
TUGboat, Volume 39 (2018), No. 3 173

A beginner’s guide to file encoding
and TEXShop

Herbert Schulz and Richard Koch

Abstract

A common problem TEX users face when opening
and typesetting files is that the text displayed either
in the source or in the typeset document or both is
not what should be there; characters are scrambled
and improper characters appear. This is usually an
encoding problem — either the editor or TEX or both
do not interpret the input correctly.

This document is meant as a first introduction
to file encodings. It is definitely not meant as an
exhaustive document, and deals only with the most
common encodings in use today.

While the following document was originally
written for distribution with the TEXShop editor
(a.k.a. front end) running on Mac systems, other
front ends use a similar directive, and the general
discussion about file encodings is valid no matter
what editor you use.

1 What is a file encoding?

While we usually think of the .tex source file as
containing characters, in reality this source, like all
computer files, is just a long stream of whole numbers,
each (nowadays) from 0 through 255. Computer
scientists call these whole numbers bytes.

All other computer data must be encoded in one
way or another into bytes. The most common en-
coding of ordinary text into bytes is called ASCII; it
encodes most of the characters found on an ordinary
American typewriter. For instance, the characters ‘A’
through ‘Z’ are encoded as 65 through 90, the char-
acters ‘a’ through ‘z’ become 98 through 123. The
space character is encoded as byte 32, and numerals,
parentheses, and punctuation characters encode as
other bytes.

Originally, TEX required ASCII input. While
this was sufficient in the United States, it proved
cumbersome in Western Europe, where accents, um-
lauts, upside down question marks, and the like are
common; macros were needed to construct those
characters and that broke hyphenation. More diffi-
cult problems arose when TEX was used in the Near
and Far East.

The ASCII encoding only uses bytes from 0
through 127. Thus the door was open to encode
other characters using bytes 128 through 255. Many
different single-byte encodings now exist to display
additional characters using these bytes.

2 Extending the character table

The three most often used extended single-byte en-
codings on the Mac are MacOSRoman, IsoLatin1 and
IsoLatin9.1

The MacOSRoman encoding is left over from the
days before OS X and, as expected, exclusive to Mac
computers. Its use is no longer encouraged.

The IsoLatin1 encoding extends the ASCII en-
coding with the accented characters used in Western
European languages.

IsoLatin9 primarily adds the Euro symbol, e,
to the IsoLatin1 encoding along with a few other
changes.

2.1 Other encodings used with TEX

Other fairly common encodings include IsoLatin2 for
central European languages, IsoLatin5 for Turkish
and IsoLatinGreek (also called Iso8859-7) for Greek.
Several different encodings are available for Russian
and other languages using Cyrillic. Additional en-
codings are available for Korean and Chinese, but
Far Eastern languages use thousands of symbols, so
these encodings are not very satisfactory.

2.2 Windows stuff

Windows Latin 1 is a version of IsoLatin1 with some
characters in different code locations as defined by
Microsoft. Thus, folks running Windows can end up
with files in this encoding.

2.3 A crucial flaw

The various encodings were developed independently
by computer companies as their products were sold
in more and more countries.

Unfortunately (but unavoidably), text files do
not have a header specifying the encoding used by
the file. Thus there is no way for TEXShop to au-
tomatically adjust the encoding as various files are
input. Some text editors have built-in heuristics to
try to guess the correct encoding, but TEXShop does
not use these heuristics because they work only 90%
of the time and an incorrect guess can lead to havoc.

3 Unicode

As the computer market expanded across the world,
computer companies came to their senses and cre-
ated a consortium to develop an all-encompassing
standard, called Unicode. The goal of Unicode is to
encode all symbols commonly used across the world,
including Roman, Greek, Cyrillic, Arabic, Hebrew,
Chinese, Japanese, Korean, and many others. Uni-
code even has support for Egyptian hieroglyphics and

1 We will use the same notation as for the TEXShop en-
coding directive in this document. See the table on page 176.

A beginner’s guide to file encoding and TEXShop



174 TUGboat, Volume 39 (2018), No. 3

relatively recently added support for mathematical
symbols.

All modern computer systems, including Mac-
intosh, Windows, GNU/Linux and other Unix, now
support Unicode. Internally, TEXShop and many
other editors represent characters using Unicode and
thus can accept text that is a combination of Ro-
man, Greek, Cyrillic, Arabic, Chinese, and other
languages. TEXShop even understands that Arabic,
Hebrew, and Persian are written from right to left.
To input these extra languages, activate additional
keyboards using the System Preferences Keyboard
Pane. This Pane changed in recent versions of OS X;
in El Capitan, select a keyboard on the left, or click
‘+’ below the list to see a list of additional languages
and add their keyboards.

3.1 Unicode representations

Because it has far more than 256 symbols, Unicode
defines symbols using much larger integers, using
more than one byte. Unicode defines the “internal”
structure of these numbers, but gives several different
ways to represent the numbers on computers. By
far the most popular Unicode encoding nowadays is
UTF-8, which uses a sequence of 8-bit bytes, but UTF-

16 (using a sequence of 16-bit chunks) and others
are also available. (All the Unicode representations
are equivalent; the multiple representations exist for
historical and other reasons beyond this short note.)

The great advantage of UTF-8 is that ordinary
ASCII characters retain their single-byte form in
the encoded file. Consequently, ordinary ASCII files
remain valid as UTF-8 files. With most single-byte
encodings like IsoLatin1, IsoLatin9, etc., any sequence
of bytes forms a legal file. If you open such a file
with the wrong encoding, the file will be read, but
some of the symbols will be wrong. For example,
if someone in Germany using IsoLatin9 collaborates
with someone in the U.S. using MacOSRoman, and
their paper is written in English, they may not notice
the mismatch until they proofread the references and
discover that accents and umlauts have gone missing.

However, not all sequences of bytes form valid
UTF-8 files, because non-ASCII symbols are con-
verted into bytes using a somewhat complicated code.
In the previous example, if the German collabora-
tor uses IsoLatin9 and includes non-ASCII characters,
such as those with umlauts, in the document and the
American collaborator uses UTF-8, TEXShop will re-
port an error when it tries to open the IsoLatin9 file in
UTF-8. TEXShop will then display an error message
and offer to open the file in a “fallback” single-byte
encoding, currently IsoLatin9 (not configurable).

On the other hand, both authors of this docu-
ment use UTF-8 Unicode as our default encoding,
turning that message to our advantage. UTF-8 pre-
serves everything typed in TEXShop, so there are no
puzzling character losses. HTML and other code is
usually saved in UTF-8, so TEXShop can be used as
a more general text editor. Moreover, if a TEX file
from an external source is not in UTF-8, we get the
warning above. The trick is then to let TEXShop
open the file in the “fallback” encoding, IsoLatin9,
and examine the file for an inputenc line which tells
you what encoding was actually used. Then close the
file without making any changes and re-open it using
the Open dialog and manually choose the correct
encoding. Once the file is open with the correct en-
coding you may add the TEXShop encoding directive
line for that encoding and save it for future use.

Using UTF-8 Unicode has become so advanta-
geous that TEXShop 4.00 and later use this encoding
as the default, out of the box,2 encoding.

3.2 Encoding vs. formatting

All of the encoding methods discussed here, including
Unicode, are irrelevant to italics, underlining, font
size, font color, etc. They just define characters
as numbers. It is up to users to specify additional
attributes in some other way. For example, when
Apple’s TextEdit program is used in Plain Text mode,
a user can change the font or font size for an entire
document, but not for individual sections of the
document. If the document is saved to disk and then
reloaded, the font changes are lost. On the other
hand, a word processor like Microsoft Word or Apple
Pages has much more control over fonts, font size and
the like. These programs output text in a proprietary
format readable only by that program, but the file
does preserve the extra attribute information.

While all modern computers support Unicode,
particular fonts (nearly always) have symbols for only
a small portion of the Unicode world. Fonts should
have a special character, often a box, to indicate that
a character is missing. Thus if you want to write in,
say, Arabic or Hebrew, you must choose a font which
contains these symbols. Modern computers support a
great range of symbols because the computer business
covers the world, but it may still be hard to find a
font covering obscure Unicode symbols.

2 If you switch to the latest TEXShop version and have
already reset the default encoding in TeXShop→Preferences,
your selection will be maintained.

Herbert Schulz and Richard Koch



TUGboat, Volume 39 (2018), No. 3 175

4 Two sides of the story:
TEXShop and TEX

Once a user selects an appropriate encoding, the user
must configure both TEXShop and the appropriate
TEX engine to use that encoding. Different sets of
problems arise with these two tasks.

Users in the United States and other English
speaking countries can often ignore encodings alto-
gether. The default TEXShop encoding supports
ASCII, and TEX and LATEX have supported ASCII

from the beginning. So there is nothing to do.
Users in Western Europe must take slightly more

care. The current default TEXShop encoding, UTF-8

Unicode, will be sufficient for their needs. But they
must configure TEX and LATEX as described below,
and carefully choose fonts which support the needed
accents, umlauts, and the like. The required steps
are easy.

Users in Russia and Eastern Europe must take
similar steps, but the authors of this paper are not
knowledgeable about correct configurations, so we
suggest getting help from friends already using TEX.

Users in the Far East and Middle East, and
scholars working with multi-language projects, will
need to consult other sources for detailed configura-
tions. These users should certainly examine X ETEX
and LuaTEX, because these extensions of TEX use
Unicode directly and are much more capable of han-
dling languages where Unicode becomes essential.
Both X ETEX and LuaTEX can typeset almost all
standard TEX and LATEX source files, but have addi-
tional code for Unicode support. One big problem
with these languages is that appropriate fonts must
be chosen which support the languages. To simplify
that problem, both X ETEX and LuaTEX allow users
to use the ordinary system fonts supplied with their
computer.

5 Telling TEXShop what encoding to use
to Load and Save source files

To set the default TEXShop encoding, open TEXShop
Preferences. Select the Source tab. In the second
column, find the Encoding section. This section con-
tains a pull down menu; select the desired encoding
from this menu. Select Western (ISO Latin 9) to
get the IsoLatin9 encoding, useful in English speak-
ing countries and Western Europe. You must select
Unicode (UTF-8), the current default, or Unicode
(UTF-16) if you want to preserve everything you can
type into the TEXShop editor. If you pick any other
encoding, there may be characters you can type in
TEXShop which will be lost if you Save and then
re-Load. On the other hand, UTF-8 may not work
well with certain LATEX packages, as explained later.

TEXShop has a mechanism to set the encoding
of a particular file independent of the user’s default
choice, or of choices in the Load and Save panels. To
set the encoding used to read or write a particular file
to UTF-8, add the following line to the first twenty
lines of the top of the file:

% !TEX encoding = UTF-8 Unicode

The easy way to do this is to select the Macro com-
mand Encoding. A dialog will appear from which
the desired encoding can be selected, and after the
dialog is closed, the line will be placed at the top of
the file, replacing any existing encoding line.

If such a line exists, the indicated encoding will
be used, overriding all other methods of setting the
encoding, unless the option key is held down during
the entire load or save operation.

Many users in Western Europe prefer to set
IsoLatin9 as their default encoding so they can easily
read files from collaborators, but include the line
setting encoding to UTF-8 in file templates used to
create files, so that their own files are encoded in
UTF-8.

It is also possible to set the encoding used to
read a file by Opening the file explicitly from within
TEXShop. The resulting dialog has a pull-down menu
at the bottom to select the encoding to be used
for that particular file.3 (Note that the “% !TEX

encoding =” line overrides this command.)
Explicitly Saving a file from within TEXShop

produces a Save Dialog with a similar pulldown menu
to set the encoding.

Note: you can’t easily change the encoding of
a file. The best thing to do is copy the whole docu-
ment into a new one and save that with the correct
encoding. Using the TEXShop directive before saving
the new file the first time is definitely recommended.

6 Telling LATEX about file encodings

Your typesetting engine needs to know the encoding
used to save each source file so the input source and
the output glyphs are synchronized. For ordinary
LATEX, this is usually done by including a command
like the following in the header of the source:

\usepackage[latin9]{inputenc}

Some values for other common encodings are given
in the short table following.

This line is not needed when the source encoding
is ordinary ASCII.

One valid value for encoding with inputenc is
utf8. This line works in Western Europe, but not in
situations requiring wider use of Unicode (because

3 Under El Capitan you must first press the Options button
to get to the pulldown menu.

A beginner’s guide to file encoding and TEXShop



176 TUGboat, Volume 39 (2018), No. 3

TEXShop TEXShop LATEX
Open/Save dialogs encoding directive inputenc

Unicode (UTF-8) UTF-8 Unicode utf8

Western (Mac OS Roman) MacOSRoman applemac

Western (ISO Latin 1) IsoLatin latin1

Central European (ISO Latin 2) IsoLatin2 latin2

Turkish (ISO Latin 5) IsoLatin5 latin5

Western (ISO Latin 9) IsoLatin9 latin9

Mac Central European Roman Mac Central European Roman macee

Western (Windows Latin 1) Windows Latin 1 ansinew or cp1252

Table 1: Partial encoding list of names in three contexts

the characters are lacking from TEX’s usual fonts).
When in doubt, it is useful to read the inputenc
documentation. To do that, go to the TEXShop Help
menu, select Show Help for Package, and fill in the
requested Package with inputenc.

Users in Western Europe usually use four “re-
lated” commands in the header. Here are these four
lines for users in Germany.

\usepackage[german]{babel}

\usepackage{lmodern}

\usepackage[T1]{fontenc}

\usepackage[latin9]{inputenc}

The first of these lines asks LATEX to use German
conventions for dates, hyphenation, etc.

The second line tells LATEX to use the Latin Mod-
ern fonts. These fonts agree with Donald Knuth’s
Computer Modern fonts in the first 128 spots, but
include additional accents, umlauts, upside down
question marks, and so forth used in Western Eu-
rope.

The third line tells LATEX the connection be-
tween the input characters in the file and the glyphs
in the fonts (i.e., the physical representation of the
printed characters in the final document).

As explained above, the final line tells LATEX
which encoding was used for the source file.

Users interested in more details should consult
the documentation for babel, lmodern, and fontenc
using TEXShop’s Show Help for Package item in the
Help Menu. The documentation is interesting, going
into considerable historical detail about the evolution
of font design in TEX.

7 Encodings understood by TEXShop

Table 1 shows the corresponding entries for some
popular file/input encodings used with LATEX in
TEXShop.

The ‘Open/Save Dialogs’ column shows the des-
ignation for the encodings in TEXShop’s Open/Save
Dialogs; you may have to click on the Options button
to display the popup menu for encodings.

The ‘Directive’ column gives the designation
used in TEXShop’s encoding directive,

% !TEX encoding = xxxxx

where xxxxx is the designator you wish to use. If this
line is in place before you first Save your source file,
TEXShop will automatically save the file with the
designated encoding. TEXShop will also automati-
cally Open the file with that encoding when double
clicked. We suggest you create a Template which
contains the directive and use that to create new
documents.

The ‘inputenc’ column gives the optional ar-
gument for the LATEX inputenc package. As with
the Directive, we suggest creating a Template which
has the proper inputenc line for the corresponding
encoding in the directive.

Good luck!

� Herbert Schulz and Richard Koch
tug.org/mactex

Herbert Schulz and Richard Koch


