studied more or less
independently of other aspects. Therefore settings
that force a second pass are considered too.

Udo Wermuth



Table 1: Observations on zero glue

Specification of \parfillskip
natural width 0pt 0pt

stretch 1fil 0pt
shrink 0pt 0pt

Observation
1 Short line 1 (1)
2 Completely filled 2 + if the line contains glue
3 Glue stretches − 3
4 2nd pass forced − 3
5 Underfull line − 3
6 No demerits − 3
7 Remove short line − 4
8 Extend last line − 5

Legend: −/ /+: never/don’t care/always

n/(n): (implicitly) shown in example number n

Table 1 summarizes the observations and lists
an experiment in which the observation occurs. The
reason for the observation must be the setting of
\parfillskip. The header lines state the specifica-
tion of \parfillskip that was used in the experi-
ments. If the specification in an experiment differs
from those given in the headlines but the observation
is the same, the number of the experiment is placed
in parentheses. For instance, this is done for experi-
ment 1 with the observation “Short line”. The out-
put is identical to the result shown in experiment 1
but the second line has badness 10000 and artificial
demerits. For experiment 3 these facts have made
a completely different and ugly output, for experi-
ment 1 there is no visible indication of a problem
for TEX. Nevertheless because of such cases the al-

ways in the last column of Table 1 needs a comment.

A zero \parfillskip can be used to achieve an
aesthetic effect for a whole document, as in [7]: All
paragraphs end flush right and they are separated by
an empty line. This layout is part of a general page
design approach [8]. Such a strict requirement must
have created a lot of work and the willingness to
rephrase the text so that bad things do not happen.

One of the bad things with \parfillskip=0pt

is the occurrence of artificial demerits. TEX does not
show them as an error message, only the underfull
line is reported as a warning. The specification of
\parfillskip should not be the reason for their
appearance. Again, artificial demerits can also oc-
cur with plain TEX’s default settings. But in such a
case it is not the specification of \parfillskip that
causes the problem; it is the content itself. But then
the output might not have a visual problem.

The all-zero specification might leave too much
white space at the beginning of math displays if a
line in which the glue stretches precedes a short cen-
tered formula without an equation label at its left.

TUGboat, Volume 39 (2018), No. 3 283

If the problem occurs it can be fixed by set-
ting \abovedisplayskip and \belowdisplayskip

to their \...shortskip variants directly after the
two dollar signs. This change is done inside a group
so the old values are restored after the closing $$.
Or all paragraphs that contain displayed material
start preemptively within a group, in which the de-
fault \parfillskip is active and which ends after
the last display. But the simplest input rule is to en-
ter always, for example, \hfil\ $$ (with a control
space) instead of the opening $$.

It should be noted that \parfillskip is rele-
vant for line breaking and therefore the number of
lines is affected by its specification. Of course, it is
not directly a problem that paragraphs get shorter
or longer if \parfillskip is changed. But in the
first case recommendation (2) might be violated and
in the second case it is recommendation (1) that
might not be obeyed.

Summary. The value 0 pt for \parfillskip sup-
ports (1) if possible but might fail spectacularly if
the last lines contains interword glue. Recommen-
dation (2) is only obeyed with underfull last lines
that contain no glue. In general, this setting might
be used in certain circumstances to show a special
effect but it needs too much care and work to be
applied for a longer document.

4 Using finite stretchability

Of course, the stretchability of 1 fil in the default
setting of \parfillskip is not needed to fill the
last line; simply \hsize has enough stretchability.
But this setting does not have the same properties
as infinite stretchability. One remarkable difference
was already mentioned above: the spacing around
display math.

Finite stretchability: ν× \hsize. As mentioned
earlier: With the default setting of \parfillskip,
TEX creates, under normal conditions (e.g., a last
line that is not empty), either a last line with bad-
ness 0 or a tight last line with badness up to 100.
When the input

\noindent\hbox to 1sp{\hss} (∗)
is used with finite stretchability the maximum dif-
ference for the badness of a non-tight line is reported
for TUGboat’s column width, namely, 225 pt. With
the definition \parfillskip=0pt plus ν\hsize the
following values are found:

ν = 1 2 3 4 5 6
badness for input (∗) = 100 12 4 2 1 0

Thus, there is no difference between a stretch-
ability of 1 fil and a stretchability of 6\hsize in the

Experiments with \parfillskip



line breaks if \leftskip, \rightskip, and the input
for the paragraph do not contain infinite glue. Note,
a zero badness does not imply that the interword
glue has its natural width. The setting 2\hsize still
creates a last line of fitness class decent, that is, no
\adjdemerits can be charged to the last line if it is
not already charged using infinite stretchability.

One argument for using a finite stretchability
is to make (1) more likely; that is, for a short last
line help O8 “Extend last line” to occur. The idea
is: With finite stretchability a higher badness is as-
signed to short lines as a lot of stretchability must
be used and TEX has a reason to select line breaks
putting more material into the last line in order to
reduce its badness value. So short lines should be
less likely.

The texts of experiments 1 and 2 produce the
identical output as before with TEX’s default setting
for all ν so they are not shown here. The biggest
change of badness values is seen for the step from
2\hsize to 1\hsize. With these values it should be
easiest to find an experiment that produces a longer
last line.

Experiment 6: Description
Show a noticeable difference between the finite stretch-
abilities of 2\hsize and 1\hsize.

TEX input

\noindent 6. One line or two for this text?

That is the question, or?

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
6. One line or two for this text? That is the question,
or?
• \parfillskip ← 0 pt plus 2\hsize:
6. One line or two for this text? That is the question,
or?
• \parfillskip ← 0 pt plus 1\hsize:
6. One line or two for this text? That is the question, or?

The single line, a tight line, has badness 65 and
5625 demerits. A second line with the stretchability
of \hsize would receive badness 84, demerits 8836.
Finite stretchability might avoid a short last line and
produce a paragraph that has one line less. That line
ends flush right violating (2). This effect was seen
before in O7 “Remove short line”.

For this observation the badness of the last line
might even be smaller. As seen above, the badness of
the last line might become 1 if the stretchability of
\parfillskip is set to 5\hsize. This difference is
important enough to produce other line breaks than
the default setting.

Experiment 7: Description
Show that the badness 1 for the last line can be a reason
to make a paragraph shorter.

284 TUGboat, Volume 39 (2018), No. 3

TEX output

• \parfillskip ← 0 pt plus 6\hsize:
4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a
a
• \parfillskip ← 0 pt plus 5\hsize:
4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a a

The badness and the demerits for the three lines
are: 10/400, 1/121, and 0/100; the path demerits

[20], i.e., the sum of the line demerits, is therefore
400 + 121 + 100 = 621. In the paragraph with two
lines the values are 10/400 and 5/225 with path de-
merits of 625. In this case a third line would get
1/121 instead of 0/100. Then the path demerits are
642, so this path is less attractive for TEX.

But of course, the original idea for longer lines
can be shown too. In the next experiment the two-
lines paragraph’s first line is decent and with finite
stretchability it stays decent but the treatment of
glue changes.

Experiment 8: Description
Show that \parfillskip=0pt plus \hsize might create
a longer last line.

TEX input

\noindent 8. One line or two for this text?

That’s the question, or not?

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
8. One line or two for this text? That’s the question, or
not?
• \parfillskip ← 0 pt plus \hsize:
8. One line or two for this text? That’s the question,
or not?

The badness values of the two first lines are 1
and 8, resp. This increase is compensated for in the
case with a stretchability of \hsize by the decrease
of the badness in the second line from 78 for the
single word to 64 with two words. Of course, the
interword glue in the last line of the second para-
graph has to stretch. And again the badness value 1
is sufficient to make a difference.

Experiment 9: Description
Show that the badness 1 for the last line can be a reason
to extend it.

TEX input

\noindent 9.\ Give me 5! As a factor for

width; to stretch! I need a five (5)!

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
9. Give me 5! As a factor for width; to stretch! I need a
five (5)!
• \parfillskip ← 0 pt plus 5\hsize:
9. Give me 5! As a factor for width; to stretch! I need
a five (5)!

Udo Wermuth



Finite stretchability: (ν/10)×\hsize. The finite
stretchability might be less than \hsize to support
(1) even more: Now the white space provided by
the stretchability of \parfillskip cannot cover the
whole line width. That means that a short last line
represents an underfull line and TEX will create such
a line only if there is no other way to break the text.

In this case a successful first pass cannot be
guaranteed. Let’s check what badness β is produced
with input (∗) if the stretchability is reduced to ν/10
of \hsize:

ν = 3 4 5 6 7 8 9
β = 3701 1558 800 463 291 195 137

The values for ν = 1 and ν = 2 result in an
infinite badness of 10000. Stretchability lower than
\hsize might force TEX to execute a second pass;
see O4. Values greater than or equal to 0.8\hsize
obey plain TEX’s \tolerance. Otherwise underfull
lines as described in O5 might be produced. With
the plain TEX value of 1000 for \hbadness [11, p. 29]
this is only reported for a stretchability somewhat
less than 0.5\hsize; for exact numbers see section 5.

But underfull lines are not the only problem
with small ν; artificial demerits might occur.

Experiment 10: Description
Show that a smaller fraction for the stretchability can
make the last line of a paragraph shorter again.

TEX output

• \parfillskip ← 0 pt plus 0.7\hsize:
8. One line or two for this text? That’s the question,
or not?
• \parfillskip ← 0 pt plus 0.5\hsize:
8. One line or two for this text? That’s the question, or
not?

A stretchability of 0.7\hsize can make the last
line of a paragraph longer as it was shown with a
stretchability of \hsize, but the stretchability of
0.5\hsize fails in this experiment as artificial de-
merits are reported by TEX. The last line must be-
come nearly 40% filled with such a small stretchabil-
ity to get a badness value less than 200 (and then
the change is unnecessary to avoid a short last line).

Experiment 11: Description
Show that a smaller fraction for the stretchability can
make the last line of a paragraph longer.

TEX input

11. Sure, this text needs always two lines with

the current line width.

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
11. Sure, this text needs always two lines with the

current line width.
• \parfillskip ← 0 pt plus 0.7\hsize:

TUGboat, Volume 39 (2018), No. 3 285

11. Sure, this text needs always two lines with the
current line width.
• \parfillskip ← 0 pt plus 0.5\hsize:

11. Sure, this text needs always two lines with
the current line width.

TEX needs a second pass only in the third case.
To extend the last line a high price in demerits must
be paid; the total demerits are, in sequence: 200,
8200, and 51410.

Negative finite stretchability. There is an im-
portant difference if the negative stretchability is
infinite or finite [15]. The first case produces last
lines of badness 0 as discussed in section 3. But if
the stretchability for the calculation of the badness
is finite and negative the badness of the last line is
set to 10000 [12, §852, §108] and artificial demerits
are applied. As the line demerits for the last line
are not calculated they do not influence TEX’s line
breaking decisions.

Experiment 12: Description
Show the difference between positive and negative finite
stretchability.

TEX output

• \parfillskip ← 0 pt plus 0.7\hsize:
3. A short text in 1 line. Or has the paragraph

2 or 3 lines?
• \parfillskip ← 0 pt plus 0.5\hsize:

3. A short text in 1 line. Or has the paragraph 2 or
3 lines?
• \parfillskip ← 0 pt plus −0.7\hsize:

3. A short text in 1 line. Or has the paragraph 2 or
3 lines?

The finite stretchability of 0.7\hsize makes the
last line longer, but the negative stretchability short-
ens it. The first paragraph has 19994 demerits, the
third only 484 as the last line does not count because
of artificial demerits. As seen before, TEX picks a line
break that does not even minimize the line demer-
its of the first line and it produces an underfull last
line. The paragraph with stretchability 0.5\hsize
has the same problem. When the interword spaces
of the last lines for these two paragraphs are closely
inspected then the space in the last one seems to be
quite small.

Let’s execute a test similar to a situation of an
answer to a multiple choice question.

Experiment 13: Description
Show that a space vanishes with negative stretchability.

TEX input

\noindent 13. a

TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
13. a

Experiments with \parfillskip



• \parfillskip ← 0 pt plus −0.7\hsize:

13.a

The space between “13.” and “a” disappears,
overwriting the period. The line is underfull and the
log file shows that the stretchability of the space
erodes the natural width.

Experiment 13 continued: Log file contents

1. \hbox(5.79999+0.0)x225.0, glue set -1.33734

2. .\ninerm 1

3. .\ninerm 3

4. .\ninerm .

5. .\glue 4.11108 plus 4.62497 minus 0.34259

6. .\ninerm a

7. .\penalty 10000

8. .\glue(\parfillskip) 0.0 plus -157.49931

9. .\glue(\rightskip) 0.0

Note the value after glue set is negative. It
is not a minus separated by a space from the num-
ber which is used to signal shrinkability [11, p. 79].
Therefore the “a” is moved 1.33734 × 4.62497 pt >
4.11108 pt to the left.

O9 (Backspaces): Negative finite stretchability in
\parfillskip induces negative stretchability for
finite interword glue and might create spaces with
negative width in the last line.

Discussion. Table 2 shows which experiments doc-
ument the observations. The stretchability 6\hsize
cannot be distinguished from 1fil if no infinite glue
appears in the paragraph. But the interword glue in
a line with spaces in front of a display stretches so
that the vertical spacing is wrong.

The reason for parentheses in the last column
of Table 2 is the non-specific stretch value; therefore
experiment 13, which uses a concrete value, appears
in parentheses. The output is so bad that other ob-

Table 2: Observations for finite stretchability

Specification of \parfillskip (h ≡ \hsize)
natural width 0pt 0pt 0pt 0pt 0pt 0pt 0pt 0pt

stretch 1fil 6h 5h h .8h .7h .5h <0pt
shrink 0pt 0pt 0pt 0pt 0pt 0pt 0pt 0pt

Observation
1 Short line 1 7 (1) (1) (1) (1) (1)
2 Completely filled 2 (2) 7 6 (2) (2) (2)
3 Glue stretches − − (13) 8 (8) 10 11
4 2nd pass forced − − − − (1) (1) 11 +
5 Underfull line − − − − − (1) 12 +
6 No demerits − − − − − (1) 12 +
7 Remove short line − − 7 6 (6) (6) (6)
8 Extend last line − − 9 8 (8) 12 11
9 Backspaces − − − − − − − (13)

Legend: −/ /+: never/don’t care/always

n/(n): (implicitly) shown in example number n

286 TUGboat, Volume 39 (2018), No. 3

χ = .8

χ = 1

χ = 2

0 20 40 60 80 100
0

50

100

150

200

Fixed width text in % of \hsize

badness

Figure 1: Graphs for χ = 0.8, χ = 1, and χ = 2
when \parfillskip ≡ 0pt plus χ\hsize

servations are not analyzed for these specifications
so a lot of entries are empty.

One reason to select a finite stretchability for
\parfillskip is to avoid a short last line. Exper-
iments show that a smaller value for the stretch-
ability might create longer last lines. Nevertheless,
TEX might also respond with a paragraph that is
not changed at all or becomes one line shorter com-
pared to the number of lines with the default setting
for \parfillskip. Such a paragraph then contains
a completely filled last line, i.e., the line is not short.

Figure 1 shows how much badness a last line
gets if the text has no additional stretchability. With
a stretchability of 0.8\hsize a line must cover at
least 60% of the line width to become decent (so that
spaces do not stretch more than 50% [11, p. 97]).

The smaller the stretchability, the more likely
that longer last lines are produced. But too small
means artificial demerits can occur and then the
last line is not improved at all. A stretchability like
\hsize − \parindent seems to be an ideal choice as
it forces the second pass only if the last line with the
default setting of \parfillskip is shorter than the
indent. But a smaller value might pull more strongly,
so 0.8\hsize seems to be a better value in this re-
spect. A second pass is avoided if the stretchability
is at least \hsize.

Summary. To support (1) a second pass might be
acceptable if the length of the last line is shorter
than the indent. A stretchability of \hsize or a
large fraction of \hsize seems to be the best choice

Udo Wermuth



although they also tend to remove the original last
line and create paragraphs with one line less. Rec-
ommendation (2) is violated more often as very short
lines are sometimes absorbed by the former penulti-
mate line which then gets completely filled.

5 Theory: Finite stretchability

First, a few words about the notation: Lowercase
math Latin letters stand for dimensions; especially,
h is used for \hsize and p for \parindent; bold face
Latin represents glue that consists of three dimen-
sions: the natural width, the stretchability, and the
shrinkability. For example, p is the \parfillskip

and its three dimensions are written with a Latin p
and a superscript: p◦, p+, and p−. Lowercase Greek
letters denote numbers, integers, or rational num-
bers. Several of them are reserved for often used
integers: β is a badness, π a penalty, δ additional de-
merits, λ the \linepenalty, and τ the \tolerance.
The uppercase Greek letter Λ stands for line demer-
its and Λp for path demerits, i.e., the sum of all line
demerits of a set of valid line breaks.

The badness of input (∗) was found by runs
with TUGboat’s column width. This must not be
determined by an experiment though. The badness
of lines in which the text occupies only 1 sp is com-
puted as an approximation by the following formula
(see [11], p. 97), in which the numerator represents
the stretchability used to typeset the line and the
denominator stands for the available stretchability
in the line:

β ≈ 100
( used stretchability

available stretchability

)3

.

Therefore

β ≈ 100
(h− 1 sp

νh

)3

≤ 100
( h

νh

)3

=
100

ν3
.

This computes the following values rounded to one
decimal place, or two if that digit is 5 or would be
rounded to 5:

ν = 1 2 3 4 5 6
100/ν3 ≈ 100 12.50 3.7 1.56 0.8 0.46

so that the above found badness values for (∗) seem
to be the result of rounding the value 100/ν3 to the
nearest integer (and a tie-break rule to get 12).

This proves also that the results about 6\hsize,
i.e., equality to the default line breaks if no infinite
stretchability is in the paragraph, and 2\hsize, i.e.,
only decent last lines occur, are valid for all text
widths.

The approximation can be used to find the fac-
tor ν that will never produce an underfull line. So
the question is: For which ν does the badness reach

TUGboat, Volume 39 (2018), No. 3 287

τ = 200? That is, find ν with

100
(h− 1 sp

νh

)3

= τ.

The 1 sp is very small compared to h; so it can be
dropped. (Actually it is sufficient to find a value that
rounds down to τ , but this difference is small.) Thus

1/ν3 ≈ 2 =⇒ ν ≈ 1/
3
√
2 ≈ 0.79.

Well, that is not a big surprise as it was shown
above that 0.8h creates a last line with badness 195.
If \hbadness instead of \tolerance is used in the
computation, ν must be larger than 1/ 3

√
10 ≈ 0.46.

This is the value after which plain TEX reports an
underfull line; again an expected result.

Okay, something more complicated: Is it possi-
ble to identify a short last line through its badness
value? Figure 1 shows that the badness falls very
fast when the line is not filled with much text. So
it should be possible to distinguish the case if the
width of the text is less than the \parindent p;
maybe not exactly but close.

The problem is to find ν such that, say,

100
(h− p

νh

)3

= β + 1 and 100
(h− 1.1p

νh

)3

= β.

The badness β is not important and gets replaced
in the first formula by the second:

100
(h− p

νh

)3

− 100
(h− 1.1p

νh

)3

= 1

100

h3

(

(h− p)3 − (h− 1.1p)3
)

= ν3⇐⇒

100

h3

(

0.3h2p− .63hp2 + 0.331p3
)

= ν3⇐⇒

3

√

30
p

h
− 63

p2

h2
+ 33.1

p3

h3
= ν.=⇒

For the TUGboat format p = 20pt and h = 225 pt
so that p/h = 20/225 ≈ 0.0889, and thus

ν = 3
√
2.667− 0.4979 + 0.0233 ≈ 1.29.

With ν = 1.29 the available stretchability gets νh =
290.25 pt and the badness values are 35 and 34 as

100
( 205

290.25

)3

= 35.23 and 100
( 203

290.25

)3

= 34.21.

So a short last line with a badness higher than 34
is not longer than the indentation. Of course, the
phrase “short last line” is important as completely
filled lines can have badness values larger than 34
when they have to shrink a lot. Values larger than 47
are assigned only to tight lines, as 100/1.293 ≈ 47.

The result ν = 1.29 is based on the values of h,
p, the factor 1.1, and the difference of 1 for the bad-
ness values. But both the factor and the difference
can be changed and other specifications for p+ are
possible.

Experiments with \parfillskip



The specification with a stretchability using the
factor 5 for \hsize has badness 1 up to 14% of the
\hsize, so it is an ideal base for a division of short
last lines and longer last lines. For longer last lines
the badness is 0 so there is minimal influence on the
glue. Smaller last lines have badness 1 and the glue
does not stretch very much. Nevertheless the impor-
tant point is that a short last line for a given length
can be identified by the badness if the stretchability
is a little bit arranged. For example, using the TUG-

boat format short last lines are distinguished from
those that are wider than ≈ 25.250527 pt, which is
sufficiently larger than 20 pt, i.e., the \parindent,
if the stretchability of \parfillskip is 5.17\hsize.

Figure 2 presents a complete set of macros to
check the badness of last lines for the TUGboat for-
mat; \parfillskip is only changed at the end of
paragraphs so displays are not affected. False hits
for tight lines (or short lines above a heading) are
possible. The author has then the option to enter
\lastlineaccepted at the end of the paragraph to
suppress the error message in the subsequent runs.

6 Adding natural width to \parfillskip

Recommendation (2) is always obeyed if the natural
width of \parfillskip is at least 1 em or 10 pt. The
text of experiment 1 is unaffected, but experiment 2
changes with or without stretchability.

Experiment 14: Description
Show that natural width for \parfillskip might pro-
duce short last lines.

TEX output

• \parfillskip ← 10 pt plus 1fil:
2. Has the last line of this paragraph badness 0

and has no interword space to stretch? Do they shrink
now?
• \parfillskip ← 10 pt:

2. Has the last line of this paragraph badness 0
and has no interword space to stretch? Do they shrink
now?

Of course, the new last line in the last para-
graph is underfull and has artificial demerits.

O10 (Add short line): The \parfillskip value
might create a situation in which TEX prefers or is
forced to typeset a new last line. This line might
be short.

The natural width must be less than \hsize

for normal text, or all last lines will be wider than
\hsize and the shrinkability of the material in the
last line must be large enough to avoid an overfull
line. Otherwise only last lines that contain material
of width greater than the difference of \hsize and
the natural width shrink or become overfull.

288 TUGboat, Volume 39 (2018), No. 3

% ASSUMPTION: \par has the TeX default

% NOTE: if active a par’s end resets \parfillskip

\newif\ifCSLLtrace % true: show message about

\CSLLtracetrue % start and stop on the terminal

\newif\ifCSLLactive % true: checks are active

\newif\ifCSLLaccepted % true: user said line is OK

\newskip\CSLLpfs % register to save parfillskip

\newlinechar=‘\^^J% newline in help message

\newhelp\CSLLhelp{checkshortlastline reports a

warning message: The length^^Jof the line that

ends at the line number shown in the^^Jlast line

of the message might be shorter or not

much^^Jlonger than the indentation or the last

line is completely^^Jfilled and a little bit

tight. Then it is a false hit.^^JUse

\string\lastlineaccepted\space if you can accept

the line.}

% output message (depending on \CSLLtrace setting)

\def\CSLLmsg(#1){% #1=0/1/2/3: off/on/is off/is on

\immediate\write\ifCSLLtrace 16 \else -1 \fi

{>>> \string\checkshortlastline\space

\ifcase#1 de\or\or not \or already \fi activated;

\string\parfillskip=\the\parfillskip}}

% execute badness test with customized parfillskip

\def\checkshortlastline{%

\parfillskip=0pt plus 5.17\hsize % TUGboat value

\endgraf\parfillskip=0pt plus 1fil

\ifnum\badness=1 \errhelp=\CSLLhelp % HIT

\errmessage{Notice: Short (or tight) last line}%

\fi}

% start the check but don’t do it twice

\def\activatecheckshortlastline{%

\ifCSLLactive\CSLLmsg(3)\else\CSLLactivetrue

% 1st: new def of \par: in hmode do the check

\def\par{\ifhmode\ifinner\else % horizontal mode

\ifCSLLaccepted \CSLLacceptedfalse % user: OK

\else\checkshortlastline\fi\fi % else check

\fi\endgraf}% reset \badness with \endgraf

% 2nd: save \parfillskip and use default value

\CSLLpfs=\parfillskip \parfillskip=0pt plus 1fil

\CSLLmsg(1)\fi}% write message about activation

\def\stopcheckshortlastline{% stop check but only

\ifCSLLactive\CSLLactivefalse % if it is running

\let\par=\endgraf % undo changes: reset \par and

\parfillskip=\CSLLpfs \CSLLmsg(0)% \parfillskip

\else\CSLLmsg(2)\fi}

% accept a line that creates a false hit

\let\lastlineaccepted=\CSLLacceptedtrue

Figure 2: Macros to check badness of last lines

Experiment 15: Description
Show that a positive natural width for \parfillskip

might produce overfull lines.

TEX input

\noindent 15. Each interword glue in this

single-line text shrinks.

Udo Wermuth



TEX output

• \parfillskip ← 0 pt plus 1fil (plain TEX’s default):
15. Each interword glue in this single-line text shrinks.
• \parfillskip ← 10 pt plus 1fil:
15. Each interword glue in this single-line text shrinks.
• \parfillskip ← 10 pt:
15. Each interword glue in this single-line text shrinks.

The last two paragraphs have a badness larger
than 10000 as the shrinkability of the line is not
large enough to fit the line width [12, §851]. In this
case \tracingparagraphs reports no value but out-
puts the badness as *. Without a valid badness the
demerits are set to * too.

Experiment 15 continued: Log file contents

1. @secondpass

2. \ninerm 15. The in-ter-word glue in this

one-line para-graph shrinks.

3. @\par via @@0 b=* p=-10000 d=*

4. @@1: line 1.3- t=0 -> @@0

O11 (Glue shrinks early): Interword glue shrinks
in last lines early if \parfillskip has a net con-
tribution > 0 pt. When the distance of the nat-
ural width of the material in the last line to the
right margin is smaller than the natural width of
\parfillskip the interword glue starts to shrink.

O12 (Overfull line): If \parfillskip’s net contri-
bution to the last line is always greater than 0 pt
TEX might typeset an overfull last line. As the to-
tal shrinkability in the last line cannot make the
text fit into the line width, TEX computes neither
the badness nor the demerits for the line.

Overfull lines are signaled by plain TEX as a
warning in the log file, on the terminal, and with a
black rectangle in the output. (For the experiments
in this article a very thin, 1 pt wide, rule is used.)
But there is another way to produce an “overfull
line” without notification by TEX.

Experiment 16: Description
Show that negative natural width for \parfillskip can
create last lines that are wider than \hsize.

TEX output

• \parfillskip ← −15 pt plus 1fil:
1. Please answer if my topic is “in” or “out”. TEX: in

O13 (Stick out right): If the glue specification
of \parfillskip has the effect of extending the
\hsize then the last line might stick out into the
right margin without marking this line as overfull.

Negative natural width can be useful in certain
applications. For example, in [2, p. 112], a macro is
presented that uses \rightskip to provide stretch-
ability in all lines and a negative natural width for
\parfillskip to put some material flush right into
the white space that the ragged-right setting leaves.

TUGboat, Volume 39 (2018), No. 3 289

The macro is used to break long headers in a table
of contents; the material that must be placed in the
last line is the page number. If its width is called x,
\rightskip gets x plus 2em and −x is assigned to
\parfillskip. But again, this article experiments
only with changes to \parfillskip alone.

Using finite stretchability. The combination of
finite stretchability with a natural width is in some
respect a contradiction: The finite stretchability is
used to make (1) more likely, i.e., to avoid a short
last line, but the natural width adds white space
so the line does not appear to be short or rather
its badness becomes smaller as less stretchability is
needed. Nevertheless earlier experiments show that
a badness as small as 1 is enough to change TEX’s
line-breaking decisions. So it should be possible to
find cases where the last line is absorbed or extended
with a specification having finite stretchability.

Experiment 17: Description

Show that the combination of natural width and finite
stretchability for \parfillskip might produce a longer
last line.

TEX output

• \parfillskip ← 10 pt plus \hsize:

4. My keyboArd is broken. When I press the key for
the lowercAse A the screen repeAts it severAl times: a
a a a

• \parfillskip ← 10 pt plus 0.7\hsize:

4. My keyboArd is broken. When I press the key for
the lowercAse A the screen repeAts it severAl times:
a a a a

With a small variation of the text the paragraph
gets shorter.

Experiment 18: Description

Show that the combination of natural width and finite
stretchability for \parfillskip might remove a short
last line.

TEX output

• \parfillskip ← 10 pt plus \hsize:

4′. My keyboArd is broken; when I press an ‘A’ in low-
ercAse (only) the screen repeAts it four times: a a a a

A pure finite stretchability of width p+ is not
equivalent to a specification where the sum of nat-
ural width and stretchability equals p+. This is ob-
vious as the stretchability is reduced when a part of
it becomes fixed width.

With natural width ν′ = (1/10)\hsize and a
stretchability of (ν′′/10)\hsize for \parfillskip

the input (∗) of section 4 has the following badness
values, β.

ν′′ = 4 5 6 7 8 9 19 29 39
β = 1137 581 336 211 142 100 10 3 1

Experiments with \parfillskip



Experiment 19: Description
Show that a specification with natural width and finite
stretchability might not output a single line.

TEX output

• \parfillskip ← 0 pt plus 0.7\hsize:
6. One line or two for this text? That is the question, or?
• \parfillskip ← 0.1\hsize plus 0.6\hsize:
6. One line or two for this text? That is the ques-
tion, or?

Compare the results with experiment 6: The
natural width of \parfillskip prevents the absorp-
tion of the last line in the second paragraph. TEX
executes a second pass which makes the short last
line longer. A smaller value for the natural width of
\parfillskip is sufficient in this case though.

Discussion. The use of a small value for the natu-
ral width of \parfillskip is ideal to assure (2), al-
though overfull lines can occur and interword spaces
shrink early. And short last lines might be produced
when TEX has to add a line to the paragraph, i.e.,
(1) is violated in more cases than before.

With the default setting of \parfillskip an
author has to check all last lines to ensure that nei-
ther (1) nor (2) is violated. With a natural width and
infinite stretchability all last lines must be checked
at most for a violation of (1) as (2) is either guaran-
teed or it fails with an error message. In some sense
overfull lines are not bad as they point out a signifi-
cant problem. Either an author rewrites the text or
some other action is taken.

An overfull last line for a single paragraph can
be solved by the technique mentioned in section 3
but now with a factor of −1 (or a fraction of −1)
and not just a minus sign:

\hskip-1\parfillskip\ \par

This cancels only the natural width not the stretch-
ability of \parfillskip. The line might be filled
completely, violating (2).

Table 3 summarizes all the observations made
in the experiments of this section. The entries show
that problems are possible with infinite stretchabil-
ity, and the situation does not improve if the stretch-
ability is reduced to a finite value. Although few
experiments were shown with a small variation of
values for finite stretchability the findings in sec-
tion 4 also apply here in many aspects. For example,
a too small stretchability produces underfull lines
and even lines with artificial demerits.

Summary. Using a nonnegative natural width in
\parfillskip, for example, 10 pt, is an effective
way to have all last lines end before they reach the
right margin so that recommendation (2) is always
obeyed. Overfull lines might occur, which can be

290 TUGboat, Volume 39 (2018), No. 3

Table 3: Observations for natural width & stretchability

Specification of \parfillskip (h ≡ \hsize)
natural width 0pt <0pt 10pt 10pt 10pt 10pt

stretch 1fil 1fil 1fil h .7h 0pt
shrink 0pt 0pt 0pt 0pt 0pt 0pt

Observation
1 Short line 1 (1) (1) (1) (1)
2 Completely filled 2 − − − −
3 Glue stretches − − 17 17 (3)
4 2nd pass forced − 15 (15) 17 15
5 Underfull line − − − (1) (3)
6 No demerits − 15 (15) (1) 15
7 Remove short line − − 18 (18) (18)
8 Extend last line − − 17 17 (5)
9 Backspaces − − − − −

10 Add short line − 14 (14) (14) 14
11 Glue shrinks early − 15 (15) (15) 15
12 Overfull line − 15 (15) (15) 15
13 Stick out right − (16) − − − −

Legend: −/ /+: never/don’t care/always

n/(n): (implicitly) shown in example number n

fixed either by rewriting the text or canceling the
natural width of \parfillskip. But the setting has
a side effect: Short last lines might be produced even
with finite stretchability.

7 Theory: Natural width and stretchability

The formula to compute the badness introduced in
section 5 can be used if the sum of the width of the
text and p◦ is not greater than h. The numerator,
which contains the used stretchability, has to apply
not only the width of the text but also p◦. But if
the sum of these two values is greater than h then
the glue in the last line must shrink and a different
calculation is required. Well, the formula stays the
same but now the used shrinkability and the avail-
able shrinkability form the quotient.

If the length of the text in the last line is named
t then the used stretchability is h− t−p◦ if t+p◦ ≤
h. Otherwise, i.e., h < t + p◦ < 2h, the required
shrinkability is t+ p◦ − h. This amount must come
from the shrinkability of the text as p− = 0pt. If t+
p◦ is too large then the line gets overfull. Therefore,
in most cases the value of p◦ should not be very
large and less than h, unless the text has unusual
shrinkability.

In experiment 19 TEX uses different line breaks
for a specification with pure stretchability and for
one in which the sum of a nonnegative natural width
and a smaller stretchability equals the stretchability
of the first specification. In the experiment differ-
ent passes occur. But if the last lines are identical
and all glue stretches, both specifications typeset the
paragraph in the same pass. The specification with

Udo Wermuth



p◦ = 0pt has an equal or greater badness in the first
pass if the badness values are less than 100; in a sec-
ond pass, its badness is equal or smaller. Compare
the badness values shown before experiment 19, for
input (∗), with the corresponding values in section 4.

For the proof of this statement the following
shortcut is defined. The sum of all horizontal glue in
the last line, i.e., interword spaces and skips, except
the \parfillskip, is named g. It has natural width
g◦, stretchability g+, and shrinkability g−, as with
other glue parameters.

If ν = ν′ + ν′′ and the last line contains text
of width t with stretchability g+ the two badness
values for the specifications 0pt plus ν\hsize and
ν′\hsize plus ν′′\hsize are approximately

100
( h− t

νh+ g+

)3

and 100
(h− t− ν′h

ν′′h+ g+

)3

.

To make sure that the badness values are not larger
than the tolerance for the second pass, τ = 200, the
relation 3

√
2ν′′ ≥ 1 − ν′ − (t + 3

√
2g+)/h or, better,

ν′′ ≥ (1− ν′)/ 3
√
2 must hold.

In a first pass with badness < 100 the quotient
of the second specification that is cubed obeys

0 ≤ h− t− ν′h

ν′′h+ g+
< 1 =

ν′h

ν′h
.

The quotient of the first specification, (h− t)/(νh+
g+), is the mediant, i.e., the quotient of the sum
of the numerators and the denominators of the two
quotients on the left and the right of 1, and therefore

h− t− ν′h

ν′′h+ g+
<

h− t

νh+ g+
<

ν′h

ν′h
= 1.

A similar argument shows

h− t− ν′h

ν′′h+ g+
> 1 =⇒ h− t− ν′h

ν′′h+ g+
>

h− t

νh+ g+
> 1.

The relations are not changed when they are
cubed and multiplied by 100 to get the badness.
TEX’s computation [12, §108] is monotone but only
an approximation: Both relations “less than” and
“greater than” should also be “or equal to”.

Using the \tracingparagraphs output. TEX has
a parameter to report line-breaking decisions and
write them to the log file: \tracingparagraphs [19].
Its output has already been shown several times, for
example, in the discussion after experiment 3. This
trace shows all the ways for TEX to typeset the text
of a paragraph with the current values of the line-
breaking parameters. The glue \parfillskip is not
explicitly mentioned in a trace but the possible last
lines carry in their badness and thus in their line
demerits the influence of this parameter.

Experiment 16 sets \parfillskip to a strange
value, creating for the last line a solution that is not

TUGboat, Volume 39 (2018), No. 3 291

part of the network of line breaks that is built from
the default settings of plain TEX. But the effect is
limited to the last line—and its previous line if it be-
comes the last line—as no other line breaks can be
affected by the bad setting of \parfillskip, i.e., all
sets of line breaks up to the start of the penultimate
line are also valid line breaks for the default setting.
A second important aspect of giving \parfillskip

finite values is the interaction with infinite stretch-
ability in the text. For example, the trace for exper-
iment Xb with the default setting of \parfillskip
and a positive value for \looseness to force a sec-
ond pass lists five different paths; with a stretchabil-
ity of 6\hsize this number increases to nine. But as
stated before, input with infinite stretchability is not
analyzed in this article.

Therefore only the trace of a “normal text” with
a reasonable \parfillskip is considered. Experi-
ment 6 with a forced second pass outputs this trace:

1. @secondpass

2. \ninerm 6. One line or two for this text?

That is the ques-

3. @\discretionary via @@0 b=84 p=50 d=11336

4. @@1: line 1.1- t=11336 -> @@0

5. tion,

6. @ via @@0 b=2 p=0 d=144

7. @@2: line 1.2 t=144 -> @@0

8. or?

9. @\par via @@0 b=65 p=-10000 d=5625

10. @@3: line 1.3- t=5625 -> @@0

11. @\par via @@2 b=0 p=-10000 d=100

12. @\par via @@1 b=0 p=-10000 d=5100

13. @@4: line 2.2- t=244 -> @@2

This trace contains three paths which are described
in Table 4. All the paths have been selected with
some specification of \parfillskip: The single line
and the first two-line solution that is typeset with
the default setting are shown in experiment 6, while

Table 4: Badness, penalties, and additional demerits of
the line breaks for the three paths of the trace listing

\par via @@ (* is typeset)
@@ Class 00 *20 10

1 l 8450
2 d 2
3 t 65
4 d 0 0f

# lines = 1 2 2

Σ badness = 65 2 84
# a/d/f = 0/0/0 0/0/0 0/0/1
Λp(10) = 5625 244 16436

Last line with \parfillskip ≡ p = (0 pt, 0.8h, 0 pt):

class : data = * t : 65 v : 164a v : 115f

Λp(10)[p] = 5625 40420 31961
stretch/pt = n/a 0 1.92706

Experiments with \parfillskip



the third path is typeset in experiment 19. In the
following, we analyze how a setting of \parfillskip
can be determined to select one of the possible paths
given the data of Table 4.

Here is a brief description of the table. The
headline shows the three paths that have lines in
the trace which start with @\par, i.e., lines 9, 11,
and 12 and list the feasible breakpoint. The typeset
\par column gets an asterisk. Two lines at the left
show in each row the number of the feasible break-
point and the first letter of the associated fitness
class (coded as a number in the trace): very loose,
loose, decent, tight. Each feasible breakpoint of a
path gets an entry of the form

badness
additional demerits as letters a, d, and f

penalty at the break if 6= −10000

in which the applied additional demerits must be
determined by a calculation using the demerits d of
the trace line [21]. The other two values are listed
directly in the trace line as b and p. The four rows
at the end of the table, i.e., the number of lines,
the sum of the badness values, the occurrences of
the additional demerits, and the path demerits, are
calculated from the entries in each column.

As mentioned earlier, the sum of all line demer-
its for a set of line breaks is called the path demer-
its; the smallest value of all path demerits are the
total demerits of the paragraph and the associated
set of line breaks is used by TEX to typeset the text
[11, p. 97].

The following formula calculates the line demer-
its Λι for line number ι [11, p. 98; 20, section 2]:

Λι = (λ+ βι)
2 + sgn(πι)π

2
ι + δι

where λ is the \linepenalty, βι stands for the bad-
ness of the line, πι represents the penalty at the line
break, and δι is the sum of the applicable additional
demerits, i.e., the values of \finalhyphendemerits,
\doublehyphendemerits, and \adjdemerits.

The table must be extended compared to pre-
vious instances; see [20] and [21]. To get badness
values that distinguish last lines of different length,
a second trace is generated with the finite stretch-
ability of 0.8\hsize for \parfillskip. (The trace
can be generated directly with this \parfillskip

and only one additional line would be needed.) The
fitness class and the new entry for the last line, the
new path demerits, and the sum of all stretchability
of the material in each last line are shown in three
more lines. The last line in Table 4 contains data
that cannot be extracted from the trace. It is shown
to allow exact computations but the influence is so
small that the data can be dropped.

292 TUGboat, Volume 39 (2018), No. 3

With the default \parfillskip—and there-
fore also with a stretchability of 6\hsize—the path
of column 20 is typeset and with the 0.8\hsize col-
umn 00 is chosen. (That is known, as the stretchabil-
ity of p+ = h proved it in experiment 6.) But what
is the maximum value for p+ to select column 00?
What setting for \parfillskip causes TEX to select
column 10? These theoretical questions are answered
in the next subsections.

Not all paths shown in a path table might be
distinguishable through settings for \parfillskip

as the difference can lie in the line breaks before the
last line. Two sets of line breaks cannot be distin-
guished by a setting of \parfillskip if their last
lines are identical. In this case the column head of
the path table shows the same feasible breakpoint
number but with a different subscript. No such case
appears in Table 4.

And the final remark: A last line can be selected
with certainty by a setting of \parfillskip only if
its badness with p differs from all other last lines. A
change of the stretchability of \parfillskip pro-
duces different line demerits for last lines only if
the change assigns different badness values to the
last lines. For this reason the \parfillskip p =
(0 pt, 0.8h, 0 pt) was selected in the path table as it
often assigns different badness values to short lines
of different lengths.

Absorb short last line. To get path 00 of Table 4
instead of 20 their demerits must obey the relation

Λp[20](10)[p
′] > Λp[00](10)[p

′]

for the unknown \parfillskip p′. The constant
\linepenalty is not changed and therefore “(10)”
is dropped together with the p′ in the notation and
only the prime is moved to Λp to signal that a dif-
ferent \parfillskip is used. So the notation of the
relation is simplified to

Λ′
p[20]

> Λ′
p[00]

.

Note: Λp[00] is not changed when the stretchability
changes as it is a tight line; i.e., Λ′

p[00]
= Λp[00].

Let’s say that with p′+ the badness of the last
line in path 20 changes from β to βχ. To get an ap-
proximation for p′+, the formula for the approxima-
tion of badness values is used twice. First calculate

β ≈ 100
(used stretchability

0.8h+ g+

)3

where g+ is the stretchability in the text.

For all p′+ the used stretchability is the same;
only the available stretchability changes. Instead of
0.8h+g+ the available stretchability is now p′++g+.

Udo Wermuth



Therefore

βχ ≈ 100
(used stretchability

p′+ + g+

)3

.

Dividing the quotients for βχ and β gives a for-
mula for p′+. First

χ =
βχ

β
≈

(0.8h+ g+

p′+ + g+

)3

and thus

p′+ ≈ 0.8h+ g+

3
√
χ

− g+ =
0.8
3
√
χ
h− (1− 1

3
√
χ
)g+.

The value of h is known and g+ is given in the path
table. Only χ must be determined from the above
stated inequality.

To calculate χ the change of the line demerits
must be analyzed using the formula for line demer-
its. The relation Λ′

p[20]
> Λ′

p[00]
= Λp[00] becomes

Λp[20]− (λ+β)2− δa[βχ < 100]+(λ+βχ)2 > Λp[00]

as (i) only the last line changes its demerits as it
changes its badness, (ii) penalties in the last line are
not affected, and (iii) the \adjdemerits, δa, might
disappear if the last line is no longer very loose.
(This is expressed with Iverson’s convention: If the
condition in the brackets is true then the value of the
bracket is 1, otherwise 0.) Actually the bracket can
be set to 1 as it is already known that the badness
is less than 100 because \hsize is sufficient for p′+.

−2λβ − β2 + 2λβχ+ β2χ2 > Λp[00] − Λp[20] + δa

χ2 + 2
λ

β
χ− 1− 2

λ

β
>

Λp[00] − Λp[20] + δa

β2
⇐⇒

Adding 0 = (λ/β)2−(λ/β)2 to the left side generates
two quadratic terms on this side. Now the inequality
can be solved for χ.
(

χ+
λ

β

)2

>
Λp[00] − Λp[20] + δa

β2
+
(

1 +
λ

β

)2

χ >

√

Λp[00] − Λp[20] + δa + (λ+ β)2

β2
− λ

β
.=⇒

The last step is of course valid only if Λp[00]−Λp[20]+

δa+(λ+β)2 ≥ 0. This condition means that the path
demerits Λp[20] without the line demerits of its last
line must not be greater than the line demerits of
the path 00. This is of course true, otherwise path 20

would not be typeset instead of the single line.
With plain TEX’s value δa = 10000 [11, p. 98]

and with the numbers listed in Table 4, χ must obey

χ >

√

5625− 40420 + 10000 + 1742

1642
− 10

164

=

√

5481

26896
− 10

164
≈ 0.3904.

TUGboat, Volume 39 (2018), No. 3 293

Thus χ = 0.391 is sufficient. The badness be-
comes ≈ 0.391 × 164 ≈ 64 for the new last line of
column 20. Thus, as g

+ = 0pt for column 20,

p′+ ≈ 0.8
3
√
0.391

h ≈ 1.0940h.

Experiment (verification): Description
Show that the computed value—with an accuracy of
two digits after the decimal point—selects the requested
path.

TEX output

• \parfillskip ← 0 pt plus 1.09\hsize:
6. One line or two for this text? That is the question, or?

Of course, badness is only a heuristic and there
is only an approximation for its computation, so the
result cannot be exact. The factor for h in p′+ so
that 00 is used instead of 20 is ≈ 1.09088.

Extend short last line. With 0.8\hsize the path
demerits of column 10 are lower than the path de-
merits of 20; that means the path of 10 is now pre-
ferred to 20. But the path 00 receives the lowest
demerits. The latter choice can be eliminated with
a positive natural width, for example, 0.02\hsize is
sufficient for the stretchability 0.8\hsize—or bet-
ter 0.78\hsize according to the above theory—to
switch to 10 as the single line is already very tight.
(Note as the badness is 65 the glue in the single
line shrinks already by more than 86%. So a small
natural width excludes this path.)

Nevertheless it is interesting to find a maximal
value for the stretchability to make TEX choose 10.
The approach of the previous subsection can be ap-
plied here too. But as now two badness values are
changed, there are two factors χ and χ′. As the
penultimate line in 10 has fitness class “loose” there
is no δ′a.

Λp[20] − (λ+ β)2 + (λ+ βχ)2 − δa[βχ < 100]

> Λp[10] − (λ+ β′)2 + (λ+ β′χ′)2

The value χ′ depends on the stretchability of the
text in last line, i.e, on the 1.92706 pt as noted in
Table 4. But to simplify the calculations χ′ is re-
placed by χ as they are nearly equal in this case. As
shown before,

χ ≈
(0.8h+ g+

p′+ + g+

)3

and χ′ ≈
(0.8h+ g′+

p′+ + g′+

)3

so that

χ′

χ
=

(0.8h+ g′+

0.8h+ g+
· p

′+ + g+

p′+ + g′+

)3

.

Both quotients on the right side are ≈ 1 as a
short line with at most one space is extended to a
little bit longer line with maybe one more space.
Here g+ = 0pt and g′+ = 1.92706 pt < 0.0086h. To

Experiments with \parfillskip



drop such small values compared to 0.8h and p′+ in
a calculation that is based only on approximations
should not do much harm.

This time it is expected that βχ > 100 holds
so the term with δa is dropped; i.e., the value of
\adjdemerits is still applied in the new set of line
breaks. Therefore

(β2 − β′2)χ2 + 2λ(β − β′)χ

> Λp[10] − (λ+ β′)2 − Λp[20] + (λ+ β)2.

The formulas get rather wide for this small col-
umn width so instead of stating the difference be-
tween path demerits and part of the line demerits
of the last line, the line demerits of the first line are
used. That is

Λ′
1 = Λp[10] − (λ+ β′)2 − δf

Λ1 = Λp[20] − (λ+ β)2 − δa.

So δa gets back and δf is introduced into the in-
equality:

(β2 − β′2)χ2 + 2λ(β − β′)χ > Λ′
1 + δf − Λ1 − δa.

After the division with β2 − β′2 > 0 and the
addition of λ2/(β + β′)2 this relation becomes

(

χ+
λ

β+β′

)2

>
Λ′
1 + δf − Λ1 − δa

β2 − β′2
+

λ2

(β+β′)2

and then

χ >

√

Λ′
1 + δf − Λ1 − δa

β2 − β′2
+

λ2

(β+β′)2
− λ

β+β′
.

With the numbers of Table 4, Λ′
1 = 942+502 =

11336 and Λ1 = 122 = 144, as well as δf = 5000 [11,
p. 98], so that

χ >

√

11336 + 5000− 144− 10000

1642 − 1152
+

102

2792
− 10

279

≈ 0.6739− 0.0358 = 0.6381

and then follows as before

p′+ =
0.8
3
√
χ
h ≈ 0.8

3
√
0.639

h ≈ 0.929h.

Therefore the specification 0.02\hsize for the nat-
ural width and 0.90\hsize for the stretchability of
\parfillskip avoids the selection of column 00 and
makes TEX typeset 10. Again the result is not exact:
Setting p′+ = 0.9086\hsize together with a natural
width of 0.02\hsize does the job too.

Experiment (verification): Description
Show that the abovementioned values for natural width
and stretchability of \parfillskip typeset the selected
path.

TEX output

• \parfillskip ← 0.02\hsize plus 0.90\hsize:
6. One line or two for this text? That is the ques-
tion, or?

294 TUGboat, Volume 39 (2018), No. 3

Comparing finite stretchability. The length of
a short last line has no influence on TEX’s line-
breaking decisions with the default plain TEX set-
tings. TEX picks the set of line breaks that gives the
smallest sum of line demerits for all but the last line.
If the text has µ lines then

µ−1
∑

ι=1

Λι + δµ <

µ−1
∑

ι=1

Λ′
ι + δ′µ

where the non-primed line demerits Λι represent the
typeset output. Then 100 demerits have to be added
for both short last lines to get the path demerits.

With a finite stretchability, different lengths of
the last line generate different line demerits, so in-
stead of 100 demerits on each side of the inequality
different numbers are added, and that might change
the relation symbol from less than to greater than
for the path demerits. This means that finite stretch-
abilities can be compared by the maximum value of
demerits for all but the last line by the point where
the relation symbol change will happen. That the
demerits can increase significantly was seen with ex-
periment 11 in section 4.

Here are the differences for the line demerits
of short last lines for four stretchabilities (without
looking at the stretchability of the text):

p+ 2% → 4% 4% → 6% 6% → 8% 8% → 10%
h 1212 955 905 855

.9h 2421 1524 1920 1356

.8h 3740 3883 3320 2817

.7h 8800 8789 6804 6855

Therefore to extend the last line from 0.02h to 0.04h
with p+ = h TEX saves 1212 demerits so that the
sum of line demerits for the rest of the paragraph
might have up to 1211 demerits more than the orig-
inal typeset lines. And it can be 1212 + 955 − 1
demerits if the last line can be extended to 0.06h.

For p+ = 0.8h and p+ = 0.7h all, and for
p+ = 0.9h all but the last listed line length produce
very loose last lines if the text in this line has no
stretchability, and \adjdemerits, δa = 10000, are
charged except the penultimate line is loose. In this
case it can be said that p+ = 0.9h tolerates ≈ 2.0
times more demerits than p+ = h when a line of
0.02h is extended. The factor for p+ = 0.8h lies at
≈ 3.5 and for p+ = 0.7h it is ≈ 8.0. When the de-
fault \adjdemerits are applied to the last line only
p+ = 0.7h starting at 0.06h has positive factors.

8 Replacing stretchability by shrinkability

The overfull line problem that exists in the combi-
nation of natural width with stretchability can be

Udo Wermuth



addressed by specifying natural width together with
finite shrinkability instead of stretchability in the
glue parameters of \parfillskip. Recall that in the
case of stretchability the interword space can change
without limit but with shrinkability, only its given
maximum is allowed. Also, the shrinkability cannot
be of infinite order as TEX throws an error with such
a specification [12, §853, §826]. Besides this, there
is a fundamental difference between a specification
that has stretchability and one with natural width
and shrinkability. For example, if all values are spec-
ified as \hsize then in the first case short lines have
a high badness as more stretchability must be used.
In the second case lines that contain a lot of text
have greater badness as the shrinkability gets higher
to compensate for the natural width.

Shrinkability larger than the natural width.
A shrinkability that is larger than the natural width
might make TEX put some text into the right margin
as it creates a situation similar to negative natural
width with stretchability; see experiment 16.

Experiment 20: Description
Show that the shrinkability of \parfillskip should not
be larger than its natural width.

TEX output

• \parfillskip ← \hsize minus 3\hsize:
1. Please answer if my topic is “in” or “out”. TEX: in

• \parfillskip ← 0.9\hsize minus 0.9\hsize+ 1 em:
1. Please answer if my topic is “in” or “out”. TEX: in

Note again that TEX gives no warning or error
message in these cases.

Shrinkability equals natural width. When the
input (∗) of section 4 is processed by TEX with a
setting of \parfillskip=ν\hsize minus ν\hsize
the badness β is:

ν = 1 2 3 4 5 6 7 8 9
β = 0 12 30 42 51 57 63 66 70

As with this specification more text in the last
line of the paragraph results in a higher badness
value, it seems that in this case the input

\noindent\hbox to 0.9\hsize{\hss} (∗∗)
is also of interest, i.e., the line is 90% filled without
additional shrinkability.

ν = 1 2 3 4 5 6 7 8 9
β = 73 86 90 92 94 95 95 96 96

In contrast to a specification with natural width
and stretchability, this specification can cancel the
natural width. Nevertheless, short new lines are pre-
ferred by TEX here too as the badness of long last
lines is so high. That is, the effect of O10 “Add short
line” is also seen with this specification.

TUGboat, Volume 39 (2018), No. 3 295

Experiment 21: Description

Show that short last lines can occur with natural width
and the same amount of shrinkability for \parfillskip.

TEX output

• \parfillskip ← \hsize minus \hsize:

2. Has the last line of this paragraph badness 0
and has no interword space to stretch? Do they shrink
now?

4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a
a

The text of experiment 4 demonstrates that
even a single letter on the last line is not moved
to the penultimate line to form the new last line.
Actually it will never happen that a paragraph with
a single word of width up to 0.17\hsize in the last
line is reduced by one line with the specification of
\parfillskip used in experiment 21; see the next
section. Nevertheless, it does not mean that a line
that ends at the right margin is impossible.

Experiment 22: Description

Show that a last line might end flush right.

TEX output

• \parfillskip ← \hsize minus \hsize:

2′. Has the last line of this paragraph badness 0 and
has no interword space to stretch?! Do they shrink now?!

If the specification uses a fraction of \hsize,
\parfillskip=(ν/10)\hsize minus (ν/10)\hsize,
the input (∗) always produces last lines with in-
finite badness, as the text width plus the natural
width of \parfillskip is shorter than \hsize and
there is no stretchability. Such specifications have
infinite badness for very short lines but the badness
becomes 0 at the moment the text of the line reaches
(1− ν/10)\hsize to make a perfect fit with the line
width. Longer lines get more and more badness.

When such a specification is confronted with a
situation in which an interword space is available in
a short last line, this glue has to stretch.

Experiment 23: Description

Show that a short line gets extremely spaced out if it
has to stretch.

TEX output

• \parfillskip ← 0.8\hsize minus 0.8\hsize:

3. A short text in 1 line. Or has the paragraph
2 or 3 lines?

• \parfillskip ← 0.7\hsize minus 0.7\hsize:

3. A short text in 1 line. Or has the paragraph 2 or
3 lines?

The second specification produces a different
line break in the text of experiment 3 than plain
TEX’s default setting or a stretchability of 0.7\hsize
does; see experiment 12. It is like experiment 3 with

Experiments with \parfillskip



\parfillskip set to 0 pt except that here the natu-
ral width limits the amount by which the space has
to stretch. Of course, the last line has artificial de-
merits. This effect helps to avoid short last lines, for
example, with texts 2, 4, and 6. They cannot have
a second line as it would be a line with artificial de-
merits, i.e., a line that TEX does not consider as long
as there are other ways to typeset the text.

Experiment 24: Description
Show that a shorter paragraph is possible with natural
width and shrinkability.

TEX output

• \parfillskip ← 0.7\hsize minus 0.7\hsize:
2. Has the last line of this paragraph badness 0 and

has no interword space to stretch? Do they shrink now?
4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a a
6. One line or two for this text? That is the question, or?

Note that the text of experiment 6 does not
end flush right; its badness is 97. All glue items with
shrinkability are involved in the process to shrink the
line, and only with a badness of exactly 100 does the
natural width of \parfillskip vanish completely.

Shrinkability smaller than natural width. If
the shrinkability is smaller than the natural width
recommendation (2) is supported: There is always
some white space at the end of the last line. This
is similar to the case of natural width and stretch-
ability. But as the results of section 6 show, a pos-
itive contribution to the width of the last line by
\parfillskip can produce overfull lines.

The following specification

\parfillskip=\hsize minus \hsize

\advance\parfillskip by -1.25\parindent

minus -1.25\parindent

\advance\parfillskip by 0pt minus -10pt

states that the natural width needs text with the
width of 1.25\parindent to fill the line and if there
is a lot of text the shrinkability must leave at least
10 pt of white space, as this is the amount by which
it is shorter than the natural width.

Experiment 25: Description
Show some effects of the above specification.

TEX output

• \parfillskip ← \hsize − 1.25\parindent minus
\hsize − 1.25\parindent − 10 pt:

1. Please answer if my topic is “in” or “out”. TEX:
in

2. Has the last line of this paragraph badness 0
and has no interword space to stretch? Do they shrink
now?
6. One line or two for this text? That is the ques-
tion, or?
15. Each interword glue in this single-line text shrinks.

296 TUGboat, Volume 39 (2018), No. 3

Texts 1 and 2 both produce an underfull last
line with badness 10000 and no demerits.

When lines are very short and contain only one
space this space must stretch a lot. The text must at
least cover the width that is subtracted from \hsize

in \parfillskip’s natural width.

Experiment 26: Description
Show that with such settings a last line must be as
wide as the amount that \parfillskip’s natural width
is smaller than \hsize.

TEX output

• \parfillskip ← \hsize − 1.1\parindent minus
\hsize − 1.1\parindent − 10 pt:
4. My keyboArd is broken. When I press the key for
the lowercAse A the screen repeAts it severAl times: a
a a a
13. a
• \parfillskip ← \hsize − 1.25\parindent minus
\hsize − 1.25\parindent − 10 pt:
4. My keyboArd is broken. When I press the key for
the lowercAse A the screen repeAts it severAl times:
a a a a
13. a

In the first case the text of experiment 13 has
badness 3, in the second it is 88. A larger factor, for
example, 1.5, in front of the \parindents creates
an underfull last line with badness 10000 and no
demerits.

Negative values. A negative natural width for
\parfillskip behaves as if the line width increases
and overfull lines without the overfull rule are easily
produced.

Experiment 27: Description
Show that lines might not end at the right margin if the
natural width is negative.

TEX output

• \parfillskip ← −10 pt minus −10 pt:
3. A short text in 1 line. Or has the paragraph 2 or

3 lines?
• \parfillskip ← −10 pt minus \hsize:

3. A short text in 1 line. Or has the paragraph 2 or
3 lines?

Negative shrinkability outputs an underfull last
line if the sum of the text width and the natural
width is < \hsize; overfull lines are possible too.

Experiment 28: Description
Show that last lines can be underfull or overfull if the
shrinkability is negative.

TEX output

• \parfillskip ← 0.75\hsize minus −0.1\hsize:
3. A short text in 1 line. Or has the paragraph 2 or

3 lines?
• \parfillskip ← 0.87\hsize minus −0.1\hsize:

3. A short text in 1 line. Or has the paragraph 2 or
3 lines?

Udo Wermuth



With such specifications the stretch- or shrink-
ability of the text in the last line must work together
perfectly with the natural width to output valid last
lines; otherwise the line is under- or overfull.

Discussion. Specifications with natural width and
shrinkability for \parfillskip can replace a specifi-
cation that uses only stretchability or stretchability
and natural width. But they have different proper-
ties. Long last lines receive high badness values so
TEX now prefers line breaks that create a short last
line. This contradicts recommendation (1). By the
same token a short last line is not absorbed by the
penultimate line to form a new last line.

Figure 3 shows the badness values for three
specifications when fixed width text is used; note
that the scale of the y-axis is not the same as in
Fig. 1. The length of the text is again reported on
the x-axis as a percentage of the \hsize. The first
30 values for 0.7\hsize minus 0.7\hsize have in-
finite badness.

A setting where the natural width equals the
shrinkability seems to be the best choice. If the value
is too small, for example, only 0.7\hsize, problems
like underfull or extremely spaced out last lines eas-
ily occur. If the shrinkability and the natural width
both equal \hsize, recommendation (2) might not
be obeyed, although it seems to be rare as in all last
lines the glue shrinks. The white space of the natural
width disappears only when the badness equals 100.
If the shrinkability is smaller than the natural width,

χ = .7χ = 1
χ = 1.3

0 20 40 60 80 100
0

20

40

60

80

100

Fixed width text in % of \hsize

badness

Figure 3: Graphs for χ = 0.7, χ = 1, and χ = 1.3
when \parfillskip ≡ χ\hsize minus χ\hsize

TUGboat, Volume 39 (2018), No. 3 297

Table 5: Observations for natural width & shrinkability

Specification of \parfillskip (h ≡ \hsize, x > 0 pt,
y ≡ h− 1.25\parindent, z ≡ y − 10 pt)

natural width 0pt x h .7h y −10pt x
stretch 1fil 0pt 0pt 0pt 0pt 0pt 0pt
shrink 0pt >x h .7h z x −.1h

Observation
1 Short line 1 21 24 25
2 Completely filled 2 22 (22) −
3 Glue stretches − − 23 26 (28)
4 2nd pass forced − − 23 25 (28)
5 Underfull line − − 23 25 (28)
6 No demerits − − 23 25 (28)
7 Remove short line − − 24 −
8 Extend last line − − − 25
9 Backspaces − − − −

10 Add short line − 21 − 25
11 Glue shrinks early − + 24 25 (28)
12 Overfull line − − − 25 (28)
13 Stick out right − (20) − − − (27)

Legend: −/ /+: never/don’t care/always

n/(n): (implicitly) shown in example number n

recommendation (2) is always obeyed although now
overfull lines might occur. Table 5 lists all observa-
tions found in the experiments.

As the glue in the last line of a paragraph usu-
ally shrinks the problem with the spacing around
displayed equations exists here too.

Summary. The use of natural width and shrink-
ability in the specification of \parfillskip works
well but the dimensions must be selected carefully
and short last lines might occur more often than be-
fore. If the values of natural width and shrinkability
are equal and smaller than \hsize, many problems
occur when the last line is not filled with enough
text. If the shrinkability is larger or smaller than
the natural width, overfull lines might appear.

9 Theory: Natural width and shrinkability

As mentioned in section 7, the formula to calculate
the approximation for the badness in cases that in-
volve glue that shrinks is the same as the one used in
section 5 but now with a quotient built from the used
shrinkability and the available shrinkability. For ex-
ample, let’s find the width t that a text without
shrinkability in the last line can have so that the
badness computes to 0 when p◦ = p− = h. The
last line has a width of t + h as p◦ is added to the
width of the material. So the used shrinkability is t
to make this sum fit the line width h. The available
shrinkability is p− = h as there is no shrinkability
in the text by assumption. Thus:

100
( t

h

)3

< 0.5 =⇒ t < 3
√

1/200h ≈ 0.17h.

Experiments with \parfillskip



To state it the other way: A line that contains mate-
rial with a width up to 0.17h has badness 0 for sure
when p = (h, 0 pt, h); see also Fig. 3.

It was stated above that a paragraph will never
be shortened by one line when p◦ = p− = h and the
last line has a single word of width ≤ 0.17h, i.e., the
value just found. Such a statement cannot be shown
by experiment; it requires proof.

But first a note on the notation: Λι is writ-
ten for the line demerits of line number ι that TEX
typesets if \parfillskip has the default setting;
Λ̄ι is written for the line demerits of line ι with the
changed \parfillskip. A prime is added to Λ and
Λ̄ if another set of line breaks than the typeset ones
is considered.

Assume there is a set of line breaks that create
µ−1 lines instead of the µ lines that are typeset with
the default \parfillskip. The sum of the line de-
merits for the shorter paragraph must be larger than
the total demerits; otherwise it would be typeset:

µ−1
∑

ι=1

Λ′
ι >

µ
∑

ι=1

Λι.

It must be shown that this relation is kept with the
changed \parfillskip; i.e., a proof for

µ−1
∑

ι=1

Λ̄′
ι >

µ
∑

ι=1

Λ̄ι

is needed. Then no shorter paragraph is considered
by TEX if p = (h, 0 pt, h).

With the new setting of \parfillskip all lines
except the last keep their line demerits as the line
breaks are not changed. The line demerits of the
last line are either unchanged or they increase be-
cause of the larger badness and maybe the addition
of \adjdemerits. Therefore
µ−1
∑

ι=1

Λ̄′
ι =

µ−2
∑

ι=1

Λ′
ι + Λ̄′

µ−1 ≥
µ−2
∑

ι=1

Λ′
ι + Λ′

µ−1 =

µ−1
∑

ι=1

Λ′
ι.

On the other hand, for the line breaks with µ lines
the demerits do not change, as the last line is so
short that its badness does not increase, as shown
above. That is Λ̄µ = Λµ and

µ
∑

ι=1

Λ̄ι =

µ−1
∑

ι=1

Λι + Λ̄µ =

µ−1
∑

ι=1

Λι + Λµ =

µ
∑

ι=1

Λι.

Therefore
µ−1
∑

ι=1

Λ̄′
ι ≥

µ−1
∑

ι=1

Λ′
ι >

µ
∑

ι=1

Λι =

µ
∑

ι=1

Λ̄ι

and TEX does not typeset the µ− 1 lines. QED.

Using the trace data. With specifications of nat-
ural width and shrinkability last lines cannot be ex-
tended or absorbed unless the specification makes

298 TUGboat, Volume 39 (2018), No. 3

other solutions impossible for TEX, i.e., the badness
of the other last lines must become larger than the
tolerance. Experiment 24 shows this effect for the
text of experiment 6, for which the possible paths
are documented in Table 4.

The default setting selects path 20. To get to
path 00 by a specification for p with p◦ = p− and
p+ = 0pt, the short last line of 20 must receive infi-
nite badness, or in other words p◦ must be smaller
than the used stretchability. Let’s name the used
stretchability u; then

β ≈ 100
( u

0.8h+ g+

)3

u ≈ 3

√

β

100
· 0.8h+

3

√

β

100
g+.=⇒

With the numbers of Table 4, u is easily computed as
3
√
1.64·0.8h+0pt ≈ 0.9434h and therefore p◦ = p− =

0.94 will typeset 00. (The exact value is 0.94394.)

Experiment (verification): TEX output

• \parfillskip ← 0.94\hsize minus 0.94\hsize:

6. One line or two for this text? That is the question, or?

Note the badness increases to 98, so the line
does not end flush right.

To get the path of column 10 the column 00

must be eliminated, for example, by making p◦ a
little bit larger than p−; the constant 0.02h was
used in section 7, although this is rather large. In-
stead of badness 164 the last line now has bad-
ness 115. For an exact computation the value g+ =
1.97206 pt should be used; multiplied with 3

√
1.15 it

is ≈ 0.0089h. As 3
√
1.15 · 0.8h ≈ 0.8381h the setting

p◦ = p− + 0.02h = (0.8381 + 0.0089)h = 0.8470h
typesets path 10; p

◦ = 0.83722h is sufficient.

Experiment (verification): TEX output

• \parfillskip ← 0.84\hsize minus 0.82\hsize:

6. One line or two for this text? That is the ques-
tion, or?

10 Adding stretchability back again

Experiments 23 and 26 show that spaces in a short
line sometimes stretch a lot if natural width and
shrinkability are specified for \parfillskip. In such
a case, can a specification for stretchability help?

With finite dimensions in the specification of
\parfillskip the glue of the last line of a para-
graph might have its natural width by luck but usu-
ally it either has to shrink or to stretch. To avoid
underfull lines the natural width and the stretchabil-
ity should reach \hsize (see section 6) and to avoid
overfull lines the shrinkability should have the same
width as the natural width (see section 8). Therefore

Udo Wermuth



a specification like

\parfillskip ≡ x plus \hsize− x minus x

with 0 pt < x < \hsize = h seems to qualify, as a
first attempt. If the length of the last line is named
t, then one the following cases

\parfillskip ≡
{

x plus \hsize−x, t < h− x
x, t = h− x
x minus x, t > h− x

are used with dimensions from \parfillskip de-
pending on t. So short last lines, i.e., the width is
less than h−x, use natural width and stretchability
and long last lines, i.e., the width is greater than
h− x, deploy natural width and shrinkability.

With x = 0.75h the width of a last line reaches
quite early the point where the badness becomes 0;
see Fig. 4. The setting x = 0.25h has the opposite
effect. From the previous sections it is known that
these settings behave quite differently with respect
to adding or removing a short last line.

Experiment 29: Description
Show differences for short last lines with these settings.

TEX output

• \parfillskip ← 0.75\hsize plus 0.25\hsize minus
0.75\hsize:

2. Has the last line of this paragraph badness 0
and has no interword space to stretch? Do they shrink
now?
4′. My keyboArd is broken; when I press an ‘A’ in low-
ercAse (only) the screen repeAts it four times: a a a
a
• \parfillskip ← 0.25\hsize plus 0.75\hsize minus
0.25\hsize:

2. Has the last line of this paragraph badness 0 and
has no interword space to stretch? Do they shrink now?
4′. My keyboArd is broken; when I press an ‘A’ in low-
ercAse (only) the screen repeAts it four times: a a a a

The experiments show that both settings might
typeset a paragraph differently from the output pro-
duced by the default setting. The smaller natural
width prefers long last lines and absorbs a short last
line, the larger one produces short last lines. Long
but not completely filled lines are typeset nearly
identically.

Experiment 30: Description
Show a minor difference for a long last line with these
settings.

TEX output

• \parfillskip ← 0.75\hsize plus 0.25\hsize minus
0.75\hsize:
5. With enough interword glue as well as short words at
the end of the 1st line the 2nd can be extended.
• \parfillskip ← 0.25\hsize plus 0.75\hsize minus
0.25\hsize:
5. With enough interword glue as well as short words at
the end of the 1st line the 2nd can be extended.

TUGboat, Volume 39 (2018), No. 3 299

It is hard to see the difference, but the last line
of the first case has badness 46, in the second para-
graph the value is 6. Of course, there are several
experiments which do not show a difference except
for the spacing.

Experiment 31: Description
Show that some texts are not changed compared to the
default and some change for both settings.

TEX output

• \parfillskip ← 0.75\hsize plus 0.25\hsize minus
0.75\hsize:

3. A short text in 1 line. Or has the paragraph 2
or 3 lines?
4. My keyboArd is broken. When I press the key for
the lowercAse A the screen repeAts it severAl times: a
a a a
6. One line or two for this text? That is the question,
or?
• \parfillskip ← 0.25\hsize plus 0.75\hsize minus
0.25\hsize:

3. A short text in 1 line. Or has the paragraph 2
or 3 lines?
4. My keyboArd is broken. When I press the key for
the lowercAse A the screen repeAts it severAl times: a
a a a
6. One line or two for this text? That is the question,
or?

The stretchability must not be exactly \hsize−
x = h − x. If the second pass is accepted for short
lines the stretchability can be lowered to (h−x)/ 3

√
2

or to 4(h−x)/5, if the \tolerance is 200; 5/4 < 3
√
2

but quite close, so the division with a smaller num-
ber makes the stretchability a little bit larger. In
fact, the stretchability can be set to any valid value,
for example, to 2h or 1 fil to have only decent last
lines if the glue has to stretch, as only the condition
h − x > 0 pt for \parfillskip’s natural width x
must hold. But such large values for the stretchabil-
ity do not avoid short last lines, etc.; the only visible
change might be some white space at the end of long
last lines, for example, in the text of experiment 2.

Of course, the stretchability can also be quite
small, it might be smaller than the difference of line
width and natural width. A large natural width with
a very small stretchability might absorb a short last
line as such lines are underfull. A shorter natural
width and enough stretchability so that no underfull
lines are created has the same property.

Experiment 32: Description
Show that a smaller stretchability avoids short last lines.

TEX output

• \parfillskip ← 0.75\hsize plus 0.06\hsize minus
0.75\hsize:
4′. My keyboArd is broken; when I press an ‘A’ in lower-
cAse (only) the screen repeAts it four times: a a a a

Experiments with \parfillskip



6. One line or two for this text? That is the question, or?
• \parfillskip ← 0.25\hsize plus 0.6\hsize minus
0.25\hsize:
4′. My keyboArd is broken; when I press an ‘A’ in low-
ercAse (only) the screen repeAts it four times: a a a a
6. One line or two for this text? That is the question, or?

The first paragraph shows that the penalization
of non-short lines can lead to an overreaction. Ex-
tended lines can share the same fate.

Experiment 33: Description
Show that in a specification with a very small stretch-
ability last lines are sometimes extended needlessly.

TEX output

• \parfillskip ← 0.75\hsize plus 0.06\hsize minus
0.75\hsize:

3. A short text in 1 line. Or has the paragraph
2 or 3 lines?
8. One line or two for this text? That’s the ques-
tion, or not?
• \parfillskip ← 0.25\hsize plus 0.6\hsize minus
0.25\hsize:

3. A short text in 1 line. Or has the paragraph
2 or 3 lines?
8. One line or two for this text? That’s the question,
or not?

The natural width of \parfillskip was ex-
pressed as a fraction of h but a fixed value works
too. Then the results depend on the current \hsize.

Experiment 34: Description
Show that a small value of natural width is sufficient.

TEX output

• \parfillskip ← 10 pt plus \hsize − 10 pt minus
10 pt:

3. A short text in 1 line. Or has the paragraph 2
or 3 lines?
4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a a
6. One line or two for this text? That is the question, or?
8. One line or two for this text? That’s the question,
or not?
• \parfillskip ← 20 pt plus 0.8\hsize minus 20 pt:

3. A short text in 1 line. Or has the paragraph
2 or 3 lines?
4. My keyboArd is broken. When I press the key for the
lowercAse A the screen repeAts it severAl times: a a a a
6. One line or two for this text? That is the question, or?
8. One line or two for this text? That’s the question,
or not?

Note all paragraphs for the experiments in this
section are typeset in the first pass, except 4′ in
experiments 29 and 32 and both 8s in experiment 33.

Discussion. The definition of all three dimensions
in the glue specification of \parfillskip combines
two specifications: natural width & stretchability
and natural width & shrinkability. If the natural

300 TUGboat, Volume 39 (2018), No. 3

χ = .25

χ = .75

0 20 40 60 80 100
0

20

40

60

80

100

Fixed width text in % of \hsize

badness

Figure 4: Graphs for χ = 0.25 and χ = 0.75 when
\parfillskip ≡ χ\hsize plus (1− χ)\hsize

minus χ\hsize

width equals the shrinkability, and the stretchabil-
ity together with the natural width never outputs
underfull lines, most problems that occur with each
individual specification are avoided.

Table 6 lists the experiments for the different
specification discussed in this section. Figure 4 has
the graphs for x = 0.25h and x = 0.75h, i.e., the
natural width is once a quarter and once three quar-
ters of \hsize. With a full glue specification a small
value for the natural width (and the shrinkability)

Table 6: Observations for complete glue specifications

Specification of \parfillskip (h ≡ \hsize)
natural width 0pt .25h .75h .25h 20pt

stretch 1fil .75h .25h .6h .8h
shrink 0pt .25h .75h .25h 20pt

Observation
1 Short line 1 (1) 29 (1) (1)
2 Completely filled 2 (22) (22) (22) (22)
3 Glue stretches − 31 31 33 34
4 2nd pass forced − − − 33 (1)
5 Underfull line − − − − −
6 No demerits − − − − −
7 Remove short line − 29 − 32 34
8 Extend last line − 31 31 33 34
9 Backspaces − − − − −

10 Add short line − − 29 − −
11 Glue shrinks early − 30 30 32 34
12 Overfull line − − − − −
13 Stick out right − − − − −

Legend: −/ /+: never/don’t care/always

n/(n): (implicitly) shown in example number n

Udo Wermuth



1)
2)

0 20 40 60 80 100
0

50

100

150

200

250

Fixed width text in % of \hsize

badness

Figure 5: Graphs of two \parfillskip specifications
1) 20 pt plus 0.8\hsize minus 20 pt

and 2) 0.75\hsize plus 0.06\hsize minus 0.75\hsize

assigns to short lines higher badness values than a
large value for the natural width does. The first set-
ting prefers nearly filled lines over short lines, i.e.,
recommendation (1) is followed more often than rec-
ommendation (2). On the other hand the small value
needs much more text in the last line before the last
line gets decent and the interword glue stretches less
than 50%. Figure 5 shows two specifications which
might force a second pass; one does not obey the
tolerance in all cases.

Summary. Setting all dimensions of the specifica-
tion to a nonzero value creates a complex scenario
which applies two different specifications to short
and long lines. The results of the previous sections
suggest equality for natural width and shrinkability
and to assign so much stretchability that, together
with the natural width, it reaches the \hsize (in
either the first or the second pass). A small value
for the natural width works better than a large one
although spaces in very short lines stretch a little
bit more.

11 A closer look at a few specifications

Let’s look at the specifications for \parfillskip

that are mentioned in the summaries of the previous
sections. The experiments in this article are quite
short and a setting of \parfillskip that makes last
lines longer works much better when there are more
sets of valid line breaks; paragraphs with plenty of
text usually have a greater selection of possible line

TUGboat, Volume 39 (2018), No. 3 301

breaks. Nevertheless, a general specification must be
able to handle one- or two-line paragraphs.

I do not list a specification that might throw
an error. An author has to decide if a forced second
pass based only on the setting of \parfillskip is
acceptable. Such settings are often successful when
the first pass fails to lengthen the last line or to ab-
sorb a short last line into the former penultimate
line. Values smaller than 0.8\hsize for the stretch-
ability and a value smaller than \hsize for natural
width and shrinkability are possible but then under-
full lines and other problems might occur. And it
seems questionable to make TEX choose line breaks
that output a paragraph that has several thousand
demerits more than the optimum instead of giving
a hint that the last line is short.

1) 0pt plus 0.8\hsize (Fig. 1): Instead of 1 fil
a finite stretchability is used. Spaces in the last line
stretch; in a very short line they stretch more than
the specified stretchability as TEX might execute a
second pass.

2) \hsize minus \hsize (Fig. 3): With this
value, spaces in the last line shrink. A new short
last line might be produced to avoid a completely
filled last line, but such a line is very unlikely.

3) 20pt plus 0.8\hsize minus 20pt (Fig. 5
with TUGboat’s \hsize): The specification makes
completely filled lines unlikely although not impos-
sible. For short lines it acts similarly to case 1) but
for long last lines glue shrinks early and, unless bad-
ness 100 is reached, some white space at the end of
the line is set.

Comparison to other suggestions. In section 2
some specifications for \parfillskip suggested in
the literature are listed. How do these compare to
the above recommendations? Two of them are not
meant for general use in documents but in special
cases so a comparison is not quite fair.

The specification 0pt plus 0.7\hsize creates
the same output for the experiments as case 1) ex-
cept that artificial demerits are applied in experi-
ments 1 and 13 as this specification plays with in-
valid badness values. Case 2) and the non-general
specification 2em plus 1fil produce the same type-
set output except experiments 2′ and 15 generate
overfull lines in the latter case.

The glue specification with three dimensions,
interpreted as 0.33\hsize plus 0.67\hsize minus

0.33\hsize, used if \looseness is set, behaves sim-
ilarly to case 3) except that the former prefers addi-
tional lines. So experiments 2, 4, and 6 are type-
set with one more line. The other complete glue
specification, 0.75\hsize plus 0.06\hsize minus

Experiments with \parfillskip



0.75\hsize, also behaves similarly to case 3) with
wider white space at the end of lines. Further, exper-
iments 1 and 13 produce artificial demerits because
the stretchability is so small; and there is a notice-
able difference for text 8 (see experiment 33).

The last specification has the most complex as-
signment. Informally it is \hsize − 1.5\parindent
minus \hsize − 1.5\parindent − 1em. This speci-
fication produces an overfull line for experiment 2′

and artificial demerits in experiments 1, 2, and 13.
In experiment 4′ it absorbs the short line (typeset as
the first version shown in experiment 32) otherwise
in experiments 4, 6, and 8 last lines are lengthened.

How much does a single space stretch? Several
times in the above analysis the stretching of single
spaces in a short last line was mentioned. With ex-
periment 13 this can be visualized; of course with the
extra stretchability after a period. The specification
0pt plus 5.17\hsize used in Fig. 2 is included in
the comparison.

Experiment 35: Description

Show how much a single space stretches in a short line.

TEX output

• \parfillskip ← \hsize minus \hsize:

13. a

• \parfillskip ← 2 em plus 1fil:

13. a

• \parfillskip ← 0 pt plus 5.17\hsize:

13. a

• \parfillskip ← 0.33\hsize plus 0.67\hsize minus
0.33\hsize:

13. a

• \parfillskip ← 20 pt plus 0.8\hsize minus 20 pt:

13. a

• \parfillskip ← 0 pt plus 0.8\hsize:

13. a

• \parfillskip ← 0 pt plus 0.7\hsize:

13. a

• \parfillskip ← 0.75\hsize plus 0.06\hsize minus
0.75\hsize:

13. a

• \parfillskip ← 1\hsize − 1.5\parindent minus
1\hsize − 1.5\parindent − 1 em:

13. a

The last four specifications have artificial de-
merits, and the last two produce underfull lines.

12 Summary

A change of \parfillskip’s specification does not
spare an author the need to proofread to check if
the last lines of paragraphs are shorter than the in-
dentation or fill the line width.

302 TUGboat, Volume 39 (2018), No. 3

There is another point on the checklist if finite
dimensions are used for \parfillskip and the au-
thor has not always entered \hfil\ $$ to start dis-
play math mode: If a short last line that contains
one space precedes a display then too much vertical
space might be used by TEX, as it is forced to apply
\abovedisplayskip and \belowdisplayskip.

Paragraphs with indentation. With the default
settings of plain TEX the specification of the glue
\parfillskip has one typographical problem: Last
lines in paragraphs can be shorter than \parindent,
which has the value 20 pt by default. A reader spots
the start of a paragraph easily because of the wide
indentation. Thus, completely filled last lines gener-
ate no problem for the readability.

If an author wants to avoid last lines of a few
characters the simplest way is to use a tie to keep
the last short word connected to the text or an hbox
to avoid the hyphenation of a word that can leave
a fragment of three letters on the last line. If TEX
cannot find an acceptable set of line breaks with such
input an overfull line message informs the author
to rewrite the text or to change TEX’s parameters.
Note that the ties and the hboxes can make TEX
execute a second pass although the default setting
would need only a first pass. Thus a longer last line
is traded in such cases for higher badness values in
other lines and/or hyphens.

To prevent TEX from typesetting short last lines
without hints in the input, \parfillskip’s specifi-
cation has to change. For TUGboat, the best choice
from section 11 seems to be 20pt plus 0.8\hsize

minus 20pt. For other line widths the constant needs
to be adjusted.

Paragraphs without indentation. A text that
does not signal the start of a paragraph by white
space, i.e., through indentation or an empty line be-
tween paragraphs, or through other methods, for ex-
ample, p. 40 in [3] names ornaments and outdented
paragraphs, relies on white space at the end of the
last line to indicate the end of the paragraph. In
this scenario a completely filled last line creates a
problem. With plain TEX such lines are possible;
see experiment 2.

To avoid a completely filled last line the natural
width must make a nonzero contribution. The sim-
ple addition of natural width to the default setting of
\parfillskip, for example, 10pt plus 1fil, seems
to be a valid solution although now overfull lines
are possible. A setting of \parfillskip in which
the natural width equals the shrinkability makes a
completely filled last line not quite impossible, but

Udo Wermuth



very unlikely, and without generating overfull lines,
for example, 20pt plus 0.8\hsize minus 20pt.

Which setting was used for this article? I de-
cided to make an experiment and to use the macros
shown in Fig. 2, that is, at the end of a paragraph
\parfillskip is set to 0pt plus 5.17\hsize. It is
the first time that I applied these macros. As the
TUGboat format uses a large indent I was only in-
terested in avoiding short last lines and accepted
completely filled ones. After the text became rea-
sonably stable I activated the macro that checks the
length of the last lines except in the experiments
(verbatim parts and output), figures, tables, and the
list of references. Initially, the macro gave an error
six times: In two cases I changed the text, in one
case the last word was placed in an hbox, and three
last lines were accepted as they are false hits, i.e., the
last line is tight or long enough in front of a heading.
Later revisions changed some of these lines again.

The text contains several formulas and I enter
display math to show them. The macros of Fig. 2
use finite stretchability for \parfillskip only for
the end of a paragraph; otherwise the default setting
is applied. So there is no problem with the vertical
space around displays.

References

[1] Paul W. Abrahams, Kathryn A. Hargreaves, Karl
Berry, File macros.tex of package impatient.
ctan.org/tex-archive/info/impatient

[2] Wolfgang Appelt: TEX für Fortgeschrittene, Bonn,
Germany: Addison-Wesley, 1988.

[3] Robert Bringhurst, The Elements of Typographic

Style, 4th edition, version 4.2, Seattle, Washington:
Hartley & Marks, 2016.

[4] Anne Brüggemann-Klein, “Re: Obtaining a funny
paragraph shape in TeX”, TEXhax Digest 89:42
(1989), 28 April 1989.
ctan.org/tex-archive/info/digests/texhax/89/

texhax.42.gz

[5] David Carlisle (based on a comp.text.tex article
of Peter Schmitt), “Russian Paragraph Shapes”,
Baskerville 6:1 (1996), 13–15.
uk.tug.org/wp-installed-content/uploads/2008/

12/61.pdf

[6] The Chicago Manual of Style, 15th edition,
Chicago, Illinois: University of Chicago Press, 2003.

[7] Jean-luc Doumont, Trees, maps, and theorems,
Belgium, 2009.
treesmapsandtheorems.com

[8] Jean-luc Doumont, “Quantum space: Designing
pages on grids”, TUGboat 31:2 (2010), 248.
principiae.be/pdfs/TUG-X-004-slideshow.pdf

zeeba.tv/quantum-spaces-designing-pages-on-

grids

TUGboat, Volume 39 (2018), No. 3 303

[9] Friedrich Forssman & Ralf de Jong,
Detailtypographie, 3rd edition, Mainz, Germany:
Verlag Hermann Schmidt, 2004.

[10] Donald E. Knuth and Michael F. Plass, “Breaking
paragraphs into lines”, Software—Practice and

Experience 11 (1981), 1119–1184; reprinted with
an addendum as Chapter 3 in [14], 67–155.

[11] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[12] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[13] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992.

[14] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[15] Donald Knuth, “TEX’s infinite glue is projective”,
TUGboat 28:1 (2007), 4.
tug.org/TUGboat/tb28-1/tb88knut.pdf

[16] Frank Mittelbach, “E-TEX: Guidelines for Future
TEX Extensions”, TUGboat 11:3 (1990), 337–345.
tug.org/TUGboat/tb11-3/tb29mitt.pdf

[17] Walter Schmidt, “Absätze—einmal anders”,
Die TEXnische Komödie 9:2 (1997), 19–22.
dante.de/DTK/Ausgaben/komoedie19972.pdf

[18] Philip Taylor, “Book Design for TEX Users—
Part 2: Practice”, TUGboat 20:4 (1999), 378–389.
tug.org/TUGboat/tb20-4/tb65tay2.pdf

[19] Udo Wermuth, “Tracing paragraphs”, TUGboat

37:3 (2016), 358–373;
Errata in TUGboat 38:3 (2017), 414.
tug.org/TUGboat/tb37-3/tb117wermuth.pdf

[20] Udo Wermuth, “A note on \linepenalty”,
TUGboat 38:3 (2017), 400–414;
Errata in TUGboat 39:1 (2018), 87.
tug.org/TUGboat/tb38-3/tb120wermuth.pdf

[21] Udo Wermuth, “TEX’s ‘additional demerits’
parameters”, TUGboat 39:1 (2018), 81–87.
tug.org/TUGboat/tb39-1/tb121wermuth-adem.pdf

[22] Peter Wilson, “Glisterings”, TUGboat 28:2 (2007),
229–232.
tug.org/TUGboat/tb28-2/tb89glister.pdf

[23] Peter Wilson, “Glisterings”, TUGboat 29:2 (2008),
324–325.
tug.org/TUGboat/tb29-2/tb92glister.pdf

[24] Peter Wilson, “Glisterings”, TUGboat 38:3 (2017),
338–341.
tug.org/TUGboat/tb38-3/tb120glister.pdf

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Experiments with \parfillskip



304 TUGboat, Volume 39 (2018), No. 3

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from August–October 2018, with
descriptions based on the announcements and edited
for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

fonts

firamath in fonts

Fira sans serif with Unicode math support.
firamath-otf in fonts

Fira in OpenType.
libertinus in fonts

Wrapper for choosing libertinus-type1 or
libertinus-otf.

libertinus-otf in fonts

Using Libertinus with (X E,Lua)LATEX.
libertinus-type1 in fonts

Using Libertinus with (pdf)LATEX.

graphics

coloremoji in graphics

Directly include color emojis in LATEX.
jigsaw in graphics/pgf/contrib

Draw jigsaw pieces.
metapost-colorbrewer in g/metapost/contrib/macros

colorbrewer2.org colors for MetaPost.
pgf-cmykshadings in graphics/pgf/contrib

Support for CMYK and grayscale shadings.
pst-feyn in graphics/pstricks/contrib

Draw graphical elements for Feynman diagrams.
pst-lsystem in graphics/pstricks/contrib

Create images based on a Lindenmayer system.
pst-marble in graphics/pstricks/contrib

Draw marble-like patterns.
quantikz in graphics/pgf/contrib

Draw quantum circuit diagrams.
rank-2-roots in graphics/pgf/contrib

Math drawings arising in representation theory.

info

ptex-manual in info

First release of manual for Japanese pTEX.

language/japanese

bxwareki in language/japanese/BX

Convert dates from Gregorian to Japanese calendar.
plautopatch in language/japanese

Automated patches for (u)pLATEX.

macros/generic

* tex-locale in macros/generic

Localization support for (LA)TEX.

macros/latex/contrib

aeb-minitoc in macros/latex/contrib

Create mini-TOCs.
chs-physics-report in macros/latex/contrib

Lab reports for Carmel (Indiana) High School.
ditaa in macros/latex/contrib

Embed ASCII art and convert to images.
grabbox in macros/latex/contrib

Read argument into a box and execute later.
hybrid-latex in macros/latex/contrib

Allow active Python code in LATEX.
kalendarium in macros/latex/contrib

Dates according to classical Latin calendar.
kvmap in macros/latex/contrib

Create Karnaugh maps with LATEX.
returntogrid in macros/latex/contrib

Semi-automatic grid typesetting.
srdp-mathematik in macros/latex/contrib

Typeset Austrian SRDP in mathematics.
utexasthesis in macros/latex/contrib

UT Austin graduate thesis style.
widows-and-orphans in macros/latex/contrib

Identify (typographic) widows and orphans.

macros/xetex/latex

facture-belge-simple-sans-tva in m/xetex/latex

Simple Belgian invoice without VAT.
thesis-qom in macros/xetex/latex

Thesis style for University of Qom, Iran.

support

cluttex in support

Automate LATEX document processing, with clean
directories.

* colorprofiles in support

Collection of free (libre) ICC profiles.
ctanbib in support

Make .bib entry for CTAN package.
tlcockpit in support

GUI frontend to TEX Live Manager (tlmgr).

info/ptex-manual



Abstracts

Die TEXnische Komödie 4/2018

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Markus Kohm, KOMA-Script für Paketautoren
am Beispiel tocbasic [KOMA-Script for package
authors, with example tocbasic]; pp. 50–57

KOMA-Script has never been just a tool for
users but has always been a tool for developers as well.
Starting with KOMA-Script 3, many integral parts
of KOMA-Script were “outsourced” into separate
packages. Using tocbasic and nomencl as examples,
this article shows how other developers may profit
from this development.

Markus Kohm, fancyhdr und scrlayer in
trauter Zweisamkeit [fancyhdr and scrlayer

united]; pp. 58–67
There are several packages on CTAN to modify

the page style of a document, with fancyhdr as one
of the most favorite. Another, more basic package
is the KOMA-Script package scrlayer. With its
layer model it does much more than what is usually
delivered by a page style modification package, so
users asked for a way to use the layers of scrlayer
together with fancyhdr. With the experimental
package scrlayer-fancyhdr this is possible now.

Elke Schubert, Beispiele für Einsatzmöglichkeiten
des Paketes tocbasic [Examples of the use of
tocbasic]; pp. 66–73

This article shows a few examples for the use
of the tocbasic package with standard document
classes.

[Received from Herbert Voß.]

TUGboat, Volume 39 (2018), No. 3 305

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Dominici, Massimiliano
Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.



Hendrickson, Amy
57 Longwood Ave. #8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: http://texnology.com

LATEX Macro Writing: Packages for print and
e-publishing; Sophisticated documentation for users.
Book and journal packages distributed on-line to
thousands of authors.

More than 30 years’ experience, for major publishing
companies, scientific organizations, leading universities,
and international clients.

Graphic design; Software documentation; LATEX
used for Data Visualization, and automated report
generation; e-publishing, design and implementation;
Innovation to match your needs and ideas.

LATEX training, customized to your needs, on-site—
have taught classes widely in the US, and in the
Netherlands and Sweden.

See the TEXnology website for examples. Call or
send email: I’ll be glad to discuss your project with you.

Latchman, David
2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs. Call or email to discuss your
project or visit my website for further details.

Sofka, Michael
8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document
conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

306 TUGboat, Volume 39 (2018), No. 3

TEXtnik
Spain
Email: textnik.typesetting (at) gmail.com

Do you need personalised LATEX class or package
creation? Maybe help to finalise your current
typesetting project? Any problems compiling your
current files or converting from other formats to
LATEX? We offer +15 years of experience as advanced
LATEX user and programmer. Our experience with
other programming languages (scripting, Python
and others) allows building systems for automatic
typesetting, integration with databases, . . . We can
manage scientific projects (Physics, Mathematics, . . . )
in languages such as Spanish, English, German and
Basque.

Veytsman, Boris
132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Webley, Jonathan
Flat 11, 10 Mavisbank Gardens
Glasgow, G1 1HG, UK
07914344479
Email: jonathan.webley (at) gmail.com

I’m a proofreader, copy-editor, and LATEX typesetter.
I specialize in math, physics, and IT. However, I’m
comfortable with most other science, engineering and
technical material and I’m willing to undertake most
LATEX work. I’m good with equations and tricky
tables, and converting a Word document to LATEX.
I’ve done hundreds of papers for journals over the
years. Samples of work can be supplied on request.



TUGboat, Volume 39 (2018), No. 3 307

2019 TEX Users Group election

Karl Berry
for the Elections Committee

The positions of TUG President and five other members
of the Board of Directors will be open as of the 2019
Annual Meeting, which we expect to be held in August
2019 in Palo Alto, California, USA.

The TUG Directors with terms expiring in 2019:
Barbara Beeton, Susan DeMeritt, Michael Doob,
Cheryl Ponchin, Norbert Preining.

Continuing Directors, with terms ending in 2021:
Karl Berry, Johannes Braams, Kaja Christiansen,
Taco Hoekwater, Klaus Höppner, Frank Mittelbach,
Ross Moore, Arthur Reutenauer, Will Robertson,
Herbert Voß.

The election to choose the new President and Direc-
tors will be held in early Spring of 2019. Nominations for
these openings are now invited. The term of President is
two years, and the term of TUG Director is four years.
A nomination form is on this page; forms may also be
obtained from the TUG office or via tug.org/election.

The TUG Bylaws provide that “Any member may
be nominated for election to the Board by submitting a
nomination petition in accordance with the TUG Election
Procedures. Election . . . shall be by . . . ballot of the
entire membership, carried out in accordance with those
same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline stated below. Also,
a candidate’s membership dues for 2019 must be paid
before the nomination deadline.

Along with a nomination form, each candidate must
supply a passport-size photograph, a short biography,
and a statement of intent to be included with the ballot;
the biography and statement of intent together may not
exceed 400 words. The deadline for receipt of complete
nomination forms and ballot information is

07:00 a.m. PST, 1 March 2019

at the TUG office in Portland, Oregon, USA. No excep-
tions will be made. Forms may be submitted by fax,
or scanned and submitted by email to office@tug.org;
receipt will be confirmed by email.

Information for obtaining ballot forms from the TUG

website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office. Marked ballots must be received by the date
noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by early May, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

2019 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2019
will be eligible to participate in the election. The signa-
tures of two (2) members in good standing at the time
they sign the nomination form are required in addition to
that of the nominee. Type or print names clearly, using
the name by which you are known to TUG. Names that
cannot be identified from the TUG membership records
will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:
Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� TUG Director

for a term beginning with the 2019 Annual Meeting.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion
on the ballot) must be received at the TUG office in
Portland, Oregon, USA, no later than

07:00 a.m. PST, 1 March 2019.
It is the responsibility of the candidate to ensure that
this deadline is met. Under no circumstances will late
or incomplete applications be accepted. In case of any
questions about a candidacy, the full TUG Board will be
consulted.

Supplementary material may be sent separately from

the form, and supporting signatures need not all appear

on the same physical form.

� nomination form
� photograph

� biography/personal statement

TEX Users Group
Nominations for 2019 Election
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)



2018

Nov 10 TEXConf 2018, Sapporo, Japan
texconf2018.peatix.com

2019

Jan 4 – 5 College Book Art Association Biennial
Meeting, “The Photographic
Artists’ Book”, The University
of Arizona, Tucson, Arizona.
www.collegebookart.org

Feb 3 – 6 CODEX VII 2019 Book Fair and
Symposium, Richmond, California.
www.codexfoundation.org

Mar 1 TUG election: nominations due,
07:00 a.m.PST. tug.org/election

Mar 2 – 4 Typography Day 2019,
“Experimental Typography”.
IDC School of Design,
Indian Institute of Technology Bombay,
Mumbai, India. www.typoday.in

Mar 1 TUGboat 40:1, submission deadline.

Apr 26 TUG election: ballots due.
tug.org/election

May 15 TUG 2019 deadline for abstracts
for presentation proposals.
tug.org/tug2019

Jun 1 TUG 2019 early bird registration
deadline. tug.org/tug2019

Jun 9 TUG 2019 hotel reservation discount
deadline. tug.org/tug2019

Jun 7 – 14 Mills College Summer Institute for
Book and Print Technologies,
Oakland, California.
millsbookartsummer.org

Jun 19 – 21 The 7th International Conference on
Typography and Visual Communication
(ICTVC), “Challenging Design Paths”,
Patras, Greece. www.ictvc.org

308 TUGboat, Volume 39 (2018), No. 3

Calendar

Jul 3 – 5 Seventeenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), “The World 4.0: Convergences
of Knowledges and Machines”,
University of Granada, Granada, Spain.
thehumanities.com/2019-conference

Jul 4 – 5 International Society for the History and
Theory of Intellectual Property (ISHTIP),

11th Annual Workshop,
“Intellectual Property and the Visual”.
Sydney, Australia.
www.ishtip.org/?p=995

Jul 9 – 12 Digital Humanities 2019, Alliance of
Digital Humanities Organizations,
Utrecht, The Netherlands.
adho.org/conference

Jul 15 – 19 SHARP 2019, “Indigineity, Nationhood,
and Migrations of the Book”.
Society for the History of Authorship,
Reading & Publishing.
University of Massachusetts, Amherst,
Massachusetts. www.sharp2019.com

Jul 28 –
Aug 1

SIGGRAPH 2019, “Thrive together”,
Los Angeles, California.
s2019.siggraph.org

Jul 29 –
Aug 2

Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

TUG 2019 Palo Alto, California.

Aug 9 – 11 The 40th annual meeting of the
TEX Users Group.
tug.org/tug2019

Sep 23 – 26 19th ACM Symposium on Document
Engineering, Berlin, Germany.
www.documentengineering.org/doceng2019

Status as of 1 November 2018

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.



TUGBOAT Volume 39 (2018), No. 3

Introductory

164 Barbara Beeton / Editorial comments
• typography and TUGboat news

167 TUG Board / TUGboat open-access survey results
• increasing open access to all but the current issue, with survey results

171 Peter Flynn / Typographers’ Inn
• Monospace that fits; Centering (reprise); Afterthought

177 Carla Maggi / The DuckBoat—News from TEX.SE: Formatting posts
• upvoting behavior, Markdown-based formatting and PDF-to-image conversion

163 Boris Veytsman / From the president
• thoughts on (un)constrained funding

169 David Walden / The Cary Graphic Arts Collection
• a brief overview of this remarkable printing, typography, and graphics collection

Intermediate

304 Karl Berry / The treasure chest
• new CTAN packages, August–October 2018

204 Charles Bigelow and Kris Holmes / Science and history behind the design of Lucida
• historical precedents, principles of reading, practical digital type design

182 B. Tomas Johansson / Managing the paper trail of student projects: datatool and more
• step-by-step generation of typical student reports from .csv files

246 Frank Mittelbach / Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX
• finding all widows and orphans, and discussion of possible fixes

173 Herbert Schulz and Richard Koch / A beginner’s guide to file encoding and TeXShop
• introduction to file encodings, Unicode, and handling them in TEX(Shop)

185 David Walden / Interview with Kris Holmes
• in-depth discussion of calligraphy, font design, and more, with many illustrations

Intermediate Plus

224 D. Ahmetovic, T. Armano, C. Bernareggi, M. Berra, A. Capietto, S. Coriasco, N. Murru, A. Ruighi /

Axessibility: Creating PDF documents with accessible formulae
• automatically making readable math formulae

212 Bogusław Jackowski, Piotr Pianowski, Piotr Strzelczyk / TEX Gyre text fonts revisited
• incorporating math and symbol glyphs into text fonts, and OpenType accent positioning

263 Frank Mittelbach / The dashundergaps package
• replacing material with underlines, with expl3 implementation

241 Eduardo Ochs / Dednat6: An extensible (semi-)preprocessor for LuaLATEX that understands diagrams
in ASCII art

• a Forth-based language for 2D diagrams implemented in Lua

217 Martin Ruckert / HINT: Reflowing TEX output
• postponing TEX page rendering to a separate device, e.g., tablet

228 Moritz Schubotz, André Greiner-Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, Bela Gipp /

Improving the representation and conversion of mathematical formulae by considering the textual context
• gold standard benchmark and metrics to evaluate (LA)TEX to MathML tools

Advanced

275 Karl Berry and Oren Patashnik / State secrets in bibliography-style hacking
• inserting a custom separator between fields in bibliography entries

252 Frank Mittelbach / The widows-and-orphans package
• documented implementation of the widows-and-orphans package in expl3

276 Udo Wermuth / Experiments with \parfillskip
• analysis of \parfillskip settings, aiming to minimize too-short or too-long last lines

Reports and notices

162 Institutional members

168 Norbert Preining / TEXConf 2018 in Japan

305 From other TEX journals: Die TEXnische Komödie 4/2018

305 TEX consulting and production services

307 TUG Elections committee / TUG 2019 election

308 Calendar


