
246 TUGboat, Volume 39 (2018), No. 3

Managing forlorn paragraph lines
(a.k.a. widows and orphans) in LATEX

Frank Mittelbach

Contents
1 The name of the game 246
2 The problem 246
3 Fixing the problem 247
4 Using TEX’s \looseness approach 249
5 Identifying pages with widows or orphans 250

1 The name of the game
Splitting off the first or last line of a paragraph at
a page or column break is considered bad practice
in typesetting circles. It is thus not surprising that
the craftspeople have come up with fairly descriptive
names for such lines when they appear in typeset
documents.

Commonly used are the terms “widow” for the
last and “orphan” for the first line. These are, for
example used in English, French (“veuve” and “or-
pheline”), Italian (“Vedova” and “Orfano”), Spanish
(“ĺınea huérfana” and “ĺınea viuda”), or to a lesser
extent in German (“Witwe” and “Waise”).

One way to remember them is to think of or-
phaned lines appearing at the start (birth) and wid-
ows near the end (death) of a paragraph or by using
Bringhurst’s mnemonic, “An orphan has no past; a
widow has no future” [6].

German typesetters coined some more profane
descriptions by calling the widow line a “Hurenkind”
(child of a whore) and the orphan line a “Schuster-
junge” (son of a shoemaker) allegedly because these
boys have been notoriously meddlesome. For Ger-
man practitioners these are still the predominantly
used terms, though “Witwen” and “Waisen” are also
well understood. Dutch uses “hoerenjong” and “wees-
kind” which translates to son of a whore and orphan,
i.e., somewhere in between the German usage and
the other languages.

Don Knuth catered for this typographic detail in
the TEX program by providing parameters whose val-
ues are used as penalties if the pagination algorithm
considers breaking in such a place. Widow lines
are penalized via \widowpenalty; however, orphans
are not controlled by \orphanpenalty as one might
expect, but by a parameter named \clubpenalty.

There have been some queries about this choice
of names on Stack Exchange and after a little Internet
searching I found a listing for “club line” in the
Collins English Dictionary Digital Edition [1], listing

it as a British (!) term used in printing for an orphan
line. Further checks through the first dozen or so
pages of google hits for “club line” by its own, and the
same with additional restrictions such as “printing”
or “typography” revealed a handful of additional
references (two of which mentioned that Knuth used
the term — thus circular references). So on the whole
it was a meager result and all except one indicated
a use of the term in British not American English.

Contrast this with a search for “orphan line” in
google: Now we will find that nearly all the results
in the first five pages are relevant, with only two or
three near the end being unrelated.

However, what we also see from following them
up is that about a third of them give the terms
different meanings, either by swapping the defini-
tion of orphan and widow lines or by giving them
a slightly different meaning altogether: The last
line of a paragraph being nearly empty, i.e., con-
taining only a single word or even part of a single
word.1

Most of the time, though, the forlorn lines we
want to deal with are called widows and orphans and
this is what we will call them in the remainder of
the article, even if we have to set a \clubpenalty
to deal with one of them.

2 The problem
Essentially everyone in typography circles agrees that
widows and orphans are very distracting to the reader
as well as a sign of bad craftsmanship, and should
therefore be avoided. In fact, most writing guides and
other books on typography generally suggest that a
document should have no such lines whatsoever, e.g.,
in older editions of the Chicago Manual of Style [2]
we find “A page should not begin with the last line
of a paragraph unless it is full measure and should
not end with the first line of a new paragraph.”

However, that is easier said than done, so in a
newer edition of that guide [4] we now find “A page
should not begin with the last line of a paragraph
unless it is full measure. (A page can, however, end
with the first line of a new paragraph.)” instead.

As a result of this sort of guidance many journal
classes for LATEX completely forbid widows and or-
phans by setting \widowpenalty and \clubpenalty
to 10000 which prohibits a break at such points —
TUGboat being no exception.

1 . . . as demonstrated here. In TEX this kind of typo-
graphical issue can also be dealt with, although by differ-
ent means and somewhat more manually: The parameter
\finalhyphenpenalty can make hyphenation in the last line
unattractive, and using unbreakable spaces will ensure that
there is more than one word in the last line; \parfillskip
can also help.

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 3 247

But doing this introduces severe problems: As
LATEX (and in fact all major typesetting systems
to date) use a greedy algorithm to determine the
pagination of a document, it will recognize problems
with orphan or widow lines late in the game and
will have only the current page to work with. This
means the best it can do to avoid the situation is
to push an orphan to the next page if there is not
enough room to squeeze in another line. The same
happens with widows; here LATEX is forced to move
the second-last line to the next page even though it
would still nicely fit.

As a result the current page will have an addi-
tional line-height worth of white space that needs to
be distributed somewhere on the page. If there are
headings, displays, lists or other objects for which
the design allows some flexibility in the surrounding
white space, then this extra space may not create
much of an issue. If, however, the page consists
only of text or objects without any flexibility, then
all LATEX can do is run the page or column short,
generating a fairly ugly hole at the bottom.2

Related problems
Besides widows and orphans there are a number
of similar issues that typography manuals mandate
eliminating if at all possible. One is a paragraph split
across pages at a hyphenation point so that only a
part of the word is visible at any time; another is
a widow line with a following display formula. For
both, TEX offers parameters to control the unde-
sirability of the scenario. By default Don Knuth
considered them of lesser importance and provided
default values of 100 and 50 for \brokenpenalty
and \displaywidowpenalty, respectively while he
specified 150 for orphans and widows. However, if
your style guide (or your class file) wants to avoid
them at all cost then you are in precisely the same sit-
uation as with widows and orphans discussed above.

A special variation of the last issue is a display
formula starting a page, that is, with the introductory
material completely on the previous page or column.
That is considered a no-go by nearly everybody so in
TEX the controlling \predisplaypenalty parameter
has by default a value of 10000. But again, there
may be valid reasons to ignore this advice in a special
situation, e.g., when the space constraints are high.

3 Fixing the problem
The alternative to preventing widows and orphans (or
hyphens across page boundaries, etc.) automatically

2 This can be observed on the first page of this article,
where an orphan line was pushed onto the current page. For-
tunately, the resulting hole is partly masked by the footnote.

and at all costs is to manually resolve the issues when
they arise. For this one finds a number of suggestions
in the typography literature; a good collection is
given in the guidelines section of the Wikipedia page
on “Widows and Orphans” [5]. We will look at them
one by one below and discuss their applicability and
possible implementation in a LATEX document.
I Forcing a page break early, producing a

shorter page
This is what LATEX and most other typesetting tools
automatically do if you completely forbid widows
and orphans and if often leads to badly filled pages
as discussed above.

However, if you force the page break manually,
you can lessen the impact by also explicitly forcing
earlier breaks and thereby shifting the extra white-
space to a page or column where it can be absorbed
by the available flexibility on that page.
I Adjusting the leading, the space between lines

of text (although such carding or feathering
is usually frowned upon)

That is indeed frowned upon and for good reason.
The human eye is tuned to notice even small dif-
ferences in the vertical spacing of lines and across
columns or pages such changes, even if they are small,
are very noticeable and distracting. Besides, man-
aging such a change in a LATEX document would
be, while possible, quite cumbersome, so this is not
particularly useful advice for us.
I Adjusting the spacing between words to pro-

duce ‘tighter’ or ‘looser’ paragraphs
This is certainly a practical option if you choose the
right paragraph or paragraphs, e.g., those that are
somewhat longer and that have a last line that is
either nearly full (for lengthening) or nearly empty
(for shortening). In that case squeezing the word
spaces might result in one line less and extending it
might get you an additional line (with just a word
or two). In many cases the resulting gray value is
still of acceptable quality so this is a typical trick
of the trade. In LATEX this is achieved by using the
\looseness parameter that is discussed in Section 4.

Note that you do not necessarily need to ma-
nipulate one of the paragraphs of the problem page;
there might be a better candidate on an earlier page.
I Adjusting hyphenation within the paragraph

This is a variation of the “change the number of para-
graph lines” type of approach. However, given that
LATEX is usually good in considering most of the pos-
sible hyphenation points when breaking paragraphs,
one is unlikely to gain much if anything. Thus, this
suggestion might have some merits in a system that

Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX

248 TUGboat, Volume 39 (2018), No. 3

does not hyphenate well (or at all) but with LATEX
one is better off applying \looseness.

If you have a very badly broken paragraph be-
cause of a missed hyphenation point you should fix
that anyway (by adding \- or a \hyphenation ex-
ception) regardless of whether or not there is a widow
or orphan nearby.
I Adjusting the page’s margins

Now this is an interesting approach. In contrast to
changes in \baselineskip small changes in the line
width are virtually undetectable without a ruler —
unless you make it a huge change. Unfortunately, it
is not really an option when using LATEX as the un-
derlying TEX engine essentially assumes a fixed line
width throughout, so it is fairly difficult to change
that at arbitrary places.

In other words, this advice is really geared to-
wards interactive systems where you can change the
width of a text region and get an immediate reflow
as a visual feedback.
I Subtle scaling of the page, though too much

non-uniform scaling can visibly distort the
letters

In principle, that would be possible with LATEX
though so far nobody has implemented the necessary

“An orphan has no past;
a widow has no future”

changes to the output routine. That
is, when a column or page runs short
it will be scaled to the right height
before attaching headers and foot-
ers. Instead of a non-uniform scaling, one could do
uniform scaling and adjust the horizontal widths of
headers and footers accordingly.

However, that approach has issues already dis-
cussed: Scaling means we get a different leading
(though this time the characters will also grow). And
if we do non-linear scaling, i.e., only vertically, then
we will distort characters and from a certain point
onwards this will also be noticeable. So it is question-
able whether this will actually improve the situation.
I Rewriting a portion of the paragraph

This is obviously something you can do only if you are
the author and not typesetting some text written by
others. But if so, it is a valid strategy since it enables
you to easily shorten or enlarge a paragraph so that
your orphan or widow is reunited with other lines.

Again, there is no requirement to do this rewrite
with the paragraph causing the issue (as implied by
the advice); you can choose any3 earlier paragraph
to achieve the desired effect.

3 Well, “any” is an exaggeration: If you change a paragraph
on an earlier page the gained (or extra) space might get
swallowed up by available flexibility on some intermediate
page and your widow or orphan thus stays put.

I Reduce the tracking of the words
Tracking in this context means adjusting the spacing
between characters in a uniform way (in contrast to
kerning, which means adjusting the spacing between
individual glyph pairs, e.g., “AV” cf. “AV”).

Figure 1 shows a line of text with different
amounts of tracking (negative and positive) applied.
Clearly by applying tracking one can shorten or
lengthen a text. However, when comparing the lines
side by side it is also obvious that the gray value of
words changes fairly rapidly too. Thus even with
small tracking values, changes may become notice-
able and thus distracting. To illustrate the point
this article contains one manipulated paragraph; see
if you can spot it — perhaps it was on an earlier
page and you thought: hmm that doesn’t look quite
right.4

On the whole, common typographical advice is
to not use tracking for such purposes or, if there
is no better alternative, then only with very small
tracking values in which case there may not be any
noticeable effects on the paragraph length unless you
are lucky. It is possible to experiment in LATEX if
you load the microtype package and use, for example,
\textls.

I Adding a pull quote to the text
(more common for magazines)

Pull quotes are catch phrases from
the text that are “pulled out” and

typeset prominently again in a different place, typi-
cally in a larger and often different font. They serve
as eye catchers and if carefully chosen will give the
reader a preview of the content or main points of an
article.

The design needs to clearly distinguish them
from other display material, e.g., there should be
no way to confuse them with headings, etc. In two-
column texts this is often done by placing them in
a window with both columns flowing around them
(as shown on this page), but placing them into the
content of one column is also often done.

Placing them within a single column is fairly
easy in TEX, all you need to do is to define an envi-
ronment that places the material between paragraph
lines (using \vadjust if used inside paragraph text).

Producing pull quotes with the column texts
flowing around it, is more manual work and fairly
cumbersome, but doable. On the present page, we
used the wrapfig package. The approach, as well as
a few others are discussed in answers to a question
on Stack Exchange [3].

4 The answer is given at the end of the article.

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 3 249

Tracking is the uniform increase or decrease of spacing between glyphs. −0.05 em
Tracking is the uniform increase or decrease of spacing between glyphs. −0.03 em
Tracking is the uniform increase or decrease of spacing between glyphs. −0.02 em
Tracking is the uniform increase or decrease of spacing between glyphs. −0.01 em
Tracking is the uniform increase or decrease of spacing between glyphs. — LATEX’s default setting —
Tracking is the uniform increase or decrease of spacing between glyphs. +0.01 em
Tracking is the uniform increase or decrease of spacing between glyphs. +0.02 em
Tracking is the uniform increase or decrease of spacing between glyphs. +0.05 em
Tracking is the uniform increase or decrease of spacing between glyphs. +0.07 em

Figure 1: Tracking in action

As the above advice already mentions, these are
more commonly found in magazine type documents,
so this approach may or may not be applicable.
I Adding a figure to the text, or resizing an

existing figure
Just like adding a pull quote, resizing a figure will
obviously change the amount of material a column
can hold and thus will enable us to move an orphan
or widow out of harm’s way. Whether or not it is
a valid option depends on the figure in question;
often enough graphics do offer some freedom and
can be adjusted either by scaling (up or down) or by
cropping, etc.

Summary
To resolve issues with widows and orphans one has
to somehow adjust the amount of material typeset
in the respective column or page. For LATEX users
the most promising approaches are

• forcing material from one column to the next
through explicit page breaks;

• generating more or less material by lengthening
or shortening some paragraphs;

• rewriting paragraphs (if you are the author);
• or resizing a float.

Adjusting the line width for a single column is rather
difficult to achieve in LATEX and therefore not rec-
ommended, even though it can lead to good results.
Applying tracking seldom works well, it usually either
makes no difference or results in noticeable grey-level
differences.

Using pull quotes is similar to changing or re-
sizing floats or modifying paragraphs. However, the
quotes carry meaning and so you can’t simply add
one arbitrarily for the sake of better pagination.
Thus, adding or moving them around is a bit like
changing the document structure and you therefore
have to be careful not to sacrifice semantics for form.
This makes them a less desirable approach.

Scaling the page or changing the leading is ty-
pographically rather questionable, so these can’t be

recommended (besides their being rather complicated
to achieve with LATEX).

In any case, it should be noted though that all
approaches are manual and thus the adjustments
will become invalid the moment there is a document
change that modifies the amount of material typeset.
It is therefore of paramount importance to manually
fix widows and orphans only at the very last stage
of producing the final document. Otherwise all the
effort might be in vain and will need to be undone
or changed over and over again.

The situation would be somewhat different if
TEX was extended to globally optimize pagination
rather than applying a greedy algorithm as it cur-
rently does. Some theoretical work in that direction
has been carried out in recent years by the current au-
thor and it may eventually lead to a production-ready
system using LuaTEX [7, 8]. However, at present it is
available only in a private prototype implementation
and can’t be used with vanilla LATEX.

4 Using TEX’s \looseness approach
TEX (and therefore LATEX) uses a globally optimizing
line-breaking algorithm to find the best breaks for a
given paragraph based on a given set of parameters.
One can ask TEX to try to find a solution (within
given quality boundaries) that is a number of lines
longer or shorter than the optimal result. If such a
solution exists it will be used; if not, then TEX will
try to match the request as closely as possible.

The paragraph will still be optimized (under the
new conditions), i.e., its overall gray level will be
fairly uniform, etc., but, inevitably, the inter-word
spacing will get looser or tighter in the process.

To activate this feature you need to set the
parameter \looseness to the desired value. This
has to be done directly in front of (or within) the
paragraph text via low-level TEX syntax
\looseness=1 % to lengthen by one line
% % <- no blank line here!
The text that gets manipulated ...

as there is no LATEX interface available.

Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX

250 TUGboat, Volume 39 (2018), No. 3

TEX automatically resets the value to zero when-
ever a \par command or blank line is encountered;
thus it will affect at most one paragraph.

A value of -1 has the best chance to work if the
last line is already nearly empty (and the paragraph
is of reasonable length). Lengthening is somewhat
easier as inter-word spaces can stretch arbitrarily (as
long as they do not exceed the \tolerance), whereas
they can shrink by only a fixed amount. But again
there is a better chance for success if the last line is
already (nearly) filled.

So far so easy, but there are a few pitfalls that
need to be avoided: First of all, with a positive value
of \looseness TEX will usually move only a single
word or even part of a single word into the last line, as
this way there is more material in the others and thus
less stretching of the inter-word spaces necessary. As
this usually looks rather ugly, it is best to tie the last
words together by using ˜ and if necessary prevent
hyphenation of the last word by placing an \mbox
around it.

Secondly, lengthening of a paragraph may go
horribly wrong (as shown here) if the document is set
with a high \tolerance value, e.g., most definitely
when a \sloppy declaration is in force.

The \tolerance defines how bad a line can
get while still being a candidate for the line-
breaking algorithm and \sloppy (or sloppypar)
simply sets this tolerance nearly5 to infin-
ity, i.e., arbitrarily bad lines are acceptable
and thus you might end up with a para-
graph like this one (where we asked for two
extra lines and got them). With a lower
\tolerance value that would never have hap-
pened: TEX would have refused to produce a result
like this.

Seeing the previous paragraph you might ask
yourself why one would want to use a high, let alone
infinite, \tolerance at all. The reason is that this
caters for situations where line breaking is very dif-
ficult. If there is a better solution with a lower
tolerance value TEX would use it, but if not it could
still proceed. So normally we wouldn’t see such bad
paragraphs even with a high tolerance in force (it just
means that TEX evaluates more candidate solutions).
But if we apply \looseness we explicitly ask TEX
to deviate from the optimal number of lines and to
fulfill this request TEX may resort to a solution with
bad lines that nobody would want.

5 In the early days of LATEX \sloppy used to set the toler-
ance to 10000 (i.e., TEX’s infinity) but that tended to produce
even more bizarre looking paragraphs: TEX then made one line
really, really bad and all others perfect,
as that looked to the optimizer to be the best solution.

5 Identifying pages with widows or
orphans

If the document class you use sets \widowpenalty
and \clubpenalty to 10000, then LATEX will auto-
matically prevent widows and orphans, i.e., an or-
phan is forced to the top of the next page or column;
and the same with the line preceding a widow. The
downside, as discussed previously, is partly empty
pages and if space is a premium (for example, if
your conference paper is not allowed to be more than
X pages in total) then this is a possible problem.
Thus you are better off allowing widows and orphans
(by changing the parameter values) and manually
correcting them in one way or another.

The question then becomes, how do you identify
the problematic page breaks without manually going
through the printout of your document and searching
for them? While that is certainly an option it is error
prone and it would be much nicer if LATEX (even if
it can’t automatically resolve the issues for you) at
least identifies them so that you only have to check
the problem pages.

This is possible by simply loading the package
widows-and-orphans.6 This package adjusts the pa-
rameter values slightly so that so that all possible
combinations lead to distinctive numbers. For ex-
ample, instead of the LATEX default values it would
choose

\widowpenalty = 150
\clubpenalty = 152
\displaywidowpenalty = 50
\brokenpenalty = 101

so that it can distinguish between a widow and an
orphan (\widowpenalty or \clubpenalty) or a dis-
play widow that comes together with a hyphen at the
break (\displaywidowpenalty + \brokenpenalty).
In case you wonder why 151 wasn’t used: that value
is already used by LATEX for \@medpenalty which
you get if you issue \nopagebreak[2]. By making
sure that all technically possible combinations lead
to unique numbers it is only necessary to look at the
penalty of the page break to determine whether or
not that break exhibits one or more of the problems.
So at any page or column break the \outputpenalty
is inspected and depending on the findings a warning
or error is generated that can then be checked and
corrected manually.

To ease this process further the package has
a number of key/value options. The check option
determines how findings are handled: the default

6 The implementation of the package (which is written in
the expl3 programming language) is documented in a separate
article in this TUGboat issue [9].

Frank Mittelbach

TUGboat, Volume 39 (2018), No. 3 251

is warning in which case warnings are written to
the terminal and the .log file. In the last phase
of document development you may want to change
that to error in which case the package will stop at
each problem with an error message rather than just
a warning. In the opposite direction, info will not
clutter the terminal with messages and only writes
to the .log. And if you know for sure that all the
remaining issues have to stay, you can also use the
value none in which case no checks are done at all.

Why would one want the last option instead of
not loading the package? The reason is this: as the
package has to change the parameter settings slightly,
not loading it would mean running the document
with different values and even though those changes
are minimal, it is possible to construct examples
where the difference matters and leads to changed
results. So once you have fixed what is possible to
fix it’s safest to still load the package, even if you no
longer want the remaining warnings. Another reason
is that the package offers the command \WaOsetup
that allows you to change options mid-document, e.g.,
turn the warnings off for chapters already handled,
but turn them on again for others.

Instead of suppressing all checking for a part
of the document via \WaOsetup you can issue the
command \WaOignorenext somewhere in the docu-
ment, after which the next check — for the current
page or column — will be silenced. The check is still
performed and if no problems are found you will
receive an error message, because either you have
added it to the wrong page or your text has changed
and it is no longer needed.

The package also offers options to set individ-
ual parameters to “reasonable” values. These are
widows, orphans, hyphens that all accept default
(LATEX default), avoid (higher value but still possi-
ble) or prevent. And there are also the valueless
options default-all, avoid-all and prevent-all
to set all parameters in one go. Of course, as an
alternative one can always change the parameters
individually in the preamble or even in the middle of
the document by assigning explicit numerical values.

If you want to see the resulting parameter set-
tings (and the combinations that need to be unique
in order to allow the package to work) you can issue
the command \WaOparameters at any point after
the preamble, which will give you a somewhat terse
listing.

Answer to the riddle
The paragraph with negative tracking (−0.01 em) is
the first one after “I Rewriting a portion . . . ” on
page 248, toward the bottom of the first column.

Due to the tracking it needs one line less com-
pared to the default line breaks. But as a result
of the tracking, the characters are noticeably closer
to each other, for example, in the word “obviously”.
Depending on your aesthetic judgment, a value of
±0.02 em is roughly the borderline of what can be
considered acceptable, so if that or a lower value
works, it might be an option.

References
[1] Anonymous. Collins English dictionary —

complete & unabridged 2012 digital edition.
https://www.collinsdictionary.com/
dictionary/english/club-line.

[2] Anonymous. The Chicago Manual of Style.
University of Chicago Press, Chicago, IL, USA,
14th edition, 1993.

[3] Anonymous. How can you create
pullquotes?, 2012. https://tex.
stackexchange.com/questions/45709/
how-do-you-create-pull-quotes.

[4] Anonymous. The Chicago Manual of Style.
University of Chicago Press, Chicago, IL, USA,
17th edition, 2017.

[5] Anonymous. Widows and orphans, 2017.
https://en.wikipedia.org/wiki/Widows_
and_orphans.

[6] Robert Bringhurst. The Elements of
Typographic Style. Hartley & Marks Publishers,
Point Roberts, WA, USA and Vancouver, BC,
Canada, 1992.

[7] Frank Mittelbach. A general framework for
globally optimized pagination. In Proceedings
of the 2016 ACM Symposium on Document
Engineering, DocEng ’16, pages 11–20, New
York, NY, USA, 2016. ACM. Download
from https://www.latex-project.org/
publications.

[8] Frank Mittelbach. Effective floating
strategies. In Proceedings of the 2017 ACM
Symposium on Document Engineering,
DocEng ’17, pages 29–38, New York, NY,
USA, 2017. ACM. Download from https:
//www.latex-project.org/publications.

[9] Frank Mittelbach. The widows-and-orphans
package. TUGboat 39:3, 2018, 252–262.
https://ctan.org/pkg/widows-and-orphans

� Frank Mittelbach
Mainz, Germany
frank.mittelbach (at)

latex-project dot org
https://www.latex-project.org

Managing forlorn paragraph lines (a.k.a. widows and orphans) in LATEX

