
TUGBOAT

Volume 40, Number 1 / 2019

General Delivery 3 From the president / Boris Veytsman

4 Editorial comments / Barbara Beeton

A memorial for SPQR;

Project support from UK-TUG and TUG;

Installing historic TEX Live on Unix;

Converting images to LATEX: mathpix.com;

Fonts, fonts, fonts! (Helvetica Now, Study,

Public Sans, Brill diacritics, Berlin typography)

5 Noob to Ninja: The challenge of taking beginners’ needs into account when

teaching LATEX / Sarah Lang and Astrid Schmölzer

Tutorials 10 The DuckBoat—News from TEX.SE: Processing text files to get LATEX tables /

Carla Maggi

Accessibility 14 No hands—the dictation of LATEX / Mike Roberts

17 Nemeth braille math and LATEX source as braille / Susan Jolly

Software & Tools 22 Both TEX and DVI viewers inside the web browser / Jim Fowler

25 Markdown 2.7.0: Towards lightweight markup in TEX / Vı́t Novotný

28 New front ends for TEX Live / Siep Kroonenberg

30 TinyTeX: A lightweight, cross-platform, and easy-to-maintain LATEX distribution

based on TEX Live / Yihui Xie

33 Extending primitive coverage across engines / Joseph Wright

34 ConTEXt LMTX / Hans Hagen

38 Bringing world scripts to LuaTEX: The HarfBuzz experiment / Khaled Hosny

LATEX 44 LATEX news, issue 29, December 2018 / LATEX Project Team

47 Glossaries with bib2gls / Nicola Talbot

61 TEX.StackExchange cherry picking, part 2: Templating / Enrico Gregorio

69 Real number calculations in LATEX: Packages / Joseph Wright

Macros 71 Real number calculations in TEX: Implementations and performance /

Joseph Wright

Electronic Documents 76 TEX4ht: LATEX to Web publishing / Michal Hoftich

82 TUGboat online, reimplemented / Karl Berry

Book Reviews 85 Book review: Never use Futura by Douglas Thomas / Boris Veytsman

Abstracts 88 Die TEXnische Komödie: Contents of issue 1/2019

88 Zpravodaj : Contents of issue 2018/1–4

Hints & Tricks 89 The treasure chest / Karl Berry

Cartoon 91 Comic: Punctuation headlines / John Atkinson

Advertisements 91 TEX consulting and production services

TUG Business 2 TUGboat editorial information

2 TUG institutional members

93 TUG financial statements for 2018 / Karl Berry

94 TUG 2019 election

News 96 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2019 dues for individual members are as follows:

Trial rate for new members: $20.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options described at
tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-
boat in a name other than that of an individual.
The subscription rate for 2019 is $110.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: May 2019]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Taco Hoekwater
Klaus Höppner
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2019 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another
language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such
approval, the original English permission notice must
be included.

Kedit is the only text editor I have ever used. [. . .]
Kedit did not paginate, italicize, approve of spelling,
or screw around with headers, wysiwygs, thesauruses,
dictionaries, footnotes, or Sanskrit fonts.
[. . .] Kedit was “very much a thing of its time,” and its
time is not today. I guess I’m living evidence of that.

John McPhee
Draft No. 4: On the Writing Process

(2017)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 40, NUMBER 1, 2019

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 40, No. 1) is the first issue of
the 2019 volume year. The second issue this year will
be the TUG’19 conference proceedings; the submission
deadline is August 18. The deadline for the third issue
is September 30.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board
Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team
William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Clarissa Littler,
Steve Peter, Michael Sofka, Christina Thiele

2 TUGboat, Volume 40 (2019), No. 1

TUGboat advertising
For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

Submitting items for publication
Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications
TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG
Institutional
Members

TUG institutional members
receive a discount on multiple
memberships, site-wide electronic
access, and other benefits:
tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,
Providence, Rhode Island

Association for Computing
Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,
Bowie, Maryland

CSTUG, Praha, Czech Republic

Harris Space and Intelligence
Systems, Melbourne, Floida

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czech Republic

MOSEK ApS,
Copenhagen, Denmark

Nagwa Limited, Windsor, UK

New York University,
Academic Computing Facility,
New York, New York

Overleaf, London, UK

StackExchange,
New York City, New York

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

University College Cork,
Computer Centre,
Cork, Ireland

Université Laval,
Ste-Foy, Québec, Canada

University of Ontario,
Institute of Technology,
Oshawa, Ontario, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 40 (2019), No. 1 3

From the president

Boris Veytsman

In the beginning of this century the US Federal
Aviation Administration decided to overhaul ele-
ments of the air traffic safety infrastructure, introduc-
ing mandatory Automatic Dependent Surveillance
Broadcast (ADS-B).1 The company I worked for at
that time was chosen to implement this system. I
remember the words by the program leader Glen
Dyer at that time,

You know, I always envied the civil engineers.
Just imagine walking with your grand-kids,
stopping by a beautiful bridge and telling
them, “This bridge was designed by me.” Now
we have our chance to design our “bridge”.
We are doing something that will endure.

He was right: ADS-B is being used in all flights over
the US, and is going to stay. It is planned that this
technology will still be employed in the foreseeable
future, so we definitely will be able to talk about it
with our grandchildren.

I recalled this episode recently while reading a
tweet from Nathan Lane (@straightedge):2

Redoing my slides in LaTeX because I fear my

MA students won’t see me as a true scholar

unless I demonstrate mastery of a 1980s

typesetting markup language

This tweet can be interpreted in different ways. One
may consider it a complaint about the strange allure
of obsolete solutions—shouldn’t we use something
newer and shinier than an invention of the nineteen
eighties? Do the grandchildren of the first users of
TEX still need to learn it?

This complaint was transmitted to thousands
of people on Twitter. Twitter itself started in 2006,
so it is relatively new. However, it relies on the
HTTP(S) protocol based on the work started by Sir
Tim Berners-Lee at CERN in 1989. Moreover, HTTP

messages are distributed by the TCP/IP network
protocol, developed in 1974. Thus a more accurate
version of the tweet might sound like this:

Using protocols developed in 1970s and 1980s

to complain about the requirement to show the

mastery of a 1980s typesetting markup language

for being considered a true scholar.

I would like to make an observation based on
this (and many other) episodes. The pace of change
for a technology strongly depends on how “deep” the
technology is. A user interface for Twitter changes

1 www.faa.gov/nextgen/programs/adsb
2 twitter.com/straightedge/status/

1118834149165428736

fast; the underlying software layers are much more
stable, and the lower we go into them, the slower
they change. In the same way the safety features of
aviation are much more stable than aircraft cabin
interiors. Thus the relatively slow pace of TEX’s
evolution might be a result of its place in the com-
puter infrastructure: it provides the foundation for
exchange of information.

This, of course, does not mean that TEX is not
going to change: it is changing now and will continue
to change in the future. To continue the analogy
with network protocols, neither HTTP nor IP stayed
still in recent years. Among the changes were the
addition of security layers, transition to IPv6 with a
huge number of new addresses, extensions for space-
based communications, etc. This is definitely not
your parents’ Internet Protocol any more!

Similarly TEX today is definitely not the 7-bit
TEX of 1980s. The new engines with native Unicode
support transformed the way we deal with multiple
languages. They provide new primitives allowing new
possibilities for TEX programmers. New(er) macro
systems like the (continuously developed) ConTEXt
and LATEX3 give much needed flexibility to document
designers and package writers. Graphics packages
like PSTricks and TikZ provide ways to flexibly incor-
porate non-textual information into TEX documents.
The “bridge” from the beginning of this essay is
being constantly overhauled and improved.

A living architectural or engineering structure
like a historic bridge or building provides an inter-
esting challenge to the community. Its beauty and
design must be preserved, but it must also provide
for the changed needs of the users. Thus it must be
updated—but carefully and deliberately.

Similarly we at TUG—and the general TEX
users community—have the dual duty to preserve
the integrity of TEX—and to steer its development to
the ever changing needs of the typesetting community.
This issue of TUGboat can be viewed as a report
of our continuing efforts to perform this duty. The
upcoming 2019 edition of the TEX Collection, with
TEX Live, MacTEX, MiKTEX, and CTAN, is another
artifact of these efforts.

I feel that all of us: developers, programmers,
users, are participating in the maintaining and im-
provement of a beautiful important edifice slated
to endure. TEX, created by Don Knuth, is now a
community-based project. Let us make it shine!

Happy TEXing!

⋄ Boris Veytsman
borisv (at) lk dot net

http://borisv.lk.net

From the president

4 TUGboat, Volume 40 (2019), No. 1

Editorial comments

Barbara Beeton

After long employment at the American Math Soci-
ety, I retired on February 5. My term on the TUG

board has been extended for four more years, and
I expect to remain editor of TUGboat, as long as
I can continue to do a creditable job. It’s been an
interesting run.

A memorial for SPQR

Sebastian Rahtz had a favorite place—The Protes-
tant Cemetery in Rome (Il Cimitero Acattolico di
Roma). A bench with a tribute to Sebastian has now
been installed in the cemetery, providing a place for
visitors to rest and contemplate.

The director of the cemetery sent this report:

[. . .] We put it in the Parte Antica some weeks
ago and people immediately started sitting on it!
I had to ask them to move so I could take the
photo! It is a lovely addition to the Cemetery.
We put it near the Garden Room, and people
are allowed to move it around as they like. In
winter they put the benches in the sun, in summer
they like to sit under the shade of the trees. The
benches are a wonderful way for people to relax
(we all do far too little of that these days) and a
possibility for people to chat and renew or make
new friendships. I like to think that Sebastian
would have loved that.

The Protestant Cemetery is the final resting
place of many visitors to Rome who died there; it
may be best known as the gravesite of the English
poets Keats and Shelley. It is one of the oldest burial
grounds in continuous use in Europe, and in 2016,
its 300th anniversary was celebrated. The website
for the cemetery, www.cemeteryrome.it, provides a
virtual visit, or information to plan for an actual visit.

Project support from UK-TUG and TUG

The UK-TUG committee has posted a reminder that
there is a standing call for applications for project
funding. Details can be found at uk.tug.org/about/
funding/, and proposals sent to uktug-committee@
uk.tug.org.

TUG also offers project funding: see tug.org/

tc/devfund.

Installing historic TEX Live on Unix

For Unix only, Péter Szabó has written scripts for
convenient installation of historic TEX Live distribu-
tions. The years now covered are 2008 through 2018.
The scripts and information are at github.com/pts/
historic-texlive. This can be a welcome backup
in case you have an older document that won’t run
with the latest distribution.

All TEX Live releases (and much more) are avail-
able at ftp.tug.org/historic/systems/texlive

and ftp.math.utah.edu/pub/tex/historic. (Ad-
ditional mirrors would be most welcome.) Péter’s
new scripts download from this archive.

Converting images to LATEX: mathpix.com

The mathpix application purportedly allows one to
take a screenshot of math and paste the LATEX equiv-
alent into one’s editor, “all with a single keyboard
shortcut”. This tool (mathpix.com) appears to hold
more promise than other attempts. We have solicited
a review, which we hope will appear later this year.

Fonts, fonts, fonts!

More than the usual number of font-related announce-
ments have appeared since our last issue. Many
notices came via CTAN, but those are ignored here;
instead we briefly mention several gleaned from other
sources. It isn’t known whether (LA)TEX support is
available for any of them, but it’s likely to happen
sooner or later.

We finish up with a more expansive review of a
website devoted to “fonts in the wild”—photos of
lettering found on surfaces in a city environment.

Helvetica redesign! On 9 April 2019, Monotype
introduced the Helvetica Now family, a redesign of
the venerable and ubiquitous typeface. The last
redesign resulted in Neue Helvetica 35 years ago. The
announcement describes the changes as expressly
tuned “for the modern era”. The new rendition
includes three optical sizes and “a host of useful
alternates”. Read the full text and watch the video
at tug.org/l/helvnow.

Making Study: New clothing for the twenty-
six leaden soldiers. Study is a new typeface,
“completed” by Jesse Ragan based on a design by
Rudolph Ruzicka, a Czech type designer active in
the 1940s–60s. Ruzicka’s typefaces, produced in
metal by Mergenthaler Linotype and used for books
in their heyday, were never effectively reworked for
newer technologies, and are not much in use to-
day. However, although he completed only two de-
signs, Ruzicka never stopped coming up with new
ideas. A collection of these ideas was published

in 1968, when Ruzicka was 85, in a work entitled
Studies in Type Design. One of the designs, Study,
was clearly well developed, but lacking kerns and
normalization of features such as stem and hair-
line thickness, which are necessary for the typeface
to be usable. It is this design that Ragan chose
to complete. The story is fascinating. Read it at
xyztype.com/news/posts/design-notes-study.

Public Sans—The U.S. government gets in-
volved. As its name implies, this is a sans serif
typeface intended for public use. It is part of “a de-
sign system for the federal government”, to “make it
easier to build accessible, mobile-friendly government
websites for the American public.” Nine weights are
available, and there is an invitation to contribute to
its development on GitHub. Details, such as they are,
are at public-sans.digital.gov and links therein.

Diacritics to die for: Brill. The Brill typeface,
designed and implemented principally by John Hud-
son of Tiro Typeworks, is a custom design for the
Dutch scholarly publisher in Leiden now known as
Brill. This firm has a history of more than 330
years of publishing in many languages and scripts,
including the International Phonetic Alphabet (IPA).
As if the different scripts weren’t enough of a prob-
lem, the proliferation of diacritics—often multiply
applied to the same base character—exceeded any-
thing that I had ever seen. This came to my at-
tention in a question on tex.sx asking for help in
reproducing the image on page 22 of these slides:
www.tiro.com/John/Hudson-Brill-DECK.pdf.

The implementation of diacritic placement uses
the GPOS table of OpenType fonts. This can be ac-
cessed with X ETEX, with some limitations, as pointed
out by Khaled Hosny in his response to the referenced
question (tex.stackexchange.com/q/485523). If
you think math is complicated, read through the
entire slide presentation and marvel.

Brill has made their eponymous types available
for non-commercial use by individuals.

Berlin Typography. The website “Berlin Typog-
raphy” (see berlintypography.wordpress.com) is
a wide-ranging photo essay showing off signs and
other examples of text that appear on buildings and
other surfaces in Berlin. The series was started in
2017 and is still active in 2019. Each post highlights
a different topic; the most recent posting examines
“Shoes and their makers: Footwear in Berlin”. Other
selections include street signs, shops offering various
merchandise and services, plaques, text on stones
and grates in the pavement, and much, much more.

Perhaps my favorite collection is .../2017/03/
06/berlins-bridge-typography—typography on
Berlin’s bridges. Search for the term “blackletter” to
see the photo that would have been included here,
had our attempt to obtain permission been successful.
(We were unable to find contact information.)

In 2018, an interview with the creator of the blog,
Jesse Simon, appeared online: “Celebrating Berlin’s
Typography, before it vanishes: A tour of the city’s
most striking signs”, by Anika Burgess. It’s well
worth a look: www.atlasobscura.com/articles/

berlin-signs-typography.
These essays inspire one to be aware of one’s

surroundings— look both up and down—and notice
what’s there in plain sight.

⋄ Barbara Beeton
https://tug.org/TUGboat

tugboat (at) tug dot org

TUGboat, Volume 40 (2019), No. 1 5

Noob to Ninja:
The challenge of taking beginners’ needs
into account when teaching LATEX

Sarah Lang and Astrid Schmölzer

On the 26th of February this year, the first guest
post “Confessions of a LATEX Noob”1 was posted on
the LATEX Ninja blog (https://latex-ninja.com).
Quite unexpectedly, it seems that the article hit a
nerve in the (LA)TEX community since we were show-
ered with feedback and encouragement in the days
that followed. Many long-standing experts told us,
to our great surprise, that they were very interested
in hearing the experiences of a less advanced user
wanting to learn. Also, we were greeted by a commu-
nity of (LA)TEX enthusiasts who felt genuinely sorry
for the problems the LATEX Noob had experienced
and the feelings of not belonging which they had
expressed. This is how it came that we were invited
to contribute a similar essay to TUGboat. Since
the roles of the LATEX Ninja and the LATEX Noob
have turned out to work well to make our point, we
decided to keep them.2

So today, we wanted to talk about how to take
beginner’s needs into account when teaching LATEX
or other “outreach” activities such as answering ques-
tions on StackOverflow, etc.

1 latex-ninja.com/2019/02/26/

guest-post-confessions-of-a-latex-noob/
2 For the purposes of getting in touch with us, we can

be reached as our real life selves, Sarah Lang and Astrid
Schmölzer. We are happy to be able to work as early career
scholars at the University of Graz (Austria) in the field of the
Humanities. For questions and comments directly regarding
LATEX, please contact us via the.latex.ninja (at) gmail.com.

6 TUGboat, Volume 40 (2019), No. 1

Advanced users hardly remember
how they felt starting out

While this would be quite the challenge in and of its
own, we encounter the first problem ,which is that
the needs of beginners become increasingly obscure
to us the more advanced we ourselves become. Here,
the only option is to enter in an active dialogue with
those who are still at the beginning of their journey
and listen very carefully and attentively for how they
want to be helped and what they need help with.

Making learning failsafe by minimizing
initial hurdles

Existing sources like lshort and the great books on
learning LATEX might already be too voluminous for
a beginning user. Not everybody likes to read long
documents. I love to read in general but the length
of lshort would definitely be enough to deter me
from trying to learn LATEX, if I had to start from
scratch again.

When I first started, my then-partner handed
me their own template and helped with the start-up
work of converting their technological citation style
to a Humanities citation style. Then I used LATEX for
quite a while before ever reading up on it again. This
practical introduction without a lot of background
reading worked very well for me.

Tools like Overleaf can be part of this, since they
allow the interested newbie to explore LATEX without
the hassle of having to install LATEX under Windows.
This point can’t be stressed enough! New LATEX
users should only try a scary thing like installing
LATEX under Windows once they are already hooked.
We don’t want to lose them before they get started.

Problem: Existing sources are not geared to-
wards the needs of beginning learners. Resources
tend not to be very didactical. Many reference works
exist, but few resources are fit for a beginner. Or
don’t lead the beginner very far. Or not accessible un-
less you are willing to do a lot of introductory reading.

Problem: Many tutorials exist, but most re-
sources are a) lengthy, b) too detailed (partly the
reason why they’re too long) or c) only cover basic
concepts. Information on how to learn advanced
skills, or even what advanced skills in LATEX might
be, is hard to find even after thorough searches.

Leveraging the principle of the
“minimum effective dose”

When I first taught some LATEX basics to university
students in an introductory Bachelor’s class on anno-
tation (mostly XML) in the Digital Humanities, I was
surprised to find out that these new users were not
at all afraid of LATEX, as one is often led to believe.

I think, the “fear” or excessive respect regarding
LATEX is not due to the nature of LATEX itself. So it
must be some part of the community generating this
reluctance.

From my own everyday life, I gather that it is
often those who are not users of LATEX themselves
and feel bad about this alleged lack of knowledge on
their part who tend to talk badly about LATEX. Here,
the standard arguments are that LATEX is overly
complex, difficult, a hassle, and nobody really needs
it anyway. Since these people seem to be rather
widespread, the (LA)TEX community should be more
active in showing that the opposite is true. This
can be done by providing easy introductory tutorials
(like “Learn LATEX in three minutes”3) which stress
that LATEX need not be complicated—since this is an
impression many people get from extensive reference-
like tutorials.

Often, people just want to know “How can I get
started right now?” and not after three hours of intro-
ductory reading plus supplemental Internet research.
They don’t care that they were not taught all the
details. They are grateful for a concise introduction.
So the question of “What does one need to know
to start using LATEX” is not “What will an average
user need to know in total” but rather “What is the
(absolute) minimum amount of knowledge I need to
have to get started”.

Tim Ferriss calls this the “minimum effective
dose”. This is so effective and fail-safe because it
requires minimal effort while at the same time limit-
ing choices—and thus common sources of failure—
to a minimum. As he explains in The 4-Hour Chef,
he suggests employing two principles to successfully
leverage the minimum effective dose (MED), “failure
points” and a “margin of safety”. In his case, “failure
points” are a collection of reasons why people give
up on cooking. Most of them revolve around too
many things you need to have, know or do, as well
as overall excess complexity. Assessing the “margin
of safety” means “How badly can you do something
and still get incredible results (relative to ‘normal
standards’)?”

In the case of learning LATEX this translates to:
How few elements do I need to know to reap some
benefits of transitioning to LATEX? How can I reduce
complexity to prevent chaos resulting from lack of ex-
perience? I usually recommend not installing LATEX

3 latex-ninja.com/2018/12/11/

jumpstarting-learn-latex-in-3-minutes/

Not to say that the Ninja blogs are didactically perfect,
they just serve as examples and starting points for
the endeavour of creating a curriculum to learn LATEX,
especially for people who don’t have a background in
technology.

Sarah Lang and Astrid Schmölzer

TUGboat, Volume 40 (2019), No. 1 7

on your own machine yet, to minimize the initial
hurdles. When just starting out, tools like Overleaf
will suffice. You don’t need to have everything in-
stalled on your computer at first. Another problem
is that common reference-style tutorials seldom re-
spect didactical principles like didactical reduction,
the art of hiding unnecessary detail. Hiding details
is generally not something computer people approve
of. But it is absolutely necessary for good teaching
to hide (currently) irrelevant detail from the learner
until they are ready.

Challenges and remedies

Problem: Getting help can be tricky; you don’t want
to look like an idiot and, especially as someone from
a non-technical background, you constantly have
to defend your choice to use LATEX (to users and
non-users alike). “Why would a Humanities person
want to use LATEX anyway? You don’t need it and
you’re not up for it” are the most common insults
a Humanities person might have to endure after
choosing LATEX.

My friend who agreed to play the part of the
LATEX Noob is an archaeologist and can speak from
experience. She writes her thesis in LATEX since
archaeologists, while still largely narrative-based Hu-
manists, need a lot of image evidence, and this can
result in a notorious set of problems typically en-
countered when creating 300-page-long, image-rich
documents in MS Word. So she has as much of a
valid reason for wanting to use LATEX as any math-
ematician. After all, LATEX has more to offer than
math mode.

She is not a new user either, but she still feels
like a Noob. And not in a good way but with the
connotation of being an incompetent idiot and the
fear she might never escape this unpleasant state of
limbo. This is, however, not due to the fact of her
actually being a hopeless idiot—she is quite adept
with a lot of technical and even some programming
matters—but much rather due to the way newbies
tend to get treated on the Internet.4

Problem: Noob doesn’t speak “nerd talk”. Tu-
tors need to understand the people they teach. Medi-
ators are needed between technical and non-technical
people (kind of like Digital Humanists). Tech talk
is not understandable to a newbie— this extends to
the content as well as the way of speaking.

Problem: The constant demand to justify your
choice to use LATEX can stop newbies from asking

4 We summed up and expanded the main arguments of
the original blog post in the following text, trying to isolate
problems and offer solutions. For the personal account of her
experiences, please consult the original blog post.

for help. And if they don’t succeed with their own
experiments, they quit their experiments. It’s only
a matter of time until they quit LATEX completely.
Often, the “Why would you want to use LATEX any-
way?”, coming from users and non-users alike, bears
the tone of accusation and aggression. Often, it is
the answer new users receive when they ask a ques-
tion, instead of the answer to the actual question
they had asked.

Problem: Confusion generated by “insider knowl-
edge” which can be quite hard to come by (like un-
derstanding what a float does). Noobs aren’t even
aware there might be problems with that, and thus
don’t know where to find help or look when trying
to locate a bug.

Problem: After they have overcome their diffi-
culties and proudly share their code comes the next
letdown, from being ridiculed for non-perfect, but
still working, code which took hours to write. Not
helpful. Good style is like good fashion sense: It’s
nice to have but a luxury not everybody can afford.

Problem: People promise to follow up on a ques-
tion by sending a code example but they never do.
No follow-ups, no real intention to help? These
promises might leave a newbie waiting for an email
which never comes. They feel: “If you just want to
show me how good you are, fine. But I really wanted
your help, otherwise, I would not have asked.”

Problem: Then there is the issue of having to
keep your debugging sessions and LATEX problems
secret from non-LATEX-using colleagues. “Why waste
your time?”, they ask reproachfully. “Shouldn’t you
be focusing on finishing your PhD thesis?” And
maybe, one day, the Noob will come to the conclusion
that yes, they need to focus on their PhD. Perhaps
LATEX just wasn’t for them.

An atmosphere needs to be created where new
and progressing users are actively included in the
community rather than seeing them as noobs who
are not “real users”. Nobody has to prove them-
selves in order to be a “valid member” of the (LA)TEX
community. They just need to be passionate about
(LA)TEX and if this is the case, a learning process will
ensue anyway.

Problem: Often, advanced users trying to help
newbies don’t even see what the actual problems
are. Those could be confusion about which editor
to choose, what in the world a “minimal working
example” or “Lorem Ipsum” might mean or how to
correctly ask a question on StackOverflow. Or things
that might be deemed self-evident, something way
more basic than expected. If the Noobs are lucky,
they find the explanations on the Internet.

Noob to Ninja: The challenge of taking beginners’ needs into account when teaching LATEX

8 TUGboat, Volume 40 (2019), No. 1

A glossary of these basics might be of help, like
a “TEXnical literacy 101” worksheet. It might also
help raise awareness as to what the “blank slate”
consists of that a new user starts out with. Not
all Noobs come from the field of technology where
a basic knowledge of “digital literacy” is the norm.
And it is not their fault that they don’t. The defini-
tion of a Digital Humanist basically is someone with
knowledge of the technical and Humanities’ worlds
simultaneously who can act as an interpreter. A
technician might need a mediator in order to com-
municate effectively with completely non-technical
folk.

Being tutored is a lot like women in relation-
ships. Often, you just want to be heard and feel seen.
Getting a ready-made solution is not what’s wanted.
It’s more about being acknowledged with and vali-
dated in your needs and problems. For LATEX Noobs
this might translate to feeling that your struggle is
okay and valid and being reassured that you can do
it and that people are there to help. A newbie does
not expect you to do the work for them (at least
most newbies don’t), but rather that you will enable
them to find their own way. And that you are okay
with whatever way works for them, even though this
might not be the way you would choose yourself.

Let’s help Noobs to help themselves rather than
lecture them on what’s good for them without ex-
plaining why. They want to know the facts so they
can decide for themselves.

Ways to rise to the challenge—A manifesto

1. Be nice to new users.

Don’t tolerate other people’s bad behaviour towards
Noobs. Noob should not be a curse word anymore.
This is also why we kept the name for the persona in
the blog. Noob just means newbie and we don’t see
anything wrong with that. If anything, the (LA)TEX
community is enriched by every new user, no mat-
ter how little knowledge they might have. To the
contrary, we invite all to step forward and ask for
help. Starting to learn a new skill is a great new
opportunity and we would like to see many more new
users becoming confident in their LATEX skills. Let’s
actively discourage fellow commentators when they
are being rude. They might not realize this since In-
ternet communities often encourage rough behaviour
among “nerds”. But your silence will make the new-
bie feel like everyone thinks that way. Speaking up is
all that’s needed to at least minimize bad experiences
like the ones from the “Confessions of a LATEX Noob”
post.

2. Create tutorials according to the real-life
use case of the new user.

Rather than offering tons of (probably irrelevant)
information in a reference to the newbie who is not
yet at the stage where they can make effective use
of references, offer tutorials which explain something
they might want to do. Like “minimal skills to write
a Humanities’ seminar paper” which can be learned
in 10 minutes. The newbie might be ready to create
their first document and do some basic things. But
they most certainly are not yet at the point where
they can write up a whole workflow according to
their needs. This is fine if they have no special needs.
But most users probably actively turn away from
WYSIWYG editors like Word precisely because they
have a special need they hope transitioning to LATEX
will meet.

Existing tutorials often show generic snippets
of how certain effects can be achieved. But it might
be too much to ask of a new user to look everything
up on their own and assemble it together in one doc-
ument. Sadly, many common use cases, like creating
(personalized) transformations from Word to LATEX,
are not represented in tutorials so much. These are
the skills I talk about when I ask for more teaching
on Advanced LATEX. It might not seem advanced
technically, but it is advanced in the way that you
need to stitch a whole workflow together, plan your
project and need to know where to find certain bits
of information, etc. The first step from beginner
to intermediate/advanced user is learning how to
independently realize a project like this and create a
document which matches your needs in a specialized
use case.

3. Don’t ask them to plunge into cold water
and completely move away from their
previous WYSIWYG editors.

Don’t stop helping them only because they wish to
also still use MS Word. They might only want to use
LATEX sparingly and selectively. Even if you don’t
understand this, try to understand them. Help them
achieve what their old tool could do in LATEX if you
feel the need to convince them. Often, seasoned
LATEX users who don’t take part in more common
ways of typesetting anymore (LATEX is, after all, still
a specialist thing), don’t see why a transitioning user
might want their LATEX document to look like the
Word output they were used to. But be tolerant:
This might also be due to pressure of their own com-
munity. In the Humanities, handing in documents in
.docx formats is practically unavoidable. Try to be
understanding or else the newbie in transition might
just go back to their old ways.

Sarah Lang and Astrid Schmölzer

TUGboat, Volume 40 (2019), No. 1 9

4. Help new users in a way they want to be
helped, not in the way you think they should
do things.

This is probably the most crucial point people tend
to misunderstand about empowerment. Trying to
“forcefully lift people up from a seemingly superior
way of doing things” is not empowerment.5 Helping
someone make their own choices by showing them
all the options available is! Do your utmost to try to
avoid coming across as arrogant and exclusive. For-
mulate explanations in a way to encourage questions
rather than leaving people humiliated about their
lack of knowing better.

When spelled out like this, it sounds a little in-
sulting, but I feel that we often don’t realize we act in
those ways. Becoming aware of this will probably be
enough to change the behaviour for good. It is only
too easy to make a newbie feel stupid or to sound
condescending over the Internet. And nobody’s per-
fect. But it is well worth trying to make an effort.
Help given should be empowering, mentor-like and
not patronizing. You are talking to adults, after
all (or at least, mostly). They can make their own
choices.

5. Long-term: Build curriculum so new users
can acquire “the LATEX skill” more
conveniently.

Decide criteria of what one should know before offer-
ing LATEX-based services. Show new users how using
LATEX will not only prettify their documents (which,
we agree, is very important, of course) but also how
mastery of LATEX can be an asset in one’s CV and
which kinds of services one could offer. If the com-
munity was able to offer a more systematic way of
“initiation” to the community, this might encourage
new users to start LATEX.

Conclusion: Not all Noobs are made equal

If you’re doing technology or maths, nobody will
question your choice to use LATEX. If you don’t, ev-
erybody will. Not all Noobs are made equal. A Noob
from technology already comes with the ability to
understand “tech-talk”, “nerd speech”, basic work-
ings of StackOverflow and the like. A Noob from the
humanities does not. People from these two different
fields will have completely different needs.

5 Of course, this is formulated in a polemical way and I
don’t assume that you, dear reader, are this way. I merely
wanted to stress it a little more than necessary to get the
importance of the point across. Too often, we get caught up
in our own opinions and forget that other people might think
differently and that it is their good right to do so.

Resources are needed to serve as mediators, facil-
itating the early stages of learning for those without a
technical background. Extra care for Noobs without
a technical background is all the more pressing for
the LATEX community because they will probably al-
ready get discouraged from using LATEX by basically
everyone else around them. It is therefore crucial
that teachers, helpers and teaching materials do their
very best to encourage them. We have (pro-)actively
to make up for all the unsolicited discouragement
they are already receiving if we don’t want to lose
these new users.6

Offering detailed tutorials for subjects typically
needed by a non-technical newbie, also explaining
seemingly ‘obvious’ bits of information someone with-
out a technical background might not have heard
about—and coming up with a set of good reasons
why LATEX is a great tool for non-technical people as
well—would be a step in the right direction. These
reasons, however, should not be the same ones gener-
ally aimed to convince tech-savvy newbies (“formula
support”). If we reuse the same arguments, it is likely
newbies will feel that they don’t apply to them.

Of course, the general reason of “superior type-
setting” is a main argument for LATEX. But it is also
one likely to only be convincing to those who are
already convinced of the importance of good type-
setting. So this argument, while good at heart, will
not convince anyone who is not already convinced.
After all, learning to handle LATEX is a lot of work
for a newbie, so the reasons should be a lot more
pragmatic. If we can show Humanities people how
they can do their everyday tasks better using LATEX,
this would be a great improvement. Also, the more
visible the LATEX community becomes in the non-
technical world, the less non-technical newbies will
have to justify themselves for wanting to use LATEX.
Therefore, promote LATEX!

⋄ Sarah Lang and Astrid Schmölzer
the.latex.ninja (at) gmail dot com

https://latex-ninja.com

6
Editor’s note: The TUGboat editorial wish list,

tug.org/TUGboat/wish.html, has long had the item: More

tutorials and expository material, particularly for new users

and users who aren’t intending to become TEX wizards.

Submissions welcome!

Noob to Ninja: The challenge of taking beginners’ needs into account when teaching LATEX

10 TUGboat, Volume 40 (2019), No. 1

The DuckBoat—News from TEX.SE:
Processing text files to get LATEX tables

Herr Professor Paulinho van Duck

Abstract

In the first part of this installment, Prof. van Duck
will talk about the distribution of upvotes by topics
on TEX.SE. In the following Quack Guide, you will
find out how to easily process text files to create
professional LATEX tables.

1 Quack chat

Hi, (LA)TEX friends!
An amazing event happened on October 20th,

2018, in Rome, Italy: my first talk! To tell the truth,
since I was too shy to speak, my friend Carla helped
me with my presentation. It was a very exciting
experience!

I would like to thank all the guIt friends who
were present at the meeting and listened with pa-
tience.1

For those who love little animal icons, an awe-
some piece of news is that the gorgeous

T i k Z l i n g s

package is now on CTAN.
Some duck fans use it to create the welcome

party video2 for Barbara Beeton: she retired in Febru-
ary, so she will have much time to spend on TEX.SE,
all the TikZlings are waiting for her!

Last but not least, on December, 17th, The New

York Times dedicated an article to our Jedi Master,
Prof. Donald E. Knuth, “The Yoda of Silicon Val-
ley”.3 Unmissable reading for any TEX fan, quack!

TEX.SE friends are always very attentive in find-
ing typos or inaccuracies in my articles.

The user ‘TeXnician’ pointed out there is a text
dept instead of text depth in Figure 2 of The Morse

code of TikZ in TUGboat 39:1.
About Formatting posts in TUGboat 39:3, mar-

mot remarked that, on a Mac, shortcuts are usually
done with the command key, even though Ctrl also
works.

1 For more information: https://www.guitex.org/home/
guit-meeting-2018.

2 https://vimeo.com/315852862.
3 https://www.nytimes.com/2018/12/17/science/

donald-knuth-computers-algorithms-programming.html.

I would like to thank them both.

This time I will show you how to process text
files to automatically obtain professional LATEX ta-
bles. As we will see, it is straightforward and conve-
nient.

But let us talk about the upvoting distribution
by topics on TEX.SE, first.

2 “Cinderella” topics

Not all TEX.SE tags have the same level of popularity.
Since I was curious to know which were the

“Cinderella” topics, that is, less valued but not less
worthy, I asked my friend Carla to post a question
on Meta4 for me.

We got a gorgeous answer by moewe, with a
very detailed and accurate analysis of the vote distri-
bution. His results are somehow surprising, quack!

First, there is a general feeling that TikZ related
posts receive, on average, many more upvotes than
others. Looking at the data, this is not entirely true.

Taking into account only the tags with more
than 5,000 answers, there are some which perform
better than TikZ, such as symbols, macros, and
math-mode. Extending to tags with more than 2,000
answers, the absolute top topic is tex-core.

Looking at the “Cinderella” ones, meanwhile,
moewe found out that table-of-contents, floats,
and tables, among the most frequent tags, perform
worse than other topics.

This is quite unexplainable because these are
the first things beginners found “strange”, compared
with ordinary word processors. Maybe the posts are
trivial or focused on such peculiar problems that
they do not matter for other users.

Extending the sample, also bibliographies

and LYX can keep the seven dwarfs company.
The low reputation average of the latter is not

a surprise. Many TEXnicians do not like the WYSI-

WYG/M (What You See Is What You Get/Mean)
philosophy adopted by this tool.

I do not think the idea is wrong a priori. I used
this tool in the past; I gave up only because my LYX
files where so full of ERT (Evil Red Text) that it was
more convenient to write them in LATEX directly.

As for bibliographies (especially BibLATEX),
maybe the few upvotes are due to the peculiarity of
the questions, which specifically concern the problem
of a single OP and are often not useful for others.
Moreover, we have few BibLATEXperts (among which

4 https://tex.meta.stackexchange.com/questions/

7977/poll-which-are-the-cinderella-topics.

Herr Professor Paulinho van Duck

TUGboat, Volume 40 (2019), No. 1 11

moewe is undoubtedly the top one) who can fully
understand and appreciate these answers.

One of the “Cinderella” tags is csvsimple. It
has only 2.8 votes per answer, on average, and more
than 8% of answers with no votes at all. Since I
think this package is useful and I would like to make
it more popular, I have dedicated the current Quack
Guide to it.

3 Quack Guide No. 4
How to easily process text files to get
LATEX tables

We all know we can get beautiful tables with LATEX,
but typing them can be boring and error-prone.

We often have our data processed by another
tool which yields a file in some text-based format
(.csv, .dat, .tex or similar), and we only need to
transform it into a LATEX table.

There are some packages for this purpose, for
example, pgfplotstable and datatool. I will show
you csvsimple, which is the simplest one (that is
the reason for its name, quack!) but sufficient for
basic usage.

Suppose we have the CSV file test.csv, which
contains the following data (any resemblance to real
persons/ducks is purely coincidental):

test.csv

Name,Surname,Height,Gender

Paulinho,van Duck,.4,M

Paulette,de la Quack,.35,F

Enrichetta,Pescatore,1.80,

Henry,Gregory,,M

Pay attention to the missing data: the comma
(or, in general, the separator) is needed, see, for
example Enrichetta’s “Gender” or Henry’s “Height”.

With this simple code:

\documentclass{article}

\usepackage{csvsimple}

\usepackage{booktabs}

\begin{document}

\csvautobooktabular{test.csv}

\end{document}

we can already get a passable result, as shown in
Table 1.

I used \csvautobooktabular because my table
fits on one page; for multiple-page tables, there is
\csvautobooklongtable.

Table 1: Result of \csvautobooktabular applied to our
comma-separated test file with header line.

Name Surname Height Gender

Paulinho van Duck .4 M

Paulette de la Quack .35 F

Enrichetta Pescatore 1.80

Henry Gregory M

As you may note, csvsimple does not itself load
booktabs nor longtable; hence you have to load
them separately.

The macros that do not need booktabs, that
is \csvautotabular and \csvautolongtable, pro-
duce tables with vertical lines. However, since TEX-
nicians love vertical lines in tables as much as chairs
covered with cactus, I recommend not using them,
quack!

Of course, we can improve our table.
For example, suppose we want to correctly align

the numeric data and change their heading, adding
the unit of measure, and also centering the “Gender”
column and swapping it with column “Height”.

All that can be done by putting a \csvreader

within a tabular environment:

\documentclass{article}

\usepackage{csvsimple}

\usepackage{booktabs}

\usepackage{siunitx}

\usepackage{makecell}

\begin{document}

\begin{tabular}{

lcS[table-format=1.2,round-mode=places]}

\toprule

Person/Duck & Gender &

{\makecell{Height\\ (\si{\metre})}}\\

\midrule

\csvreader[head to column names,

late after line=\\]{test.csv}{}%

{\Name\ \Surname & \Gender & \Height}

\bottomrule

\end{tabular}

\end{document}

or, directly, with the appropriate options in the
\csvreader command (in the following I will show
only the \csvreader commands; the rest of the code
is the same as before):

The DuckBoat—News from TEX.SE: Processing text files to get LATEX tables

12 TUGboat, Volume 40 (2019), No. 1

Table 2: A table created with \csvreader applied to
our comma-separated test file with header line.

Person/Duck Gender
Height
(m)

Paulinho van Duck M 0.40

Paulette de la Quack F 0.35

Enrichetta Pescatore 1.80

Henry Gregory M

\csvreader[

tabular={

lcS[table-format=1.2,round-mode=places]},

table head={\toprule

Person/Duck & Gender &

{\makecell{Height\\ (\si{\metre})}}\\

\midrule},

head to column names,

late after last line=\\\bottomrule,

]{test.csv}{}%

{\Name\ \Surname & \Gender & \Height}

Please note that I have also created a unique
column with name and surname, simply by using:
\Name\ \Surname

The output of the two previous examples is the
same, shown in Table 2.

The general syntax of the command is
\csvreader[〈options〉]{〈file name〉}%

{〈assignments〉}{〈command list〉}
where 〈file name〉 is the name of your text file and
〈command list〉 is executed for every line.

The 〈options〉 can provide instructions for the
table formatting, as follows.

With tabular=〈table format〉 you can specify
the column types you prefer.

In table head=〈code〉 you can insert the code
for the table headings.

late after line=〈code〉 is the code to be exe-
cuted after processing a line of the input file;5 if the
option tabular is present, it is set to \\ automati-
cally. Analogously, late after last line=〈code〉
is executed after processing the last line of the file.

When head to column names=true|false is
set to true (the default), the entries of the header
line of the input file are used automatically as macro
names for the columns.

This option cannot be used if the header entries
contains spaces, numbers or special characters, be-
cause only letters can be used in LATEX macro names.
If this is the case, you can set head to column

5 To tell the truth, it is a bit more complicated than this,
but for our purpose, we do not need to be fussy.

names=false and reference the columns with the
csvreader macros: \csvcoli (coli means the first
column; roman numerals are used since arabic numer-
als cannot appear in LATEX commands), \csvcolii,
\csvcoliii, and so on:

\csvreader[

tabular={

lcS[table-format=1.2,round-mode=places]},

table head={\toprule

Person/Duck & Gender &

{\makecell{Height\\ (\si{\metre})}}\\

\midrule},

head to column names=false,

late after last line=\\\bottomrule,

]{test.csv}{}%

{\csvcoli\ \csvcolii & \csvcoliv &

\csvcoliii}

Alternatively, you can take advantage of the
〈assignments〉 parameter, giving a customized macro
name to the column entry, with 〈name〉=〈macro〉,
where 〈name〉 is the arabic number of the column
(or the entry from the header, if you want to use
another macro to identify the column):

\csvreader[

tabular={

lcS[table-format=1.2,round-mode=places]},

table head={\toprule

Person/Duck & Gender &

{\makecell{Height\\ (\si{\metre})}}\\

\midrule},

head to column names=false,

late after last line=\\\bottomrule,

]{test.csv}{Name=\myn, 2=\mys, 3=\myh,

4=\myg}%

{\myn\ \mys & \myg & \myh}

It may be that your text file has no header line
giving the field names at all. In this case, we can
use head=false or its abbreviation no head (this
option cannot be used with \csvautotabular or
similar automated commands).

Let us see an example processing a second text
file which has no header line and semicolons instead
of commas as separators:

testnohead.csv

van Duck, Paulinho;.4;M

de la Quack, Paulette;.35;F

Pescatore, Enrichetta;1.80;

Gregory, Henry;;M

Herr Professor Paulinho van Duck

TUGboat, Volume 40 (2019), No. 1 13

Table 3: A table created with \csvreader applied to our
semicolon-separated test file with no header line; column
names are defined using the table head option.

N. Person/Duck Gender
Height
(m)

1 van Duck, Paulinho M 0.40

2 de la Quack, Paulette F 0.35

3 Pescatore, Enrichetta 1.80

4 Gregory, Henry M

Please note that, since the separators are semi-
colons, we can have commas in the entry. Entries
with commas would also be possible if the separators
were commas, but in that case the entries must be
surrounded by curly braces, for example:

{van Duck, Paulinho},.4,M

Generally, this can be done by the tool that pro-
duced the text file, or by any spreadsheet program.

The option separator=〈sign〉 indicates the sep-
arator character in the file, the possible values are:
comma, semicolon, pipe, and tab.

The following macro gives the result shown in
Table 3.

\csvreader[

tabular={

clcS[table-format=1.2,round-mode=places]

},

table head={\toprule

N. & Person/Duck & Gender &

{\makecell{Height\\ (\si{\metre})}}\\

\midrule},

nohead,

separator=semicolon,

late after last line=\\\bottomrule,

]{testnohead.csv}{1=\myn, 2=\myh, 3=\myg}%

{\thecsvrow & \myn & \myg & \myh}

You can see that I have also used the convenient
macro \thecsvrow to write the row numbers.

The above is plenty for basic usage, but the
csvsimple package has many other features.

With \csvset{〈option list〉} you can set some
options valid for all your \csvreader commands.

For example, if all your text files lack a header
line and are separated by pipes, you can set this once
for all as in the following, avoiding repeating them
every time:

\csvset{

nohead,

separator=pipe

}

\csvstyle{〈style name〉}{〈option list〉} allows
you to create any customized style you need.

For example, you could create mystyle:

\csvstyle{mystyle}{

tabular={

clcS[table-format=1.2,round-mode=places]

},

table head={\toprule

N. & Person/Duck & Gender &

{\makecell{Height\\ (\si{\metre})}}\\

\midrule},

nohead,

separator=semicolon,

late after last line=\\\bottomrule}

and then conveniently use it in your \csvreader

commands:

\csvreader[

mystyle

]{testnohead.csv}{1=\myn, 2=\myh, 3=\myg}%

{\thecsvrow & \myn & \myg & \myh}

There are also possibilities of filtering and sort-
ing; further, you can use \csvreader not only for
tables but also for any repetitive text, when the only
things that change are the data in the text file. I
will not discuss these features here, but I recommend
reading the package documentation [1] for all the
information.

4 Conclusions

I hope you enjoyed my explanation, and if you have
any problem in processing a CSV file, remember:

Ask van Duck for a quack solution!

References

[1] Thomas F. Sturm. The csvsimple package.
Manual for Version 1.20 (2016/07/01).
https://ctan.org/pkg/csvsimple.

⋄ Herr Professor Paulinho van Duck
Quack University Campus
Sempione Park Pond
Milano, Italy
paulinho dot vanduck (at) gmail dot com

The DuckBoat—News from TEX.SE: Processing text files to get LATEX tables

14 TUGboat, Volume 40 (2019), No. 1

No hands—the dictation of LATEX

Mike Roberts

Abstract

This article gives a brief introduction to a combi-
nation of open source extensions to Dragon Profes-
sional Individual dictation software which allow for
relatively easy dictation of LATEX syntax and mathe-
matical formulae.

While the primary use case is for people with
disabilities which prevent them from typing (repeti-
tive strain injuries caused by regular computer use
are surprisingly common), dictation may provide a
realistic alternative for normal users as well.

1 Introduction

1.1 Me

As an Economics undergraduate with a spinal in-
jury which precludes me from using a keyboard, I’ve
been using dictation software throughout my degree
for all exams, assignments and essays. This article
will focus on the workflow I’ve developed and the
tools that I use for dictating LATEX documents and
mathematical formulae relatively painlessly.

First, though, I will briefly describe the problem
space: what would ideally be made possible by a
dictation system and the limitations of what is cur-
rently available. I will then describe the technical
details and user experience of my setup.

1.2 Dictation software

If you are totally unfamiliar with dictation software,
the first thing I should say is that broadly speaking it
works well. With a good microphone, in a quiet room,
speaking clearly, it’s not unreasonable to expect in
excess of 99% accuracy when dictating full sentences.

The leader in the voice recognition industry has
for many years been Nuance (though with the cur-
rent rate of progress in machine learning their tech-
nological lead may soon evaporate). Their product,
Dragon, is marketed mainly for corporate, medical
and legal document preparation and works excel-
lently when dictating into Microsoft Word. For com-
pleting the full range of academic work without a
keyboard though, this basic dictation functionality
is necessary but not sufficient, and for those with
disabilities who cannot use a mouse, navigating a
graphical interface to access formatting options is an
active hindrance to getting things done.

For dictating mathematics, another commercial
product is available—MathTalk [3] is the industry
standard for mathematical dictation (the client list
on their website includes the Department of Defense

and Federal Aviation Authority, as well as many
universities). When I first tried it I was very dis-
appointed and quickly found it to be practically
unusable. Despite costing over $300 it is incredibly
slow to recognise and execute commands, and will
not accept more than two or three commands at a
time. This can easily be seen by watching any of
the videos on their website. Even with extra time
granted, the chances of being able to do well in ex-
ams when you have to wait half a second between
every character are minimal.

1.3 The problem

There is certainly room for improvement then, both
for normal documents and for mathematics. An ideal
dictation system of this kind should have a number
of features which are lacking from the commercial
offerings detailed above. Firstly, it should be able
to interpret commands as fast as the user can say
them, without the need to wait for output to appear
or to pause between commands. Secondly, it should
be customisable so that users can modify and add to
their grammar to suit it to their own needs. Finally,
of course, it should as far as possible be free and
open source.

2 Implementation

As I finish my degree and after a lot of experimenta-
tion I have settled on a solution which is as close to
this ideal as I can imagine. It can be used for almost
anything, can interpret commands as quickly as they
can be dictated, and is modifiable and extensible.

2.1 Building blocks

Although it is somewhat expensive, Dragon [4] is
by far the best speech recognition engine currently
available, and while its built-in tools for creating cus-
tom commands are limited, it is thankfully hackable.
This is done using Natlink [2], a free tool originally
created in 1999 by Joel Gould—then working at
Dragon—which allows for custom command sets
written in Python 2.7 to be imported into Dragon.

These custom commands are defined using an
open source Python library called Dragonfly [1],
which simplifies the process of creating grammars
and provides easy access to frequently used function-
ality like the typing of text and the execution of
keystrokes.

Together, these elements—Dragon, Natlink and
Dragonfly—allow for any combination of keystrokes
or Python scripts to be mapped to voice commands
which can be interpreted and executed fluidly and
with only minimal delay. While these tools have so
far primarily been used to enable voice programming,

Mike Roberts

TUGboat, Volume 40 (2019), No. 1 15

they can easily be repurposed for voice-enabling vir-
tually anything.

2.2 Mathfly

Mathfly [5] is my own contribution, and comprises
command sets for dictating raw LATEX as well as
using WYSIWYG editors like LYX.

Within Mathfly, commands are organised into
modules, each with a different purpose, which can
be enabled and disabled at will. For basic operations
like creating a new file there are also context specific
commands which will only be recognised when a
particular program is active.

To provide usability for non-programmers, pre-
dictable and common structures (like the begin, end
tags in LATEX) are hardcoded in Python while the
lists of options themselves are defined in plain text
configuration files which can all be opened and added
to with voice commands.

3 LATEX

LATEX represents an obvious and favourable alterna-
tive to dictating into word processing software for
a number of reasons. Writing everything in plain
text means that entire documents can be produced
by replicating keystrokes, without ever having to
navigate an awkward GUI. This provides the ability
to automate fiddly tasks like the creation of tables,
insertion of images and organisation of references—
a major win for those without the use of a mouse.

Dictating using Mathfly’s LATEX module is in-
tended to be as intuitive as possible and to work
largely as one would expect it to. Most commands
consist of a memorable prefix, which helps to avoid
over-recognition during dictation, followed by the
name of the desired item.

3.1 Basic commands

For example, saying “begin equation” produces:

\begin{equation}

\end{equation}

Similarly, “insert author” and “insert table of con-
tents” produces \author{} and \tableofcontents,
respectively, and “use package geometry” will pro-
duce \usepackage{geometry}.

LATEX commands can often be a little cryptic
and non-obvious. For example, to create a bulleted
list, you need:

\begin{itemize}

This is reasonably memorable once you have used it
a few times, but is not easily guessable, especially
for those of us living in countries which resist the
encroachment of the letter Z.

Mathfly attempts to make things as easy as
possible in cases like these by often providing multiple
voice commands for the same thing. In this case,
“begin itemize”, “begin list” and “begin bulleted list”
will all produce an itemize environment.

3.2 Mathematics

By default, all mathematical symbols are prefixed
with “symbol”, so “symbol integral” produces \int,
but there is also a mode specifically for dictating
symbols which does not require the prefix. Thus in
mathematics mode, “sine squared greek theta plus
cosine squared greek theta equals one” produces:

\sin ^{2} \theta +\cos ^{2} \theta =1

that is,
sin2 θ + cos2 θ = 1 (1)

3.3 Templates

For including larger sections of text, or sections which
don’t fit into any of the predefined commands, there
are templates—arbitrary strings which are pasted
with a voice command. For example, the command
“template graphic” pastes:

\begin{figure}[h!]

\centering

\includegraphics[width=0.8\textwidth]{}

\caption{}

\label{}

\end{figure}

Not only does this save a lot of time and rep-
etition, but as a novice user it is useful to be able
to outsource the task of remembering what settings
you like to use and how common command blocks
are constructed.

3.4 Configuration

As I mentioned above, it is easy for users to add to the
available commands by modifying the configurations
files. The command definitions for the LATEX module
look like this:

[environments]

"equation" = "equation"

...

[command]

"author" = "author"

...

and can be easily added to or modified.

3.5 Scripting

There are also intriguing possibilities for the inte-
gration of Python scripting. I’ve only scratched the
surface so far, but to give an example I can high-
light the title of a book or paper, say “add paper to

No hands—the dictation of LATEX

16 TUGboat, Volume 40 (2019), No. 1

bibliography” and a script will run which searches
Google Scholar for the title and appends the resulting
BibTEX citation to my .bib file.

4 WYSIWYG mathematics

For technical homework assignments and especially
exams, formatting is of far less importance than
getting what you know onto the paper as quickly
and easily as possible, so a what you see is what you
get (WYSIWYG) editor makes more sense.

Mathfly includes grammars for both LyX, an
open source LATEX editor, and Scientific Notebook,
a proprietary alternative which is often provided for
free by universities. They both function similarly and
allow for natural dictation of mathematical formulae
with immediately visible output.

For example, the command

integral

one over x-ray

right

delta

x-ray

equals

natural logarithm

x-ray

plus

charlie

can all be interpreted in one go and will produce the
desired output.

∫

1

x
dx = lnx+ c (2)

The only deviation from natural speech is the
requirement for a command (a right keypress) to
signal the end of the fraction.

I don’t have any hard data comparing the speed
of dictation like this to that of normal writing. I can
say, though, that I am technically allowed 50% extra
time for all exams but have never needed to make
use of it, suggesting that the two methods are fairly
comparable.

5 Limitations

The major limitations of dictation are currently not
functional— it performs about as well as could rea-
sonably be expected—but are related to platforms
and compatibility. Dragon and Natlink are only avail-
able on Windows (with a limited and soon to be dis-
continued version of Dragon available for MacOSX),
so the only feasible way of using software like Mathfly
on other operating systems is to run Dragon in a
Windows Virtual Machine, using remote procedure
calls to send instructions to the host.

The long-term prospects for a completely free
and platform agnostic dictation and voice command
framework are reasonably good, however. Dragonfly
is under active development with the aim of inte-
grating new speech engines like Carnegie Mellon Uni-
versity’s PocketSphinx and Mozilla’s DeepSpeech,
although these have a fairly long way to go before
they reach Dragon’s level of maturity and accuracy.

6 Getting started

Anybody interested can visit the Mathfly website [5],
which contains links to the documentation, installa-
tion instructions and a few short video demonstra-
tions. If you have any questions or requests then feel
free to email me, post in the Gitter chat room or on
the GitHub issues page.

References

[1] C. Butcher. Dragonfly, 2007.
pythonhosted.org/dragonfly

[2] Q. Hoogenboom. About Natlink, Unimacro and
Vocola. qh.antenna.nl/unimacro

[3] mathtalk.com. MathTalk—speech recognition
math software. mathtalk.com

[4] nuance.com. Dragon— the world’s no. 1 speech
recognition software (nuance UK).
nuance.com/en-gb/dragon.html

[5] M. Roberts. Mathfly— dragonfly/caster scripts
for dictating mathematics fluidly, 2019.
mathfly.org

⋄ Mike Roberts
mike (at) mathfly dot org

mathfly.org

Mike Roberts

TUGboat, Volume 40 (2019), No. 1 17

Nemeth braille math and LATEX source
as braille

Susan Jolly

Abstract

This article, which is dedicated to the late TEX ex-
pert Prof. Eitan Gurari [13], introduces braille math
for sighted persons unfamiliar with braille. Braille
systems represent print in one of two ways: either by
transcription or by transliteration. Most braille sys-
tems, including the Nemeth system for mathematics,
employ shorthand, markup, meaningful whitespace,
context-sensitive semantics, and other strategies to
transcribe general printed material to a six-dot braille
format that accommodates the special requirements
of tactile reading. Transliteration, by contrast, is
limited by the small number of braille cells and is
typically only used for representing plain text ASCII

files such as LATEX source and computer code.
This article argues that while reading and writ-

ing mathematics as LATEX source transliterated to
braille is possible for facile braille readers who have
eight-dot refreshable braille displays and are able to
learn LATEX, it is not an appropriate general solution
for making mathematics accessible to braille users.
Tactile reading of transliterated LATEX source is no
different from visual reading of LATEX source. On the
other hand, tactile reading of math transcribed using
the Nemeth system is the tactile analog to visual
reading of rendered math. Simulated braille is used
to illustrate this for the benefit of sighted readers.

1 Braille cells

Most sighted persons reading this article are proba-
bly at least somewhat familiar with the punctiform
appearance of braille and are aware that the dots
need to be physically raised for tactile reading as
opposed to visual reading. The individual braille
characters, which are usually referred to as braille
cells, are officially designated as Unicode Braille Pat-
terns. Technically speaking, the braille cells aren’t
characters per se but rather symbols assigned mean-
ings by a braille system. There are currently more
than 150 different braille systems. The majority
represent natural languages but there are several
systems for mathematics and for other specialized
material, including music and chess.

There are two forms of braille: six-dot and eight-
dot. The standard six-dot patterns are comprised of
three rows of two dot positions each and the eight-
dot ones are comprised of four such rows. There
are thus 63 different six-dot braille patterns with at
least one dot and 255 eight-dot ones. Unfortunately

Unicode does not treat the six-dot cells as separate
character codes, but simply as the subset of the eight-
dot patterns which happen to have both dot positions
in their fourth row unfilled. This omission requires
the use of additional information to avoid an extra
blank line when embossing a braille file encoded as
Unicode Braille that is intended as standard six-dot
braille and the use of a custom simulated braille font
to avoid misalignment when typesetting Unicode
Braille intended as six-dot braille.

2 Transliteration and computer braille

Conversion of print to braille is usually done with
braille systems using transcription, in order to accom-
modate the special requirements of tactile reading, in-
cluding those described later in this article. This sec-
tion describes conversion done with transliteration.

Transliteration is of limited practical use except
for conversion of plain text ASCII files to braille.
Since there are 94 ASCII keyboard characters (ex-
cluding space) and only 63 six-dot braille cells, one-
for-one transliteration of plain text files isn’t possible
with six-dot braille. Six-dot transliteration of plain
text files thus requires some sort of braille system
that uses both single-cell and two-cell (prefix-root)
symbols. One-for-one transliteration of plain text is
of course possible with the use of eight-dot braille.

General eight-dot braille systems aren’t widely
used since tactile recognition of all 255 eight-dot
cells isn’t feasible for the majority of tactile readers.
Nonetheless, many refreshable braille displays have
eight-dot cells and incorporate built-in support for
an ad hoc one-for-one eight-dot transliteration of the
ASCII characters. This transliteration is known as
computer braille because of its usefulness for repre-
senting computer code.

Computer braille adds 31 cells with a dot in the
left columns of their fourth rows to the 63 standard
six-dot cells. Twenty-six of these additional cells
simply represent capital letters by adding the extra
dot to the six-dot pattern for the corresponding small
letter. Several options for the remaining five are in
use. Because computer braille is a limited extension
to six-dot braille it, in contrast to general eight-dot
braille, is feasible for tactile reading.

Since computer braille specifies a one-for-one
transliteration of all 94 ASCII keyboard characters it
thus provides a method for braille users to directly
read and write any ASCII-based plain text including
classic LATEX source. The advantage is that computer
braille transliteration doesn’t require special software
to translate from print to braille or to back-translate
from braille to print. The disadvantage is that LATEX
source and many other plain text source files are

Nemeth braille math and LATEX source as braille

18 TUGboat, Volume 40 (2019), No. 1

primarily intended to be rendered for visual reading,
not to be read directly.

3 Nemeth braille math

The well-known six-dot Nemeth braille system, “The
Nemeth Braille Code for Mathematics and Science
Notation”, is an outstanding example of a braille
system. It was developed by Dr. Abraham Nemeth
(1918–2013), a congenitally blind American math-
ematician who became a facile braille reader as a
young child and was a math professor at Wayne
State University for some 30 years. It had been in
use for a number of years prior to the adoption and
publication of the current official version in 1972. A
PDF facsimile of the 1972 book is now available for
download [1]. This book incorporates a thoughtful
guide to numerous issues for converting print math
to braille so as to retain all the essential information
while avoiding extraneous print-specific details.

Nemeth braille was designed with a thorough
understanding of both mathematics and the require-
ments for efficient tactile reading as outlined in the
next section. Nemeth is a complete system for rep-
resenting text and mathematics and includes for-
matting specifications. Since it was designed long
before the use of digital media, it was originally in-
tended for embossed braille transcriptions of math
textbooks and other STEM material as well as for
direct entry of math by braille users. The Nemeth
system for mathematics has stood the test of time
and is used not only in the United States but in
numerous other countries, including India [12]. It is
used with refreshable braille displays and, like LATEX,
its “math mode” is used for representing individual
math expressions. There is also an equivalent form
for spoken math called MathSpeak. MathSpeak is a
unique method of speaking math since it is the only
method of speaking math that supports dictation of
math so it can be written correctly in either print or
Nemeth braille [5].

Although Nemeth braille is a complete system,
the United States, along with other English-speaking
countries, recently adopted the somewhat controver-
sial Unified English Braille (UEB) system [6]. In the
U.S. it replaces both Nemeth braille and the prior
system for English braille. The UEB math specifica-
tion is awkward for a number of reasons, one being
the use of the same braille cells for the decimal digits
and for the letters a–j. The negative reaction to UEB

math in the United States is significant enough that
many U.S. states allow for Nemeth math, tagged with
switch indicators, to be used for transcribing math
content together with UEB used only for non-math
text [2, lesson 3.8].

The next several sections of this article provide
background for understanding the pros and cons for
braille users of using computer braille to read and
write mathematics as transliterated LATEX source,
versus using Nemeth braille for that purpose.

4 Tactile reading

This section describes some of the aspects of tactile
reading that are taken into account when develop-
ing braille systems such as Nemeth braille. Note
that braille systems are linear because tactile readers
can’t easily sense the relative vertical positions of
the braille cells.

The rate of tactile reading, rather like the rate
of typing on a standard keyboard, depends more on
the number of braille cells than on the number of
words. Braille systems that have been designed to
minimize the number of braille cells can thus be read
more efficiently.

The rate of tactile reading is also affected by
particular dot patterns. For example the seven six-
dot braille cells that only have dots in their right
column are easier to recognize when used as markup
or indicators affecting a subsequent braille cell or
cells and are typically used for this purpose. The
cell with a single dot at the bottom of its right-
hand column indicates that the following letter is
capitalized. Nemeth braille uses several others of
these seven indicators to identify transliterations of
Greek and other non-English alphabets.

Certain braille cells or sequences can be hard to
distinguish from other possibilities. Distinguishing
a lower braille cell, one which has filled dots only
in its lower two rows, from the corresponding upper
cell, which has the same dot pattern in its upper two
rows, is an example. Nemeth uses the lower cells for
the decimal digits but ensures that they are easily
distinguished from the corresponding upper cells by
requiring a preceding dot locator indicator, a cell
with dots in all three rows, before a digit that would
otherwise be at the start of a line or preceded by a
space.

Braille systems can be easier to remember and
recognize when they use tactile mnemonics related to
the specific patterns of the braille cells. For example,
the cell with dots in the upper two positions on its
right is the superscript indicator and the one with
dots in the lower two positions on its right is the
subscript indicator. Another type of tactile mnemon-
ics in Nemeth braille uses related dot patterns for
related mathematical symbols. Examples are pairs
of mirror-image braille symbols used for parentheses
and for the less-than and greater-than symbols.

Susan Jolly

TUGboat, Volume 40 (2019), No. 1 19

Finally, Nemeth uses braille-specific constructs
to reduce the memory load for tactile comprehen-
sion of complex expressions. Nemeth, like LATEX
(or MathML), naturally represents planar layouts,
including fractions, in a linear manner. However,
when an expression, such as a fraction with another
fraction in its numerator, requires nested layout in-
dicators of the same type, Nemeth adds an explicit
indication of the nesting by prefacing outer layout
indicators with additional markup to represent the
order or level of nesting. (This is similar to the use-
fulness to visual readers of highlighting matching
pairs of nested parentheses using different colors for
each pair.)

In summary, braille systems like Nemeth braille
are carefully designed to accommodate the special
requirements of tactile reading. This is in contrast
to computer braille transliterations of plain text files
originally designed for other purposes.

5 Simulated braille example of Nemeth
math

This section uses simulated braille to display the
Nemeth braille translation of the well-known equa-
tion,

ex =

∫ x

−∞

∞
∑

n=0

λn

n!
dλ

This equation, chosen in part because it em-
ploys three different planar layouts, illustrates how
Nemeth’s elegant use of tactile mnemonics and other
tactile considerations enhances the tactile readability
and information content of the braille math.

First, here’s a transliteration from Nemeth braille
to standard ASCII Braille used for six-dot braille:

e^x .k $;-,=^x"".,s<n .k #0%,=]?.l^n"/n&#d.l

This may look odder than other markup languages,
but I’ve found it helpful and not too difficult to
learn. Of course, since braille transcribed according
to braille systems isn’t one-for-one with print and
also because the same braille cells typically have
different semantics in different contexts, an ASCII

Braille transliteration is simply a print equivalent of
the braille, not a backtranslation of the braille to
print. Nonetheless, the letters and digits and some
special characters can be read directly in transliter-
ated Nemeth math. Also, some of the other print
characters in ASCII Braille are used because their
glyphs resemble the dot patterns of the correspond-
ing braille cells.

The Nemeth braille for the example uses 40
braille cells and 4 spaces. The number of braille cells
is approximately 60 percent of the number of print
characters in the corresponding LATEX source.

5.1 Simulated display of Nemeth braille

The simulated braille for this expression is displayed
below in five segments to make the descriptions easier
to follow. Note that the standard six-dot simulated
braille font used here has shadow dots in the unfilled
positions. Shadow dots are intended to make visual
reading easier although one may need to take care
not to let the shadow dots obscure the dot patterns
of the corresponding tactile braille cells.

5.1.1 First segment

Now let’s try to see how the Nemeth braille for ex =
from the equation above would be experienced by
tactile readers. It looks like this:

e^x .k

The first and third cells are the standard cells
for the lower case letters e and x so are nothing
new for a braille reader. The second cell, described
previously, indicates that the following expression
is a superscript. This superscripted expression is
terminated by default by the space always required
before comparison symbols. The two-cell symbol for
an equals sign purposely resembles a print equals
sign, as Dr. Nemeth believed that such similarities
helped communication between braille readers and
their sighted peers and teachers.

5.1.2 Second segment

The second segment represents
∫ x

−∞
:

$;-,=^x"

The first cell in this segment, which somewhat
resembles an integral sign, is the braille symbol for
a single integral. The second cell is a subscript
indicator with its argument terminated by default
by the superscript indicator also used in the first
segment. The three cells following the subscript
indicator thus represent the subscripted expression.
The minus sign is obvious. It is followed by the
indicator cell with one dot in its lower right, familiar
to braille readers from its use to indicate capital
letters in six-dot systems. This indicator is also
used in Nemeth math to indicate that it together
with the next non-alphabetic cell is a special symbol;
here, the braille cell used for infinity, resembling
a rotated print infinity symbol. The cell following
the superscript indicator is the symbol for x, also
used above in the first segment, and the last cell
is required to explicitly terminate the superscripted
expression since the next item in the expression isn’t
a space.

Nemeth braille math and LATEX source as braille

20 TUGboat, Volume 40 (2019), No. 1

5.1.3 Third segment

The third segment is a symbol decorated with, as

termed in braille, an underscript and overscript,
∞
∑

n=0
:

".,s<n .k #0%,=]

The first cell in this segment, with just one dot,
is the indicator specifying that the next item is deco-
rated. The fourth cell is the braille cell for the letter
s, which is here transliterating a capital Greek sigma
per its two preceding indicators. This is followed
by the Nemeth underscript indicator and then the
expression for n = 0 which uses the standard cell
for the letter n, the same space-delimited symbol for
an equals sign used in the first segment; the number
sign dot locator described in Section 4, which is re-
quired because the following digit would otherwise
be preceded by a space; and then the lower cell for
the digit zero. The zero is followed by the Nemeth
overscript indicator and then the same two-cell sym-
bol for infinity used in the second segment. The last
cell is the required Nemeth terminator for any layout
using one or more underscripts and/or overscripts.

This is a case where the Nemeth math, which is
intended to represent print presentation in a consis-
tent manner, is especially lengthy in comparison with
the compact print rendering. It might be desirable
to develop more informative print shorthand rather
than replicating print presentation for common ex-
pressions that use underscripts and overscripts. For
example, since summation is essentially a function
application, a custom string like “sumnzi” could be
added to the function name abbreviations already
recognized by Nemeth braille. This would reduce the
number of braille cells and spaces for this segment
from 17 to 7 counting the extra space required to
separate a Nemeth function reference from its argu-
ment and would thus be a reduction of about 25% in
the number of braille cells in the entire expression.

5.1.4 Fourth segment

The fourth segment of the formula above is the frac-
tion λn

n! , which uses the Nemeth simple fraction lay-
out indicators:

?.l^n"/n&#

The first cell in this segment, which resembles
an upside-down print L, is a strong tactile shape
used as the fraction start indicator. The last cell,
which is used as a dot locator in other contexts,
is another strong tactile shape that is here used

as the fraction end indicator. The cell with two
dots that resembles a print forward slash separates
the numerator from the denominator. The third
cell is the letter l; you shouldn’t have too much
trouble reading the numerator since the other four
cells have already been encountered. The letter n in
the denominator is followed by the one-cell Nemeth
braille symbol for a factorial sign.

5.1.5 Fifth segment

The fifth and final segment, d.l, is simply dλ:

d.l

The first cell is the letter d. The remaining
two cells are the symbol for lambda also used in the
fourth segment.

5.2 LATEX source as simulated braille

I hope that these descriptions have allowed you to
appreciate how both the tactile form and the braille
symbols specified by Nemeth braille supply infor-
mation to tactile readers. Here, for contrast, is the
corresponding ASCII Braille transliteration of the
LATEX source for each segment:

e^x=

\int_{-\infty}^x

\sum_{n=0}^\infty

\frac{\lambda^n}{n!}

d\lambda

6 Conclusion and future work

Here is some good news: two hardware issues for real-
time access to braille have recently been addressed.
First, new hardware designs have resulted in signif-
icantly cheaper single-line braille displays such as
the six-dot BrailleMe [11]. Second, and of special
importance for braille math, is the newly available
six-dot Canute braille display which is not only low
in cost but also the first multi-line refreshable braille
display [3].

An urgent need for future work is accurate and
free automated backtranslation from braille math to

Susan Jolly

TUGboat, Volume 40 (2019), No. 1 21

print math. Currently available applications, most of
which are not free, are problematic and students typ-
ically require their often unavailable itinerant braille
teachers to interpret their braille work for their class-
room teachers. Addressing this issue is a current
goal of the Euromath project [4]. High school and
college students sometimes resort to learning to read
and write LATEX math as a result of poor support for
braille math. In my opinion their time as students
would be much better spent on improving their math-
ematical ability. In any case, LATEX source is not an
especially convenient basis for manipulating math.

A possible starting point for providing auto-
mated backtranslation is the beta version of my free
and open source BackNem 3.0 app for accurate back-
translation of Nemeth math to MathML, as demon-
strated by several samples [9]. This app, which is
based on the ANTLR 4 parser generator, is to my
knowledge the first use of parsing technology for
backtranslation of braille to print [7]. One valuable
feature of ANTLR 4, which is especially important
in educational contexts, is that its parsers can recog-
nize input errors, provide optional developer-supplied
error messages and, unlike other parsers, continue
processing despite encountering input errors.

Future work needed to support the claims in this
article includes development of a software system
for real-time conversion of LATEX source to six-dot
braille mathematics designed for integration with
screen readers and other applications. The difficulties
of direct conversion of LATEX to other formats is
well-known. A two-step process that first converts
LATEX to MathML with one of the currently available
applications and then converts MathML to braille
math is a more viable approach. This second step is
straightforward for Nemeth math due to similarities
between it and MathML, and a beta version of my
MML2Nem app is available for consideration of a new
approach [8,10]. The need for real-time translation
is especially critical for education due to the recent
dramatic increase in the use of electronic information
in this context.

Finally, I should point out that I’m not in a
position to develop the needed software nor to pro-
vide the infrastructure necessary to test, distribute,
or maintain software. I am however very glad to
volunteer to help other developers of open source
braille software as well as to answer questions about
braille mathematics.

References

[1] AAWB-AEVH-NBA, Advisory Council
to the Braille Authority, Louisville, KY.
The Nemeth Braille Code for Mathematics

and Science Notation. 1972 Revision, 1987.
www.brailleauthority.org/mathscience/

nemeth1972.pdf

[2] American Printing House for the Blind,
Inc., 1839 Frankfort Avenue, Louisville, KY.
Nemeth Tutorial, 2015. nemeth.aphtech.org

[3] Bristol Braille Technology CIC. Electronic
Braille: reimagined, 2018.
bristolbraille.co.uk

[4] EuroMath Education Platform. EuroMath
project, 2017. www.euromath.eu/wp-content/
uploads/2018/12/EuroMath_Presentation.

pdf

[5] gh, LLC. 2004 MathSpeak initiative, 2004.
www.gh-mathspeak.com

[6] C. Gray. Call to action: Prevent educational
harm to Braille readers, 2014.
all4braille.org/C1002.htm

[7] S. Jolly. Using ANTLR 4 for braille
translation, 2011.
github.com/SusanJ/BasicUEB/wiki

[8] S. Jolly. Positive impacts of EPUB 3: MathML
and Braille mathematics, 2012.
www.dotlessbraille.org/mathmlandbraille.

htm

[9] S. Jolly. Samples of BackNem 3.0 output, 2018.
github.com/SusanJ/Baknem/wiki/Samples

[10] S. Jolly. Translation of MathML to Nemeth
Braille, 2018. github.com/SusanJ/MML2Nem

[11] National Braille Press. Braille Me, n. d.
www.nbp.org/ic/nbp/BRAILLE-ME.html

[12] Overbrook School for the Blind; International
Council for Education of People with Visual
Impairment; The Nippon Foundation.
Mathematics Made Easy for Children with

Visual Impairment, 2005. www.hadley.edu/

Resources_list/Mathematics_Made_Easy_

for_Children_with_Visual_Impairment.

pdf

[13] D. Walden. Profile of Eitan Gurari
(1947–2009). TUGboat 30(2):159–162, 2009.
tug.org/TUGboat/tb30-2/tb95gurari.pdf

⋄ Susan Jolly
120 Dos Brazos
Los Alamos, NM 87544, USA
easjolly (at) ix dot netcom dot com

Nemeth braille math and LATEX source as braille

22 TUGboat, Volume 40 (2019), No. 1

Both TEX and DVI viewers inside the
web browser

Jim Fowler

Abstract

By using a Pascal compiler which targets WebAssem-
bly, TEX itself can be run inside web browsers. The
DVI output is converted to HTML. As a result, both
LATEX and TikZ are available as interactive input
languages for content on the web.

1 Introduction

Many people would like to make technical material
(often written in TEX) available on the World Wide
Web. Of course, this can be done via web pages, but
for mathematical expressions, HTML and MathML

produce inferior results. Consequently, many users
rely on client-side tools like MathJax [1] to provide
beautiful rendering for content in math mode.

There is also a need to go beyond math mode.
How might one render a TikZ [14] picture on the
web? In the past, this might have been done with
TEX4ht [8] to convert a TikZ picture to SVG. This
article describes the basis of a new method, TikZJax
[3], which, like MathJax, is client-side, perform-
ing its conversions in the client’s browser. When
the TikZJax JavaScript is run, any TikZ pictures
inside <script type="text/tikz"> tags are con-
verted into SVG images. TikZJax is emphatically not
a JavaScript reimplementation of TikZ, but instead
works by running ε-TEX itself inside the user’s web
browser; this copy of TEX is provided to the browser
with its memory already loaded with TikZ.

In short, TEX has been ported to JavaScript.
This article describes how we ported TEX to the
JavaScript-based environment of web browsers, and
how we render the resulting DVI output in HTML.
We hope that making TEX itself available in the
browser will open up many new possibilities.

2 A Pascal compiler targeting web
browsers

TEX was written in an era when computing resources
were rather more constrained than today. Many of
those constraints have returned within the JavaScript
ecosystem, e.g., JavaScript is slower than native code
and has limited access to persistent storage.

2.1 Goto is a challenge

To run TEX in a web browser, we initially wrote
a Pascal compiler targeting JavaScript. The main
challenge is handling goto which is used fairly fre-
quently in Knuth’s code (especially since the Pascal
of that era did not offer an early return from pro-

cedures and functions), and does not exist as such
in JavaScript. However, JavaScript does support
labeled loops, labeled breaks, labeled continues, and
alongside a trampoline-style device it is possible to
emulate in JavaScript the procedure-local gotos used
in TEX. There are a handful of cases in which a non-
local goto is used by TEX to terminate the program
early, but early termination can also be handled in
JavaScript.

Thus, it is possible to transpile Pascal to Java-
Script. However, it turns out that running TEX
inside JavaScript is not particularly efficient!

2.2 WebAssembly

WebAssembly [9] provides a speedier solution. Web-
Assembly is a binary format for a stack-based virtual
machine (like the Java Virtual Machine) which runs
inside modern web browsers and is designed as a
compilation target for languages beyond JavaScript.
There is still no support for goto, but the same tricks
with labeled loops that make goto possible in Java-
Script again work in WebAssembly. Our compiler
web2js [4] digests the dialect of Pascal code that
TEX is written in and outputs WebAssembly, which
can then be run inside modern web browsers. We
chose the “web” in web2js to evoke both WEB and
also the World Wide Web.

WebAssembly, as it is currently implemented in
web browsers, does not provide any high-level dy-
namic memory allocation; it is possible to resize the
heap but nothing like malloc is provided. Given that
TEX also does no dynamic allocation, it’s relatively
easy to compile TEX to this target.

Since we want to run LATEX in the browser, it is
necessary to use a TEX distribution which supports
the ε-TEX extensions. So before feeding the Pascal
source code to web2js, we TANGLE in the change file
for ε-TEX. Other change files are needed too. For
instance, there is a patch to the Pascal code needed
to get the current date and time from JavaScript.

Some additional JavaScript code is needed to
support components missing in the browser. For
instance, there is no filesystem in the browser, so the
Pascal filesystem calls make calls to JavaScript which
provides a fake filesystem. The terminal output of
TEX can be viewed by opening the “Web Console” in
the web browser. Satisfyingly, when it is all working,
the TEX banner is visible right there.

2.3 Why Pascal? Why not C?

There are other approaches to getting TEX to run
well in a web browser. An older project, texlive.js,
achieves this goal via emscripten [15], a C compiler
which targets WebAssembly. The resulting website

Jim Fowler

TUGboat, Volume 40 (2019), No. 1 23

enables client-side creation of a PDF, and so depends
on a PDF viewer to see the result. S. Venkatesan
[13] discussed this approach and the limitations of
PDF output in particular.

2.4 Putting it all together

In the quest for better performance, the same tricks
that TEX used historically with format files and mem-
ory dumps can be reused in the web browser. The
underlying theme is that the ecosystem of a web
browser, and its limitations, is more similar to com-
puting in the early 1980s than might have been easily
believed.

As with teTEX version 3.0, we do not bother
making a special initex version and simply allocate
a large number of memory cells to a single version
of TEX. A program called initex.js then loads
the initial LATEX format (with only some hyphen-
ation data) and whatever piece of a preamble (e.g.,
\usepackage{tikz}) might be useful for the desired
application. Then the WebAssembly heap is dumped
to disk, just as would have been done with virtex his-
torically. This produces a file, core.dump.gz, which
is only a couple of megabytes (after compression).

Note that initex.js is executed on a machine
that already has a complete TEX distribution in-
stalled, such as TEX Live. By loading packages and
then dumping core on a machine with a complete
distribution, it is not necessary to ship much in the
way of support files to the browser.

On the browser, both the WebAssembly machine
code and core.dump.gz are loaded, the dump decom-
pressed, and execution begins again at the beginning
of the TEX code but this time with the previously
dumped memory already loaded. As described in the
TEX82 source code [11, Part 51, Section 1331], when
TEX is loaded in such a fashion, the ready_already
variable is set in such a way as to shortcut the usual
initialization, making this browser-based version of
TEX ready to receive input very quickly.

3 Rendering DVI in HTML

Running TEX is only half the problem. To build
a viewer for the output of TEX, the easiest format
to parse is DVI [6, 7]. A DVI file is just a series of
commands which change the current position, place
characters and rules on the page, change the current
font, etc.

Some previous projects make it possible to view
DVI files from within web browsers. For instance,
dvihtml [12] uses DVI specials to appropriately tag
pieces of the content so that they can be wrapped
by appropriate HTML tags, similar to TEX4ht [8].

Other projects like DVI2SVG [5] translate DVI into
SVG with a Java-based tool.

Our new tool is called dvi2html [2] and works
somewhat differently. For starters, unlike DVI2SVG,
our new tool is written in JavaScript (and mostly
TypeScript) so it runs in the browser. It is used to
read the output of ε-TEX, running in the browser,
and output HTML in real-time.

3.1 Fonts

Why wasn’t all this done years ago? One signifi-
cant challenge was the state of “fonts” on the web.
Conveniently, it is possible (and relatively easy with
CSS) to load server-provided fonts. To support Com-
puter Modern and the like, dvi2html presently relies
on the BaKoMa TrueType fonts, but given their li-
cense, it would be good to generate fonts for the web
following MathJax’s technique.

It must be mentioned that while fonts can be
loaded, the web ecosystem lacks a robust way to
query metric information. So we still end up shipping
the standard collection of .tfm files to the browser,
all base64-encoded and placed into a single .json

file. A significant portion of the code comprising
dvi2html is designed to parse TEX Font Metric files.

3.2 The challenge of the baseline

But selecting the appropriate typeface is not enough;
an HTML viewer for DVI must also position the
glyphs in the appropriate positions. This is sadly
harder than it ought to be. Although HTML5 sup-
ports many methods for positioning text, it does
not support positioning text relative to a specified
baseline.

A solution to this is available precisely because
of the previously loaded metric information. By
knowing where the top of the glyph is relative to the
baseline, we can use HTML to place the glyph in the
correct position.

3.3 Streaming transformation

Instead of a monolithic converter, dvi2html is struc-
tured as a streaming transformer via asynchronous
generator functions. In particular, an input stream
is transformed into an object stream of DVI com-
mands. Since many DVI commands come in a variety
of lengths (i.e., one-byte, two-byte, three-byte, four-
byte versions), this initial transformation collapses
the variety of commands in the binary format to a
single command.

Armed with a sequence of DVI commands, addi-
tional transformations can be applied. For instance,
there is some overhead to placing a single glyph

Both TEX and DVI viewers inside the web browser

24 TUGboat, Volume 40 (2019), No. 1

on the page in HTML, so one transformer takes se-
quential SetChar commands from the DVI input and
collects them into a single SetText command which
can place a sequence of glyphs on the page at once.

The real benefit, though, to stream transfor-
mations is that the various transformations can be
composed, with new transformations plugged in as
desired. For instance, a package like xcolor will
generate \specials with push color and pop color
commands, and these can be processed by a single
stream transformer which understands these color
commands. Another composable transformer knows
about raw SVG data and can appropriately emit such
code into the generated HTML.

Finally, this sort of design will make it possible
to compose new transformers for hitherto unimagined
\specials. Most interestingly, such \specials could
facilitate additional interactivity on the web in future
versions.

4 Some next steps

The tools for running TEX itself inside a browser are
useful for more than TikZJax. For instance, these
same tools make a “live LATEX editor” possible in
which a user can edit LATEX source in a web page
and view the resulting DVI without installing soft-
ware and without relying on a cloud-based LATEX
compilation service.

The Ximera platform provides \answer which
creates answer blanks within mathematical expres-
sions. For instance, 1 + 3 = \answer{4} creates an
equation in which the right-hand-side is an answer
blank. It would be wonderful to add \answer to a
copy of LATEX running in the browser.

Additional extensions to TEX itself are possible,
like a hypothetical jsTEX which would extend TEX
with the ability to execute JavaScript code, akin to
LuaTEX [10]. The reader can imagine additional
applications of this platform.

References

[1] D. Cervone. MathJax: A platform for
mathematics on the Web. Notices of the

AMS 59(2):312–316, 2012. ams.org/notices/
201202/rtx120200312p.pdf

[2] J. Fowler. dvi2html. github.com/kisonecat/
dvi2html, 2019.

[3] J. Fowler. TikZjax. github.com/kisonecat/
tikzjax, 2019.

[4] J. Fowler. web2js. github.com/kisonecat/

web2js, 2019.

[5] A. Frischauf and P. Libbrecht. DVI2SVG:
Using LATEX layout on the Web. TUGboat

27(2):197–201, 2006. tug.org/TUGboat/

tb27-2/tb87frischauf.pdf

[6] D. Fuchs. The format of TEX’s DVI

files. TUGboat 1(1):17–19, Oct. 1980.
tug.org/TUGboat/tb01-1/tb01fuchs.pdf

[7] D. Fuchs. Erratum: The format of TEX’s DVI

files. TUGboat 2(1):11–11, Feb. 1981. tug.

org/TUGboat/tb02-1/tb02fuchszab.pdf

[8] E. M. Gurari. TEX4ht: HTML production.
TUGboat 25(1):39–47, 2004.
tug.org/TUGboat/tb25-1/gurari.pdf

[9] A. Haas, A. Rossberg, et al. Bringing the
web up to speed with WebAssembly. ACM

SIGPLAN Notices 52(6):185–200, 2017.

[10] T. Hoekwater. LuaTEX. TUGboat

28(3):312–313, 2007. tug.org/TUGboat/

tb28-3/tb90hoekwater-luatex.pdf

[11] D. E. Knuth. TEX82. Stanford University,
Stanford, CA, USA, 1982.

[12] M. D. Sofka. TEX to HTML translation via
tagged DVI files. TUGboat 19(2):214–222,
June 1998.
tug.org/TUGboat/tb19-2/tb59sofka.pdf

[13] S. K. Venkatesan. TEX as a three-stage
rocket: Cookie-cutter page breaking. TUGboat

36(2):145–148, 2015. tug.org/TUGboat/

tb36-2/tb113venkatesan.pdf

[14] Z. Walczak. Graphics in LATEX using
TikZ. TUGboat 29(1):176–179, 2008.
tug.org/TUGboat/tb29-1/tb91walczak.pdf

[15] A. Zakai. Emscripten: An LLVM-to-JavaScript
compiler. In Proceedings of the ACM

International Conference Companion on

Object Oriented Programming Systems

Languages and Applications Companion, pp.
301–312. ACM, 2011.

⋄ Jim Fowler
100 Math Tower, 231 W 18th Ave
Columbus, Ohio 43212
USA
fowler (at) math dot osu dot edu

http://kisonecat.com/

Jim Fowler

TUGboat, Volume 40 (2019), No. 1 25

Markdown 2.7.0: Towards lightweight
markup in TEX

Vít Novotný

Abstract

Markdown is a lightweight markup language that
makes it easy to write structurally simple documents.
Existing tools for rendering markdown documents
to PDF treat TEX as a black box. In contrast, the
Markdown package provides support for styling and
typesetting markdown documents in TEX, extending
a TEXie’s toolbox rather than forcing her to replace
TEX with a more limited tool.

Since its release in 2016, the package has re-
ceived several important updates improving the func-
tionality and user experience. In this article, I will
reintroduce the package, and describe its new func-
tionality and documentation.

1 Introduction

The primary strength of TEX lies perhaps in its
programming and typesetting capabilities, not its
syntax. Outside mathematics, non-programmable
markup languages such as Markdown [2] provide
a gentler learning curve, improved readability, and
effortless single-source publishing for an author.

Existing tools for rendering markdown docu-
ments to PDF, such as Pandoc [1, 3] and MultiMark-
down, have several important disadvantages, which
I discussed in my previous article [5]. These dis-
advantages include black-boxing TEX, inconsistent
support for TEX commands in markdown documents,
increased complexity of maintenance, and the lack of
support for online TEX services such as Overleaf. The
Markdown TEX package [5] overcomes all of these.

In my previous article, I introduced version 2.5.3
of the Markdown package, which was plagued by sev-
eral shortcomings: The package would not function
correctly when the -output-directory TEX option
was specified, since the package interacts with an ex-
ternal Lua interpreter that is unaware of TEX options.
The package was also wasteful with system resources,
clogging up the file system with converted markdown
documents unless the user cleaned them up manually.
The documentation of the package was complete, but
provided little help to the non-technical user.

In this article, I introduce version 2.7.0 of the
Markdown package, which tackles the above prob-
lems and introduces several new features, such as
content slicing and the Lua CLI. In Section 2, I will
show the new features. In Section 3, I will describe
the new documentation of the package.

2 New features

Between versions 2.5.3 and 2.7.0 of the Markdown
package, there was one important patch version,
2.5.4, and two important minor versions, 2.6.0 and
2.7.0. Version 2.5.4 added support for the TEX op-
tion -output-directory, version 2.6.0 introduced
the Lua command-line interface (CLI) and added sup-
port for the doc LATEX package [4], and version 2.7.0
introduced the user manual and content slicing.

In this section, I will show the new features. Al-
though the package also supports plain TEX and Con-
TEXt, all examples are in LATEX for ease of exposition.

2.1 Setting the output directory

TEX provides the -output-directory option, which
changes the working directory for the TEX document.
This allows the user to redirect auxiliary files to a
separate location. However, any external programs
executed using the \write18 mechanism run in the
original working directory. Since the Markdown pack-
age executes a Lua interpreter, which expects to find
auxiliary files produced by the package in the current
working directory, this presents a problem.

To solve the problem, version 2.5.4 of the Mark-
down package introduced the new outputDir option,
which informs the Lua interpreter where it should
look for the auxiliary files. Create a text document
named document.tex with the following content:

\documentclass{article}

\usepackage[outputDir=/dev/shm]{markdown}

\begin{document}

\begin{markdown}

A First Level Header

====================

A Second Level Header

Now is the time for all good men to come to the

aid of their country. This is just a paragraph.

\end{markdown}

\end{document}

Execute the following command to produce a doc-
ument with a single section, subsection, and para-
graph, redirecting auxiliary files to /dev/shm (the
RAM disk available on recent Linux kernels):

pdflatex -output-directory /dev/shm \

-shell-escape document.tex

2.2 The Lua command-line interface

The Markdown package hands markdown documents
to a Lua parser. The parser converts them to TEX
and hands them back to the package for typesetting
(see Figure 1). This procedure has the advantage of
being fully automated. However, it also has several

Markdown 2.7.0: Towards lightweight markup in TEX

26 TUGboat, Volume 40 (2019), No. 1

User TEX Lua

\jobname.tex

\jobname.markdown.in

\jobname.markdown.out

\input\jobname.markdown.out

\jobname.pdf

Figure 1: A sequence diagram of the Markdown
package typesetting a markdown document using the
TEX interface.

User TEX Lua

〈document〉.md

〈document〉.tex

\jobname.tex

\input 〈document〉

\jobname.pdf

Figure 2: A sequence diagram of the Markdown
package typesetting a markdown document using the
Lua command-line interface.

important disadvantages: The converted TEX doc-
uments are cached on the file system, taking up an
increasing amount of space. Unless the TEX engine
includes a Lua interpreter, the package also requires
shell access, which opens the door for a malicious
actor to access the system. Last, but not least, the
complexity of the procedure also impedes debugging.

A solution to the above problems is to decouple
the conversion from the typesetting. First, the user
converts markdown documents to TEX. Then, she
typesets the TEX documents using the \input TEX
command (see Figure 2). Before the first step, the
user can remove any previously cached TEX docu-
ments. Before the second step, she can transform the
TEX documents according to her need. During the
second step, she does not need to provide shell access
to TEX. Since the individual steps are separated, the
source of an error is immediately obvious.

To enable this workflow, version 2.6.0 of the
Markdown package introduced the Lua CLI, which

is a separate Lua program that can be executed
from the shell. Create a text document named
example.md with the following content:

Some of these words *are emphasized*.

Use two asterisks for **strong emphasis**.

Next, execute the kpsewhich markdown-cli.lua

command to find the location of the Lua CLI, such as
/usr/local/texlive/2019/texmf-dist/scripts/

markdown/markdown-cli.lua on GNU/Linux with
TEX Live 2019. Execute texlua 〈location of the Lua

CLI 〉 -- example.md example.tex to convert the
example.md markdown document to TEX. Finally,
create a text document named document.tex with
the following content:

\documentclass{article}

\usepackage{markdown}

\begin{document}

\input example

\end{document}

Execute the pdflatex document.tex command to
produce a document with one formatted paragraph.

2.3 Documenting LATEX packages

The doc LATEX package makes it possible to docu-
ment a LATEX document by writing a second LATEX
document in the comments. This approach to docu-
mentation is referred to as literate programming and
is popular with LATEX package authors, as it keeps
the documentation close to the documented code.

To encourage contributions and readability, doc-
umentation can benefit from the use of a lightweight
markup language such as Markdown. To allow this
use case, version 2.6.0 of the Markdown package
introduced the stripPercentSigns option, which
informs the Lua interpreter that it should strip per-
cent signs from the beginnings of lines in a mark-
down document. Create a text document named
document.dtx with the following content:

% \iffalse

\documentclass{ltxdoc}

\usepackage[stripPercentSigns]{markdown}

\begin{document}

\DocInput{document.dtx}

\end{document}

% \fi

% \begin{markdown}

% * Candy.

% * Gum.

% * Booze.

% \end{markdown}

Execute the following command to produce a docu-
ment with an unordered list:

pdflatex -shell-escape document.dtx

Vít Novotný

TUGboat, Volume 40 (2019), No. 1 27

2.4 Content slicing

Despite its simplicity (or perhaps because of it),
Markdown has become a popular choice for writing
all kinds of documents ranging from notes and lec-
ture slides to books that span hundreds of pages.
When typesetting these documents, it is often useful
to typeset only a small part of them: Lecture slides
spanning an entire term can be chopped into lectures.
Bits and pieces from a ragtag of notes can be put to-
gether into a single coherent document. A behemoth
of a book that takes thirty minutes to compile may
take only one, when a single chapter is requested.

To make markdown documents more easily sty-
lable, there exist syntax extensions for assigning
HTML attributes to markdown elements. To enable
typesetting only a part of a markdown document,
version 2.7.0 of the Markdown package provides
the headerAttributes and slice options. The
headerAttributes option enables the Pandoc syn-
tax for HTML attributes and the slice option spec-
ifies which part of a document should be typeset.
Create a text document named document.tex with
the following content:

\documentclass{article}

\usepackage[headerAttributes]{markdown}

\usepackage{filecontents}

\begin{filecontents*}{example.md}

Palačinky

Crêpe-like pancakes, best served with jam.

Step 3 {#step3}

Repeat step 2 until no batter is left.

Step 1 {#step1}

Combine the ingredients and whisk until you

have a smooth batter.

Step 2 {#step2}

Heat oil on a pan, pour in a tablespoonful of

the batter, and fry until golden brown.

\end{filecontents*}

\begin{document}

\markdownInput[slice=^ ^step3]{example.md}

\markdownInput[slice=step1 step2]{example.md}

\markdownInput[slice=step3]{example.md}

\end{document}

Execute the following command to produce a docu-
ment with one section and three subsections:

pdflatex -shell-escape document.tex

3 Documentation

Presentation software, Tufte [6] argues, carries its
own cognitive style that impedes communication.
Similarly, literate programming tends to produce
documentation that is poorly structured, because it

adheres too closely to the documented code. Some
LATEX packages provide a user manual that is writ-
ten independently of the documented code. While
this improves readability, it also sacrifices literate
programming and its ease of maintenance.

Before version 2.5.6, the Markdown package only
provided technical documentation produced by liter-
ate programming. Since version 2.5.6, the package
also provided a user manual aimed at the end user
rather than a developer. This manual was, however,
still produced using literate programming, leading
to poor text structure. Since version 2.7.0, the user
manual is combined from three texts describing user
interfaces, package options, and markdown tokens,
respectively. This leads to readable documentation
without sacrificing literate programming.

4 Conclusion

TEX is a fine tool for typesetting many kinds of docu-
ments. It may, however, not be the best language for
writing them. When preparing structurally simple
documents, lightweight markup languages such as
Markdown are often the best choice. In this article,
I described the new features and documentation in
version 2.7.0 of the Markdown package.

Acknowledgments

I gratefully acknowledge the funding received from
the Faculty of Informatics at the Masaryk University
in Brno for the development of the package.

Support for content slicing was graciously spon-
sored by David Vins and Omedym.

References

[1] M. Dominici. An overview of Pandoc. TUGboat
35(1):44–50, 2014. tug.org/TUGboat/tb35-1/

tb109dominici.pdf.

[2] J. Gruber. Daring Fireball: Markdown, 2013.
daringfireball.net/projects/markdown.

[3] J. MacFarlane. Pandoc: A universal document
converter, 2019. pandoc.org.

[4] F. Mittelbach. The doc and shortvrb Packages, 2018.
ctan.org/pkg/doc.

[5] V. Novotný. Using Markdown inside TEX
documents. TUGboat 38(2):214–217, 2014.
tug.org/TUGboat/tb38-2/tb119novotny.pdf.

[6] E. R. Tufte. The Cognitive Style of PowerPoint.
Graphics Press Cheshire, CT, 2nd edition, 2006.

⋄ Vít Novotný
Nad Cihelnou 602
Velešín, 382 32
Czech Republic
witiko (at) mail dot muni dot cz

https://github.com/witiko

Markdown 2.7.0: Towards lightweight markup in TEX

28 TUGboat, Volume 40 (2019), No. 1

New front ends for TEX Live

Siep Kroonenberg

Abstract

The 2018 release of TEX Live saw new front ends for
TEX Live Manager and for the installer. This article
describes tlshell, which is one of the two new TEX
Live Manager front ends, and the new installer GUI.

There is also a new Java-based front end for
TEX Live Manager by Norbert Preining, tlcockpit,
but that is not discussed here.

1 Introduction

During 2017 and 2018, a few new GUIs have been
built for TEX Live Manager and for the TEX Live
installer.

The graphical versions of the installer and of
TEX Live Manager date back from the 2008 overhaul
of TEX Live. The Perl/Tk-based GUIs were showing
their age, so it was getting to be time for a fresh
start, based on more up-to-date technology.

2 Tlshell

The new tlshell GUI for TEX Live Manager (fig. 1)
is a somewhat simpler version of the Perl/Tk GUI

mode of TEX Live Manager. The only option on offer
for multiple repositories is a checkbox for adding or
removing ‘tlcontrib’, which contains packages which
cannot be part of TEX Live for one reason or another.

I hope that tlshell still offers the features that
most users need. Anyhow, all features of TEX Live
Manager are still available via the command-line,
and tlshell is not confused by multiple repositories
configured by other means (fig. 2).

3 Installer

The new installer GUI offers roughly the same config-
uration options as the old one, the initial basic mode
matching the old wizard installer, and the advanced

Figure 1: Tlshell, a GUI for TEX Live Manager

Figure 2: Tlshell configuring repositories (macOS)

Figure 3: The installer, starting up in basic mode
(Windows). Note the ‘Advanced’ button.

Figure 4: The installer, after pressing the ‘Advanced’
button (GNU/Linux).

mode, triggered by an ‘Advanced’ button, matching
the Perl/Tk advanced GUI (figs. 3, 4).

The dialog for selecting the installation root,
which was introduced soon after the official 2018
release, has been adapted for the new GUI (fig. 5).

4 Separating front end and back end

For the new GUIs, Norbert and I opted for build-
ing GUI front ends as separate programs from a
text-mode back end. We were leery of committing
ourselves to another Perl extension library which
might run out of steam, and hope to have better luck
with standalone GUI technology.

Siep Kroonenberg

TUGboat, Volume 40 (2019), No. 1 29

Figure 5: Dialog with directory browser for the
installation root (macOS). On Windows the native
directory browser is used instead.

4.1 Conversations

If the text mode back end is organized as a conver-
sation, say, consisting of user requests and program
responses, then this conversation can be diverted
through a graphical front end.

A graphical front end can represent options and
commands as buttons, and can display results within
the GUI in a variety of ways, e.g. raw text output
can go to a scrolling text window, or the output
can be interpreted and used to update displayed
information.

For TEX Live Manager, Norbert introduced a
new shell mode as such a conversation: users can
type their requests within TEX Live Manager, which
typically match normal TEX Live Manager command-
line commands. TEX Live Manager then carries out
those requests, handles the resulting output, and
keeps running to receive more requests.

4.2 The installer as a conversation

As to the installer: the text mode installer has been
such a conversation from day one. Its text layout
mimics the graphical installer, but it is in essence
a conversation, with mostly single-letter user com-
mands, and with replies in the form of a rewritten
text screen with appropriate changes.

All three old installer menu interfaces load their
own Perl include file, which finishes by informing the
main installer of the choices made.

A new fourth Perl include file now takes care of
communicating with the GUI front end. Only minor
changes were needed in the main installer code. In
writing this include file I took some cues from the
text installer.

4.3 Data

A drawback of a separate front end is that it does not
have automatic access to the internals of the back
end. The conversation must take care of transmitting
data from the back end to the front end and back,
not only at the beginning and at the end, but also
when the front end wants an update on, for instance,
the required disk space. Some duplication between
front end and back end is unavoidable, but it was
not too much of a problem.

5 Tcl/Tk

I built the new installer GUI and tlshell with the
Tcl/Tk scripting language. Frankly, I did not do a
lot of research into other options. I am familiar with
Tcl/Tk and like it: it is simple, small, cross-platform,
is well-supported and has good backward compati-
bility. Plus, I could borrow ideas and solutions from
the old Perl/Tk GUIs.1

As to platform support: Tcl/Tk is already part
of macOS, and is packaged for all mainstream GNU/
Linux distributions.

For Windows, compiling or cross-compiling Tcl/
Tk and adding it to TEX Live proved to be no par-
ticular problem. Even better, thanks to Keene’s Kit-
Creator project (kitcreator.rkeene.org/fossil),
I could build Tcl/Tk as a single-file executable.

6 Localization

The msgcat Tcl core package provides localization
support. This package tries to determine the system’s
locale, but it is also possible to set a locale explicitly.

The built-in function for translating strings uses
Message Catalogs. Typically, these are generated
from .po files such as those used by the previous
TEX Live GUIs.

In order to accommodate translators, the Tcl/Tk
GUIs use those same .po files directly, with help of a
tcl version of Norbert Preining’s translation function
written for TEX Live. Therefore, any translatable
string which was already in the old GUIs will be
picked up by the new ones.

⋄ Siep Kroonenberg
siepo (at) bitmuis dot nl

https://tug.org/texlive

1 The Tk in Perl/Tk is a derivative of the Tk from
Tcl/Tk, but has not kept up with Tcl/Tk itself. For the
2019 release, Perl/Tk will no longer be present in TEX Live’s
built-in distribution of Perl for Windows.

New front ends for TEX Live

30 TUGboat, Volume 40 (2019), No. 1

TinyTeX: A lightweight, cross-platform,
and easy-to-maintain LATEX distribution
based on TEX Live

Yihui Xie

Abstract

As a LATEX user for 15 years, I have suffered from
two problems related to the installation of LATEX
and maintenance of packages: 1) The full versions
of common LATEX distributions are often too big,
whereas the smaller basic versions often lack pack-
ages that I frequently use; 2) It is tedious to figure
out which missing packages to install by reading
the error log from the LATEX compilation. TinyTeX
(https://yihui.name/tinytex/) is my attempt to
address these problems. The basic version of Tiny-
TeX is relatively small (150MB on Linux/macOS

when installed), and you only install additional pack-
ages if/when you actually need them. Further, if you
are an R user, the installation of missing packages
can be automatic when you compile LATEX or R Mark-
down documents through the R package tinytex.

1 Motivation

If you do not want to be bothered by LATEX errors
that tell you certain class or style files are missing,
one way to go is to install the full version of the
LATEX distribution, which typically contains the vast
majority of packages on CTAN. Take TEX Live for
example. The size of its full version is 4 to 5GB.
Yes, I do hear the argument that hard disk storage
is fairly cheap today. Why should this 5GB bother
us at all? The problems are:

• It can take a long time to download, although we
usually do this only once a year. However, if you
use a cloud service for continuous integration or
testing (e.g., Travis CI) of your software package
that depends on LATEX, this can be worse, be-
cause each time you update your software (e.g.,
though a GIT commit), the virtual machine or
cloud container downloads 5GB again.

• It contains a lot of LATEX packages that an aver-
age user does not need. I do not know if I’m a
representative user, but for the more than 5600
packages on CTAN, I routinely use less than 100
of them. In other words, I’m just wasting my
disk space with more than 98% of the packages.

• It takes much longer to update packages if you
choose to update all via tlmgr update --all

(and you will be installing newer versions of
packages that you do not need, too).

Without installing the full version, you may be
confused when compiling a document and a needed

package is not installed. The report at github.com/
rstudio/rmarkdown/issues/39 is a good example
to show how users can be confused. The main reason
for the confusion is that an error message like the
one below does not tell you how to resolve the issue
(i.e., which package to install and how to install it):

! Error: File ‘framed.sty’ not found.

Type X to quit or <RETURN> to proceed,

or enter new name. (Default extension: sty)

Enter file name:

Even worse, TEX Live can be different on differ-
ent platforms. For example, if you use a Linux dis-
tribution’s packaging of TEX Live, typically you can-
not just install the (system) package named framed

even if you know framed.sty is from the (LATEX)
package framed, because TEX Live is often made
available by distributions as collections of (LA)TEX
packages, so you have to figure out which system
package contains the LATEX package framed. Is it
texlive-framed, or texlive-latex-extra? On
another front, if you use MacTEX (which is essentially
TEX Live) on macOS, you would usually run sudo

tlmgr install framed, hence type your password
every time you install a package.

Then the next year when a new version of TEX
Live is released, you may have to go through the
same pain again: either waste your disk space, or
waste your time. One interesting thing I noticed
from macOS users was that many of them did not
realize that each version of MacTeX was installed to
a different directory. For example, the 2018 version is
installed under /usr/local/texlive/2018, and the
2017 version is under /usr/local/texlive/2017.
When they started to try TinyTeX (which recom-
mended that they remove their existing LATEX dis-
tribution), they had realized for the first time that
there were five full versions of TEX Live on their
computer, and they were very happy to suddenly
regain more than 20GB of disk space.

I wished there were a LATEX distribution that
contains only packages I actually need, does not
require sudo to install packages, and is not con-
trolled by system package managers like apt or yum.
I wished there were only one way to manage LATEX
packages on different platforms. Fortunately, the
answer is still TEX Live, just with a few tricks.

2 The infraonly scheme and the portable
mode to the rescue!

There are three possible ways to cut down the size
of TEX Live:

1. Only install the packages you need.
2. Do not install the package source.
3. Do not install the package documentation.

Yihui Xie

TUGboat, Volume 40 (2019), No. 1 31

The first way can be achieved by installing a
minimal scheme of TEX Live first, which includes
its package manager tlmgr, and then install other
packages via tlmgr install. The minimal scheme
is named scheme-infraonly, and it is only about
10MB.

The second and third ways can be specified
through installation options, which I will mention
soon. The package documentation contributes a con-
siderable amount to the total size of a TEX Live
installation. However, I have to admit I rarely read
them, and I do not even know where these docu-
mentation files are on my computer. When I have
a question, I will almost surely end up in a certain
post on tex.stackexchange.com, and find a solu-
tion there. It is even rarer for me to read the package
source files, since I am not a LATEX expert, nor am I
interested in becoming an expert.

With the network installer of TEX Live (tug.
org/texlive/acquire-netinstall.html), we can
put the above pieces together, and automate the
installation through an “installation profile” file. Be-
low is the one that I used for TinyTeX (named
tinytex.profile):

selected_scheme scheme-infraonly

TEXDIR ./

TEXMFSYSCONFIG ./texmf-config

TEXMFLOCAL ./texmf-local

TEXMFSYSVAR ./texmf-var

option_doc 0

option_src 0

option_autobackup 0

portable 1

The installation is done through

./install-tl -profile=tinytex.profile

where install-tl is extracted from the Net in-
staller (use install-tl-windows.bat on Windows).
The full source of the installation scripts can be
found on Github at github.com/yihui/tinytex/

tree/master/tools. To install TinyTeX on *nix,
run install-unx.sh; to install it on Windows, run
install-windows.bat.

I set the portable option to 1 above, which
means the installation directory will be portable.
You can move it anywhere in your system, as long
as you know how to handle the PATH variable, or
call the executables (e.g., tlmgr or pdflatex) with
their full paths. By default, the installation scripts
of TinyTeX will try to add TEX Live’s bin path to
the environment variable PATH, or create symlinks
to a path that is in PATH (e.g., /usr/local/bin on
macOS and $HOME/bin on Linux).

A portable installation without admin privileges
also means anyone can install and use TEX Live on

any platforms supported by TEX Live. You can also
install a copy to a USB device and use it from there.
Users inside an institute no longer need to ask for IT

help with managing LATEX packages because of the
powerful and useful tlmgr. With TinyTeX, tlmgr is
the one and only way to manage packages directly,
and you will not need sudo, apt, or yum.

3 The R package tinytex: install missing
LATEX packages on-the-fly

Now I only have one last wish for TEX Live: I wish it
could install missing packages on-the-fly like MiKTEX
when compiling documents. I do not know how
MiKTEX implemented it. I’m primarily an R [2]
package developer. I do not know much about the
TEX language or Perl. I know how to search for the
package that contains a certain style or class file and
install it, e.g.,

$ tlmgr search --global --file "/times.sty"

psnfss:

texmf-dist/tex/latex/psnfss/times.sty

...

$ tlmgr install psnfss

I had done this too many times in the past, and
thought it might be possible to automate it. I made
an attempt in the R package tinytex [3]. I guess
LATEX experts may frown upon my implementation,
but it was the best I could do, given my limited
capabilities and knowledge in LATEX.

Basically, I try to compile a LATEX document via
an engine like pdflatex or xelatex, with arguments
-halt-on-error and -interaction=batchmode. If
the exit status is non-zero, I will parse the error log
and find the error messages. If I made any contribu-
tion at all, it would be the following possible error
messages that I collected in about a year:

! \LaTeX{} Error: File ‘framed.sty’ not found.

/usr/local/bin/mktexpk: line 123: mf:

command not found

! Font U/psy/m/n/10=psyr at 10.0pt not

loadable: Metric (TFM) file not found

!pdfTeX error: /usr/local/bin/pdflatex

(file tcrm0700): Font tcrm0700 at 600 not found

! The font "FandolSong-Regular" cannot be found.

! Package babel Error: Unknown option

‘ngerman’. Either you misspelled it

(babel) or the language

definition file ngerman.ldf was not found.

!pdfTeX error: pdflatex (file 8r.enc):

cannot open encoding file for reading

! CTeX fontset ‘fandol’ is unavailable in

current mode

Package widetext error: Install the

flushend package which is a part of sttools

Package biblatex Info: ... file

TinyTeX: A lightweight, cross-platform, and easy-to-maintain LATEX distribution based on TEX Live

32 TUGboat, Volume 40 (2019), No. 1

’trad-abbrv.bbx’ not found

! Package pdftex.def Error: File

‘logo-mdpi-eps-converted-to.pdf’ not found

In the R package tinytex, I try to obtain the
names of the missing files or fonts or commands (e.g.,
framed.sty, mf, tcrm0700), run tlmgr search to
obtain the package name, and tlmgr install the
package if possible.

The thing that TEX Live experts may frown
upon is that since I do not know all possible missing
packages beforehand, I will just keep trying to com-
pile the document, find the missing packages, and
install them. In other words, I do not know if there
is a missing package unless I actually compile the
document and hit an error. If a document contains
n missing packages, it may be recompiled n times.

On the bright side, this only needs to be done
at most once for a document, so even if it is slow for
the first time, the compilation will be much faster
next time because all necessary packages have been
installed. The process is also automatic (by default),
so all you need to do is wait for a short moment. This
feature is turned on for R Markdown [1] users, which
means if the user’s LATEX distribution is TinyTeX,
they will almost never run into the issue of missing
packages when compiling R Markdown to PDF, and
the “easy-to-maintain” TinyTeX should not need
maintenance at all. As a matter of fact, this article
was written in R Markdown, and the first time I
compiled it, the tugboat package was automatically
installed:

tlmgr search --file --global /ltugboat.cls

tlmgr install tugboat

...

[1/1, ??:??/??:??] install: tugboat [26k]

running mktexlsr ...

done running mktexlsr.

The other major thing tinytex does is to emu-
late latexmk, i.e., try to compile a LATEX document
till all cross-references are resolved. The reason to
reinvent latexmk in an R package is that latexmk
cannot install missing packages on-the-fly.

To sum it up, if R users compile a LATEX docu-
ment via tinytex, usually they will not need to know
how many times they need to recompile it, or run
into errors due to missing packages. My implemen-
tation may be clumsy, but the reaction from users
seems to be positive anyway: github.com/yihui/

tinytex/issues/7. I hope this could give some in-
spiration to developers in other communities, and I
will be even more excited if TEX Live adds the native
(and professional) support someday, so I can drop
my poor implementation.

4 Discussion

There is no free lunch. TinyTeX also has its draw-
backs, and you have to consider whether they matter
to you. First of all, when installing TinyTeX, you
are always installing the very latest version of TEX
Live. However, as I have mentioned, TinyTeX is a
portable folder, so you can save a copy of a certain
version that worked for you, and use it in the future.

Secondly, the installation of TinyTeX and the
(automatic) installation of additional LATEX packages
requires an Internet connection. This may be the
biggest drawback of TinyTeX. If you plan to work
offline, you will have to make sure all packages have
been installed in advance.

Thirdly, TinyTeX was created mainly for indi-
vidual users who install TinyTeX for themselves. If
a sysadmin wants to install a shared copy of Tiny-
TeX for multiple users, there will be more technical
details to learn (in particular, issues related to per-
missions, the “user mode”, and packages that are
not “relocatable”). I have mentioned them on the
FAQ page: yihui.name/tinytex/faq/.

Lastly, TinyTeX is essentially a version of TEX
Live installed through an installation script. I did not
provide prebuilt binaries, even though it would be
easy technically. I do not fully understand the TEX
Live license and LATEX package licenses, but I guess
I would be very likely to violate these licenses if I
provide binaries without also shipping the source files
inside at the same time. Anyway, installing TinyTeX
over the Internet usually takes only a minute or two,
so this may not be a big concern.

I hope you might find TinyTeX (and the R
package tinytex, if you happen to be an R user,
too) useful. If you have any feedback or questions
or bug reports, please feel free to post them to the
Github repository: github.com/yihui/tinytex.

References

[1] J. Allaire, Y. Xie, et al. rmarkdown: Dynamic

Documents for R, 2019. R package version 1.12.2.
rmarkdown.rstudio.com

[2] R Core Team. R: A Language and Environment

for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2019.
www.R-project.org

[3] Y. Xie. tinytex: Helper Functions to Install

and Maintain TEX Live, and Compile LATEX

Documents, 2019. R package version 0.11.2.
github.com/yihui/tinytex

⋄ Yihui Xie
RStudio, Inc.
xie (at) yihui dot name

https://yihui.name

Yihui Xie

TUGboat, Volume 40 (2019), No. 1 33

Extending primitive coverage across engines

Joseph Wright

1 The pdfTEX situation . . .

In recent years, development of pdfTEX has intention-
ally been limited, with the v1.40 branch now being
around for over 10 years. However, in the past there
were plans for a v1.50 branch, and some code was
written. One primitive that was fully coded-up at
that time was \expanded. The idea of this is pretty
simple: it carries out full expansion like \message

(and almost like \edef), but is itself expandable.
This highly useful idea made it into LuaTEX (which
was initially based on the pdfTEX development code),
but until recently wasn’t in released pdfTEX itself.

2 . . . vs. the X ETEX situation

X ETEX was primarily written to extend ε-TEX with
full Unicode support, as well as loading system fonts.
Its development started from ε-TEX, rather than from
pdfTEX, which had added various new primitives on
top of ε-TEX. Many of pdfTEX’s additions to ε-
TEX have to do with directly producing PDF output
(ε-TEX supports only DVI), but others are entirely
independent of that.

Over the years, some of these other “utilities”
have been added to X ETEX (for example \pdfstrcmp,
which in X ETEX is just \strcmp). However, several
have not made it, but have been added to pTEX and
upTEX. That has meant that X ETEX has been “a bit
behind” in feature terms: some things simply can’t
be done without primitive support.

3 A development opportunity arises

Recently, a Travis-CI testing environment has been
created for TEX Live (see github.com/TeX-Live/

texlive-source), meaning that it’s now easy to try
adding new material to the WEB sources of pdfTEX,
X ETEX, etc. As part of more general work on prim-
itives, it made sense to bring X ETEX “back in line”
with (u)pTEX. That’s important for expl3, as the
LATEX team have been using almost all of the primi-
tives that were “missing” in X ETEX, as well wanting
to bring \expanded into the mainstream.

4 Providing \expanded

For some time, the LATEX team have been think-
ing about asking for \expanded to be made more
widely available. Unlike the \romannumeral “trick”,
\expanded does not require any hard work to get
“past” any output, so it is very useful for creating
macros that work like functions. It’s also fast and
clear in intention.

The code itself was easy enough to move around:
a bit of copy-pasting! As well as merging into the
stable branch of pdfTEX, I worked out how to add
\expanded to X ETEX and the Japanese TEX engines
pTEX and upTEX. So soon we’ll all be able to do

\def\a{\b}\def\b{c}

\message{Hello \a\space #}

\detokenize\expandafter

{\expanded{Hello \a\space #}}

\bye

(Try the example in LuaTEX if you don’t have the
burning edge pdfTEX binaries.)

5 New primitives in X ETEX

So, besides \expanded, what has been added? The
new additions are all named without the pdf prefix
that pdfTEX includes, as they have nothing to do
with PDFs (and X ETEX is not pdfTEX):
\creationdate \elapsedtime \filedump

\filemoddate \filesize \resettimer

\normaldeviate \uniformdeviate \randomseed

These enable things like random numbers in
the LATEX3 FPU, measuring code performance, and
checking the details of files: all stuff that is in expl3

will now work with X ETEX.
I should add that although I did the grind of

working out how to integrate the pdfTEX code into
X ETEX, Akira Kakuto sorted out the areas that
needed knowledge of C, in particular where X ETEX’s
Unicode internals don’t match up with pdfTEX’s
8-bit ones.

6 Adjusting \Ucharcat

I made one other minor adjustment to X ETEX: alter-
ing how \Ucharcat works so it can create category
code 13 (“active”) tokens. That probably won’t show
up for users; however, it helps the team extend some
low-level expl3 code. It should just mean one fewer
X ETEX restriction.

7 Getting the code

TEX Live gets binary updates only once per year,
so users there will need to wait for the 2019 release.
On the other hand, MiKTEX already has the new
features, so if you are on Windows it’s pretty trivial
to try. If you use TEX Live and want to test this
out, you can update your binaries in-place, for exam-
ple from W32TEX (w32tex.org): if you understand
what that means, you probably know how to do it!

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Extending primitive coverage across engines

34 TUGboat, Volume 40 (2019), No. 1

ConTEXt LMTX

Hans Hagen

1 Introduction

More than decade after introducing the ConTEXt
version for LuaTEX, flagged MkIV (the version known
as MkII ran under more traditional TEX engines),
it is time for something new. As MkVI, MkIX and
MkXI are already taken for special variants of MkIV
files a new acronym was coined: LMTX. Such a
sequence of letters must sound somewhat fancy but
it actually has a meaning, or better: it has several.
One is that it stands for LuaMetaTEX, an indication
of an engine to be used. But one can also think of
the components that make up ConTEXt code: Lua,
MetaPost, TEX, and XML. But once it is clear to a
user what (s)he is dealing with, it can also indicate
a “Lean and Mean TEX eXperience”. But, as with
MkIV, eventually it will become just a tag.

So, with this out of the way, the next question
is, what do we mean by LuaMetaTEX? The term
MetaTEX first surfaced at a ConTEXt meeting but
it is actually a variant of what Taco and I always
thought of when we discussed LuaTEX: an engine
that hosts not only TEX but also MetaPost, which
we all like quite a lot. But, as Lua is now an integral
part of this adventure, it has been glued to more
than just the engine name.

In the next sections it will be clear what we’re
actually talking about and how this relates to Con-
TEXt LMTX. But let me first stress that after a
decade of usage, I’m convinced that the three main
components fit nicely together: TEX has a good
track record of usability and stability; MetaPost is a
nice graphical description language, efficient and very
precise, and Lua is, in my opinion, the nicest scripting
language around, minimal, rooted in academia and
developed in a steady and careful way. It makes
for a hard to beat combination of languages and
functionality.

2 Using ConTEXt

The average ConTEXt user (MkIV) needs only the
LuaTEX engine, a bunch of macros, fonts and hy-
phenation patterns. One can install ConTEXt from
the TEX Live distribution (or via a distribution’s soft-
ware package) or directly from the ConTEXt garden.
The first ships the yearly, so-called ‘current’ release;
the second also provides intermediate ‘beta’ releases.
In both cases the number of installed bytes is rea-
sonable, especially when one compares it to many
programs or packages. In fact, relative to many pro-
grams that come with a computer ecosystem these

days, a TEX installation is no longer that large.
Most users will use ConTEXt from within a text

editor, normally by hitting a key to process; others
might run it on the command line. Then there are
those who run it as part of a complex workflow where
no one sees it being run at all. When you run Lua-
TEX with ConTEXt, there is the usual log data flying
to a console as well as some short delay time involved
to get the result. But that is the game so there is
nothing to worry about: edit, run, wait and watch.

On a multi-core machine, only one CPU core
will be taken and, depending on the document, a
reasonable amount of memory. As ConTEXt evolves
we try to limit its use of resources. If we take almost
any browser as benchmark then TEX is cheap: its
memory consumption doesn’t slowly grow to persis-
tent gigabytes, there is no excessive (unnoticed but
not neglectable) writing to disk, and when one is just
editing a document it will not suddenly take CPU

cycles. We try not to turn the ConTEXt+LuaTEX
combination into bloatware.

If you listen to what is discussed between the
lines at the ConTEXt meeting you will notice that
some use this rendering system as a sort of appliance:
it does the job without the end user of the document
ever realizing what is involved. Using some virtual
machine in this case is quite normal. When ConTEXt
is running on a server or background system we need
to keep in mind that performance is not required
to improve that much and that low power solutions
are considered more often. This also means that we
must try to lower the memory footprint as well as
the need for CPU cycles.

There are many cases where the system is used
to generate (few) page documents as part of a larger
workflow (or program). One example is creating a
PDF file from a MetaPost graphic (with TEX) that
gets converted to SVG and then ends up in a web
page (part of a status/input screen). It’s hard to beat
MetaPost in terms of quality and cost effectiveness.
For this a lean and mean and well contained setup is
needed. But, in order to be permitted to use such a
subsystem one could be asked to prove that what’s
underneath is not some complex, hard to maintain
component. It being open source is not enough.

Users find it hard to convince employers to use
a TEX system. It is seen as large, is considered old,
doesn’t always fit in. Therefore, contrary to what
one expects, expensive, less robust and less future
safe solutions are chosen. How we can help users
addressing this problem was also a topic discussed
at the last ConTEXt meeting.

All these aspects (of usage) have led to what I
present now as ConTEXt LMTX, which started mid-

Hans Hagen

TUGboat, Volume 40 (2019), No. 1 35

2018 and is expected to be stable mid-2019, after a
year of intense experimenting and development. This
is in time for the 2019 ConTEXt meeting where we
can pick up discussions about how to make sure TEX
is a valid candidate for rendering (so far as that is
still needed in the browser dominated arena).

3 Packaging ConTEXt

We have now arrived at a brief summary of what Con-
TEXt LMTX actually is, but let’s stress that for the
average user it is what they already have: ConTEXt
MkIV using LuaTEX. In fact, we will continue to
ship what has been there for years alongside LMTX

so that users can test and we can fix bugs. Some
parts of the code base already have LMTX specific
branches but so far (most) users never enter these.

We use a lean and mean engine: LuaMetaTEX
identifying itself as LuaTEX 2.0 (we count from there).
The binary is some mere 3MB which is much smaller
than stock LuaTEX.

1 The size matters because the
engine is also a Lua processor and used as such.

The LuaMetaTEX code base is also relatively
small and is now part of the ConTEXt distribution.
This means that when one downloads the archive or
installs ConTEXt, the source is included! One gets the
whole package. The 12MB source tree compresses to
around 2MB.2

If needed the user can compile the program.
The build is relatively simple with essentially no
dependencies, very few requirements, and all files
that are needed are included. The average user will
not compile but it adds to the idea that the user
is independent and that, when ConTEXt is used as
a component, all batteries are included.3 With the
sources in the distribution, users on non-standard
systems can easily bootstrap a working system.

Where LuaTEX depends on a few external li-
braries, LuaMetaTEX goes with the absolute mini-
mum as it is what the name says: a core TEX engine,
the MetaPost machinery, and Lua.4 The few libraries
that we ship are part of the source tree and their
interfaces are unlikely to change.

There is just one program: LuaMetaTEX. We
use Lua 5.4 and no longer need LuaJIT as it lags
behind and has no real significant performance ad-

1 Of course we still pay attention to LuaTEX, but there
we have more or less frozen the feature set in order to make
it a future-safe engine.

2 This will be at the formal release at the 2019 meeting.
3 For now, I directly handle the Windows and Linux bi-

naries and Alan Braslau takes care of the OSX and FreeBSD

binaries. We have decided on providing 64 bit binaries on
these systems that we actively use and in the future they will
be generated on the compile farm.

4 The only shared libraries that are referenced are libc,
libm, and libdl.

vantages. There are no extra binaries needed, as
this one program also serves as a stub. The first
experiences have demonstrated that Lua 5.4 is some-
what faster than its predecessors. We plan to use the
more efficient generational garbage collector once it
becomes stable.

When it comes to installing ConTEXt, the engine
is also the installer. Instead of using rsync we use
http. An initial install can take a little time, but
updates much less. Once the installer is unzipped
there are no dependencies on any other programs.
The small size of the binary facilitates such usage.

The installation only has the files needed for
MkIV. Of course there is still the archive with every-
thing, but there is no need to install MkII files and
resources when only LuaMetaTEX is used. At some
point the installer will allow the installation of both
MkII and MkIV.

The MkIV codebase is aware of the engine and
triggers LMTX mode accordingly. It will use (a few)
different files when it runs on top of LuaTEX or
LuaMetaTEX. There might be a point in time when
we make a more rigorous split.

4 Fundamental changes

A user now thinking “So what?” deserves some more
explanation about what has been changed under the
hood. Part of the answer relates to the shrunken
binary. How that happened is discussed in a docu-
ment that kept track of the process and decisions
but probably is only of interest for a few. A short
summary follows.

At some point last year I realized that I was
coming up with solutions where LuaTEX was actually
working a bit against me. One reason for that is that
we had to become stable at some point and could not
change it fundamentally any longer. The main reason
for that was that other macro packages are also using
it: even a trivial change (say in the log) can spam
your mailbox with complaints. At the same time it
started annoying me that we had to carry around
quite a bit of code that ConTEXt doesn’t need or use
at all. In addition to that, there were some depen-
dencies on foreign code that resulted in occasional
(enforced) updates of the rather complex source tree
and build structure. The switch to a new PDF intro-
spection library had demonstrated that dependencies
could simply be made much less troublesome. But,
as TEX is basically just juggling bytes I wondered if
it could be done even better (hint: in Lua).

Already a while ago ConTEXt started using its
own OpenType font loader, written in Lua instead of
the one derived from FontForge. But actually that
built-in loader code was the last to go as bits and

ConTEXt LMTX

36 TUGboat, Volume 40 (2019), No. 1

pieces were still hooked into the different parts of
the code base, for instance in the PDF backend.5

So, the first thing to get rid of was image inclu-
sion library code. Much of the inclusion was already
under strict ConTEXt control anyway. Of course we
still can include images but ConTEXt does it entirely
under Lua.6

Next to go was font embedding. In ConTEXt we
already did most of that in Lua, so this kick-out was
not that dramatic. As a natural followup, generating
the page stream was also delegated to Lua. For the
record: in all these stages I had a hybrid code base,
meaning that I could continue to do the same in
LuaTEX. Only at some point the diversion was too
large for comfort, and I switched to dedicated code
for each engine. Also, the regular ConTEXt code had
to keep working so every (even temporary) change
had to be done very carefully.

Once the built-in backend was reduced that way,
I decided to ship out the whole page via Lua. Keep in
mind that in ConTEXt MkIV we always only needed
part of the backend: we never depended on any
of the extensions supported by the engine and did
most PDF-specific features differently already. But
for macros using these extensions, it’s one of the
components that for sure will suffer in performance
from being written in Lua instead of C code.

We now no longer had any need for the code
in the built-in font loader: we didn’t use the load-
ing code but the backend still had used some of its
magic for inclusion. So, out went the loader. When
I realized that TEX needs only a little information to
support what we call base mode, I decided that we
could also replace the TFM loader by a Lua loader.
We already had to deal with virtual fonts in the new
backend code anyway. So, basically most font related
code is now gone: only a little is passed to the engine
now, that which is needed to do the typesetting.

With the backend reduced to a minimum, it was
then a small step to removing it altogether. I didn’t
feel too guilty about this because officially TEX has
no backend: it’s an extension. So, the img and pdf

libraries are also gone. With the whole PDF file now
generated directly by ConTEXt it was time to deal
with extensions. Stepwise these were removed too.
In the end we only had a generic so-called ‘whatsit’
left. The impact on the ConTEXt code is actually not
that large: the biggest complication is that we need

5 Already some time ago I have made sure that this part
is not ever used by ConTEXt, which made me confident that
at some point the entire library could be removed.

6 We still keep the PDF introspection library available as
it has some advantages over using Lua, but I have developed
a somewhat limited Lua alternative to play with; maybe a
possible future variant.

to support both stock LuaTEX and LuaMetaTEX, so
figuring out a way to do that (stepwise as we had
a transition) took a while. When doing something
like this one should not be afraid to write temporary
code and later take it out.7

I used these opportunities to improve the read-
ability of the uncompressed PDF output a bit (some
was already done in LuaTEX). It must be noted
that the final virtual font handling happens in the
backend (TEX only cares about dimensions) so this
can open up a whole new world of possibilities. In
principle the produced code can be made a bit more
efficient. I must admit that I always treated much of
the font code in the backend as a black box. Reverse
engineering such code is not my forte (and no fun
either) so I tend to just figure it out myself using the
formal specifications. That is also more fun.

I didn’t mention yet that parallel to this process
some more cleanup happened. All code files were
touched; where possible, header files were introduced.
And every (even small) step was tested by processing
documents. In some places the code could be made
more efficient because we had less interwoven code
as a side effect of removing the backend font and
image related code. I also cleaned up a bit of the
Lua interface and more might happen there. Some
libraries lost features due to the conceptual changes.
Also, libraries like slunicode were removed as we
never truly needed them. In ConTEXt we already
used adapted and optimized socket interfaces so we
also no longer preload the old ones that come with
the socket libraries. There are lots of such details,
which is why it took many months to reach this state.

There are fewer command line options and the
startup is somewhat streamlined. As in ConTEXt we
already are (mostly) kpse compatible but entirely in
Lua, as that library was removed too. This affected
quite a bit of code, however, because the backend is
outsourced, also a lot of file handling! Basically only
TEX and Lua files are now seen by the frontend. And
dealing with system calls was already done in Lua.
We don’t need much on top of what we accumulated
in Lua for over a decade.

One can wonder if we’re still talking TEX and
the answer (at least for me) is yes we are. Original
TEX has only a DVI backend and DVI is nothing more
than a simple page description (I can cook up one if I
need to). One needs an external program to produce
something useful from DVI. Sure, pdfTEX grew to
add a PDF backend but that again is an extension,
and although LuaTEX separates the code better than

7 At some point I will add a DVI backend, just for good
old times.

Hans Hagen

TUGboat, Volume 40 (2019), No. 1 37

its ancestor, initializations for instance still mess
up the code. The only place where extensions and
built-in standard functionality, reflected in primitives,
overlap is in writing to files. Clearly we do need to
support that. However, along with some other (Lua-
TEX) primitives, the backend-related ones are gone.
But . . . we can simply implement them using Lua
so that a macro package still sees these primitives.
Nowhere is it mandated that a ‘primitive’ should be
hardcoded in the engine.

In fact, one reason for going this route is that
it is a way to come closer to the original, even as
we have a few more primitives (ε-TEX as well as
LuaTEX). But what about directions, those coming
from Aleph (Omega)? It is a fact that in spite of
attempts to deal with all these directions, only a
few made sense, and LuaTEX ended up with only
four. Of these four, only left-to-right and right-to-
left ever worked well. I cannot imagine someone
using the vertical ones as they are hard to control.
Therefore, as soon as the backend was gone, I decided
to keep only the two horizontal directions. Yet, in
order to still support vertical rendering boxes got
official offsets and orientations, at the TEX level. Of
course the backend is free to interpret this. This
might find its way back to stock LuaTEX but only
after I’m satisfied for some time. So, more about
this in another article. I kept only the new numeric
direction specifiers.

With all this done, simplifying the binary build
was on the agenda. This was not trivial. In retro-
spect I should just have started new, but because of
all those dependencies it made more sense to step-
wise strip the process to get an idea of what was
happening and why. In the end, when it was deter-
mined to be sort of impossible to go much smaller,
I decided to quit that and just write a bunch of
CMake files. The retrospect relates to the fact that
this took me a day to figure out for Windows, Linux,
OSX and ARM. A nice side effect was that the Lu-
aMetaTEX engine compiles in about 30 seconds on
my about eight-year-old laptop, which suddenly got
an extended lifetime (and about 15 seconds for Alan
on an almost four-year-old Macbook with an SSD).

5 The roadmap

The roadmap is as follows. Core development took
place in Fall 2018 and Spring 2019. On April 1
there was a version (2.00) suitable for use so users
could start playing with this variant. At that time,
a prototype of the new installer was also ready and
tested by some other developers. After this first
release I can start optimizing components in ConTEXt
that are currently sort-of hybrid due to the fact that

code has to run on both engines, but that code was
not yet distributed. Around the ConTEXt meeting
in Fall 2019 documentation should be available at
which time the LuaMetaTEX source code will also
become part of the distribution. Hopefully binaries
will then be generated using the compile farm. After
that the ConTEXt code base will become more and
more tuned for LMTX. This all has to happen in such
a way that no matter what engine is used, ConTEXt
works as expected. In the process we need to make
sure that users who (for some reason) use obsolete
low level libraries are served by proper replacements.

6 Summary

So what we have now is a lean and mean engine.
What are the consequences for users? They get a
smaller but all-inclusive package. The lack of single
backend and dependencies is also more future proof.
Although a native backend performs slightly better
for simple text-only documents, any more complex
document is processed as fast or faster, and we can
hope to gain a bit more over time. For instance,
processing a LuaTEX manual with current LuaTEX
and LMTX code takes 13.0 seconds, while using the
native backend takes 12.6. But LuaMetaTEX with
LMTX currently needs 11.7 seconds, so while we lost
some on employing more Lua we gained a bit in the
engine. The manual still can be processed a bit faster
using LuaJITTEX, but for other documents the new
setup can actually beat that variant by a wide margin.
I will not go into details of how this happens because
it is probably rather ConTEXt specific. At any rate,
I always try to make sure that whatever I change
deep down in ConTEXt, performance is not hit.

I’m quite satisfied that we now have a clean
code base, fast compilation, a bit more Knuthian
(less loaded) engine, and that we can distribute all in
one package without an increase in size. Combined
with the new installer this is quite a step forward in
ConTEXt development, at least for me.

For me, furthermore, the main effect is that I
have more freedom for experimenting and prototyp-
ing features that could be fed back into LuaTEX.
I also hope that eventually this machinery is well
suited for low power computers (and servers) with
limited memory. I will probably report more on all
this at another time.

I’d like to thank Alan Braslau for his support
in this project, his patient testing, and belief in the
future. He also made this article a bit more readable.
We love these three languages and have lots of plans!

⋄ Hans Hagen
http://pragma-ade.com

ConTEXt LMTX

38 TUGboat, Volume 40 (2019), No. 1

Bringing world scripts to LuaTEX: The
HarfBuzz experiment

Khaled Hosny

1 HarfBuzz

Unicode includes thousands of characters and hun-
dreds of scripts,1 but inclusion in Unicode is just
the start. Proper support for many of them is a
much more involved process. (Figure 1 shows a few
examples.)

To aid Unicode, there is a need for smart fonts;
fonts that are not merely collections of glyphs. TEX’s
TFM fonts are a kind of smart fonts, as they contain
rules for making ligatures based on certain contexts;
but meeting the needs of the world scripts requires
more than ligatures. These needs lead to the devel-
opment of several font and layout technologies that
can fulfil them.

One of these technologies is OpenType,2 which
is widely supported on major operating systems and
applications, making it the de facto standard for
Unicode text layout. Others include Apple Advanced
Typography3 (AAT) and Graphite.4

The text layout process can be seen as several
successive steps. One particularly interesting and
rather complex step is called shaping, which basically
involves taking chunks of characters that have some
common properties (such as having the same font,
same direction, same script, and same language) and
converting them into positioned font glyphs. A piece
of software that does this is often called a shaper.

In OpenType the knowledge needed for proper
shaping of a given script is split between the shapers
and the fonts; a script-specific shaper has embedded
knowledge about a certain script (or group of related
scripts), and the fonts provide font-specific data that
complements the knowledge embedded in the shaper.

One of the widely used OpenType implementa-
tions is HarfBuzz,5 which identifies itself as a text
shaping library. Although HarfBuzz was initially
only an OpenType shaping engine, it now supports
AAT and Graphite as well. HarfBuzz is an open
source library under active development.

2 LuaTEX

LuaTEX is an extended TEX engine with Lua as an
embedded scripting language. LuaTEX also supports

1 Unicode 12.0 has a total of 137,929 characters and 150
scripts: unicode.org/versions/Unicode12.0.0

2 docs.microsoft.com/en-us/typography/opentype
3 developer.apple.com/fonts/

TrueType-Reference-Manual/RM06/Chap6AATIntro.html
4 graphite.sil.org
5 harfbuzz.github.io

Arabic ر Bengali ক্র

Devanagari क्र Gujarati ક્ર

Gurmukhi ਕ੍ਰਰ੍ Kannada ಕ್ರ

Malayalam കര്കി Myanmar ာ် ီး
Oriya କ୍ରକ Sinhala

Tamil ோ Telugu క్ర

Figure 1: Sample texts from some of the world’s
scripts.

راععر:ددلاعرلاط
�������������������:�����������

Figure 2: Aref Ruqaa font as rendered with HarfBuzz
integration (above) and luaotfload (below).

Unicode text, among other things. The LuaTEX
philosophy is that it provides solutions, not answers,
so it does not come with an extended text layout
engine, and instead provides hooks to its internals
so that its users (or macro packages) can extend it
as they see fit.

While this is a worthwhile goal, in practice writ-
ing a text layout engine for the Unicode age is a
complex and demanding task, and takes many person-
years to develop. On top of that, it is a moving target
as Unicode keeps adding more scripts (both living
and dead) and font technologies keep evolving as the
problems at hand become better understood,6 and
it takes quite some effort to remain on top of this.

This has led to having only one mature and
feature-full text layout engine for LuaTEX, written
purely in Lua by the ConTEXt team. This engine
is made available to LATEX users via the luaotfload

package as well. It is a fast and flexible engine, and
has many interesting features. But it falls short
of supporting all scripts in Unicode. Even for the
scripts it supports, some fonts might not work well
when they utilize rarely used parts of OpenType that
the ConTEXt team might not have had a chance to
test (figure 2).

HarfBuzz, on the other hand, is considerably
more widely used, tested, and exposed to all sorts of

6 For example, OpenType had an initial model for shaping
Indic scripts, which was later found to be inadequate and a
new model was developed (keeping the old model for backward
compatibility). Later, a new, more extensible model, called
Universal Shaping Engine, was developed to handle many
Indic and non-Indic scripts.

Khaled Hosny

TUGboat, Volume 40 (2019), No. 1 39

tricky and complex fonts.7 It also has a larger team
of dedicated developers that have spent many years
enhancing and fine-tuning it.8

3 Integrating HarfBuzz with LuaTEX

Integrating HarfBuzz with LuaTEX would bring the
benefits of HarfBuzz without giving up the capabili-
ties of LuaTEX. There have been several attempts
to do this, including the one that is going to be
discussed here in some detail.

The basic idea is rather simple: get the text
from LuaTEX, shape it with HarfBuzz, and then
feed the result back to LuaTEX.

LuaTEX provides hooks, called callbacks, that
allow modifying its internals and adding code to be
executed when LuaTEX is about to do certain tasks.

HarfBuzz provides a C API and there are several
ways to call such an API from LuaTEX; each has its
pros and cons:

FFI Originally part of LuaJIT, but available now
for regular LuaTEX as well, this allows binding
C APIs without the need for writing separate
bindings in C. However, it requires duplicating
the C headers of the library inside the Lua code.
Using FFI in LuaTEX requires using the less-safe
--shell-escape command-line option.

Loadable Lua C modules Written in C, this uses
the Lua C API for interacting with the Lua
interpreter; it can link to any library with a C
API (either dynamically or statically). It can
be dynamically loaded at runtime like any Lua
module (e.g. using require), but it is not as
well supported by LuaTEX on all platforms.

Built-in Lua C modules Instead of dynamically
loading Lua C modules at runtime, they can be
statically linked into the LuaTEX binary, making
them work on all platforms. This however, re-
quires either building a new independent engine
based on LuaTEX, or convincing the LuaTEX
team to include the new module.

Making a loadable Lua C module was chosen
for this experiment, utilizing the existing luaharf-

buzz project9 and extending it as needed to expose
additional HarfBuzz APIs.

In addition to the luaharfbuzzmodule, additional
Lua code is needed to extract input from LuaTEX,

7 HarfBuzz is used by Mozilla Firefox, Google Chrome,
ChromeOS, GNOME, LibreOffice, Android, some versions of
Adobe products and many open source libraries, not to men-
tion X ETEX; in all, it has billions of users.

8 HarfBuzz started its life around the year 2000 as the
OpenType layout code of the FreeType 1 library, long before
it was named HarfBuzz.

9 github.com/ufyTeX/luaharfbuzz by Deepak Jois

feed it to HarfBuzz and back to LuaTEX, and do any
conversion and processing necessary for both input
and output to be in the form that both ends can
utilize.

4 Loading fonts

LuaTEX’s define_font callback allows for overrid-
ing the internal handling of the \font primitive,
which can be used to extend the syntax as well as to
load additional font formats beyond what LuaTEX
natively supports. Although HarfBuzz is not specifi-
cally a font loading library, it provides APIs to get
enough information for LuaTEX to use the font.

HarfBuzz’s font loading functions support only
fonts using the SFNT container format,10 which ba-
sically means it supports OpenType fonts (and by
extension TrueType fonts, which are a subset of
OpenType). It is possible to support other formats
by using the FreeType library11 to load the fonts in-
stead of HarfBuzz’s own font loading functions, but
for the sake of simplicity and to avoid depending on
another library this was not attempted. In practice
(outside of the TEX world, that is) all new fonts are
essentially SFNT fonts of some sort.

Font data in SFNT containers are organized into
different tables. Each table serves a specific purpose
(or several purposes) and has a tag that identifies it.
For example, the name table contains various font
names, the cmap table maps Unicode characters to
font glyphs, and so on.

The LuaTEX manual describes the structure
that should be returned by this callback. Basically,
some information about the font is needed, plus some
information about the glyphs in the font.

4.1 Loading font-wide data

Loading most font-wide data (font names, format,
etc.) is straightforward since HarfBuzz has APIs that
expose such information.

There are two main OpenType font flavours
based on what kind of Bézier curves is used to de-
scribe glyph shapes in the font; cubic Bézier curves
(also called PostScript curves, as these are the kind
of curves used in PostScript fonts), and quadratic
curves (also called TrueType curves, as these are the
kind of curves used in TrueType fonts). The main
difference between the two is the glyph shapes table:
cubic curves use the CFF table, while quadratics use
the glyf and loca tables.

LuaTEX wants the format to be indicated in the
font structure returned by the callback (possibly to
decide which glyph shapes table to look for, though

10 en.wikipedia.org/wiki/SFNT
11 freetype.org

Bringing world scripts to LuaTEX: The HarfBuzz experiment

40 TUGboat, Volume 40 (2019), No. 1

Figure 3: Random Unicode emojis using Noto Color
Emoji font which embeds bitmap PNGs instead of
outline glyphs. (Grayscaled in the print version.)

that seems redundant as it can easily detect it itself).
It is easy to determine the format by checking which
tables are present in the font, so that is not an
issue. However, there is now a different OpenType
flavour that does not include any of these tables
and instead uses different tables that embed colored
glyph bitmaps (used mainly for colored emoji; a few
are shown in figure 3). LuaTEX does not support
embedding such fonts in PDF files. To work around
this, such fonts are identified during font loading,
and during shaping (see below) this is detected, and
the PNG bitmaps for font glyphs are extracted and
embedded as graphics in the document, avoiding the
need for including the font itself in the PDF.

4.2 Loading glyph data

Other than font-wide data, LuaTEX also wants to
know some information about the font glyphs. Ide-
ally, such information should be queried only when
the glyphs are actually being used, and OpenType ta-
bles are carefully structured to allow for fast loading
of any needed glyph information on demand without
having to parse the whole font (which can be time
consuming, especially for large CJK fonts contain-
ing tens of thousands of glyphs). However, the way
things are structured in LuaTEX requires loading all
basic glyph information up front. Thankfully, Harf-
Buzz’s font loading is fast enough that the slowness
implicit in loading all required glyph information is
not a critical problem.

Although it is theoretically possible not to load
any glyphs initially, but wait until after shaping
and update the font with information about glyphs
that were actually used, this would be very slow
as it would happen thousands of times, requiring
recreating the LuaTEX font each time a new glyph
is used. Also, in my experiments, sometimes glyphs
would fail to show in the final document if they
weren’t loaded when the font was initially created.

LuaTEX requires all glyphs in the font to have a
corresponding character (the font structure seems to
make no distinction between characters and glyphs),
but not all glyphs in the font are mapped to Unicode
characters (some glyphs are only used after glyph

substitutions, e.g. ligatures and small caps). To
work around this, pseudo-Unicode code points are
assigned to each glyph; LuaTEX characters are full 32-
bit numbers, but Unicode is limited to 21-bit values
(no code point larger than this will ever be used by
Unicode, for compatibility reasons), so the trick is
to use the glyph index in the font and then prefix it
by 0x110000 (the maximum possible Unicode code
point + 1), thus keeping LuaTEX happy by having a
character assigned to each glyph. This way any glyph
in the font can be accessed by LuaTEX, while not
clashing with any valid code point. The downside of
this is that any LuaTEX message that tries to print
font characters (like overfull box messages) will show
meaningless bytes instead. LuaTEX has callbacks
that could be used to potentially fix this.

Some font-wide data like ascent, descent and cap-
height do not have corresponding entries in LuaTEX
fonts and LuaTEX checks instead for the metrics of
hard-coded set of characters to derive this informa-
tion from. To work around this, and since we don’t
provide any entries for real characters, we can create
fake entries for these characters using the font-wide
data instead of the actual character metrics.

Math fonts seem to be tricky as some of the infor-
mation LuaTEX requires is not exposed by HarfBuzz
in a way that can easily be used at font loading time.
For example, HarfBuzz has an API to get the math
kerning between a pair of glyphs at given positions,
but LuaTEX wants the raw math kerning data from
the font to do the calculation itself. Handling this
properly would require changes to either HarfBuzz
or LuaTEX.

5 Shaping

For shaping there are basically two problems to solve:
converting LuaTEX’s text representation into some-
thing that can be fed to HarfBuzz, and converting
HarfBuzz output to a form that can be given back
to LuaTEX.

5.1 Converting LuaTEX nodes to
text strings

LuaTEX’s default text layout can be overridden with
the pre_linebreak_filter and hpack_filter call-
backs. They are called right before LuaTEX is ready
to break lines into a paragraph, which is just the
right moment to shape the text.

By the time the callbacks are called, LuaTEX
has converted its input into a list of nodes. Nodes
represent different items of the LuaTEX input. Some
represent characters/glyphs, some represent glue,
while others represent kerning, etc.; there are also

Khaled Hosny

TUGboat, Volume 40 (2019), No. 1 41

modes for non-textual material like graphics and
PDF literals.

HarfBuzz, on the other hand, takes as input
strings of Unicode characters, in the form of UTF-8,
UTF-16 or UTF-32 text strings, or an array of num-
bers representing Unicode code points.

Converting character nodes is straightforward;
the characters they represent are inserted into the
text string. Glue nodes are converted to Space

(U+0020), and discretionary hyphenation nodes are
converted to Soft Hyphen (U+00AD). Any other
node is converted to Object Replacement Char-

acter (U+FFFC), which serves as a placeholder
that does not usually interact with other characters
during shaping, but its presence helps with later
converting the HarfBuzz output to LuaTEX nodes.

Now the text is almost ready to be fed to Harf-
Buzz, but not quite: first it needs to be “itemized”.
HarfBuzz takes as input a contiguous run of char-
acters that use the same font and have the same
Unicode script, text direction, and language.

Font itemization is grouping together any con-
tiguous run of character nodes that use the same
font, along with any intervening non-character nodes
(so that glue nodes, for example, are shaped with the
text they belong to).

The same goes for Unicode script itemization,
except that this depends on the Unicode Character

Database,12 which collects many Unicode character
properties, including their scripts (HarfBuzz has an
API to access these properties). Some characters
don’t have an explicit script property, though. Some
characters have the script property Inherit and these,
as you might guess, inherit the script of the preceding
character (they are usually combining marks, like
accents). Others have the script property Common,
and they take the script of the surrounding text
(they are usually characters that do not belong to a
specific script, like common punctuation characters).
Unicode Standard Annex #24 describes a heuristic13

to handle common characters which suggests special
handling of paired characters (e.g. parentheses) so
that matching ones get assigned the same script.

Text direction itemization requires first applying
the Unicode Bidirectional Algorithm,14 but this was
out of scope for this experiment, so users are expected
to mark right-to-left segments of the text manually
using LuaTEX’s direction primitives, and the code
uses this to determine the direction of the text.

12 unicode.org/ucd
13 unicode.org/reports/tr24/#Common
14 unicode.org/reports/tr9

١
ّلِلُدمَۡحلۡ َّرِهَ ّرل٢َِمَلَعۡلِ ّرلَِمحَۡ ٤ِِّّدلمِۡوَكِِلَم٣مِحَِ َكاَ
َّوُدُۡعَ ّلطََٰرِص٦َمَِسُۡمۡلطََٰرِّصلاَِدۡه٥ُِعَسََۡكاَ َمَۡعََِۡ

ّلاَلَومِۡهَۡلَعِوَُۡمۡلِرَۡمِۡهَۡلَع ٧َِّلاَۤ
Figure 4: Text using Amiri Quran Colored font which
uses colored glyph layers to make a distinction between
the consonantal text and the later developments of
the Arabic script. Black for the base consonants (they
just use the text color), dark red for diacritical dots
and vowel marks, golden yellow for hamzah, and pale
green for non-textual elements like the “circled” āyah

numbers. (The print version is grayscaled.)

5.2 Shaping with HarfBuzz

After feeding the input text to HarfBuzz and getting
back output, some post-processing is needed.

Some OpenType flavours contain only bitmaps
for glyphs (in the CBDT table15), not outlines; LuaTEX
doesn’t know how to embed such fonts in PDF files.
These fonts are detected during font loading, and
after shaping, the PNG data of such glyphs is ex-
tracted using HarfBuzz, then saved to temporary
files and finally embedded as graphics in LuaTEX’s
node list (it would be better to skip the temporary
files step, but there wasn’t any obvious way to do
this in LuaTEX). This way the font can be used with
LuaTEX without having to actually embed it in the
PDF output.

There are also layered color fonts (see figure 4),
where the font contains, in addition to regular outline
glyphs, a table (COLR16) that maps some glyphs to
layers (composed of other glyphs) and color indices,
and another table (CPAL17) that specifies the colors
for each color index. Since LuaTEX doesn’t keep
these tables in the font when embedding it into the
PDF file (and even if it did, PDF viewers and other
PDF workflows are unlikely to handle them), instead
the glyphs are decomposed into layers using the
relevant HarfBuzz API and the corresponding colors
are added using the regular PDF mechanisms for
coloring text. (Color transparency is not handled,
though, as it requires support from macro packages
to manage PDF resources.)

15 docs.microsoft.com/en-us/typography/opentype/

spec/cbdt
16 docs.microsoft.com/en-us/typography/opentype/

spec/colr
17 docs.microsoft.com/en-us/typography/opentype/

spec/cpal

Bringing world scripts to LuaTEX: The HarfBuzz experiment

42 TUGboat, Volume 40 (2019), No. 1

5.3 Converting HarfBuzz glyphs to
LuaTEX nodes

HarfBuzz outputs positioned glyphs. Output glyph
information includes things such as the glyph index
in the font and the index of the character it cor-
responds to in the input string (called cluster by
HarfBuzz). Glyph positions tell how a given glyph
is positioned relative to the previous one, in both X
and Y directions (called offset by HarfBuzz), as well
as how much the line should advance after this glyph
in both directions (called advance by HarfBuzz, but
unlike offsets, only one direction is active at a time,
so for horizontal layout the Y advance will always
be zero, and for vertical layout the X advance will
be zero).

To feed HarfBuzz output back into LuaTEX,
a new node list based on the original needs to be
synthesized. Using the HarfBuzz cluster of each
output glyph to identify the node from the original
list that this glyph belongs to, we can re-use it in
the new list, thus preserving any LuaTEX attributes
and properties of the original node.

Character nodes The original node is turned into
a glyph node, using the glyph index + 0x110000
as its character (see font loading section above
for explanation). If more than one glyph belongs
to this node, each gets copied as needed and
inserted into the node list, so that all the glyphs
inherit the properties of the original node. If
the advance width of the glyph is different from
the font width of the glyph, a kern node is also
inserted (after the glyph for left-to-right text,
and before it for right-to-left text).

Glue nodes The advance width of the output glyph
is used to set the natural width of the glue. This
way fonts can have OpenType rules that change
the width of the space (e.g. some fonts use a
narrower space for Arabic text than for Latin,
some fonts kern the space when followed by
certain glyphs, and so on).

Discretionary hyphenation nodes The existing
pre-line breaking, post-line breaking and replace-
ment node lists18 of the original node need to
be shaped as well. Special handling is needed
when characters around a discretionary hyphen
form a ligature; when no line breaking happens
at that discretionary hyphen then the ligature
needs to be kept intact, but when line breaking
does happen the text should be shaped as if a
real hyphen had been there from the start.

LuaTEX handles this with a replacement

node list which contains the nodes that should
18 See LuaTEX manual for detailed explanation of these.

office coffee HAVANA

of-
fice
cof-
fee
HA-
VANA

Figure 5: Ligatures and kerning are formed correctly
around discretionary hyphens, when no line breaking
happens, and correctly broken at line breaks.

appear if no line breaking happens, and a pre

node list that contain what comes before a line
break, and post for what comes after it. Since
ligatures can’t just be cut into parts, the text
needs to be shaped two times: once with the
whole text without a hyphen, and once with the
text split into two parts and a hyphen inserted
at the end of the first part. It would be very
inefficient to reshape the whole paragraph in
this manner, and it would also be impractical to
store full paragraphs in replacement, pre, and
post node lists.

One solution is to reshape just the ligature,
but sometimes the shaping output can be dif-
ferent based on the surrounding characters, so
cutting the ligature out and shaping it all by
itself can produce the wrong result. Fortunately,
HarfBuzz has a flag attached to output glyphs
that says whether breaking the text before this
glyph and shaping each part separately would
give the same output or not. We use this flag
to find the smallest part of the text that is safe
to reshape separately from the rest of the para-
graph, starting from the discretionary hyphen,
and re-shape only that part. (See figure 5.)

Characters that are not supported by the font
are ignored by TEX (no output is shown in the type-
set document), and by default only a message is
printed in the log file. This is a bit unfortunate as it
can be easily missed. With HarfBuzz, unsupported
characters return glyph index zero (often named as
the .notdef glyph), which is usually a box glyph
and sometimes has an X inside it to mark unsup-
ported characters. The code will thus insert this
glyph into the node list, and since this will effectively
disable the missing character messages that LuaTEX
outputs, the code emulates LuaTEX behaviour and
outputs such messages itself. One side effect of using
glyph zero is that even though the character is not
shown, the text is preserved in the PDF file and can
be searched or copied.

Khaled Hosny

TUGboat, Volume 40 (2019), No. 1 43

5.4 Handling text extraction from PDF

To extract text from a PDF file (e.g. copying or
searching), the PDF viewer needs to know how to
reverse map glyphs back to Unicode characters. The
simplest way to do this is to set the mapping in the
font’s /ToUnicode dictionary, which can handle one-
to-one and one-to-many glyph to character mappings
(i.e. simple glyphs and ligatures).

Getting one-to-one glyph to character mappings
can be partially done at font loading time by revers-
ing the font’s cmap table. This, however, covers only
glyphs that are mapped directly from Unicode char-
acters. In OpenType, not all glyphs are mapped this
way, for example, small cap glyphs are not mapped
directly from Unicode characters as they are only acti-
vated when a certain font feature is on (the characters
are first mapped to regular lowercase glyphs, then a
small caps feature maps those to small cap glyphs),
and detecting what characters they came from can
happen only after shaping.19 Because of this, there
is still a need to modify the fonts after shaping each
part of the text, to update the ToUnicode values for
each glyph, and for large documents this is rather
slow.

Furthermore, /ToUnicode can’t handle all cases.
With HarfBuzz there can be glyph-to-character re-
lationships that are any of one-to-one, one-to-many,
many-to-one and many-to-many. With /ToUnicode

the first two can be handled, but the last two can’t.
Also, the /ToUnicode mapping is required to be
unique for each glyph; the same glyph can’t be used
for different Unicode characters, but that is a possi-
bility in OpenType and other modern font formats.

Fortunately there is another, more general, mech-
anism in PDF; the /ActualText spans, which can
enclose any number of glyphs and represent any num-
ber of characters (not all PDF viewers support them,
though, but we can’t help that).

After shaping, HarfBuzz clusters are used to
group glyphs that belong to one or more charac-
ters and that information is stored in the node list.
Then, after line breaking, /ActualText spans are
added for any group that can’t be represented in the
/ToUnicode dictionary. This is done after line break-
ing (in the post_linebreak_filter callback) since
there are many restrictions on the kind of nodes
that can appear in the node lists of discretionary
hyphenation nodes.

19 The alternative would be to decode the font features and
parse them, which requires a substantial effort and would still
not handle all cases since features can do different things for
different scripts and languages, and there might be more than
one way to arrive at the same glyph.

6 Conclusion

Integrating HarfBuzz with LuaTEX is possible and
can bring many benefits to LuaTEX and enable more
users to enjoy its capabilities. There are some tech-
nical issues to solve and rough edges to round, but
nothing that would substantially prevent such inte-
gration.

The code described here was made possible
thanks to generous support from the TUG devel-
opment fund (tug.org/tc/devfund). The code and
the required luaharfbuzz module are available at:

github.com/khaledhosny/harf

github.com/ufyTeX/luaharfbuzz

⋄ Khaled Hosny
github.com/khaledhosny

Bringing world scripts to LuaTEX: The HarfBuzz experiment

44 TUGboat, Volume 40 (2019), No. 1

LATEX News
Issue 29, December 2018

Contents

Introduction 1

Bug reports for core LATEX 2ε and packages 1

Changes to the LATEX kernel 1
UTF-8: updates to the default input encoding . 1
Fixed \verb* and friends in X ETEX and LuaTEX 1
Error message corrected 2
Fixed fatal link error with hyperref 2
Avoid page breaks caused by invisible commands 2
Prevent spurious spaces when reading table of

contents data 2
Prevent protrusion in table of contents lines . . 2
Start L-R mode for \thinspace and friends . . 2
Guarding \pfill in doc 2

Changes to packages in the tools category 3
Sometimes the trace package turned off too much 3
Update to xr 3
Column data for multicols* sometimes vanished 3
Extension to \docolaction in multicol 3
Prevent color leak in array 3
Support fragile commands in array or tabular

column templates 3

Changes to packages in the amsmath category 3

Website updates 3
Publications area reorganized and extended . . 3
Japanese translations of the user’s guide 3

Introduction

The December 2018 release of LATEX is a maintenance
release in which we have fixed a few bugs in the software:
some are old, some newer, and they are mostly rather
obscure.

Bug reports for core LATEX 2ε and packages

maintained by the Project Team

In Spring 2018 we established a new issue tracking
system (Github issues at https://github.com/latex3/
latex2e/issues) for both the LATEX core and the
packages maintained by the LATEX Project Team, with
an updated procedure for how to report a bug or
problem.

Initial experience with this system is good, with
people who report problems following the guidelines
and including helpful working examples to show the
problem—thanks for doing this.

The detailed requirements and the workflow for
reporting a bug in the core LATEX software is documented
at

https://www.latex-project.org/bugs/

with further details and discussion in [1].

Changes to the LATEX kernel

UTF-8: updates to the default input encoding

In the April 2018 release of LATEX we changed the default
encoding from 7-bit ASCII to UTF-8 when using classic
TEX or pdfTEX; see LATEX News 28 [2] for details.

Now, after half a year of experience with this new
default, we have made a small number of adjustments to
further improve the user experience. These include:

• Some improvements when displaying error
messages about UTF-8 characters that have not
been set up for use with LATEX, or are invalid for
some other reason; (github issues 60, 62 and 63)

• The addition of a number of previously missing
declarations for characters that are in fact available
with the default fonts, e.g., \j “” (0237), \SS “ß”
(1E9E), \k{} “̨ ” (02DB) and \.{} “˙” (02D9);

• Correcting the names for \guillemetleft “«” and
\guillemetright “»” in all encoding files. These
correct names are in addition to the old (but
wrong) Adobe names: Adobe mistakenly called
them Guillemot, which is a sea bird.

(github issue 65)

• Added \Hwithstroke (“H”) and \hwithstroke

(“h”) necessary for typesetting Maltese.
(https://tex.stackexchange.com/q/460110)

Fixed \verb* and friends in X

E

TEX and LuaTEX

The original \verb* and verbatim* in LATEX were coded
under the assumption that the position of the space
character (i.e., ASCII 32) in a typewriter font contains a
visible space glyph “␣”. This is correct for pdfTEX with
the most used font encodings OT1 and T1. However, this
unfortunately does not work for Unicode engines using
the TU encoding since the space character slot (ASCII

32) then usually contains a real (normal) space, which
has the effect that \verb* produces the same results as
\verb.

The \verb* code now always uses the newly
introduced command \verbvisiblespace to produce
the visible space character and this command will get
appropriate definitions for use with the different engines.
With pdfTEX it will simply use \asciispace, which is a
posh name for “select character 32 in the current font”,
but with Unicode engines the default definition is

LATEX News #29

TUGboat, Volume 40 (2019), No. 1 45

\DeclareRobustCommand\verbvisiblespace

{\leavevmode

{\usefont{OT1}{cmtt}{m}{n}\asciispace}}

which uses the visible space from the font Computer
Modern Typewriter, regardless of the currently chosen
typewriter font. Internally the code ensures that the
character used has exactly the same width as the other
characters in the current (monospaced) font; thus, for
example, code displays line up properly.

It is possible to redefine this command to select your
own character, for example

\DeclareRobustCommand\verbvisiblespace

{\textvisiblespace}

will select the the “official” visible space character of
the current font. This may look like the natural default,
but it wasn’t chosen as our default because many fonts
just don’t have that Unicode character, or they have one
with a strange shape. (github issues 69 and 70)

Error message corrected

Trying to redefine an undefined command could in a few
cases generate an error message with a missing space,
e.g., \renewcommand\1{...} gave

LaTeX Error: \1undefined.

This is now fixed. (github issue 41)

Fixed fatal link error with hyperref

If an \href link text gets broken across pages, pdfTEX
and LuaTEX will generate a fatal error unless both
parts of the link are internally at the same boxing level.
In two-column mode that was not the case if one of
the pages had spanning top floats. This has now been
changed so that the error is avoided. (github issue 94)

Avoid page breaks caused by invisible commands

Commands like \label or \index could generate a
potential page break in places where a page break
was otherwise prohibited, e.g., when used between two
consecutive headings. This has now been corrected. If
for some reason you really want a break and you relied
on this faulty behavior, you can always add one using
\pagebreak, with or without an optional argument.

(github issue 81)

Prevent spurious spaces when reading table of contents

data

When table of contents data is read in from a .toc

file, the new-line character at the end of each line is
converted by TEX to a space. In normal processing this
is harmless (as TEX is doing this input reading whilst in
vertical mode and each line in the file represents a single
line (paragraph) in the table of contents. If, however,
this is done in horizontal mode, which is sometimes the
case, then these spaces will appear in the output. If you
then omit some of the input lines (e.g., because you do
not display TOC data below a certain level), then these
spaces accumulate in the typeset output and you get
surprising, and unwanted, gaps inside the text.

The new code now adds a % sign at the end of
problematic lines in the .toc file so that TEX will not
generate such spaces that may survive to spoil the printed
result. As some third party packages have augmented
or changed the core LATEX functionality in that area
(for example, by adding additional arguments to the
commands in TOC files) the code uses a conservative
approach and the % signs are added only when certain
conditions are met. Therefore some packages might
require updates if they want to benefit from this
correction, especially if they unconditionally overwrite
LATEX’s \addcontentsline definition. (github issue 73)

Prevent protrusion in table of contents lines

In TEX’s internal processing model, paragraph data is
one of the major data structures. As a result, many
things are internally modeled as paragraphs even if they
are not conceptually “text paragraphs” in the traditional
sense. In a few cases this has some surprising effects
that are not always for the better. One example is
standard TOC entries, where you have heading data
followed by some dot leaders and a page number at the
right, produced, for example, from this:

Error message corrected 2

The space reserved for the page number is of a fixed
width, so that the dots always end in the same place.
Well, they did end in the same place until the advent of
protrusion support in the TEX engines. Now, with the
microtype package loaded, it is possible that the page
number will protrude slightly into the margin (even
though it’s typeset inside a box) and as a result this
page number box gets shifted. With enough bad luck
this can get you another dot in the line, sticking out like
the proverbial sore thumb, as exhibited in the question
on StackExchange that triggered the correction.

LATEX now takes care that there will be no
protrusion happening on such lines, even if it
is generally enabled for the whole document.

(https://tex.stackexchange.com/q/172785)

Start L-R mode for \thinspace and friends

In LATEX, commands that are intended only for
paragraph (L-R) mode are generally careful to start
paragraph mode if necessary; thus they can be used
at the start of a paragraph without surprising and
unwanted consequences. This important requirement
had been overlooked for a few horizontal spacing
commands, such as \thinspace (a.k.a. “\,”), and
for some other support commands such as \smash or
\phantom. Thus they ended up adding vertical space
when used at the beginning of a paragraph or, in the
case of \smash, creating a paragraph of their own. This
has now been corrected, and a corresponding update
has been made to the amsmath package, in which these
commands are also defined. (github issues 49 and 50)

Guarding \pfill in doc

For presenting index entries pointing to code fragments
and the like, the doc package has a \pfill command

LATEX News #29

46 TUGboat, Volume 40 (2019), No. 1

that generates within the index a line of dots leading
from the command name to the page or code line
numbers. If necessary it would automatically split the
entry over two lines. That worked well enough for a
quarter century, but we discovered recently that it is
broken inside the ltugboat class, where it sometimes
produces bad spacing within continuation lines.

The reason turned out to be a redefinition of the
LATEX command \nobreakspace (~) inside the class
ltugboat, which removed any preceding space (and
thus unfortunately also removed the dots on the
continuation line). While one can argue that this is a
questionable redefinition (if only done by a single class
and not generally), it has been in the class so long that
changing it would certainly break older documents. So
instead we now guard against that removal of space.

(github issues 25 and 75)

Changes to packages in the tools category

Sometimes the trace package turned off too much

The trace package is a useful little tool for tracing
macro execution: it hides certain lengthy and typically
uninteresting expansions resulting from font changes
and similar activities. However, it had the problem that
it also reset other tracing settings such as \showoutput

in such situations, so that you couldn’t use \showoutput
in the preamble to get symbolic output of all the pages
in the document. This has now been corrected.

Update to xr

The xr package has been updated so that the code that
reads the .aux file has been made more robust. It now
correctly ignores conditionals (added by hyperref and
other packages) rather than generating low level parsing
errors. (https://tex.stackexchange.com/a/452321)

Column data for multicols* sometimes vanished

In certain situations involving multicols*, when there
are more explicit \columnbreak requests than there are
columns on the current page, data could vanish due to
the removal of an internal penalty marking the end of
the environment. This has been corrected by explicitly
reinserting that penalty if necessary. (github issue 53)

Extension to \docolaction in multicol

The \docolaction command can be used to carry out
actions depending on the column you are currently
in, i.e., first, any inner one (if more than two) or last.
However, if the action generates text then there is the
question: is this text part of the current column or the
one after? That is, on the next run, do we test before or
after it, to determine in which column we are?

This is now resolved as follows: if you use
\docolaction* any generated text by the chosen
action is considered to be after the test point. But if you
use the command without the star then all the material
it generates will be placed before the test point to
determine the current column, i.e., the text will become
part of the current column and may affect the test result
on the next run.

Prevent color leak in array

In some cases the color used inside a tabular cell could
“leak out” into the surrounding text. This has been
corrected. (github issue 72)

Support fragile commands in array or tabular column

templates

The preamble specifiers p, m and b each receives a user
supplied argument: the width of the paragraph column.
Normally that is something harmless, like a length or
a simple length expression. But in more complicated
settings involving the calc package it could break with a
low-level error message. This has now been corrected.

(https://tex.stackexchange.com/q/459285)

Changes to packages in the amsmath category

The changes in the kernel made for \thinspace, \smash,
etc. (see above) have been reflected in the amsmath

package code, so that loading this package doesn’t revert
them. (github issues 49 and 50)

Website updates

Publications area reorganized and extended

To help readers to find relevant information in more
convenient and easy ways, the area of the website
covering publications by the LATEX Project Team was
reorganized and extended (many more abstracts added).
We now provide the articles, talks and supplementary
data structured both by year and also by major topics [4].
Feel free to take a look.

Japanese translations of the user’s guide

Yukitoshi Fujimura has kindly translated into Japanese
two documents that are distributed with standard
LATEX. These are:

• LATEX 2ε for authors;

• User’s Guide for the amsmath Package [5].

They can be found on the website documentation
page [3]. You will now also find there a typeset version
of the full LATEX 2ε source code (with index etc.) and a
number of other goodies.

References

[1] Frank Mittelbach: New rules for reporting bugs in

the LATEX core software. In: TUGboat, 39#1, 2018.
https://latex-project.org/publications/

[2] LATEX News, Issue 28. In: TUGboat, 39#1, 2018.
https://latex-project.org/news/latex2e-news/

[3] LATEX documentation on the LATEX Project Website.
https://latex-project.org/documentation/

[4] LATEX Project publications on the LATEX Project

Website.
https://latex-project.org/publications/

[5] American Mathematical Society and The LATEX3
Project: User’s Guide for the amsmath Package

(Version 2.1). April 2018. Available from
https://www.ctan.org and distributed as part of
every LATEX distribution.

LATEX News #29

TUGboat, Volume 40 (2019), No. 1 47

Indexing, glossaries, and bib2gls

Nicola L. C. Talbot

Abstract

The bib2gls command line application [17] com-
bined with the glossaries-extra package [18] provides
an alternative indexing method to those provided by
the base glossaries package [19]. In addition, since
the terms are defined in .bib files, tools such as
JabRef [3] can be used to manage large databases.

1 Introduction

The LATEX kernel provides two basic forms of in-
dexing (that is, collating terms and their associated
locations in the document). The first form creates a
file called \jobname.idx using \makeindex and the
information is written to the file using the command
\index{〈info〉}. This writes the line

\indexentry{〈info〉}{〈page〉}
to the .idx file, where 〈page〉 is the page number.

The second form is very similar but uses a dif-
ferent file extension. A file called \jobname.glo is
created with \makeglossary and the information
is written using the command \glossary{〈info〉}
which writes the line

\glossaryentry{〈info〉}{〈page〉}
to the .glo file, where 〈page〉 is the page number.

In both cases, the page number is obtained from
\thepage and the write operation is delayed to en-
sure the value is correct in the event that the index-
ing occurs across a page break. These commands
date back to the 1980s when processing power and
resources were significantly smaller than today. Com-
pilation of draft documents could be speeded up by
omitting the indexing, which can be done by com-
menting out the \make. . . commands or by inserting
\nofiles before them.

The next step is to collate the {〈info〉}{〈page〉}
information, removing duplicates, concatenating page
ranges, hierarchically ordering the terms, and writ-
ing the LATEX code that will typeset the result as an
index or glossary. TEX isn’t particularly suited for
this kind of task. It’s much more efficient to use a
custom application; makeindex was created for this
purpose, which creates a .ind file from the .idx.

2 Indexing

The LATEX kernel doesn’t provide any specific com-
mands for reading the file created by the indexing
application, but instead defers this task to pack-
ages. The first of these was makeidx [5], which is
quite trivial. It provides the command \printindex

that inputs \jobname.ind if it exists and provides

commands for convenient ‘see’ and ‘see also’ cross-
referencing.

2.1 Indexing example

A simple example that uses the lipsum package [2]
for padding follows:

\documentclass{article}

\usepackage{lipsum}

\usepackage{makeidx}

\makeindex

\begin{document}

\index{duck}\lipsum*[1]\index{goose}

\par\lipsum[2-4]\par

\index{duck}\index{ant}\lipsum*[5-6]

\index{zebra}\par

\index{goose}\index{aardvark}\lipsum[7-10]\par

\lipsum*[11]\index{dog}\index{ant}\index{goose}

\printindex

\end{document}

If the file is called myDoc.tex then1

latex myDoc

will create the file myDoc.idx that contains

\indexentry{duck}{1}

\indexentry{goose}{1}

\indexentry{duck}{1}

\indexentry{ant}{1}

\indexentry{zebra}{2}

\indexentry{goose}{2}

\indexentry{aardvark}{2}

\indexentry{dog}{3}

\indexentry{ant}{3}

\indexentry{goose}{3}

At this point the output doesn’t contain an index,
as the file myDoc.ind (which \printindex attempts
to read) doesn’t exist. This file can be created with

makeindex myDoc

The document then needs to be rerun to include the
new myDoc.ind so the complete document build is

latex myDoc

makeindex myDoc

latex myDoc

The default behaviour of makeindex is to as-
sume the extension .idx for the input file (if not
specified) and use the extension .ind for the out-
put file (which fits the expected extension used in
\printindex). In this case, it creates a myDoc.ind

containing (except the blank lines around each group
are omitted, here and in the following):

\begin{theindex}

\item aardvark, 2

\item ant, 1, 3

1 latex is used here to denote pdflatex, xelatex, etc., as

appropriate.

Indexing, glossaries, and bib2gls

48 TUGboat, Volume 40 (2019), No. 1

\indexspace

\item dog, 3

\item duck, 1

\indexspace

\item goose, 1--3

\indexspace

\item zebra, 2

\end{theindex}

The \indexspace command usually produces a vis-
ual separation between letter groups. Neither that
command nor the \begin{theindex} environment
are provided by the LATEX kernel, so are defined by
classes that provide index support.

If you try out this example, you’ll find that
\index doesn’t produce any text where it’s used in
the document. This catches out some new users
who expect the indexed term to also appear in the
document. Typically, \index will be placed either
before or after the appropriate word. For example:

Aardvarks\index{aardvark} are

\index{nocturnal animal}nocturnal animals.

The default output created by makeindex can
be modified by a style file. For example, if I create a
file called myindexstyle.ist that contains

headings_flag 1

heading_prefix "\\heading{"

heading_suffix "}"

and pass this file to makeindex:

makeindex -s myindexstyle.ist myDoc

then the resulting myDoc.ind will now contain

\begin{theindex}

\heading{A}

\item aardvark, 2

\item ant, 1, 3

\indexspace

\heading{D}

\item dog, 3

\item duck, 1

\indexspace

\heading{G}

\item goose, 1--3

\indexspace

\heading{Z}

\item zebra, 2

\end{theindex}

This custom command \heading will need to be de-
fined somewhere in my document. A basic example:

\newcommand*{\heading}[1]{%

\item\textbf{#1}\par\nobreak\indexspace\nobreak}

Some newer, more sophisticated, classes (such as
memoir [8]) and packages (such as imakeidx [1]) pro-
vide greater flexibility, making it easier to customize
the index format.

The obsolete glossary package [12] provided an
analogous version of makeidx designed for use with
\makeglossary and \glossary. This was made
more complicated by the need to provide some kind
of separation between the term and its description
to assist formatting, but it was essentially using the
same kind of mechanism as the above indexing exam-
ple. The memoir and nomencl [9] packages provide
similar functions. As with \index, \nomenclature
(as provided by nomencl) and \glossary do not pro-
duce any text where they’re used in the document.

2.2 Indexing syntax

The 〈info〉 argument of both \index and \glossary

needs to be given in the syntax of the indexing ap-
plication used to process the data.2 This catches out
many new users who may still be learning (LA)TEX
syntax and don’t realise that external tools may have
different special characters.

For makeindex, the special characters are:

• The ‘actual’ character used to separate the sort
value from the actual term when they’re different
(default: @).

• The ‘level’ character used to separate hierarchi-
cal levels (default: !).

• The ‘encap’ character used to indicate the page
number encapsulating command (default: |).

• The ‘quote’ character used to indicate that the
following character should be interpreted liter-
ally (default: ").

These characters can be changed in the makeindex

style file, if required.
For example, using the defaults,

\index{deja vu@\emph{d\'ej\`a vu}}

This indicates that the term should be sorted as
‘deja vu’ but the term will be written to the output
(.ind) file as

\emph{d\'ej\`a vu}

Up to three hierarchical levels are supported by
makeindex, and also by the standard definition of
\begin{theindex}:

\index{animal!nocturnal!owl}

\index{animal!nocturnal!aardvark}

\index{animal!crepuscular!ocelot}

This is converted by makeindex to

\item animal

\subitem crepuscular

\subsubitem ocelot, 1

\subitem nocturnal

2 This refers to the kernel definitions of \index and

\glossary which simply take one mandatory argument

that’s written to the relevant file.

Nicola L. C. Talbot

TUGboat, Volume 40 (2019), No. 1 49

\subsubitem aardvark, 1

\subsubitem owl, 1

(assuming the indexing occurred on page 1).
Each hierarchical level may have a separate sort

and actual value. For example (except on one line),

\index{debutante@d\'ebutante!1945-1958@1945

\textendash1958}

Here, the top-level item has the sort value debutante
(used by the indexing application to order the top-
level entries) with the actual value d\'ebutante used
for printing in the document’s index.

The sub-item has the sort value 1945-1958 (used
by the indexing application to order sub-entries rel-
ative to their parent entry) with the actual value
1945\textendash 1958 used within the document’s
index.

If a parent entry is also indexed within the doc-
ument, it must exactly match its entry within the
hierarchy. A common mistake is something like
\index{debutante@d\'ebutante}

\index{d\'ebutante!1945-1958@1945\textendash 1958}

In this case, makeindex treats d\'ebutante and
debutante@d\'ebutante as two separate top-level
entries, which results in an index where ‘débutante’
appears twice, and one entry doesn’t have any sub-
items while the other does.

The corresponding page number (location) can
be encapsulated by a command using the encap spe-
cial character. This should be followed by the com-
mand name without the leading backslash. For ex-
ample, if on page 2 of my earlier example document
I add an encap to the aardvark entry,

\index{aardvark|textbf}

then the resulting .ind file created by makeindex

will now contain (makeindex inserts the \):

\item aardvark, \textbf{2}

Other commands could be included, for example,

\index{aardvark|bfseries\emph}

would end up in the .ind file as

\item aardvark, \bfseries\emph{2}

but obviously this would lead to the undesired effect
of rendering the rest of the index in bold. A bet-
ter solution is to define a semantic command that
performs the required font change, such as

\newcommand*{\primary}[1]{\textbf{\emph{#1}}}

If the encapsulating command takes more than
one argument, the final argument needs to be the
page number and the initial arguments need to be
added to the encap. For example,

\index{aardvark|textcolor{blue}}

The makeidx package provides two commands that
can be used in this way:

\newcommand*\see[2]{\emph{\seename} #1}

\providecommand*\seealso[2]{\emph{\alsoname} #1}

(The \seename and \alsoname macros are language-
sensitive commands that produce the text ‘see’ and
‘see also’.) These commands both ignore the second
argument, which means that the page number won’t
be displayed. This provides a convenient way of
cross-referencing. For example, if on page 2 I have

\index{ant-eater|seealso{aardvark}}

then the .ind file would contain

\item ant-eater, \seealso{aardvark}{2}

From makeindex’s point of view, this is just another
encapsulating command, so if I add

\index{ant-eater}

to page 1 and page 8, then this would lead to a rather
odd effect in the index:

\item ant-eater, 1, \seealso{aardvark}{2}, 8

The page list now displays as ‘1, see also aardvark, 8’.
The simple solution is to place all the cross-

referenced terms before \printindex. (imakeidx

closes the indexing file at the start of \printindex,
which means that indexing can’t take place after it.)

The encap value may start with (or) to indicate
the start or end of an explicit range. If used, these
must match. For example, on page 2:

\index{aardvark|(textbf}

and then on page 10:

\index{aardvark|)textbf}

results in

\item aardvark \textbf{2--10}

If no formatting is needed, (and) may be used alone:

\index{aardvark|(}

...

\index{aardvark|)}

Although these parentheses characters have a spe-
cial meaning at the start of the encap, they’re not
considered special characters.

If any of the special characters need to be inter-
preted literally, then they must be escaped with the
quote character. For example,

\index{n"!@$n"!$}

\index{x@$"|\vec{x}"|$}

In the first case above, the special character that
needs to be interpreted literally is the level character
! which appears in both the sort value and the actual
value. In the second case, the special character that
needs to be interpreted literally is the encap character
| which appears twice in the actual value. (Of course,
replacing | with \vert avoids the problem.)

Indexing, glossaries, and bib2gls

50 TUGboat, Volume 40 (2019), No. 1

This is something that often trips up new users.
With experience, we may realise that providing se-
mantic commands can hide the special characters
from the indexing application. For example,

\newcommand*{\factorial}[1]{#1!}

This can take care of the actual value but not the
sort value, which still includes a special character:

\index{n"!@\factorial{n}}

The quote character itself also needs escaping if
it’s required in a literal context:

\index{naive@na\""\i ve}

From makeindex’s point of view the backslash char-
acter \ is a literal backslash so \"" is a backslash
followed by a literal double-quote (which has been
escaped with ").

2.3 UTF-8

So far, all examples that include accented charac-
ters have used accent commands, such as \', since
makeindex doesn’t support UTF-8. This is essen-
tially down to its age, as it was written in the mid-
1980s, before the advent of Unicode. A previous
TUGboat article [13] highlights the problem caused
when trying to use makeindex on a UTF-8 file.

Around 2000, xindy [4], a new indexing appli-
cation written in Perl and Lisp, was developed as a
language-sensitive, Unicode-compatible alternative
to makeindex. The native xindy format is quite dif-
ferent from the makeindex syntax described above
and can’t be obtained with \index. In this case,
the special characters are the double-quote " used
to delimit data and the backslash \ used to indicate
that the following character should be taken literally.

In the earlier factorial example, the makeindex

syntax (used in the .idx file) is

\indexentry{n"!@\factorial{n}}{1}

(assuming \index{n"!@\factorial{n}} occurred
on page 1). Whereas in the native xindy format this
would be written as

(indexentry

:tkey (("n!" "$\\factorial{n}$"))

:locref "1")

or

(indexentry

:key ("n!")

:print ("$\\factorial{n}$")

:locref "1")

The exclamation mark doesn’t need escaping in this
case but the backslash does. The na\""\i ve exam-
ple above needs both the backslash and double-quote
treated in a literal context:

(indexentry

:tkey (("naive" "na\\\"\\i ve"))

:locref "1")

Of course, in this case UTF-8 is preferable:

(indexentry :key ("naïve") :locref "1")

This format requires a completely different com-
mand than \index for use in the document. However,
xindy is capable of reading makeindex syntax. The
simplest way of enabling this is by invoking xindy

through the wrapper program texindy. Unfortu-
nately, unlike makeindex, there’s no way of changing
the default special characters. The previous TUG-

boat article on testing indexing applications [13] com-
pares makeindex and xindy.

A recent alternative that’s also Unicode com-
patible is the Lua program xindex [20]. This reads
makeindex syntax and command line switches are
available to change the special characters or to spec-
ify the language.

2.4 Shortcuts

The \index command doesn’t generate any text.
This can lead to repetition in the code. For example,

An aardvark\index{aardvark} is a

nocturnal animal\index{nocturnal animal}.

It’s therefore quite common to see users provide their
own shortcut command to both display and index a
term. For example,

\newcommand*{\Index}[1]{#1\index{#1}}

%...

An \Index{aardvark} is a

\Index{nocturnal animal}.

Complications arise when variations are required.
For example, if a page break occurs between ‘noctur-
nal’ and ‘animal’, so that ‘nocturnal’ is at the end
of, say, page 1 and ‘animal’ is at the start of page 2,
then placing \index after the term leads to the page
reference 2 in the index whereas placing it before
leads to the page reference 1. Also \index creates a
whatsit that can cause interference. Although exam-
ples quite often place \index after the text, in many
cases it’s more appropriate to put \index first. This
shortcut command doesn’t provide the flexibility of
the placement of \index relative to the text.

A problem also arises if the term includes special
characters that need escaping in \index but not in
the displayed text or if the display text needs to be
a slight variation of the indexed term. For example,
the above definition of \Index can’t be used in the
following:

The na\"\i ve\index{naive@na\""\i ve}

geese\index{goose} were frightened by the

flock of ph\oe nixes\index{phoenix@ph\oe nix}.

Nicola L. C. Talbot

TUGboat, Volume 40 (2019), No. 1 51

The definition of \Index could be modified to include
an optional argument to provide a different displayed
term. For example:

\newcommand*{\Index}[2][\thedisplayterm]{%

\def\thedisplayterm{#2}%

#1\index{#2}}

but this ‘shortcut’ ends up with slightly longer code:

The \Index[na\"\i ve]{naive@na\""\i ve}

\Index[geese]{goose} were frightened by the

flock of \Index[ph\oe nixes]{phoenix@ph\oe nix}.

An obvious solution to the first case (naïve) is to use
UTF-8 instead of LATEX accent commands combined
with a Unicode-aware indexing application (texindy
or xindex).

The \Index{naïve} geese\index{goose}

were frightened by the flock of

phœnixes\index{phœnix}.

This works fine with a Unicode engine (X ELATEX or
LuaLATEX) but not with inputenc [6], which uses the
so-called active first octet trick to internally apply
accent commands. This means that the .idx file
ends up with

\indexentry{na\IeC {\"\i }ve}{1}

\indexentry{goose}{1}

\indexentry{ph\IeC {\oe }nix}{1}

The \index mechanism is designed to write its
argument literally to the .idx file. This can be seen
from the earlier \factorial example where

\factorial{n}\index{\factorial{n}}

is written to the .idx file as

\indexentry{\factorial{n}}{1}

Unfortunately, embedding \index in the argument of
another command (such as the above custom \Index)
interferes with this. For example,

\Index{\factorial{n}}

results in the expansion of \factorial as the index-
ing information is written to the .idx file:

\indexentry{$n!$}{1}

The level special character (!) is no longer hidden
from the indexing application and, since it hasn’t
been escaped with the quote character, this leads to
an unexpected result in the .ind file:

\item $n

\subitem $, 1

2.5 Consistency

With makeindex, invisible or hard to see differences
in the argument of \index can cause seemingly du-
plicate entries in the index. For example (line breaks
here are part of the input),

\index{debutante@d\'ebutante

!1945-1958@1945\textendash 1958}

%...

\index

{debutante@d\'ebutante!1945-1958@1945\textendash

1958}

Here the two entries superficially appear the same
but the line break inserted into the first instance
results in two different entries in the index. The first
entry has a space at the end of its actual value but
the second doesn’t. This is enough to make them
appear different entries from makeindex’s point of
view. When viewing the .ind file, the difference is
only perceptible if the text editor has the ability to
show white space.

The simplest solution here is to run makeindex

with the -c option, which compresses intermediate
spaces and ignores leading and trailing blanks and
tabs.

A long document with a large index of hierar-
chical terms and terms that require a non-identical
sort value can be prone to such mistakes. Other
inconsistencies can arise through misspellings (which
hopefully the spell-checker will detect) or more subtle
errors that are missed by spell-checkers.

For example, in English some words are hyphen-
ated (‘first-rate’), some are merged into a single word
(‘firstborn’) and some are space-separated (‘first aid’).
Even native speakers can mix up the separator, and
this can result in inconsistencies in a large document.
For example,

\index{firstborn}

%...

\index{first-born}

%...

\index{first born}

From the spell-checker’s point of view, there are
no spelling errors to flag in the above code. The
inconsistencies can be picked up by proof-reading
the index, but unfortunately some authors skip the
back matter when checking their document.

When using \glossary (rather than \index),
which may additionally include a long description,
the problem with consistency becomes more pro-
nounced. The example document below illustrates
the use of the kernel version of \glossary, with one
regular entry and one range entry. All the strings
have to be exactly the same.

Also shown here is that since makeindex is a
trusted application, it can be run through the shell
escape in restricted mode. Finally, a makeindex style
file is needed to indicate that data is now marked up
with \glossaryentry instead of \indexentry:

\documentclass{report}

\begin{filecontents*}{\jobname.ist}

Indexing, glossaries, and bib2gls

52 TUGboat, Volume 40 (2019), No. 1

keyword "\\glossaryentry"

\end{filecontents*}

\IfFileExists{\jobname.glo}

{\immediate\write18{makeindex -s \jobname.ist

-o \jobname.gls \jobname.glo}}

{\typeout{Rerun required.}}

\makeglossary

\begin{document}

\chapter{Introduction}

Duck\glossary{duck: a waterbird

with webbed feet}\ldots

\chapter{Ducks}

\glossary{duck: a waterbird

with webbed feet|(}

\ldots

\glossary{duck: a waterbird

with webbed feet|)}

\renewcommand{\indexname}{Glossary}

\makeatletter

\@input@{\jobname.gls}

\makeatother

\end{document}

The old glossary package introduced a way of
saving the glossary information and referencing it by
label to perform the indexing, which helped consis-
tency and reduced document code. The term could
then be just indexed by referencing the label with
\useglosentry, or could be both indexed and dis-
played with \gls{〈label〉}. Special characters still
needed to be escaped explicitly, and this caused a
problem for \gls as the quote character ended up
in the document text. Abbreviation handling was
performed using a different indexing command, and
the package reached the point where it far exceeded
its original simplistic design. It was time for a com-
pletely new approach, which we turn to now.

3 The glossaries package

The glossaries package [19] was introduced in 2007 as
a replacement to the now obsolete glossary package.
The main aims were to

• define all terms so that they can be referenced
by label (no document use of \glossary);

• internally escape indexing special characters so
that the user doesn’t need to know about them;

• make abbreviations use the same indexing mech-
anism for consistency.

The advantage of first defining terms so that they can
be referenced by label isn’t only to help consistency
but also improves efficiency. When a term is defined,
partial indexing information is constructed and saved.

This is the point where any special characters are
escaped, which means that this operation only needs
to be done when the term is defined, not every time
the term is indexed.

A hierarchical term is defined by referencing its
parent by label; thus, the parent’s indexing data
can easily be obtained and prefixed with the level
separator at the start of the child’s data.

With the old glossary package, a term had only
an associated name, description and sort value, but
the new glossaries package provides extra fields, such
as an associated symbol or plural form. Unfortu-
nately, when developing the new package I was still
thinking in terms of the old package that needed
to include the name and description in the index-
ing information so that it could be displayed in the
glossary. Early versions of the glossaries package
continued this practice and the ‘actual’ part of the
indexing information included the name, description
and symbol, written to the indexing file in the form

\glossaryentryfield{〈label〉}{〈name〉}{〈description〉}
{〈symbol〉}
This caused a number of problems. First, the name,
description and symbol values all had to be parsed for
indexing special characters, which added to the doc-
ument build processing time (especially for long de-
scriptions). Second, long descriptions could cause the
indexing information to exceed makeindex’s buffer.

The package settings can allow for expansion
to occur when terms are defined (for example, if
terms are defined in a programmatic context that
uses scratch variables that need expanding). This
can lead to robust internal commands appearing in
the indexing information. To simplify the problem
of trying to escape all the @ characters, the glossaries

package uses the question mark character (?) as the
actual character instead.

While it was necessary with the glossary package
to write all this information to the indexing file, it
is no longer necessary with the glossaries package as
the name, description and symbol can all now be
accessed by referencing the corresponding field asso-
ciated with the term’s identifying label. Therefore,
newer versions now simply use

\glossentry{〈label〉}
for the actual text. Hierarchical entries use

\subglossentry{〈level〉}{〈label〉}
for the actual text, where 〈level〉 is the hierarchi-
cal level that’s calculated when the term is defined.
(This information may be of use to glossary styles
that support hierarchical entries.) It’s now quicker to
construct the indexing information and only the sort
value and label need checking for special characters.

Nicola L. C. Talbot

TUGboat, Volume 40 (2019), No. 1 53

For example,

\documentclass{report}

\usepackage[colorlinks]{hyperref}

\usepackage[symbols,style=treegroup]{glossaries}

\makeglossaries

\newglossaryentry{waterbird}% label

{name={waterbird},

description={bird that lives in or near water}}

\newglossaryentry{duck}% label

{name={duck},

parent={waterbird},

description={a waterbird with webbed feet}}

\newglossaryentry{goose}% label

{name={goose},

plural={geese},

parent={waterbird},

description={a waterbird with a long neck}}

\newglossaryentry{fact}% label

{name={\ensuremath{n!}},

description={n factorial},

sort={n!},

type=symbols

}

\begin{document}

\chapter{Singular}

\Gls{duck} and \gls{goose}.

\chapter{Plural}

\Glspl{duck} and \glspl{goose}.

\chapter{Other}

\begin{equation}

\gls[counter=equation]{fact} = n \times (n-1)!

\end{equation}

\printglossaries

\end{document}

This uses \makeglossaries (provided by glossaries),
rather than \makeglossary, as it’s not simply open-
ing one associated file. The glossaries package sup-
ports multiple glossaries and all associated files are
opened by this command as well as the custom style
file for use by the indexing application. In this
case, the document has two glossaries: the default
main glossary and the symbols list (created with the
symbols package option).

The glossaries are output using the command
\printglossaries. This is a shortcut to iterate over
all defined glossaries, calling for each

\printglossary[type=〈label〉]
where 〈label〉 identifies the required glossary. It’s
this command that inputs the file generated by the
indexing application. A style is needed that sup-
ports hierarchical entries. In this example, I’ve cho-
sen the tree style in the package options but the

style can also be set within the optional argument of
\printglossary. (A list of all styles with example
output can be viewed at the glossaries gallery [15].)

As shown here: the hyperref package must be
loaded before glossaries. This is an exception to the
general rule that hyperref should be loaded last.

The commands \gls, \Gls, \glspl and \Glspl

all reference a term by its label and simultaneously
display and index the term. The variations provide
a way of displaying the plural form (\glspl and
\Glspl) and to convert the first letter to upper case
(\Gls and \Glspl). In this case, the ‘waterbird’
entry isn’t explicitly indexed in the document but
it’s included in the indexing information for its child
entries ‘duck’ and ‘goose’, which are indexed.

The above example creates two indexing files
with extensions .glo (for the default glossary) and
.slo (for the symbols list), that both use makeindex
syntax. Each file contains the indexing information
for a particular glossary. Both files require the .ist

style file that’s also created during the document
build.

The lines are quite long but are all in the form
(line breaks for clarity)

\glossaryentry

{〈data〉|〈encap〉}
{〈location〉}
The 〈encap〉 and 〈location〉 information can vary with
each indexing instance but the 〈data〉 part is constant
for each term, and it’s this part that’s created when
the term is defined.

When the ‘waterbird’ term is defined, the 〈data〉
part is determined to be

waterbird?\glossentry{waterbird}

The sort part here is waterbird and the actual part
is \glossentry{waterbird}. This is stored inter-
nally and accessed when the child entries are defined.
For example, when the ‘duck’ entry is defined, its
〈data〉 information is set to (line break for clarity
and not included in 〈data〉)
waterbird?\glossentry{waterbird}!

duck?\subglossentry{1}{duck}

The hierarchical level numbering starts with 0 for
top-level entries, so the duck entry has the level set
to 1 since it has a parent but no grandparent.

The factorial example has this 〈data〉 part set:

n"!?\glossentry{fact}

Note that the special character occurring in the sort
value has been escaped. This has to be done only
once, when the entry is defined.

The location number defaults to the page num-
ber but may be changed, as in the reference to the
fact entry, which switches to the equation counter:

Indexing, glossaries, and bib2gls

54 TUGboat, Volume 40 (2019), No. 1

\begin{equation}

\gls[counter=equation]{fact} = n \times (n-1)!

\end{equation}

Since the report class is in use, this is in the form
〈chapter〉.〈equation〉 (3.1 in this case).

Location formats only have limited support with
makeindex, which requires a bare number (0, 1, 2,
. . .), Roman numeral (i, ii, iii, . . . or I, II, III, . . .),
basic Latin letter (a, . . . , z or A, . . . , Z) or a simple
composite that combines these forms with a given
separator (such as A-4 or 3.1). The separator must
be consistent, so you can’t have a mixture of, say,
A:i and B-2 and 3.4.

In this case, the separator is a period or full
stop character, which is the default setting in the
custom style file created by \makeglossaries, so
makeindex will accept ‘3.1’ as a valid location.

Unfortunately, the glossary style may need to
know which counter generated each location. This
is especially true if the hyperref package is in use
and the location numbers needs to link back to the
corresponding place in the document. The hyperlink
information can’t be included in the indexed location
as it will be rejected as invalid by makeindex. The
only other part of the indexing information that
can vary without makeindex treating the same term
as two separate entries is within the encap, so the
glossaries package actually writes the encap as

setentrycounter[〈h-prefix〉]{〈counter〉}\〈csname〉

where 〈counter〉 is the counter name and 〈csname〉 is
the name of the actual encapsulating command. This
defaults to glsnumberformat but may be changed
in the optional argument of commands like \gls.

The first example document at the start of this
article demonstrated makeindex’s implicit range for-
mation, where the location list for the ‘goose’ entry
(which was indexed on pages 1, 2 and 3) was com-
pressed into 1--3. This compression can only occur
if the encap is identical for each of the indexing
instances within the range.

The hypertarget will necessarily change for each
non-identical indexed location. This means that if
the actual target is included in the encap it will inter-
fere with the range formation. Instead, only a prefix
is stored (〈h-prefix 〉) which can be used to reconstruct
the hypertarget. This assumes that \theH〈counter〉
is defined in the form 〈h-prefix 〉\the〈counter〉. Now
the encap will be identical for identical values of
〈h-prefix 〉. If the hypertarget can’t be reconstructed
from the location by simply inserting a prefix then
it’s not possible to have hyperlinked locations with
this indexing method.

In the above example, the report class has been
loaded along with hyperref so \theHequation is de-
fined as

\theHsection.\arabic{equation}

This means that the indexing of the term in equa-
tion 3.1 occurs when \theHequation expands to
3.0.1 (the section counter is 0) so 〈h-prefix 〉 can’t
be obtained since there’s no prefix that will make
〈prefix 〉3.1 equal to 3.0.1. This results in a warning
from the glossaries package:

Hyper target `3.0.1' can't be formed by

prefixing location `3.1'. You need to modify

the definition of \theHequation otherwise

you will get the warning: "`name{equation.3.1}'

has been referenced but does not exist"

(and hyperref does indeed generate that warning once
the glossary files have been created). The only solu-
tion here is to either remove the location hyperlink
or redefine \theHequation so that a prefix can be
formed.

3.1 xindy

Although the glossaries package was originally de-
signed for use with just makeindex, version 1.17
added support for xindy. It made sense to use
xindy’s native format as it’s more flexible; also,
texindy only accepts the default makeindex spe-
cial characters so it won’t accept ? as the actual
character.

The default setting assumes the makeindex ap-
plication will be used for backward compatibility.
The xindy package option will switch to xindy syn-
tax. Again the partial indexing data is constructed
when each entry is defined, but now the special char-
acters that need escaping are " and \.

The previous example can be converted to use
xindy by modifying the package options:

\usepackage[symbols,style=treegroup,xindy]

{glossaries}

The package also needs to know which counters (aside
from the default page counter) will be used for lo-
cations. In our example, since one of the terms is
indexed with the equation counter, this needs to be
indicated:

\GlsAddXdyCounters{equation}

(The argument should be a comma-separated list if
you are indexing other counters as well.)

As with makeindex, it’s not straightforward to
add the information needed to convert the location
into a hyperlink. Now the prefix and location are
provided using

:locref "{〈h-prefix〉}{〈location〉}"

Nicola L. C. Talbot

TUGboat, Volume 40 (2019), No. 1 55

and the counter and encapsulating format are merged
into the attribute value:

:attr "〈counter〉〈format〉"
This is why with the xindy package option set it’s
necessary to specify which non-default counters and
formats you want to use—so that corresponding
commands can be provided.

Unlike makeindex, which will only accept very
specific types of numbering, with xindy you can have
your own custom numbering scheme, provided that
you define a location class that specifies the syntax.
This is obviously a far more flexible approach but
the downside is a far greater chance that the location
might include xindy’s special characters that will
need escaping, and now the escaping must be done
every time an entry is indexed, not just when the
entry is defined.

Suppose for example, I have a little package
(that loads etoolbox [7] and tikzducks [11]) that pro-
vides the robust command \ducknumber{〈n〉}to dis-
play 〈n〉 little ducks in a row,

\newcount\duckctr

\newrobustcmd{\ducknumber}[1]{%

\ifnum#1>0\relax

\duckctr=0\relax

\loop

\advance\duckctr by 1\relax

\tikz[scale=0.3]{\duck;}%

\ifnum\duckctr<#1

\repeat

\fi

}

It also provides \duckvalue{〈counter〉} if the value
needs to be obtained from a counter:

\newcommand*{\duckvalue}[1]{%

\ducknumber{\value{#1}}}

Now let’s suppose I want the page numbering
in my document to be represented by ducks:

\renewcommand{\thepage}{\duckvalue{page}}

so, for example, on page 5, five little ducks are dis-
played in the footer. Now let’s suppose that I index
a term on this page. The location will expand to

\ducknumber{5}

This would be rejected as invalid by makeindex, but
what about xindy? With an appropriate location
class xindy would accept this, but it would interpret
\d as the literal character ‘d’. The resulting code it
would write to the designated output file would be

ducknumber{5}

so you’d end up with ‘ducknumber5’ typeset in your
document.

The backslash must be escaped but there’s a
conflict between expansion and TEX’s asynchronous

output routine. With the glossaries package, the
location is obtained by expanding the command
\theglsentrycounter, and the corresponding hy-
pertarget value (if supported) is obtained by expand-
ing \theHglsentrycounter. These two commands
can be fully expanded when trying to determine the
prefix. If the value of the page counter is currently
wrong, then it’s equally wrong for both values and
it should still be possible to obtain the prefix.

When it comes to the actual task of preparing
the location so that it’s in a suitable format for xindy,
there’s no sense in converting \theglsentrycounter

into \\theglsentrycounter as clearly there’s no
way for xindy to extract the page number from this.
On the other hand, if \theglsentrycounter is fully
expanded (and then detokenized and escaped), the
page number could end up incorrect if it occurs across
a page break.

The normal way around this problem (used by
\protected@write) is to locally let \thepage to
\relax so that it isn’t expanded until the actual
write operation is performed, but if this method is
used the location will end up as \\thepage which
will prevent xindy from obtaining the correct value.

It’s necessary for \thepage to be expanded be-
fore the write operation in order to escape the special
characters but at the same time, the actual value
of \c@page shouldn’t be expanded until the write
operation is actually performed.

Essentially, for the duck numbering example, on
page 5 \thepage needs to be converted into

\\ducknumber{\the\c@page}

where \\ are two literal (catcode 12) characters and
\the\c@page is left to expand when the write oper-
ation is performed.

The glossaries package gets around this problem
with a nasty hack that locally redefines some com-
mands. For example, \@alph\c@page expands to
\gls@alphpage. This command is skipped when the
special characters are escaped but expands to the
original definition of \@alph\c@page when the write
operation is actually performed.

This action is only performed when the page

counter is being used for the location. Other counters
will need to be expanded immediately to ensure that
they are the correct value.

As this hack can cause problems in some con-
texts, if you know that your locations will never
expand to any content that contains xindy special
characters, then it’s best to switch off this behaviour
with the package option esclocations=false.

This is an inherent problem when converting
from one syntax (LATEX in this case) to another

Indexing, glossaries, and bib2gls

56 TUGboat, Volume 40 (2019), No. 1

(xindy or makeindex). Each syntax has its own set
of special characters (required to mark up or delimit
data) that may need to be interpreted literally.

3.2 Using TEX to sort and collate

Some users who aren’t familiar with command line
tools have difficulty integrating them into the doc-
ument build and prefer a TEX-only solution that
doesn’t require them. In general, it’s best to use
tools for the specific task they were designed for.
Indexing applications are designed for sorting and
collating data. TEX is designed for typesetting. Each
tool is optimized for its own particular intended pur-
pose. It is possible to sort and collate in TEX but
it’s much less efficient than using a custom indexing
application. However, for small documents it may
suit some users to have everything done within TEX,
so version 4.04 of the glossaries package introduced
a TEX-only method.

The example document given on page 53 can
be converted to use this method simply by replacing
\makeglossaries with \makenoidxglossaries and
\printglossaries with \printnoidxglossaries.
As with \printglossaries, this is a shortcut com-
mand that iterates over all defined glossaries, doing

\printnoidxglossary[type=〈label〉]

In this case, the command doesn’t input a file but
sorts the list of entry labels and iterates over them to
display the information using the required glossary
style. The label list only includes those entries that
have been indexed in the previous LATEX run. This
information is obtained from the .aux file. Each
time an entry is indexed using commands like \gls,
a line is written to the .aux file in the form

\gls@reference{〈type〉}{〈label〉}{〈location〉}

where 〈type〉 identifies the glossary, 〈label〉 identifies
the entry and 〈location〉 is in the form

\glsnoidxdisplayloc{〈h-prefix〉}{〈counter〉}{〈encap〉}
{〈number〉}

This has the advantage that there is no conversion
from one syntax to another and there’s no restriction
on 〈number〉 (as long as it’s valid LATEX code). The
disadvantages are that there’s no range support and
sorting is slow and uses character code comparisons.
(See my earlier TUGboat article comparing indexing
methods [13].)

With this method, each entry has an associated
internal field labelled loclist. When the .aux file
is parsed, each location is added to this field using
one of etoolbox’s internal list commands. This list is
iterated over in order to display the locations.

4 The glossaries-extra package

The glossaries-extra package [18] was created in 2015
as a compromise between the conflicting require-
ments of users who wanted new features and users
who complained that the glossaries package took a
long time to load (because it had so many features).
New features, especially those that require additional
packages, necessarily add to the package load time.

The glossaries-extra package automatically loads
the base glossaries package, but there are some dif-
ferences in the default settings, the most noticeable
being the abbreviation handling. The base package
only allows one abbreviation style to be used through-
out the document. The extension package defines a
completely different mechanism for handling abbre-
viations that allows multiple styles within the same
document.

As with the base package, the default indexing
application is still assumed to be makeindex but
the extension package provides two extra methods
(although from LATEX’s point of view they both use
the same essential code).

The new command

\printunsrtglossary[〈options〉]
works fairly similarly to \printnoidxglossary, in
that it iterates over a list of labels, but the list
contains all the labels defined in the given glossary
(rather than just those that have been indexed) and
no sorting is performed by TEX.

As with the other methods, there’s a shortcut
command that iterates over all glossaries:

\printunsrtglossaries

For example,

\documentclass{report}

\usepackage[colorlinks]{hyperref}

\usepackage[symbols,style=treegroup]

{glossaries-extra}

\newglossaryentry{waterbird}{name={waterbird},

description={bird that lives in or near water}}

\newglossaryentry{duck}{name={duck},

parent={waterbird},

description={a waterbird with webbed feet}}

\newglossaryentry{goose}{name={goose},

plural={geese},

parent={waterbird},

description={a waterbird with a long neck}}

\newglossaryentry{fact}{name={\ensuremath{n!}},

description={n factorial},

sort={n!},

type=symbols

}

Nicola L. C. Talbot

TUGboat, Volume 40 (2019), No. 1 57

\begin{document}

\printunsrtglossaries

\end{document}

No indexing is performed in this document. With
the other methods provided by the base package
this would result in empty glossaries, but with this
method all defined entries are shown (and only one
LATEX call is required to display the list). The ‘goose’
entry appears after ‘duck’ but only because ‘goose’
was defined after ‘duck’.

The glossary style I’ve chosen here (treegroup)
shows the letter group headings. This is something
that’s usually determined by the indexing applica-
tions according to the first character of the sort value.
The heading information is then written to indexing
output file (read by \printglossary) at the start
of a new letter block.

The ‘noidx’ method checks the first letter of the
sort value at the start of each iteration, and if it’s
different from the previous iteration a new heading
is inserted. The ‘unsrt’ method also does this unless
the group key has been defined, in which case the
letter group label is obtained from the corresponding
field (if it’s set).

This letter group formation can lead to strange
results if the entries aren’t defined in alphabetical
order [16]. For example,

\documentclass{article}

\usepackage[style=treegroup]{glossaries-extra}

\newglossaryentry{ant}{name={ant},

description={small insect}}

\newglossaryentry{aardvark}{name={aardvark},

description={animal that eats ants}}

\newglossaryentry{duck}{name={duck},

description={waterbird with webbed feet}}

\newglossaryentry{antelope}{name={antelope},

description={deer-like animal}}

\begin{document}

\printunsrtglossaries

\end{document}

This produces the document shown in figure 1. (The
vertical spacing below the letter headings is too large,
but that is the default result; the point here is the
undesired second ‘A’ group.)

If the group key has been defined but not explic-
itly set then an empty headerless group is assumed.
If the above example is modified so that it defines
the group key:

\glsaddstoragekey{group}{}{\grouplabel}

Glossary

A

ant small insect
aardvark animal that eats ants

D

duck waterbird with webbed feet

A

antelope deer-like animal

Figure 1: Example glossary with letter groups

Glossary

ant small insect
aardvark animal that eats ants
duck waterbird with webbed feet
antelope deer-like animal

Figure 2: Example glossary with empty group

but without modifying the entry definitions to set
this key then no letter groups are formed (see fig-
ure 2).

The record package option automatically de-
fines the group key. Each group value should be a
label. The corresponding title can be set with

\glsxtrsetgrouptitle{〈label〉}{〈title〉}
For example,

\documentclass{article}

\usepackage[style=treegroup,record]

{glossaries-extra}

\glsxtrsetgrouptitle{antrelated}{Ants and

Ant-Eaters}

\glsxtrsetgrouptitle{waterbirds}{Waterbirds}

\glsxtrsetgrouptitle{deerlike}{Deer-Like}

\newglossaryentry{ant}{name={ant},

group={antrelated},

description={small insect}}

\newglossaryentry{aardvark}{name={aardvark},

group={antrelated},

description={animal that eats ants}}

\newglossaryentry{duck}{name={duck},

group={waterbirds},

description={waterbird with webbed feet}}

\newglossaryentry{antelope}{name={antelope},

group={deerlike},

description={deer-like animal}}

\begin{document}

\printunsrtglossaries

\end{document}

Indexing, glossaries, and bib2gls

58 TUGboat, Volume 40 (2019), No. 1

Glossary

Ants and Ant-Eaters

ant small insect
aardvark animal that eats ants

Waterbirds

duck waterbird with webbed feet

Deer-Like

antelope deer-like animal

Figure 3: Example glossary with custom groups

This now produces the glossary shown in figure 3.
(Alternatively, use the parent key for a hierarchical
structure or the type key to separate the logical
blocks into different glossaries [16].)

\printunsrtglossary uses an iteration handler
that supports the loclist internal field used with
the ‘noidx’ method. If this field is set, the locations
will be displayed but, as with the ‘noidx’ method, no
ranges are formed and the elements of the loclist

field must conform to a specific syntax. However,
the handler will first check if the location field is
set. If it is, that will be used instead.

The location key isn’t provided by default but
is defined by the record option, so locations can also
be provided when a term is defined. For example,

\newglossaryentry{ant}{name={ant},

group={antrelated},

location={1, 4--5, 8},

description={small insect}}

This may seem cumbersome to do manually but it’s
the underlying method used by bib2gls [17].

5 Glossaries and .bib: bib2gls

Some years ago I was asked if it was possible to pro-
vided a GUI (graphical user interface) application
to manage files containing many entry definitions.
This article has only mentioned defining entries with
\newglossaryentry but there are other ways of
defining terms with the glossaries package (and some
additional commands provided with glossaries-extra).
I already have several GUI applications that are quite
time-consuming to develop and maintain, and the
proposed task seemed far too complex, so I declined.

More recently, a question was posted on StackEx-
change [10] asking if it was possible to store terms in
a .bib file, which could be managed in an application
such as JabRef [3], and then converted into a .tex file
containing commands such as \newglossaryentry.

This was a much better proposition as the graphical
task could be dealt with by JabRef and the conver-
sion tool could be a command line application.

I added the record option and the commands
like \printunsrtglossary to glossaries-extra to as-
sist this tool. The record option not only creates
new keys (group and location) but also makes ref-
erences to undefined entries trigger warnings rather
than errors. This is necessary since the entries won’t
be defined on the first LATEX call. The option also
changes the indexing behaviour. As with the ‘noidx’
method, the indexing information is written to the
.aux file so that the new tool could find out which en-
tries are required and their locations in the document.
In this case, the .aux entry is in the form

\glsxtr@record{〈label〉}{〈h-prefix〉}{〈counter〉}
{〈encap〉}{〈location〉}
As with the ‘noidx’ method there is no conversion
from one syntax to another when the indexing takes
place, so there is no need to worry about escaping
special indexing characters.

It later occurred to me that, without the con-
straints of the makeindex or xindy formats, it’s pos-
sible to save the hypertarget so that it doesn’t have
to be reconstructed from 〈h-prefix 〉 and 〈location〉.
In glossaries-extra version 1.37 I added the package
option record=nameref, which writes more detailed
indexing information to the .aux file (and support
for this new form was added to bib2gls v1.8). This
means that the earlier makeindex example on page 53
can be rewritten in such a way that the equation
location now has a valid hyperlink.

TEX syntax can be quite hard to parse program-
matically. Regular expressions don’t always work.
I have a number of applications that are related
to TEX in some way and need to parse either com-
plete documents or code fragments. The most com-
plicated of these was a Java GUI application used
to assist production editors. The document code
submitted by authors often contained problematic
code that needed fixing, which was both tedious and
time-consuming, so I tried to develop a system that
parsed the original source provided by the authors
and created new files with the appropriate patches
and comments alerting the production editors of a
potential problem, where necessary. The files were
also flattened (that is, \input was replaced by the
contents of the referenced file) to reduce clutter.

I realised that the TEX parsing code used in this
application would also be useful in some of my other
Java applications so, rather than producing unneces-
sary duplication, I split the code off into a separate
library, texparserlib.jar [14]. Rather than test-
ing the code in big GUI applications that take a long

Nicola L. C. Talbot

TUGboat, Volume 40 (2019), No. 1 59

time to set up and run, I added a small application
called texparserapp.jar to the texparser reposi-
tory together with a selection of sample files to test
the library.

The production editor GUI application not only
needed to parse the .tex and .bib files supplied
by the authors but also needed to gather informa-
tion from .aux files. Some of this information is
displayed in the graphical interface and it looks bet-
ter if LATEX commands like \’ or \c are converted
to Unicode when showing author names. It used to
also be a requirement for production editors to pro-
duce HTML files containing the abstract. I originally
used TEX4ht for this but an update caused a conflict,
and since only the abstract needed converting and
MathJax could be used for any mathematical con-
tent, I decided that the TEX parser code should not
only provide LATEX to LATEX methods but also LATEX
to HTML —with the caveat that the conversion to
HTML was not intended for complete documents
but for code fragments supplemented by information
obtained from the .aux file.

The GUI application was used not only to pre-
pare workshop proceedings but also to prepare a
related series of books that contained reprints. Since
writing the TEX parser library the requirements for
the proceedings have changed, which make the pro-
duction editing task easier, and the publisher for the
related series has also changed and the new publisher
provides their own templates. The application has
now largely become redundant although it can still
be used to prepare volumes for the proceedings.

Since I already had this library that was de-
signed to obtain information from .aux and .bib

files, it made sense to use it for my new tool. This
meant that the new tool also had to be in Java. The
library methods that can convert LATEX code frag-
ments to HTML provide a useful way of obtaining an
appropriate sort value from the name field as accent
commands can be converted to Unicode characters.
Command definitions provided in @preamble can
also be interpreted (provided they aren’t too com-
plex). Any HTML markup is stripped and leading
and trailing white space is trimmed. This means
that there should rarely be any need to set the sort

field when defining an entry.
Sorting can be performed according to a valid

language tag, such as en (English) or en-GB (British
English) or de-CH-1996 (Swiss German new orthog-
raphy). Java 8 has support for the Unicode Common
Locale Data Repository (CLDR) which provides col-
lation rules, so bib2gls can support more languages
than xindy (although, unlike xindy, it doesn’t sup-
port Klingon).

There are other sort methods available as well,
including sorting according to Unicode value (case-
sensitive or case-insensitive) or sorting numerically
(assuming the sort values are numbers) or sorting
according to use in the document (determined by
the ordering of the indexing information contained
within the .aux file).

For example, suppose the file entries.bib con-
tains the following:

% Encoding: UTF-8

@entry{waterbird,

name={waterbird},

description={bird that lives in or near water}}

@entry{goose,

name={goose},

parent={waterbird},

description={waterbird with a long neck}}

@entry{duck,

name={duck},

parent={waterbird},

description={waterbird with webbed feet}}

and suppose the file symbols.bib contains

% Encoding: UTF-8

@preamble{"\providecommand{\factorial}[1]{#1!}

\providecommand{\veclength}[1]{|#1|}"}

@symbol{nfact,

name={\ensuremath{\factorial{n}}},

description={n factorial}}

@symbol{lenx,

name={\ensuremath{\veclength{\vec{x}}}},

description={length of \vec{x}}}

The document code

\documentclass{report}

\usepackage[colorlinks]{hyperref}

\usepackage[symbols,style=treegroup,

record=nameref]

{glossaries-extra}

\GlsXtrLoadResources[

src=entries,% entries.bib

sort=en-GB]

\GlsXtrLoadResources[

src=symbols, % symbols.bib

type=symbols,% glossary

sort=letter-nocase]

\begin{document}

\chapter{Singular}

\Gls{duck} and \gls{goose}.

\chapter{Plural}

\Glspl{duck} and \glspl{goose}.

\chapter{Other}

\begin{equation}

\gls[counter=equation]{nfact} = n \times (n-1)!

\end{equation}

The length of \vec{x} is \gls{lenx}.\par

\printunsrtglossaries

\end{document}

Indexing, glossaries, and bib2gls

60 TUGboat, Volume 40 (2019), No. 1

Unlike the makeindex and xindy methods, which
require one call per glossary, with this approach only
one bib2gls call is required, regardless of the number
of glossaries. For example, if the document code is
in myDoc.tex, then the build process is

pdflatex myDoc

bib2gls myDoc

pdflatex myDoc

Letter groups are not formed by default. To get
them, specify the -g switch:

bib2gls -g myDoc

bib2gls creates one .glstex output file per instance
of \GlsXtrLoadResources, but you don’t necessarily
need one \GlsXtrLoadResources per glossary. You
may be able to process multiple glossaries within one
instance of this command, or a single glossary may
require multiple instances.

The .glstex file contains the glossary defini-
tions (using provided wrapper commands for greater
flexibility) in the order obtained from the provided
sort method. In the above example, the entries in the
first .glstex file are defined in the order obtained
by sorting the values according to the en-GB rule.
The entries in the second .glstex file are defined in
the order obtained by sorting the values according
to the letter-nocase rule (that is, case-insensitive
Unicode order).

If the sort key isn’t provided (which it generally
isn’t), its value is taken from the designated fallback
field. In the case of @entry this is the name field and
in the case of @symbol this is the entry’s label. So in
the above example, the symbols are sorted as first
‘lenx’ and second ‘nfact’.

The fallback field used for @symbol entries can
be changed. For example, to switch to the name field:

\GlsXtrLoadResources[

src=symbols,

type=symbols,

symbol-sort-fallback=name,

sort=letter-nocase

]

Since the name field contains commands, the TEX
parser library is used to interpret them. The tran-
script file (.glg) shows the results of the conversion.
The nfact entry ends up with just two characters,
‘n!’ but the lenx entry ends up with four characters:
vertical bar (Unicode 0x7C), lower case ‘x’ (Unicode
0x78), combining right arrow above (Unicode 0x20D7)
and vertical bar (Unicode 0x7C). The order is now:
n! (nfact), |~x| (lenx).

References

[1] Claudio Beccari and Enrico Gregorio. The imakeidx

package, 2018. ctan.org/pkg/imakeidx.

[2] P. Happel. The lipsum package, 2019.
ctan.org/pkg/lipsum.

[3] JabRef: Graphical frontend to manage BibTEX
databases, 2018. jabref.org.

[4] R. Kehr and J. Schrod. xindy: A general-purpose
index processor, 2018. ctan.org/pkg/xindy.

[5] The LATEX Team. The makeidx package, 2014.
ctan.org/pkg/makeidx.

[6] The LATEX Team, F. Mittelbach, and A. Jeffrey.
The inputenc package, 2018.
ctan.org/pkg/inputenc.

[7] P. Lehman and J. Wright. The etoolbox package,
2018. ctan.org/pkg/etoolbox.

[8] L. Madsen and P. R. Wilson. The memoir class,
2018. ctan.org/pkg/memoir.

[9] L. Netherton, C. V. Radhakrishnan, et al.
The nomencl package, 2019.
ctan.org/pkg/nomencl.

[10] The Pompitous of Love. Is there a program for
managing glossary tags?, 2016.
tex.stackexchange.com/questions/342544.

[11] samcarter. The tikzducks package, 2018.
ctan.org/pkg/tikzducks.

[12] N. Talbot. The glossary package, 2006.
ctan.org/pkg/glossary.

[13] N. Talbot. Testing indexes: testidx.sty. TUGboat

38(3):377–399, 2017.
tug.org/TUGboat/tb38-3/tb120talbot.pdf.

[14] N. Talbot. texparserlib.jar: A Java library for
parsing (LA)TEX files, 2018.
github.com/nlct/texparser.

[15] N. Talbot. Gallery of all styles provided by the
glossaries package, 2019. dickimaw-books.com/

gallery/glossaries-styles.

[16] N. Talbot. Logical glossary divisions (type vs
group vs parent), 2019. dickimaw-books.com/

gallery/logicialdivisions.shtml.

[17] N. Talbot. bib2gls: Command line application
to convert .bib files to glossaries-extra.sty

resource files, 2019. ctan.org/pkg/bib2gls.

[18] N. Talbot. The glossaries-extra package, 2019.
ctan.org/pkg/glossaries-extra.

[19] N. Talbot. The glossaries package, 2019.
ctan.org/pkg/glossaries.

[20] H. Voß. xindex: Unicode compatible index
generation, 2019. ctan.org/pkg/xindex.

⋄ Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich Research Park
Norwich NR4 7TJ
United Kingdom
N.Talbot (at) uea dot ac dot uk

http://www.dickimaw-books.com

Nicola L. C. Talbot

TUGboat, Volume 40 (2019), No. 1 61

TEX.StackExchange cherry picking, part 2:
Templating

Enrico Gregorio

Abstract

We present some examples of macros built with
expl3 in answer to users’ problems presented on
tex.stackexchange.com, to give a flavor of the lan-
guage and explore its possibilities.

1 Introduction

This is the second installment1 of my cherry picking
from questions on TEX.SX that I answered using
expl3. As every regular of TEX.SX knows, I like to
use expl3 code for solving problems, because I firmly
believe in its advantages over traditional TEX and
LATEX programming.

This paper is mostly dedicated to “templating”,
an idea I’m getting fond of. There is actually a
“templating layer” for the future LATEX3, but it’s
not yet in polished shape. The Oxford Dictionary of
English tells us that the primary meaning of template

is “a shaped piece of rigid material used as a pattern
for processes such as cutting out, shaping, or drilling”,
more generally “something that serves as a model
for others to copy” and this is how I think about
templating here. This article is not about “document
templates”, the (often unfortunately bad) pieces of
code that users are sometimes forced to fill in.

Basically, the templating I’m going to describe
is achieved by defining a temporary function (macro,
if you prefer) to do some job during a loop. This
has the advantage of allowing us to use the stan-
dard placeholders such as #1, #2 and so on instead
of macros, as is done (for instance) with the popu-
lar \foreach macro of TikZ/PGF, with concomitant
expansion problems. For instance, with

\foreach \i in {1,2,3} { -\i- }

the loop code doesn’t “see” 1, 2 and 3, but \i, which
expands to the current value. In expl3 we have

\clist_map_inline:nn {1,2,3} { -#1- }

and this is possible by the same templating technique
I’ll describe.

There are a couple of unrelated topics, just to
show other applications of loops.

Technical note. The code shown here may differ
slightly from the post on TEX.SX, but the functional-
ity is the same. Sometimes I had afterthoughts,

1 For the first installment, “TEX.StackExchange
cherry picking: expl3”, see TUGboat 39:1, pp. 51–59,
tug.org/TUGboat/tb39-1/tb121gregorio-expl3.pdf.
Some terminology introduced there is used here without
explanation.

or decided to use new functions added to expl3

in the meantime. As in the first installment, the
code I show should be thought of as surrounded
by \ExplSyntaxOn and \ExplSyntaxOff (except for
macro calls), and \usepackage{xparse} is manda-
tory.

2 Euclid’s algorithm

I’ve taught algebra classes for a long time and the
Euclidean algorithm for the greatest common divi-
sor has always been a favorite topic, because it’s a
very good way to introduce several ideas, particu-
larly recursion. The algorithm consists in repeating
the same operations until we get to 0. Thus any
implementation must clearly show recursion at work.
Here’s the code for it.2 (Well, a reduced version
thereof for nonnegative numeric input only.)

\NewExpandableDocumentCommand{\euclid}{mm}

{

\egreg_euclid:nn { #1 } { #2 }

}

\cs_new:Nn \egreg_euclid:nn

{

\int_compare:nTF { #2 = 0 }

{ #1 } % end

{

\egreg_euclid:nf

{ #2 }

{ \int_mod:nn { #1 } { #2 } }

}

}

\cs_generate_variant:Nn \egreg_euclid:nn { nf }

Some implementations do a swap if the first
number is less than the second, but this is unnec-
essary, because the algorithm itself will perform it.
The terminating condition is reached when we get
a remainder of 0, in which case we output the first
number. Otherwise the function calls itself with the
first argument being the previous second one, and
the second argument being the current remainder of
the division.

Pure and simple: the only trick, for greater
efficiency, is to call a variant of the main function in
order to fully expand the mod operation.

It would be much more fun to implement the
mod operation in fully expandable fashion, but some-
body has already done it! Let’s enjoy laziness!

My answer also features a possibly interesting
\fulleuclid macro that prints the steps.

3 Mappings

Data can be available in “serial” form; expl3 has sev-
eral data types of this kind: clists (comma separated
lists), sequences and property lists. Further, token

2 https://tex.stackexchange.com/q/453877/

TEX.StackExchange cherry picking, part 2: Templating

62 TUGboat, Volume 40 (2019), No. 1

lists can be seen as a list of tokens (or braced groups).
For each of these data types expl3 provides mapping
functions that process each item of the given data.

The first toy problem consists in making a short
table of contents exploiting \nameref.3 The user
inputs something like
\procedurelist{

PM-tyinglaces,

PM-polishshoes,

PM-ironshirt

}

where the input is a comma separated list of labels
and the document contains something like
\section{Tying laces}\label{PM-tyinglaces}

for each label used. This should print a table with
section numbers in the first column and section titles
in the second column.
\NewDocumentCommand{\procedurelist}{m}

{

\begin{tabular}{cl}

\toprule

\multicolumn{1}{c}{\textbf{PM}} & \textbf{Name} \\

\midrule

\clist_map_function:nN

{ #1 }

__kjc_procedurelist_row:n

\bottomrule

\end{tabular}

}

\cs_new:Nn __kjc_procedurelist_row:n

{ \ref{#1} & \nameref{#1} \\ }

The \clist_map_function:nN command splits
its first argument at commas, trimming spaces before
and after each item and discarding empty items, and
then passes each item to the function specified as
the second argument. A variant is also available,
\clist_map_function:NN, which expects as its first
argument a clist variable.

In this case, the auxiliary function which the
mapping is handed to is a template for a table row.

In contrast to other approaches, the operation
is not hindered by being in a table, because the
complete list of tokens
__kjc_procedurelist_row:n {PM-tyinglaces}

__kjc_procedurelist_row:n {PM-polishshoes}

__kjc_procedurelist_row:n {PM-ironshirt}

is built before TEX starts expanding the first macro.
A similar approach with

\clist_map_inline:nn

{ #1 }

{ \ref{##1} & \nameref{##1} \\ }

would not work here, because the mapping would
start in a table cell and end in another one, which is
impossible.

However, the user here is far-seeing and is wor-
ried about their boss not liking the appearance of

3 https://tex.stackexchange.com/q/451423/

the table or perhaps wanting such tables printed in
slightly different ways across the document.

We can make the auxiliary function variable!
Here’s the code.

\NewDocumentCommand{\procedurelist}{om}

{

\group_begin:

\IfValueT{#1}

{

\cs_set:Nn __kjc_procedurelist_row:n { #1 }

}

\begin{tabular}{cl}

\toprule

\multicolumn{1}{c}{\textbf{PM}} & \textbf{Name} \\

\midrule

\clist_map_function:nN

{ #2 }

__kjc_procedurelist_row:n

\bottomrule

\end{tabular}

\group_end:

}

\cs_new:Nn __kjc_procedurelist_row:n

{ \ref{#1} & \nameref{#1} \\ }

We added an optional argument to the main macro.
If this argument is present, then it will be used to
redefine the auxiliary function. Grouping is used in
order not to clobber the standard meaning of the
auxiliary function. The same call as before would
print the same table, but a call such as

\procedurelist[\ref{#1} & \textit{\nameref{#1}} \\]{

PM-tyinglaces,

PM-polishshoes,

PM-ironshirt

}

would apply \textit to each section title. This is
what I call templating.

4 Dummy variables

A user asked for a \replaceproduct macro so that

\replaceproduct{p_i^{\varepsilon_i}}{3}{n}

produces
pε11 p

ε3
3 p

ε3
3 . . . pεnn

The idea is that the “dummy variable” i is replaced
by the numbers 1, 2 and 3 (the value is given in
the second argument) and by n at the end (third
argument).4

The idea of templating and using #1 does not
have the same appeal as before, because the call
would need to be

\replaceproduct{p_#1^{\varepsilon_#1}}{3}{n}

which is more obscure. What if we make the dummy
variable an optional argument, with default value i?
Maybe we need to use k because the main template
contains the imaginary unit or we want to be obscure
at all costs (see the final example).

4 https://tex.stackexchange.com/q/448389/

Enrico Gregorio

TUGboat, Volume 40 (2019), No. 1 63

However, TEX doesn’t allow placeholders for
parameters other than #1, #2 and so on—but we
have expl3 regular expression search and replace. Can
we store the template in a token list variable and
replace all appearances of the dummy variable with
#1? Certainly we can: assuming that the template
is the second argument in the macro we’re going to
define, we can do

\tl_set:Nn \l__egreg_rp_term_tl { #2 }

Now we can search and replace the dummy variable,
which is given as (optional) argument #1, by

\regex_replace_all:nnN

{ #1 } % search

{ \cB\{ \cP\# 1 \cE\} } % replace

\l__egreg_rp_term_tl % what to act on

so that each appearance of i (or whatever letter
we specified in the optional argument) is changed
into {#1}.5 The prefix \cB to \{ is not standard in
regexes6; in TEX we need to be careful with category
codes, so \cB says that the next token must be given
the role of a “begin group” characters. Similarly for
\cE as “end group” and \cP for “parameter”.

We now face the final problem: how to pass
this to the auxiliary function that serves as internal
template? We should do

\cs_set:Nn __egreg_rp_term:n {〈template〉}

but the template is stored in a token list variable that
we need to get the value of. That’s a known problem
and expl3 already has the solution: the argument
type V, that denotes take the value of the variable
and pass it, braced, as an argument to the main
function. So we just need to define a suitable variant
of \cs_set:Nn, namely

\cs_generate_variant:Nn \cs_set:Nn { NV }

We now have all the ingredients and we can bake our
cake:

\NewDocumentCommand{\replaceproduct}{O{i}mmm}

{% #1 = item to substitute

% #2 = main terms

% #3 = first terms

% #4 = last term

\group_begin:

\egreg_rp:nnnn { #1 } { #2 } { #3 } { #4 }

\group_end:

}

\tl_new:N \l__egreg_rp_term_tl

\cs_generate_variant:Nn \cs_set:Nn { NV }

\cs_new:Nn \egreg_rp:nnnn

{

\tl_set:Nn \l__egreg_rp_term_tl { #2 }

\regex_replace_all:nnN

{ #1 } % search

{ \cB\{\cP\#1\cE\} } % replace

\l__egreg_rp_term_tl % what to act on

5 TEXnical remark: things are set up so that # tokens are
not unnecessarily doubled when stored in a token list variable.

6 Informal abbreviation for “regular expressions”.

\cs_set:NV __egreg_rp_term:n \l__egreg_rp_term_tl

\int_step_function:nN { #3 } __egreg_rp_term:n

\cdots

__egreg_rp_term:n { #4 }

}

The only new bit is \int_step_function:nN, which
is similar to the mapping functions, but uses the
most natural series: the numbers from 1 up to the
integer specified as end; each number, in its explicit
decimal representation, is passed to the auxiliary
function as in the mapping of the previous section.
In the example call, the third argument is 3, so there
will be three steps.

The function \int_step_function:?N comes
in three flavors:

\int_step_function:nN

\int_step_function:nnN

\int_step_function:nnnN

In the two-argument version we only specify the
end, in the three-argument version we specify the
start and end; in the full version the three n-type
arguments specify starting point, step and final point.
Thus the calls

\int_step_function:nN {3} __egreg_rp_term:n

\int_step_function:nnN {1} {3} __egreg_rp_term:n

\int_step_function:nnnN {1} {1} {3} __egreg_rp_term:n

are equivalent.
We can call the macro like

\[\replaceproduct{p_i^{\varepsilon_i}}{3}{m} =

\replaceproduct[j]{i_j^{\eta_j}}{2}{n} \]

to get

pε11 p
ε1
2 p

ε1
3 . . . pεmm = iη1

1 i
η2

2 . . . iηn

n

The same idea can be used for a “macro factory”
where the task is to define one-parameter macros us-
ing the keyword PARAM in place of #1.7 The problem
here is that apparently plain TEX is used, but it’s
not really difficult: expl3 can also be used on top
of it.

The input \foo{qix}{:: PARAM ::} should be
equivalent to

\def\barqix#1{:: #1 ::}

and this can be accomplished easily.

\input expl3-generic

\ExplSyntaxOn

\tl_new:N \l__egreg_param_tl

\cs_new_protected:Npn \foo #1 #2

{

\tl_set:Nn \l__egreg_param_tl { #2 }

\regex_replace_all:nnN

{ PARAM }

{ \cP\#1 }

\l__egreg_param_tl

\cs_set:NV __egreg_param:n \l__egreg_param_tl

7 https://tex.stackexchange.com/q/355568/

TEX.StackExchange cherry picking, part 2: Templating

64 TUGboat, Volume 40 (2019), No. 1

\cs_new_eq:cN {bar#1} __egreg_param:n

}

\cs_generate_variant:Nn \cs_set:Nn { NV }

\ExplSyntaxOff

\foo{qix}{:: PARAM ::}

\barqix{hi world}

\bye

The function __egreg_param:n is temporary, but
necessary: a variant such as \cs_new:cpV cannot
be defined because of the parameter text which can
consist of an arbitrary number of tokens to jump over.
Here I exploit the fact that \cs_set:Nn computes
its parameter text from the signature.

5 Double loops

We want to be able to generate and print a triangular
diagram such as

1× 1 = 1
2× 1 = 2 2× 2 = 4
3× 1 = 3 3× 2 = 6 3× 3 = 9
4× 1 = 4 4× 2 = 8 4× 3 = 12 4× 4 = 16

with as little effort as possible.8

This calls for using array, but it also needs
a double loop, which makes it inconvenient to use
\int_step_function:nN as before, because only one
argument is passed to the auxiliary function. The
posted answer by Jean-François Burnol (jfbu) is as
usual very nice, but not easily extendable—we may
want only the operations, instead of also showing the
result; or to do addition instead of multiplication; etc.

My idea is to define a macro \lowertriangular
which takes as arguments the number of rows and
what to do with the indices in each cell; for instance,
the diagram above would be generated by

\lowertriangular{4}{#1\times #2 = \inteval{#1*#2}}

The macro \inteval is provided by xfp, which is
part of the xparse family accompanying expl3 and
needs to be loaded. A lower triangular matrix can
be generated by

\left[\lowertriangular{4}{a_{#1#2}}\right]

After all, I teach linear algebra courses, so triangular
matrices are my bread and butter.

The placeholders #1 and #2 stand, respectively,
for the row and column index.

We need nested loops, the outer one stepping
the row index, the inner one stepping the column
index, but only up to the row index. However, since
we have to make an array, we need to build the body
beforehand and then feed it to the matrix building en-
vironment. Small complication: the indices provided

8 https://tex.stackexchange.com/q/435349/

by the outer loop are called ##1, those relative to the
inner loop are called ####1 (it’s quite predictable,
but has to be mentioned).

As I said, we have to use the “inline” form for
the loop, that is, \int_step_inline:nn (which has
siblings like those described before for the similar
\int_step_function:nN). When we are at the “cell
level”, we will use the auxiliary function defined with
the template given as second argument to the user
level macro.

\NewDocumentCommand{\lowertriangular}{mm}

{

\group_begin:

\egreg_lt_main:nn { #1 } { #2 }

\group_end:

}

\tl_new:N \l__egreg_lt_body_tl

\cs_new_protected:Nn \egreg_lt_main:nn

{

% an auxiliary function for massaging the entries

\cs_set:Nn __egreg_lt_inner:nn { #2 }

% clear the table body

\tl_clear:N \l__egreg_lt_body_tl

% outer loop, #1 rows

\int_step_inline:nn { #1 }

{

% inner loop, ##1 columns

\int_step_inline:nn { ##1 }

{

% add the entry for row ##1 (outer loop),

% column ####1 (inner loop)

\tl_put_right:Nn \l__egreg_lt_body_tl

{ __egreg_lt_inner:nn { ##1 } { ####1 } }

% if ##1 = ####1 end the row,

% otherwise end the cell

\tl_put_right:Nx \l__egreg_lt_body_tl

{

\int_compare:nTF { ##1 = ####1 }

{ \exp_not:N \\ } % end row

{ & } % end cell

}

}

}

% output the table

\begin{array}{ @{} *{#1}{c} @{} }

\l__egreg_lt_body_tl

\end{array}

}

An almost straightforward modification of the
code allows for producing upper as well as lower
triangular matrices. It’s sufficient to add a test to
make the inner loop go on all the way, instead of
stopping at the diagonal.

\NewDocumentCommand{\lowertriangular}{mm}

{

\group_begin:

\egreg_tm_main:nnn { #1 } { #2 } { >= }

\group_end:

}

\NewDocumentCommand{\uppertriangular}{mm}

{

Enrico Gregorio

TUGboat, Volume 40 (2019), No. 1 65

\group_begin:

\egreg_tm_main:nnn { #1 } { #2 } { <= }

\group_end:

}

\tl_new:N \l__egreg_tm_body_tl

\cs_new_protected:Nn \egreg_tm_main:nnn

{% #1 = size, #2 = template, #3 = < or >

% an auxiliary function for massaging the entries

\cs_set:Nn __egreg_tm_inner:nn { #2 }

% clear the table body

\tl_clear:N \l__egreg_tm_body_tl

% outer loop, #1 rows

\int_step_inline:nn { #1 }

{

% inner loop, #1 columns

\int_step_inline:nn { #1 }

{

% add the entry for row ##1 (outer loop),

% column ####1 (inner loop) only if

% ##1 #3 ####1 is satisfied

\int_compare:nT { ##1 #3 ####1 }

{

\tl_put_right:Nn \l__egreg_tm_body_tl

{ __egreg_tm_inner:nn { ##1 } { ####1 } }

}

% if ####1 = #1 end the row,

% otherwise end the cell

\tl_put_right:Nx \l__egreg_tm_body_tl

{

\int_compare:nTF { ####1 = #1 }

{ \exp_not:N \\ } % end row

{ & } % end cell

}

}

}

% output the table

\begin{array}{ @{} *{#1}{c} @{} }

\l__egreg_tm_body_tl

\end{array}

}

Now \uppertriangular{5}{a_{#1#2}} prints the
body of an upper triangular matrix and my linear
algebra course can go on. Particularly because I can
also define
\NewDocumentCommand{\diagonal}{mm}

{

\group_begin:

\egreg_tm_main:nnn { #1 } { #2 } { = }

\group_end:

}

and get the diagonal matrices I need. I leave as an
exercise the further extension of defining an optional
template for filling the otherwise empty cells.

The integer comparison \int_compare:n(TF)

accepts quite complex tests in its first argument,
but here we’re interested in what operators are al-
lowed; they are ‘= < > != <= >=’ and their meaning
should be obvious. In a perfect world they would be
‘= < > ≠ ≤ ≥’, but let’s be patient.9

9 This could easily be added for Unicode engines such as
X ETEX or LuaTEX; it would be more complicated to support

6 A templating puzzle

First let me present the code:10

\NewDocumentCommand{\automagic}{mm}

{

\begin{figure}

\clist_map_inline:nn { #1 }

{

\cs_set:Nn __oleinik_automagic_temp:n

{

\caption { #2 }

}

\begin{subfigure}[t]{0.33\textwidth}

\includegraphics[

width=\textwidth,

]{example-image-##1}

__oleinik_automagic_temp:n { #1 }

\end{subfigure}

}

\end{figure}

}

If one uses

\automagic{a,b,c}{Figure #1 from the set: ‘‘##1’’}

the result would show the three subcaptions

This is figure a from the set: “a,b,c”
This is figure b from the set: “a,b,c”
This is figure c from the set: “a,b,c”

The trick is that \clist_map_inline:nn does
its own templating. The interested reader may en-
joying solving the puzzle.

7 ISBN and ISSN

Every book has a number, called ISBN (International
Standard Book Number) and each serial journal has
an ISSN (International Standard Serial Number).

Originally, ISBN consisted of ten digits (with
the final one being possibly X); later the code was
extended to thirteen digits, but in a way that allowed
old numbers to fit in the scheme by adding ‘978’ at
the beginning and recomputing the final digit, which
is a checksum. For instance, The TEXbook originally
had ISBN 0201134489, while more recent editions
have 9780201134483. After the leading 978 there
is a 0, which means the book has been published
in an English-speaking country. The rest denotes
the publisher and the issue number internal to the
publisher. Books published in Brazil will start with
97865 or 97885; books published in Italy with either
97888 or 97912. The 979 prefix is a more recent
extension for coping with a greater number of books.

On the contrary, the eight digit ISSN doesn’t
convey information about the place of publication;
it’s basically a seven digit number with a final check-
sum (which can be X). Why this strange possibility?

legacy 8-bit engines and those symbols in every encoding that
has them. Code portability is much more important.

10 https://tex.stackexchange.com/q/410913/

TEX.StackExchange cherry picking, part 2: Templating

66 TUGboat, Volume 40 (2019), No. 1

Because the checksum is computed modulo 11, so the
remainder can be from 0 to 10 and X represents 10.
This is also the case for old style ISBN, whereas the
new codes compute the checksum modulo 10.

The algorithm for verifying correctness of an old
ISBN is simple: the first digit is multiplied by 10,
the second by 9 and so on up to the last digit (or X)
which is multiplied by 1. All numbers are added and
the result should be a multiple of 11. This method is
guaranteed to catch errors due to transpositions of
adjacent digits, but is not otherwise foolproof. For
ISSN it is the same, but starting with multiplication
by 8.

For a new style ISBN, the first digit is multiplied
by 1, the second by 3, the third by 1 and so on,
alternating 1 and 3. The sum of all numbers so
obtained should be a multiple of 10 (no X needed).

We would like to have a macro for checking the
validity of an ISBN or ISSN.11 The package ean13isbn
can be used for printing the bar code corresponding
to a valid ISBN.

I provided a solution with TEX arithmetic a
while ago. Now it’s time to do it in expl3. The
numbers may be presented with various hyphens,
for separating the relevant information, but this is
neither recommended nor required. Thus the macros
first remove all hyphens and act on the string of
numerals that result.

Since the methods for computing checksums are
very similar, we can dispense with much code dupli-
cation. I define two user level macros, \checkISBN
and \checkISSN. Both first remove the hyphens and
then check the lengths. If this test passes, control
is handed to a function that has as arguments the
length and the modulo (11 for ISSN and old style
ISBN, 10 for new style ISBN). The multipliers are
kept in constant sequences defined beforehand.

This function will set a temporary sequence
equal to the one corresponding to the length, then
computes the checksum and the remainder of the
division with the prescribed modulo. If the remainder
is 0, the code is deemed valid.

An important feature we exploit is that in the
first and third arguments to \int_compare:nNnTF

any integer denotation is allowed, with full expansion;
so we can use our friend \int_step_function:nN to
extract the multiplier and the digit, insert * between
them (for multiplication) and add a trailing +. The
final digit is treated specially, because it may be X;
in this case 10 is used.

\NewDocumentCommand{\checkISBN}{m}

{

__egreg_check_normalize:Nn

11 https://tex.stackexchange.com/q/39719/

\l__egreg_check_str

{ #1 }

% ISBN can have length 10 or 13

\int_case:nnF { \str_count:N \l__egreg_check_str }

{

{10}{__egreg_check:nn { 10 } { 11 }}

{13}{__egreg_check:nn { 13 } { 10 }}

}

{Invalid~(bad~length)}

}

\NewDocumentCommand{\checkISSN}{m}

{

__egreg_check_normalize:Nn

\l__egreg_check_str

{ #1 }

% ISSN must have length 8

\int_compare:nNnTF

{ \str_count:N \l__egreg_check_str } = { 8 }

{ __egreg_check:nn { 8 } { 11 } }

{Invalid~(bad~length)}

}

\str_new:N \l__egreg_check_str

\seq_const_from_clist:cn {c_egreg_check_8_seq}

{ 8,7,6,5,4,3,2,1 }

\seq_const_from_clist:cn {c_egreg_check_10_seq}

{ 10,9,8,7,6,5,4,3,2,1 }

\seq_const_from_clist:cn {c_egreg_check_13_seq}

{ 1,3,1,3,1,3,1,3,1,3,1,3,1 }

% remove hyphens

\cs_new_protected:Nn __egreg_check_normalize:Nn

{

\str_set:Nn #1 { #2 }

\str_replace_all:Nnn #1 { - } { }

}

% the main macro

\cs_new_protected:Nn __egreg_check:nn

{% #1 = length, #2 = modulo

% use the appropriate constant sequence

\seq_set_eq:Nc

\l__egreg_check_seq

{ c_egreg_check_#1_seq }

% compute the checksum and check it

\int_compare:nNnTF

{

\int_mod:nn

{ __egreg_check_aux_i:n { #1 } }

{ #2 }

}

= { 0 }

{Valid}

{Invalid~(bad~checksum)}

}

\cs_new:Nn __egreg_check_aux_i:n

{% do a loop from 1 to 7, 9 or 12

\int_step_function:nN

{ #1-1 }

__egreg_check_aux_ii:n

% and add the last digit

\str_if_eq:eeTF

{ \str_item:Nn \l__egreg_check_str { #1 } }

{ X }

{ 10 }

{ \str_item:Nn \l__egreg_check_str { #1 } }

}

Enrico Gregorio

TUGboat, Volume 40 (2019), No. 1 67

% the auxiliary function extracts the items from

% the sequence (multiplier) and the string (digit)

\cs_new:Nn __egreg_check_aux_ii:n

{

\seq_item:Nn \l__egreg_check_seq { #1 }

*

\str_item:Nn \l__egreg_check_str { #1 }

+

}

Check with the following test:

\checkISBN{12345} % invalid

\checkISBN{111111111X} % invalid

\checkISSN{1234-56789} % invalid

\checkISSN{1234-567X} % invalid

\checkISBN{0201134489} % TeXbook

\checkISBN{978-0201134483} % TeXbook

\checkISSN{0896-3207} % TUGboat

With the same idea one could devise a fully
expandable macro that takes as input a string of
digits, applies a sequence of weights and computes a
check digit based on a modulo operation.

8 Catcode tables

Every TEX user is fond of category codes, particularly
when they put sticks in the wheels.12 How to print
on the terminal and log file the current status of
category codes?13

We need a macro that calls a loop; with legacy
TEX engines, the table is limited to the range 0–255,
but with Unicode engines we can go much further.
Another issue is that characters in the range 0–31
and 127–255 may fail to print in the log file, so I’ll
adopt for them the usual ^^〈char〉 or ^^〈char〉〈char〉
convention. For instance, character 0 is represented
by ^^@, character 127 by ^^?, but character 128 by
^^80.

The macro can be called like \catcodetable,
\catcodetable[255] or \catcodetable[0-255] all
meaning the same thing: no optional argument im-
plies 0-255; a single number specifies the end point,
starting from 0; two numbers separated by a hyphen
specify start and end points.

I use an \int_step_function:nnnN loop, the
auxiliary function prints the code point (in decimal),
then a representation of the character, then its cate-
gory code in verbose mode. The interesting bit here,
besides the complex tests for \int_compare:nTF, is
\char_generate:nn. This function takes as argu-
ments two numeric expressions; the first one denotes
the code point, the second one the category code to
assign. Of course only some of these catcodes are
meaningful: 9, 14 and 15 aren’t; also 13 cannot (yet)
be used with X ETEX. I use here 12, for safety.

12 In Italian we say mettere i bastoni fra le ruote when
somebody tries to impede our endeavor.

13 https://tex.stackexchange.com/q/60951/

\NewDocumentCommand{\catcodetable}

{

>{\SplitArgument{1}{-}}O{0-255}

}

{

\catcodetablerange#1

}

\NewDocumentCommand{\catcodetablerange}{mm}

{

\IfNoValueTF{#2}

{

\egreg_cctab:nn { 0 } { #1 }

}

{

\egreg_cctab:nn { #1 } { #2 }

}

}

\str_const:Nn \c_egreg_cctab_prefix_str { ^ ^ }

\cs_new_protected:Nn \egreg_cctab:nn

{

\int_step_function:nnnN

{ #1 } % start

{ 1 } % step

{ #2 } % end

\egreg_cctab_char:n

}

\cs_new_protected:Nn \egreg_cctab_char:n

{

\iow_term:x

{

Code~\int_to_arabic:n { #1 }:~(

\int_compare:nTF { 0 <= #1 < 32 }

{

\c_egreg_cctab_prefix_str

\char_generate:nn { #1+64 } { 12 }

}

{

\int_compare:nTF { #1 = 127 }

{

\c_egreg_cctab_prefix_str

\char_generate:nn { #1-64 } { 12 }

}

{

\int_compare:nTF { 128 <= #1 < 256 }

{

\c_egreg_cctab_prefix_str

\int_to_hex:n { #1 }

}

{

\char_generate:nn { #1 } { 12 }

}

}

}

)~__egreg_cctab_catcode:n { #1 }

}

}

\cs_new:Nn __egreg_cctab_catcode:n

{

\int_case:nn { \char_value_catcode:n { #1 } }

{

{0}{escape}

{1}{begin~group}

{2}{end~group}

{3}{math~shift}

{4}{alignment}

TEX.StackExchange cherry picking, part 2: Templating

68 TUGboat, Volume 40 (2019), No. 1

{5}{end~of~line}

{6}{parameter}

{7}{superscript}

{8}{subscript}

{9}{ignored}

{10}{space}

{11}{letter}

{12}{other~character}

{13}{active~character}

{14}{comment}

{15}{ignored}

}

}

A selected part of the output from \catcodetable

with 8-bit LATEX:

Code 0: (^^@) ignored

Code 1: (^^A) active character

Code 2: (^^B) active character

[...]

Code 31: (^^_) active character

Code 32: () space

Code 33: (!) other character

Code 34: (") other character

Code 35: (#) parameter

Code 36: ($) math shift

Code 37: (%) comment

Code 38: (&) alignment

Code 39: (’) other character

[...]

Code 63: (?) other character

Code 64: (@) other character

Code 65: (A) letter

Code 66: (B) letter

[...]

Code 90: (Z) letter

Code 91: ([) other character

Code 92: (\) escape

Code 93: (]) other character

Code 94: (^) superscript

Code 95: (_) subscript

Code 96: (‘) other character

Code 97: (a) letter

Code 98: (b) letter

Code 122: (z) letter

Code 123: ({) begin group

Code 124: (|) other character

Code 125: (}) end group

Code 126: (~) active character

Code 127: (^^?) ignored

Code 128: (^^80) active character

Code 129: (^^81) active character

[...]

Running \catcodetable["10FFFF] with X ELATEX
also works, and produces a 37MiB14 log file ending
with

Code 1114109: (<U+10FFFD>) other character

Code 1114110: (<U+10FFFE>) other character

Code 1114111: (<U+10FFFF>) other character

)

Here is how much of TeX’s memory you used:

9287 strings out of 492956

183011 string characters out of 6133502

204291 words of memory out of 5000000

[...]

The <U+10FFFF> is an artifact of less on my system.
A small curiosity about the code for the string

constant that prints the two carets when needed:

\str_const:Nn \c_egreg_cctab_prefix_str { ^ ^ }

There must be a space between the carets, otherwise
the standard TEX convention would prevail and the
string would end up containing character 32+64 = 96,
that is, ‘. The (ignored) space in between the carets
separates them and so we get our desired two carets
in the output string.

Happy LATEX3ing!

⋄ Enrico Gregorio
Dipartimento di Informatica
Università di Verona
and
LATEX Team
enrico.gregorio@univr.it

14 ”mebibyte”; 1MiB = 220 bytes.

Enrico Gregorio

TUGboat, Volume 40 (2019), No. 1 69

Real number calculations in LATEX: Packages

Joseph Wright

1 Background

TEX does not include any “native” support for float-
ing point calculations, but that has not stopped lots
of (LA)TEX users from wanting to do sums (and more
complicated things) in their document. As TEX is
Turing complete, it’s not a surprise that there are
several ways to implement calculations. For end
users, the differences between these methods are not
important: what is key is what to use. Here, I’ll give
a bit of background, look at the various possibilities,
then move on to give a recommendation.

2 History

When Knuth wrote TEX, he had one aim in mind:
high-quality typesetting. He also wanted to have
sources which were truly portable between different
systems. At the time, there was no standard for
specifying how floating point operations should be
handled at the hardware level: as such, no floating
point operations were system-independent.

Thus, Knuth decided that TEX would provide
no user access to anything dependent on platform-
specific floating-point operations, and not rely on
them within algorithms that produce typeset output.
That means that the TEX variables and operations
that look like numeric floats (in particular dimen-
sions) actually use integer arithmetic and convert
“at the last minute”.

3 Technical considerations

There are two basic approaches to setting up floating
point systems in TEX: either using dimensions or
doing everything in integer arithmetic.

Using dimensions, the input range is limited and
the output has restricted accuracy. But on the other
hand, many calculations are quite short and they are
fast. On the other hand, if everything is coded in
integer arithmetic, the programmer can control the
accuracy completely, at the cost of speed.

Although it’s not an absolute requirement, ε-TEX
does make doing things a bit easier: rather than
having to shuffle everything a piece at a time, it is
possible to use in-line expressions for quite a lot of
the work.

Another key technical aspect is expandability.
This is useful for some aspects of TEX work, partic-
ularly anywhere that it “expects a number”: only
expansion is allowed in such places.

Another thing to consider is handling of TEX reg-
isters as numbers. Converting for example a length

into something that can be used in a floating point
calculation is handy, and it matches what ε-TEX does
for example in \numexpr. But in macro code it has
to be programmed in.

The other thing to think about here is function-
ality: what is and isn’t needed in terms of mathe-
matics. Doing straightforward arithmetic is clearly
easier than working out trigonometry, logarithms,
etc. What exactly you need will depend on the use
case, but in principle, more functionality is always
better.

4 (Package) options

For simple work using the dimen approach is conve-
nient and fast: it takes only a small amount of work
to set up stripping off the pt part. I’m writing here
for people who don’t want to delve into TEX innards,
so let’s assume a pre-packaged solution is what is
required.

There are lots of possible solutions on CTAN

which cover some or all of the above. I don’t want
to get into a “big list”, so I’ll simply note here that
the following are available on CTAN:

• apnum

• calculator

• fltpoint

• pst-fp

• minifp

• realcalc

• xint

Some of these have variable or arbitrary precision,
while others work to a pre-determined level. They
also vary in terms of functions covered, expandability
and so on.

I want to focus in on three possible “contenders”:
fp, pgf and the LATEX3 FPU (part of expl3). All of
these are well-known and widely-used, offer a full set
of functions, and a form of expressions.

The fp package formally uses fixed not floating
point code, but the key for us here is that it allows
a wide range of high-precision calculations. It’s also
been around for a long time. However, it’s quite slow
and doesn’t have convenient expression parsing— it
requires reverse Polish.

On the flip side, the arithmetic engine in pgf

uses dimens internally, so it is (relatively) fast but
is limited in accuracy. The range limits also show
up in some unexpected places, as a lot of range
reduction is needed to make everything work. On
the other hand, \pgfmathparse does read “normal”
arithmetic expressions, so it’s pretty easy to use.
I’ll also come to another aspect below: there is a
“swappable” floating point unit to replace the faster
dimen-based code.

Real number calculations in LATEX: Packages

70 TUGboat, Volume 40 (2019), No. 1

The LATEX3 FPU is part of expl3, but is avail-
able nowadays as a document-level package xfp. In
contrast to both fp and the pgf approach, the LATEX3
FPU is expandable. Like pgf, using the FPU means
we can use expressions, and we also get reasonable
performance (Bruno Le Floch worked hard on this
aspect). The other thing to note is that the FPU is
intended to match behaviour specified in the decimal
IEEE 754 standard, and that the team have a set of
tests to try to make sure things work as expected.

There’s one other option that one must consider:
Lua. If you can accept using only LuaTEX, you can
happily break out into Lua and use its ability to use
the “real” floating point capabilities of a modern PC.
The one wrinkle is that without a bit of work, the Lua
code doesn’t know about TEX material: registers and
so on need to be pre-processed. It also goes without
saying that using Lua means being tied to LuaTEX!

5 Performance

To test the performance of these options, I’m going to
use the LATEX3 benchmarking package l3benchmark.
I’m using a basic set up:

\usepackage{l3benchmark}

\ExplSyntaxOn

\cs_new_eq:NN

\benchmark

\benchmark:n

\ExplSyntaxOff

\newsavebox{\testbox}

\newcommand{\fputest}[1]{%

\benchmark{\sbox{\testbox}{#1}}%

}

(The benchmarking runs perform the same step mul-
tiple times, so keeping material in a box helps avoid
any overhead for the typesetting step.)

The command \fputest{...} was then used
with the appropriate input, such as the \fpeval

command below, to calculate a test expression using
a range of packages.

As a test, I’m using the expression
√
2 sin

(

40

180
π

)

or the equivalent. Using that, it’s immediately appar-
ent that the fp package is by far the slowest approach
(Table 1). Unsurprisingly, using Lua is the fastest by
an order of magnitude at least. In the middle ground,
the standard approach in pgf is fastest, but not by a
great deal over using the LATEX3 or pgf FPUs.

Table 1: Benchmarking results (LuaTEX v1.07,
TEX Live 2018, Windows 10, Intel i5-7200)

Package Time/10−4 s

fp 99.4
pgf 2.95
pgf/fpu 5.51
LATEX3 FPU 6.42
LuaTEX 0.57

6 Recommendation

As you can see above, there are several options. How-
ever, for end users wanting to do calculations in docu-
ments I think there is a clear best choice: the LATEX3
FPU.

\documentclass{article}

\usepackage{xfp}

\begin{document}

\fpeval{round(sqrt(2) * sind(40),2)}

\end{document}

(The test calculation uses angles in degrees, so where
provided, a version of the sine function taking degrees
as input was used: this is expressed in the LATEX3
FPU as sind. The second argument to round, 2, is
the number of places to which to round the result.)

You’d probably expect me to recommend the
LATEX3 package: I am on the LATEX team. But that’s
not the reason. Instead, it’s that the FPU is almost
as fast as using dimens (see pgf benchmarking), but
offers the same accuracy as a typical GUI application
for maths. It also integrates into normal LATEX con-
ventions with no user effort. So it offers by far the
best balance of features, integration and performance
for “typical” users.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Joseph Wright

TUGboat, Volume 40 (2019), No. 1 71

Real number calculations in TEX:
Implementations and performance

Joseph Wright

1 Introduction

TEX only exposes integer-based mathematics in any
user-accessible functions. However, as TEX allows
a full range of programming to be undertaken, it is
unsurprising that a number of authors have created
support for floating or fixed point calculations. I
recently looked at this are from an “end user” point of
view (“Real number calculations in LATEX: Packages”,
pages 69–70 in this issue), focusing on a small number
of widely-used options. In this article, I will look
at the full set of packages available, examining their
performance and considering some of the challenges
the implementations face.

2 Floating versus fixed point

The packages I’ll examine here cover both floating

and fixed point work. In a floating point approach,
the total number of digits doesn’t vary, but an ex-
ponent is used to scale the meaning: what we’d nor-
mally think of as “scientific notation”. In contrast,
fixed point calculations mean exactly that: there
are a set number of digits used, and they are never
scaled. That means that in a fixed point approach,
the number of digits in both the integer and decimal
parts is set by the implementation.

Both approaches have advantages. Floating
point working means that we gain a greater input
range, but have to track and allow for the differ-
ent meaning of the integer/decimal boundary. Fixed
point code does not have to deal with the latter issue,
and can be hard-coded for the known limits of val-
ues. However, the range is necessarily more limited,
both in terms of the maximum value accepted and
handling of very small values (where the fixed lower
limit cuts off precision).

Finally, there are packages which offer arbitrary
precision: code which works to a pre-determined
number of places, but where that limit can be ad-
justed by the user. Arbitrary precision may be used
with either fixed or floating point representation of
the mantissa.

3 Precision, accuracy and input range

Two key questions can be asked about any floating
point unit (FPU): how many places (or digits) does
it calculate, and how accurate are those digits? In
terms of the precision provided, we also have to
consider that there are different aims: for example,
both apnum and xint implement arbitrary precision.

Table 1: Precision targets

Approach Precisiona

apnum Arbitrary 20b

xint Arbitrary 20
fp Fixed 16
pst-fp Fixed 16
xfp Floating 15
Lua Floating 15
minifp Fixed 8
pgf/fpu Floating 7
pgf Fixed 5
calculator Fixed 5
fltpoint Floating 5c

aPlaces in the decimal part; bMinimum precision;
cApplies only to division; other operations may provide
more digits

Comparing the accuracy of these different ap-
proaches is non-trivial: is getting 5-digit accuracy
from a 5-digit fixed-point system “better” than get-
ting 12-digit accuracy from a 15-digit floating-point
approach? There is also the question of exactly which
tests one picks: depending on the exact values cho-
sen, different implementations may “win”. As such,
I will not tabulate “accuracy” results, but rather
comment where the user might wish to be cautious.

In terms of the precision of different packages,
the exact approach depends on the package: for
example, packages offering arbitrary precision have
only a default precision. Table 1 summarises the var-
ious packages on CTAN and provided in current TEX
systems that work in this area. I have included one
non-macro approach: using Lua in LuaTEX. Clearly
this is viable for only a subset of users, but as we
will see, it is an important option.

For pgf, I will consider two approaches: its na-
tive mathematical engine and the optional floating
point unit. There is also a loadable option to use Lua
for the “back end” of calculations: unsurprisingly, it
performs in a very similar way to the direct use of
Lua. (The number of decimal places returned stays
compatible with the standard pgf approach: five
places.) The pgf package also offers fast program-
ming interfaces to all operations which require that
each numerical argument be passed directly to a TEX
dimension register: I have not considered those here,
but they do of course offer increased performance.

4 Implementation approaches

4.1 Overview

TEX provides very limited support for calculations.
In Knuth’s TEX, we have the \count and \dimen

Real number calculations in TEX: Implementations and performance

72 TUGboat, Volume 40 (2019), No. 1

registers for storage, and the operations \advance,
\multiply and \divide (the latter truncating rather
than rounding). The ε-TEX extensions add expand-
able expression evaluation with the same fundamen-
tal abilities: \numexpr and \dimexpr (the one wrin-
kle being that division rounds). The \numexpr and
\dimexpr primitives have an internal range greater
than \maxdimen, and so for example A× B/C can
be calculated even if A×B would overflow.

4.2 Dimensions versus integers

At the macro level, these primitives allow two basic
approaches, either using integer-based calculations
or using dimension-based ones. As you may already
know, dimensions in TEX are actually (binary) fixed-
point numbers: they are stored in sp (scaled points),
but displayed in pt.

Approaches using dimensions are limited by the
underlying TEX mechanisms: five decimal places and
an upper limit of \maxdimen (16 383.999 98 pt). On
the other hand, the basic operations are both easy
to set up and fast. Other than the need to remove
a trailing pt, arithmetic does not even require any
macros.

So, it is possible to use dimensions as the un-
derlying data store and to provide additional func-
tionality on top of this. However, it is also worth
nothing that the rather limited range of dimensions
means that moderately large and small values must
be scaled as a first step. This is a potential source
of inaccuracy or range issues.

Using an integer-based approach, storage and
calculation necessarily require a range of macros or
\count registers. On the other hand, this approach
leaves the programmer in complete control of the pre-
cision used. Integer and decimal parts of a number,
plus potentially an exponent, can be held in separate
registers or extracted from a suitable macro before
arithmetic takes place.

4.3 Beyond arithmetic

Once one looks beyond simple arithmetic, issues such
as range reduction and handling of transcendental
functions become important. This is particularly
true for internal workings. For example, the normal
approach to calculating sines is to use Taylor series.
As several terms are required, rounding errors in each
term may accumulate significant inaccuracy. Thus
it is typically the case that internal steps for these
operations have to work at higher precision than the
user-accessible results.

Range reduction requires careful handling to
avoid introduction of systematic errors. This again
leads to concern over internal precision, as for ex-

ample the number of places of π used internally can
have a large impact on the final values produced.

4.4 Standards

In TEX macros, it makes sense to store numbers in
decimal form. That contrasts with most floating
point implementations, where underlying storage
is binary. Both of these cases are covered by the
IEEE754 standard, which is the primary reference for
implementers of floating point units in both software
and hardware.

The IEEE standard specifies not a single ap-
proach but a number of related ideas to do with data
storage, handling of accuracy, dealing with excep-
tions and so on. Whilst most TEX implementations
do not directly aim to implement a full IEEE754-
compliant approach, the standard does give us a
framework with which to compare aspects of be-
haviour.

One small wrinkle is that storing values in binary
means that some exact decimals cannot be expressed.
This shows up when using Lua for mathematics, for
example

\directlua{tex.print(12.7 - 20 + 7.3)}

gives

-8.8817841970013e-16

rather than 0.

4.5 Expandability

When programming in TEX, the possibility of mak-
ing code expandable is almost always a considera-
tion. Expandable code for calculations can be used
in a wider range of contexts than non-expandable
approaches. Of course, one can always arrange to
execute code before an expansion context; here’s an
example with the fp package:

\FPadd\result{1.234}{5.678}

\message{Answer is \result}

However, for the user, code which works purely
by expansion means they do not have to worry about
such issues. Implementing calculations “expandably”
means that registers cannot be used. With ε-TEX,
this is not a major issue as simple expressions can
be used instead. Creating expandable routines for
calculations is thus possible provided the underlying
operation is itself expandable. A key example where
that is not the case is measuring the width of typeset
material, for example

\pgfmathparse{width("some text")}

Expandable implementations require that the
programmer work hard to hold all results on the
input stack. Achieving this without a performance

Joseph Wright

TUGboat, Volume 40 (2019), No. 1 73

impact is a significant achievement. However, in and
of itself this is not the most important consideration
for choosing a solution.

5 Expressions

By far the simplest approach to handling calcula-
tions is to have one macro per operation, for example
\FPadd (from the fp package) for adding two num-
bers. At a programming level this is convenient, but
for users, expressions are much more natural. Sev-
eral of the packages examined here offer expressions,
either in addition to operation-based macros or as
the primary interface.

Each package inherently defines its own syntax
for such expressions. However, the majority use a
simple format which one might regard as ASCII-math,
for example

1.23 * sqrt(2) + sin(2.3) / exp(3)

to represent

1.23×
√
2 +

sin 2.3

e3

Expressions may also need to cope with scientific
notation for numbers: this is most obvious when
using a dimension-based “back-end”, as the values
cannot be read directly.

Several of the packages considered here offer
expression parsing: fp is notable in using a stack
approach rather than the more typical inline expres-
sions as shown above. However, as parsing itself
has a performance impact, the availability of faster
“direct” calculation macros is often a benefit.

6 Performance infrastructure

To assess the performance of the various options, I
wrote a script which uses l3benchmark to run a range
of operations for all of the packages covered here.
This has the advantage of carrying out a number of
runs to get a measurable time. All of these tests were
run in a single .tex source, using LuaTEX 1.07 (TEX
Live 2018) on an Intel i5-7200 running Windows 10.

The full test file (over 600 lines long!) is available
from my website: texdev.net/uploads/2019/01/

14/FPU-performance.tex. Comparison values for
calculations were generated using Wolfram Alpha
(wolframalpha.com) at a precision exceeding any of
the methods used here.

7 Arithmetic

Basic arithmetic is offered by all of the packages
considered here. I chose to test this using the combi-
nation of two constants

a = 1.2345432123454321

b = 6.7890987678909876.

Table 2: Basic operations, ordered by addition results

Time/10−4 s
a+ b a− b a× b a/b

calculator 0.03 0.03 0.02 0.88
Lua 0.16 0.18 0.17 0.17
minifp 0.29 0.26 0.77 2.20
pgf 0.78 0.75 0.74 1.32
apnum 0.94 0.95 2.55 3.15
xfp 1.44 1.40 1.79 1.97
pst-fp 3.35 3.25 5.51 22.60
xint 3.92 3.75 2.95 6.77
fp 4.52 4.25 14.50 23.80
fltpoint 5.92 12.30 200 123
pgf/fpu 6.48 6.18 6.07 7.18

Table 3: Trigonometry, ordered by sin results

sin θ sin−1 c sindφ sind−1 c tanψ

Lua 0.19 0.19 0.19 0.22 0.19
pgf 0.49 0.37 0.33 0.36 —
calculator 2.74 13.30 3.69 — —
pgf/fpu 5.24 3.40 4.28 3.52 —
xfp 5.65 14.60 4.22 16 7.77
fp 18.50 25 — — 31.90
apnum 50.70 131 — — 73.70
minifp — — 8.23 — —

As is shown in Table 2, these operations take times
in the order of microseconds to milliseconds.

As one would likely anticipate, using Lua (which
can access the hardware FPU) is extremely fast for
operations across the range and provides accurate
results in all cases. Even faster, except for division,
is calculator, which uses a very thin wrapper around
\dimen register working. Performance across the
other implementations is much more varied, with the
high-precision expandable xfp out-performing many
of the less precise packages, and working close to, for
example, pgf even though the latter takes advantages
of \dimen registers. At the slowest extreme, both
fp and in particular fltpoint take significantly longer
than other packages.

Accuracy is uniformly good for addition and
subtraction, with rounding in the last place posing
an issue in only two cases (minifp and pgf’s FPU

approach). For multiplication and division, most
implementations are accurate for all returned digits.
Again, only issues with rounding at the last digit
of precision (pgf) prevent a “full house” of accurate
results.

Real number calculations in TEX: Implementations and performance

74 TUGboat, Volume 40 (2019), No. 1

8 Trigonometry

Calculation of sines, cosines, etc., represents a more
significant challenge to a macro-based implemen-
tation than basic arithmetic. As outlined above,
considerations such as internal accuracy and range
reduction come into play, and performance can be-
come very limited. Not all packages even attempt
to work in this area, and fltpoint, pst-fp and xint all
lack any support for such functions.

To test performance in trigonometric calcula-
tions, I have again picked a small set of constants
for use in various equations:

c = 0.1234567890

θ = 1.2345432123454321

φ = 56.123456

ψ = 8958937768937

A consideration to bear in mind when dealing with
trigonometry is the units of angles. Depending on
the focus of the implementation, sin may expect
an angle in either radians or degrees. It is of course
always possible to convert from one to the other using
simple arithmetic, and thus all packages offering
trigonometric functions can be used with either unit.
However, this may lead to artefacts due to range
reduction and the precision of conversion. As such,
I have only tabulated data for “native” functions:
sine in degrees is referred to as sind; the data are
summarised in Table 3.

Lua is again by far the fastest approach and
is accurate for all of the sine calculations. (I have
allowed the use of conversion between degrees and
radian here: in contrast to macro-based approaches,
this seems reasonable with a “real” programming
language and hardware-level FPU support.)

The difference between calculator and pgf is no-
table, as both use \dimen registers behind the scenes:
pgf is significantly faster. In accuracy terms, both
calculator and pgf provide four decimal place accu-
racy, so this is not a question of trading accuracy for
performance. Enabling the FPU for pgf here does
not improve accuracy, but does cause a significant
performance hit.

Looking at the more precise approaches, xfp is
best in performing for calculation of sine, though it
is much less impressive for inverse sine. Accuracy for
sine is uniformly good, with fp failing at 17 digits,
and the other packages correct for the full set of
digits returned.

The calculation of tanψ is included to emphasise
the challenge of range reduction. The input is out-of-
range for a number of packages which otherwise can
calculate tangents. Only fp and xfp give the correct

result: both apnum and Lua give entirely erroneous
results. The failure of Lua is perhaps surprising,
but likely arises due to the IEEE754 specification for
binary storage.

9 Other operations

There are plenty of other operations which we might
wish to execute using a calculation package. As for
trigonometry, I have only included operations with
“native” support in Table 4. Coverage of these vari-
ous operations is somewhat variable. For example,
ax may be supported only for integer powers, or may
also be provided for non-integer powers. Similarly,
pseudo-random number generation is not always im-
plemented.

The pgf approach is once again fast for a range
of operations, but does suffer in terms of accuracy:
only three decimal places for

√
a, exp a and ln a, and

only one decimal place for ab. This remains the case
when enabling the pgf FPU. The calculator package
also suffers from some loss of accuracy, and is correct
to only three decimal places for

√
a.

Other implementations are generally successful
in offering good accuracy: minifp to at least 7 places
in all cases, and all other approaches to at least
14 places. As such, performance is once again the
main difference between the various implementations,
although the nature of available operations is also
worth considering. Perhaps the most notable case is
that whilst an is widely implemented, ax is less well
supported.

Generation of pseudo-random values is some-
thing of a special case. Modern TEX engines offer
primitive support for generation of such numbers, all
using code originally written by Knuth for META-
FONT. This is exploited by both xfp and xint to gen-
erate such numbers rapidly and expandably. In con-
trast, other implementations generate values purely
in macros, and so are non-expandable (due to the
need to track the seed between executions).

10 Conclusions

Implementing fully-fledged floating point support in
TEX is a significant programming challenge. It is
also a challenge that has been solved by a number
of talented TEX programmers. There are several
packages which offer good-to-excellent accuracy with
precision of at least 8 places, and in some senses
this means that choosing a package is complicated.
However, unless one requires arbitrary precision, the
balance of performance and precision is best managed
by xfp, the LATEX3 FPU as a user package. Whilst
not the fastest for every single operation, it performs
well across the board and offers performance often

Joseph Wright

TUGboat, Volume 40 (2019), No. 1 75

Table 4: Extended operations, ordered by
√
a results

√
a exp a ln a a5 ab round(d, 2) rand

Lua 0.18 0.19 0.19 0.16 0.17 0.20 0.15
pgf 0.84 0.67 0.54 0.60 1.28 — 0.07
xfp 3.88 7.43 10.20 15.50 14.80 4.11 1.47
minifp 4.15 8.96 13.10 3.61 — 0.46 2.18
pgf/fpu 4.96 4.50 4.04 7.51 8.60 — 1.12
calculator 6.91 9.21 29.10 0.32 38.90 1.28 —
xint 11.50 — — 8.01 — 1.21 1.29
apnum 42.60 121 133 13.10 — 0.08 —
fp 79.70 20.20 40.80 66.20 67.90 — 19.90
fltpoint — — — — — 1.61 —

comparable to approaches using TEX dimensions
(which are thus restricted to only 5 decimal places at
best). Where code is known to be strictly LuaTEX-
only, using Lua is of course the logical choice: no
macro implementation can compete with support at
the binary level.

For arbitrary precision work, apnum is not only
the best choice but also the only candidate if one
wishes to use transcendental functions.

11 Acknowledgements

Thanks to all of the package authors who gave me
feedback on my tests for their packages:

• Petr Oľsák (apnum)

• Robert Fuster (calculator)

• Eckhart Guthöhrlein (fltpoint)

• Michael Mehlich (fp)

• Dan Luecking (minifp)

• Christian Feuersänger (pgf)

• Jean-François Burnol (xint)

Thanks also to LATEX team members Bruno
Le Floch, Frank Mittelbach, David Carlisle and Ul-
rike Fischer for suggestions on benchmarking the var-
ious packages. Bruno also implemented the LATEX3
FPU, and his efforts in making this both expandable
and (relatively) fast are truly astounding.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Real number calculations in TEX: Implementations and performance

76 TUGboat, Volume 40 (2019), No. 1

TEX4ht: LATEX to Web publishing

Michal Hoftich

Abstract

The article gives overview of the current state of de-
velopment of TEX4ht, a conversion system for (LA)TEX
to HTML, XML, and more. It introduces make4ht, a
build system for TEX4ht as well as basic ways how
to configure TEX4ht.

1 Overview of the conversion process

TEX4ht is a system for conversion of TEX documents
to various output formats, most notably HTML and
OpenDocument Format, supported by word proces-
sors such as Microsoft Word or LibreOffice Writer.
An overview of the system is depicted in figure 1.

The package tex4ht.sty starts the conversion
process. The document preamble is loaded as usual,
but it keeps track of all loaded files. It loads special
configuration files for any packages used that are sup-
ported by TEX4ht at the beginning of the document.
These configuration files are named as the configured
file with extension .4ht. They may fix clashes be-
tween the configured package and TEX4ht, but most
notably the package commands are patched to insert
special marks to the DVI file, so-called hooks.

After the package configuration, another type of
.4ht files are loaded. These populate inserted hooks
with tags in the selected output format. In the last
step before processing of the document contents, a
.cfg provided by the user can configure the hooks
with custom tags. Compilation of the document then
continues as usual, resulting in a special DVI file.

The generated DVI file is then processed with
the tex4ht command. This command creates output
files, converts input encodings to UTF-8, and creates
two auxiliary files: an .idv file, a special DVI file
that contains pages to be converted to images, which
can be the contents of the LATEX picture environment
or complex mathematics; second, an .lg file with a
list of output files, CSS instructions, and instructions
for compiling individual pages in the .idv file to
images.

The last step in the compilation chain is the
t4ht program. It processes the .lg file and extracts
the CSS instructions, converts the images in the .idv
file, and may call various external commands.

2 Supporting scripts

Because the entire conversion process consists of sev-
eral consecutive steps, we use scripts to make this

Translation by the author from the original in Zpravodaj

2018/1–4, pp. 11–21, for the BachoTEX 2019 proceedings.

x.tex TEX x.dvi tex4ht x.idv

html files

x.lg

t4ht

images

& CSS

files

Figure 1: TEX4ht process overview

process easier. The TEX4ht distribution contains sev-
eral such scripts. They differ in the supported output
format, TEX engine used, and options passed to the
underlying commands. The most commonly used
script is htlatex, which uses the PDFTEX engine
with LATEX and produces HTML output.

Each of the scripts loads the TEX4ht package
without needing to specify it in the document, and
options from the command line are passed to the
package as well to tex4ht and t4ht commands.

For example, the following command can be
used to request the output in XHTML format in the
UTF-8 encoding:

htlatex file.tex "xhtml,charset=utf-8" \

"-utf8 -cunihtf"

However, these scripts are not flexible; each
time, they execute a three-time compilation of the
TEX document. This ensures the correct structure of
hypertext links and tables, as they require multiple
compilations to function properly, processing the
document repeatedly with tex4ht and t4ht.

For example, if the document contains a bib-
liography or glossary that is created by external
programs, it is necessary to first call htlatex, then
the desired program, and then htlatex again. In
the case of larger documents, compilation time may
thus be relatively long.

Passing options to the underlying commands is
also quite difficult.

New build scripts have been created for these
reasons. My first project that attempted to simplify
the TEX4ht compilation process was tex4ebook. It
added support for e-books, specifically ePub, ePub3
and mobi formats. It added support for use of com-
mand line switches and build files written in Lua.

The main difference between tex4ebook and
TEX4ht is the third compilation step. The t4ht

command is used only to create a CSS file. Image
conversion and execution of the external commands is
controlled by tex4ebook itself. In addition, thanks
to the build file support, it is possible to execute
commands between individual TEX compilations, for
example, to execute an index processor or bibtex
after the first compilation.

Michal Hoftich

TUGboat, Volume 40 (2019), No. 1 77

The library that added the build support pro-
vided features useful also for other output formats
than e-books. It was extracted as a standalone tool
and the make4ht build system is now a recommended
tool for use of TEX4ht.

3 The make4ht build system

make4ht enables creation of build scripts in the Lua
language. It supports execution of arbitrary com-
mands during the conversion, post-processing of the
generated files and defining commands for image
conversion. Using the so-called modes, it is possible
to influence the order of compilation using switches
directly from the command line. For example, the
basic script used by make4ht supports a draft mode
which runs only one compilation of the document
instead of the usual three. This can be used to
significantly speed up the compilation.

Currently, only LATEX is supported; plain TEX
support is possible, but it is more complicated and
ConTEXt is not supported at all. In the following
text we will focus only on LATEX.

make4ht supports a number of switches and
options that affect the progress of compiling and pro-
cessing of the output files. make4ht can be launched
as follows:

make4ht 〈switches for make4ht〉 file.tex \

"〈options for tex4ht.sty〉" \

"〈switches for tex4ht〉" \

"〈switches for t4ht〉" \

"〈switches for TEX 〉"
This complicated list is a result of the way htlatex

works: it needs to pass options for all components
involved in compilation. In most cases, fortunately,
there is no need to use all the options. Most of
the properties that tex4ht and t4ht provide can be
requested using the make4ht switches.

3.1 make4ht command line switches

Every command line switch that make4ht supports
has a short and long version. In addition, short
switches can be combined. For example, the following
two commands are identical:

make4ht --lua --utf8 --mode draft filename.tex

make4ht -lum draft filename.tex

This command uses LuaLATEX for the compi-
lation, which will be executed only one once, due
to draft mode. The resulting document will be in
UTF-8 text encoding. The default output format for
make4ht is HTML5 (htlatex’s default is HTML4).

In addition to these --lua, --utf8, and --mode

switches, there are a number of other useful switches:

--config (-c) configuration file for TEX4ht, allow-
ing tags inserted into output files to be changed.

--build-file (-e) select a build file.

--output-dir (-d) the directory where the output
files will be copied.

--shell-escape (-s) pass the -shell-escape op-
tion to LATEX, enabling execution of external
commands.

--xetex (-x) compile the document with X ELATEX.

--format (-f) select the output format.

There are other switches, but the above are the
most commonly useful.

3.2 Output formats and extensions

TEX4ht supports a wide range of XML-based formats,
from XHTML, through ODT to DocBook and TEI.

The --format switch for make4ht supports the
formats html5, xhtml, odt, tei and docbook (the
format names must be specified in lowercase). The
default format is html5.

Formats can be selected also using the tex4ht.
sty option:

make4ht filename.tex "docbook"

However, the advantage of --format is that it can
fix some common issues for the particular formats.
It can also load extensions. Extensions allow us to
influence the compilation without having to use a
build script. The list of extensions to be used can
be written after the format name. They can be
enabled using the plus character, and disabled with
the minus character.1 For example, the following
command uses the HTMLTidy command to fix some
common errors in the generated HTML file:

make4ht -f html5+tidy simple-example.tex

The following extensions are available:

latexmk_build Use the latexmk build system to
compile the document. This will take care of
calling external commands, for example, to cre-
ate a bibliography.

tidy Clean HTML output with the tidy command.

dvisvgm_hashes efficient generation of images using
the dvisvgm command. It can use multiple pro-
cessors and only creates images that have been
changed or created since the last compilation.
This can make compilation noticeably faster.

common_filters, common_domfilters Clean the
document using filters. Filters will be discussed
later in the article.

mathjaxnode Convert MathML math code into spe-
cial HTML using MathJax Node Page.2 This

1 Extensions can be enabled in a make4ht configuration
file, so disabling them from the command line can be useful.

2 github.com/pkra/mathjax-node-page

TEX4ht: LATEX to Web publishing

78 TUGboat, Volume 40 (2019), No. 1

produces mathematics that can be viewed in
web browsers without MathML support. The
rendering of the result doesn’t need JavaScript,
which results in much faster display of the doc-
ument compared to standard MathJax.

staticsite Create a document usable with static
page generators such as Jekyll.3 These are useful
for creating blogs or more complex websites.

3.3 Configuration files for make4ht

make4ht supports build scripts in the Lua language.
They can be used to call external commands, to pass
parameters to an executed command, to apply filters
to the output files, to affect the image conversion, or
to configure extensions.

The .make4ht configuration file is a special build
script that is loaded automatically and should con-
tain only general configurations shared between doc-
uments. In contrast, normal build files may contain
configurations useful only for the current document.
The configuration file can be located in the directory
of the current document or in its parent directories.

This can be useful, for example, for maintaining
a blog, with each document in its own directory.
In the parent directory, a configuration file ensures
proper processing. Here’s a small example:

filter_settings "staticsite" {

site_root = "output"

}

Make:enable_extension("common_domfilters")

if mode=="publish" then

Make:enable_extension("staticsite")

Make:htlatex {}

end

This configuration file sets the option site_root
for the staticsite extension using the command
filter_settings. This command can be used to set
options for both filters and extensions. The name of
the filter or extension is separated from the command
by a space, followed by another space-separated field,
where options can be set.

The next command is Make:enable_extension,
which enables the extension. In this case the exten-
sion common_domfilters is used in every compila-
tion, but the staticsite extension is used only in
publish mode. In this mode it is also necessary to use
the Make:htlatex{} to require at least one LATEX
compilation.

Now we can run make4ht in publish mode:

make4ht -um publish simple-example.tex

The output directory will be created if it does
not already exist; HTML and CSS files will be copied

3 jekyllrb.com

here. The static site generator must be configured
to look for files here and it needs to be executed
manually; the extension doesn’t do that.

The resulting HTML looks something like this:

time: 1544811015

date: ’2018-12-14 18:10:47’

title: ’sample’

styles:

- ’2018-12-14-simple-example.css’

meta:

- charset: ’utf-8’

<p>Sample document</p>

The document header enclosed between the two ---

lines contains variables in the YAML format extracted
from the HTML file. Only the contents of the docu-
ment body remains in the document; the old header
is stripped off. The static generator can then create
a page based on the template and the variables in
the YAML header.

This was just a basic example. Filters and exten-
sions have much more extensive configurable options,
all of which are described in the make4ht documen-
tation.4

3.4 Build files

In the compilation scripts it is possible to use the
same procedures as in the configuration file, but fo-
cused on the particular compiled document. The
following code shows use of the DOM filters. These
take advantage of the LuaXML5 library. It supports
processing XML files using the Document Object
Model (DOM) interface. This makes it easy to navi-
gate, edit, create or delete elements.

The use of DOM filters is shown in the following
example for LuaLATEX:

\documentclass{article}

\begin{document}

Test {\itshape háčků}

\end{document}

Because of a known error in processing the DVI

file with the tex4ht command, each accented char-
acter in the generated HTML file will be placed in a
separate element:

<!--l. 4--><p class="noindent" >Test

h<span

class="rm-lmri-10">á<span

class="rm-lmri-10">čk<span

class="rm-lmri-10">ů </p>

The following build file removes this by using the
built-in joincharacters DOM filter. In addition, it

4 ctan.org/pkg/make4ht
5 ctan.org/pkg/luaxml

Michal Hoftich

TUGboat, Volume 40 (2019), No. 1 79

changes the value of the class attribute for all <p>
elements to mypar, just to show how to work with
the DOM interface:

local domfilter = require("make4ht-domfilter")

local function domsample(dom)

-- the following code will process

-- all <p> elements

for _, par in

ipairs(dom:query_selector("p")) do

-- set the "class" attribute

par:set_attribute("class", "mypar")

end

return dom

end

local process = domfilter({

"joincharacters",

domsample

})

Make:match("html$", process)

The script uses the standard Lua require func-
tion to load the make4ht-domfilter library. This
creates a domfilter function that takes a list of
DOM filters to execute as a parameter.

Each call to the domfilter function creates
another function with a chain of filters specified in
a table. Parameters in the fields can be either the
name of an existing DOM filter, or a function defined
in the file.

The filter chain can then be used in the function
Make:match. This takes a filename pattern to match
files for which the filters should be executed, and the
filter chain.

The process function will run on each file whose
filename ends with html in this case.

The resulting HTML file does not contain the
extra elements and the <p> element has a
class attribute value of mypar:

<!-- l. 3 --><p class=’mypar’>

Test háčků

</p>

Here is another example, of a more complex
build file with external command execution and con-
figuration of image generation:

Make:add("biber", "biber ${input}")

Make:htlatex {}

Make:biber {}

Make:htlatex {}

Make:image("png$",

"dvipng -bg Transparent -T tight "

.. "-o ${output} -pp ${page} ${source}")

Make:match("html$",

"tidy -m -utf8 -asxhtml -q -i ${filename}")

The Make:add function defines a new usable
command, biber in this case. The second parameter
is a formatting string, which may contain ${...}

variable templates, which are in turn replaced by
parameters set by make4ht. Here, the ${input} will
be replaced with the input file name.

The newly added command can then be used
as Make:〈command〉, like the built-in commands.
Additional variables may be set in the table passed
as the argument.

The Make:htlatex command is built in and
requires one execution of LATEX with TEX4ht active.

The Make:image command configures the im-
age conversion. Three variables are available: page
contains the page number of the image in the DVI

file, output is the name of the output image, and
source is the name of the .idv file.

The use of the Make:match command was shown
in the previous example, but it may also contain
a string with the command to be executed. The
filename variable contains the name of the gener-
ated file currently being processed.

4 TEX4ht configuration

Output format tags embedded in a document are
fully configurable via several mechanisms. The easi-
est way is to use the tex4ht.sty package options, a
more advanced choice is to use a custom configuration
file, and the most powerful option is to use .4ht files.

When a TEX file is compiled using make4ht or
another TEX4ht script, the tex4ht.sty package is
loaded before the document itself. Package options
are obtained from the compilation script arguments.
As a result, it is not necessary to explicitly load the
tex4ht.sty package in the document.

The TEX file loading mechanism is modified to
register each loaded file with TEX4ht. For some
packages, TEX4ht has code to simply stop it from be-
ing loaded, or to immediately override some macros.
This is necessary for packages that are incompatible
with TEX4ht, such as fontspec.

After execution of the document preamble, the
configuration files for the packages detected during
processing are loaded. These files are named as the
base filename of the configured package, extended
with .4ht. Their main function is to insert con-
figurable macros, called hooks, into the commands
provided by the package. In general, it is better
not to redefine macros, only to patch them with the
commands TEX4ht provides for this purpose. This
is enough in most cases.

Output format configuration files are loaded
after the package configuration files are processed.
These define the contents of the hooks. Besides

TEX4ht: LATEX to Web publishing

80 TUGboat, Volume 40 (2019), No. 1

inserting output format tags, the hooks can contain
any valid TEX commands.

4.1 tex4ht.sty options

Many configurations are conditional, that is, exe-
cuted only in the presence of a particular option
being given for tex4ht.sty. Each output format
configuration file can test any option, which means
that there is no restriction on the list of possible
options; each output format can support a different
set of options.

As mentioned above, it is neither necessary nor
desirable to load tex4ht.sty directly in the docu-
ment, so it is possible to pass the options in other
ways. The easiest way is to use the compilation script
argument. This is always the argument following the
document name. For example, here we specify the
two options mathml and mathjax.

make4ht file.tex "mathml,mathjax"

Another way to pass options is to use \Preamble
command in the private configuration file. We’ll show
this in the next section.

As mentioned above, the list of options is open-
ended, but let’s now look at some current options
regarding mathematical outputs in HTML. The de-
fault configuration for mathematical environments
produces a blend of rich text and images for more
complex math, if it cannot be easily created with
HTML elements. Often this output doesn’t look
good. As an alternative, it is possible to use images
for all math content. This can be achieved by us-
ing the pic-m options for inline mathematics and
pic-〈environment〉 for mathematical environments.
For example, the pic-align option will make images
for all align environments.

By default, images are created in the PNG bit-
map format. Higher quality can be achieved using
the SVG vector format. This can be specified with
the svg option.

The TEX4ht documentation is unfortunately
somewhat spartan. With the info option, much
useful information about the available configurations
can be found in the .log file after the compilation
of a document.

The options listed in the example above, mathml
and mathjax, provide the best quality output for
mathematical content. The MathML markup lan-
guage, requested by the first option, encodes the
mathematical information, but its support in Web
browsers is poor. The second option requests the
MathJax library, which can render the MathML out-
put in all browsers with JavaScript support.

The mathjax option used without mathml com-
pletely turns off compilation of math by TEX4ht;

all math content remains in the HTML document
as raw LATEX macros. MathJax then processes the
document and renders the math in the correct way.
The disadvantage of this method is that MathJax
does not support all packages and user commands; it
needs special configuration in these cases. Emulation
of some complex macros may not even be possible.

4.2 Private configuration file

The private configuration file can be used to insert
custom content into the configuration hooks. This
file has a special structure:

〈preamble definitions〉 ...

\Preamble{〈tex4ht.sty options〉}
... 〈normal configurations〉 ...

\begin{document}

... 〈configuration for HTML head〉
\EndPreamble

The three commands shown here must be al-
ways included in this configuration file: \Preamble,
\begin{document} and \EndPreamble. The config-
uration file name can be passed to make4ht using
the switch --config (or -c), like this:

make4ht -c myconfig.cfg file.tex

The full path to the configuration file must be
used if it is not placed in the current directory.

There are several configuration commands. The
most important are \Configure for common config-
urations, \ConfigureEnv for configuration of LATEX
environments, and \ConfigureList for the configu-
ration of the list environments.

The \HCode command is used for insertion of
the output format tags. The \Hnewline command
inserts a newline in the output document. And the
\Css command writes content to the CSS file.

The following example configures the hooks for
the \textit command to insert the element.

\Configure{textit}

{\HCode{}\NoFonts}

{\EndNoFonts\HCode{}}

The \Configure command takes a variable num-
ber of arguments. It depends on the hooks’ definition
how many arguments are needed. The first argument
is always the name of the configuration; following
arguments then put the code in the hooks. Typically,
a configuration requires two hooks: the first places
code before the start of the command, the second
after it is done. This is the case for the textit ex-
ample above. The configuration name may match
the name of the configured command, but this is not
always the case. The package .4ht file may choose
the configuration names arbitrarily.

Michal Hoftich

TUGboat, Volume 40 (2019), No. 1 81

The \NoFonts command used above disables
inserting formatting elements for fonts when process-
ing a DVI file. TEX4ht automatically creates basic
formatting for font changes. This makes it possible
to create a document with basic formatting even
for unsupported commands, but it is not desirable
when the command is configured using custom HTML

elements.
Correct paragraph handling is difficult, and

TEX4ht sometimes puts paragraph tags in undesired
places. This applies primarily to environment config-
urations that can contain several paragraphs and yet
enclose their entire content in one element. It may
happen that the starting paragraph mark is placed
before the beginning of this element, but it should be
placed right after that. The \IgnorePar command
can prevent the insertion of a tag for the next para-
graph. \EndP inserts a closing tag for the previous
paragraph. There are more commands to work with
paragraphs, but these are the most important.

To illustrate this issue, the following example
uses the hypothetical rightaligned environment:

\ConfigureEnv{rightaligned}

{\HCode{<section class="right">}}

{\HCode{</section>}}

{}

{}

The \ConfigureEnv command expects five pa-
rameters. The first is name of the environment to
configure. The contents of the second parameter are
inserted at the beginning of the environment, and the
contents of the third at the end of the environment.
The other two parameters are used only if the con-
figured environment is based on a list. In most cases
they may be left blank. The HTML code created by
the configuration above will look something like the
following:

<p class="indent" ><section class="right">

...

</p><p class="indent></section>

As described above, this code is invalid. The
terminating tag for the <p> element is placed at the
wrong nesting level. The invalid code can cause the
DOM filters and other post-processing tools expecting
well-formed XML files to fail, so this situation must
be avoided.

The correct configuration is somewhat more
complicated:

\ConfigureEnv{rightaligned}

{\ifvmode\IgnorePar\fi\EndP

\HCode{<section class="right">}\par}

{\ifvmode\IgnorePar\fi\EndP

\HCode{</section>}}

{}

{}

In this case the insertion of tags for paragraphs
is controlled, resulting in a correctly nested structure:

<section class="right">

<!--l. 9--><p class="indent" >

...

</p></section>

Another feature is the conversion of part of a
document to an image. This can be requested using
the commands \Picture* or \Picture+. The dif-
ference between these is that the first processes its
content as a vertical box, and the second does not.
The content between any of these commands and the
closing \EndPicture is converted to an image.

The following example creates an image for the
text contained in the topicture environment:

\documentclass{article}

\newenvironment{topicture}{\bfseries}{}

\begin{document}

\begin{topicture}

Contents of this environment

will be converted as an image.

\end{topicture}

\end{document}

The TEX4ht configuration for the topicture

environment uses \Picture*:

\ConfigureEnv{topicture}

{\Picture*{}}

{\EndPicture}

{}

{}

The resulting document will contain an image
of the text contained in the topicture environment
as it was typeset in the DVI file.

5 Conclusion

The TEX4ht configuration options are extensive. We
have touched only the basics in this article, but it
should be enough to solve many basic issues that
users might face. We omitted examples of how to
add configurations for a new LATEX package; we hope
to address this topic in a future article.

The system is easier and more efficient to use
than in the past, thanks to the make4ht build system.

The new documentation for TEX4ht is being
developed with financial support by CSTUG. It will
describe the most useful user configurations, as well
as technical details of the system.

⋄ Michal Hoftich
Charles University, Faculty of Education
michal.hoftich (at) pedf dot cuni dot cz

https://www.kodymirus.cz

TEX4ht: LATEX to Web publishing

82 TUGboat, Volume 40 (2019), No. 1

TUGboat online, reimplemented

Karl Berry

Abstract

This article discusses updates to the data and code
for creating the online TUGboat HTML files which
are automatically generated: the per-issue tables of
contents and the accumulated lists across all issues of
authors, categories, and titles. All source files, both
data and code, are available from https://tug.org/

TUGboat, and are released to the public domain.

1 Introduction

Since 2005, TUGboat has had web pages generated
for both per-issue tables of contents and accumulated
lists across all issues of authors, categories, and titles.
David Walden and I worked on the process together
and wrote a detailed article about it [1]; Dave wrote
all of the code. More recently, we wanted to add some
features which necessitated writing a new implemen-
tation. This short note describes the new work.

The basic process remains unchanged. To briefly
review from the earlier article:

• For each issue, a source file tb〈n〉capsule.txt
(n being the TUGboat issue sequence number),
which is essentially written in TEX (it is used
to create the contents by difficulty on the in-
side back cover), is converted to an HTML file
named contents〈vv-i〉.html (for issue number
i in volume vv). These contents*.html files
are intended to closely mimic the printed ta-
ble of contents (the back cover) with respect to
ordering of items, variation in author’s names,
category names, etc., with only typos corrected.

• The translation from TEX to HTML is done by
the code here, not using TEX4ht or any other
tool; the overall HTML structure is written di-
rectly by the program. The translation is in-
formed by two files (lists-translations.txt
and lists-regexps.txt), which (simplistically)
map TEX input strings to HTML output strings.

• Finally, three files are produced accumulating all
items from across all issues: listauthor.html,
listkeyword.html, and listtitle.html; each
is grouped and sorted accordingly. (These cu-
mulative lists are the primary purpose for devel-
oping the program in the first place.) In these
files, in contrast to the per-issue contents, many
unifications are done (directed by a third ex-
ternal data file, lists-unifications.txt), so
that articles written under the names, say, “Don-
ald E. Knuth”, “Donald Knuth”, “Don Knuth”,
etc., all appear together. Similarly, many varia-

tions in category names, and related categories,
are merged.

• The translations are applied first, then the reg-
ular expressions (regexps), and finally the unifi-
cations.

2 General implementation approach

Both the old implementation and the new are writ-
ten in Perl, though they do not share any code. I
chose Perl simply because it is the scripting language
in which I am most comfortable writing nowadays.
There was no need to use a compiled language; the
total amount of data is small by modern standards.
Readability and maintainability of the code are far
more important than efficiency.

I wrote the new implementation as a straight-
forward, if perhaps old-fashioned, program. I did
not see the need to create Perl modules, for example,
since the program’s job is a given, and the chance
of any significant reuse outside the context of TUG-
boat seems small indeed. All the code and data are
released to the public domain, so any subroutines,
utility functions, fragments, or any other pieces of
code or data useful elsewhere can be copied, modified,
and redistributed at will.

As mentioned above, the capsule source files are
essentially TEX. For example, here is the capsule
entry from tb123capsule.txt for a recent article:

\capsule{}

{Electronic Documents}%add|Software \& Tools

{Martin Ruckert}

{\acro{HINT}: Reflowing \TeX\ output}

{postponing \TeX\ page rendering to ...}

{217-223}

{/TUGboat/!TBIDENT!ruckert-hint.pdf}

The meaning of the fields is described in the pre-
vious article, but is probably evident enough just
from the example. For our present purposes, let’s
just observe the brace-delimited arguments and gen-
eral TEX markup. To parse this, the present pro-
gram uses one non-core Perl module (and only this
one): Text::Balanced (metacpan.org/pod/Text::
Balanced), which does basic balanced-delimiter pars-
ing. (The previous implementation did the parsing
natively, more or less line-based.)

Perl has several modules to do this job; I chose
this one because (a) it had a reasonably simple inter-
face, and (b) it could return the non-balanced text
between arguments, which was crucial for our for-
mat, since we use formatted comments as directives
with additional information for the lists* files—as
seen above with the %add|... extra category. Only
three directives have been needed so far: to add and
replace categories, and to add authors. They are

Karl Berry

TUGboat, Volume 40 (2019), No. 1 83

crucial for making the accumulated lists include all
the useful information.

Each capsule turns into a Perl hash (associative
array), and each issue is another hash, including
pointers to all its capsules, and so on. In general,
the amount of data is so small that memory usage
was a non-issue.

Perhaps it would be a better general approach to
completely reformat the TEX source into a non-TEX
format (YAML, for instance) and then parse that;
and perhaps some future TUGboat worker will feel
inspired to do that. It would not be especially hard
to have the current implementation output such a
conversion as a starting point. I merely chose to keep
the process more or less as it has been.

3 Cleaning up capsule sources and output

I did take the opportunity to clean up the capsule
source files, e.g., using more consistent macro abbre-
viations, adding missing accents to authors’ names,
correcting typos, etc. The balanced-brace parsing
regime meant that unbalanced braces got found, of
which there were several.

I also added consistency checks in the code, so
that, for example, a new category name that we hap-
pen to invent for a future issue will get reported; such
cases should (probably) be unified with an existing
category. Many unifications of existing categories
and authors were also added.

Another part of the cleanup was to ensure that
the page number of each item is unique; when two
items start on the same page, internally we use deci-
mals (100 and 100.5, say) to order them. This is done
with a macro \offset. Naturally such decimals are
not shown in either the TEX or HTML output. They
are necessary in order to have a unique key in all our
various hashes, and for sorting.

Speaking of sorting, I wanted the new output
for the accumulated lists to be stably sorted, so that
the results of any code or data changes could be
easily diffed against the previous output. So now
the sorting for a given entry is reliably by volume,
then issue, then page (and first by title for the title
list); having unique internal page values was also a
prerequisite for the stable sort.

Another minor point about the HTML output
is the anchor names: we intentionally reduce all an-
chor identifiers (author names, titles, etc.) to 7-bit
ASCII—indeed, only letters, numbers, periods, and
commas. For example, Herbert Voß’s items in TUG-
boat are available at tug.org/TUGboat/Contents/
listauthor.html#Voss,Herbert. (Sorry, Herbert.)
Similarly, if an anchor starts with a non-letter, it is
prefixed by t_. Although HTML permits general Uni-

code in anchor names nowadays, this has not always
been the case, and regardless, for ease of copying, use
in email, etc., this seemed the most useful approach.

4 Data files lists-*.txt

The external data files lists-unifications.txt

and lists-translations.txt that play a part in all
these conversions are described in the earlier article.
The third file mentioned above, lists-regexps.txt,
is new in this implementation. Here are some exam-
ple entries from each.

4.1 lists-unifications.txt

Examples from lists-unifications.txt:

Dreamboat

Expanding Horizons

Future Issues

...

Max Díaz

M. Díaz

The left-justified line shows the name as it should be
shown, and following indented lines show alternate
names as they are found. We unify categories and
names, as shown here.

The Dı́az example also shows that we do unifi-
cations after the translation to HTML, so both the
canonical name and the alternates are expressed that
way, not in TEX. Thus, the exact form of the trans-
lation matters (whether ı́ translates to í or
í or í or a literal UTF-8 ı́ or . . .) and
has to match with the lists-translations.txt

entries. Examples from there are next.

4.2 lists-translations.txt

Examples from lists-translations.txt:

\’{\i}||í||i

\TUG{}||TUG

Each line is two or three strings, separated by a ||

delimiter. The first element is what’s in the TEX
source; the second is the HTML to output, and the
third is the plain text conversion for sorting and
anchors. If the third element is absent (as in the
\TUG line above), the second element is used for both
plain text and HTML.

4.3 lists-regexps.txt

For lists-regexps.txt, the general form is similar
to lists-translations.txt, with a left-hand side
and right-hand side separated by the same || delim-
iter. But here, the lhs is a regular expression, and
the rhs is a replacement expression:

\\emph\{(.*?)\}||"<i>$1</i>"

\{\\it\s*(.*?)\}||"<i>$1</i>"

TUGboat online, reimplemented

84 TUGboat, Volume 40 (2019), No. 1

All that punctuation may look daunting, but if taken
a bit at a time, it is mostly standard regular expres-
sion syntax. The above two entries handle the usual
LATEX \emph{...} and plain {\it ...} italic font
switching (with no attempt to handle nested \emph,
as it is not needed). Both syntaxes for font switching
are prevalent throughout the capsule sources.

The .*? construct in the left hand side may
be unfamiliar; this is merely a convenience meaning
a “non-greedy” match—any characters up until the
first following right brace (the \} means a literal
right brace character). A .* without the ? would
match until the last following right brace.
�� On second glance, what also may seem un-

usual is the rhs being enclosed in double
quotes, "...", specifying a Perl string constant.
Why? Because, ultimately, this is going to turn
into a Perl substitution, s/〈lhs〉/〈rhs〉/g (all substi-
tutions specified here are done globally), but initially
the lhs and rhs have to be read into variables— in
other words, string values. But we don’t want to
evaluate these strings when they are read from the
lists-regexps file; the $1 in the rhs needs to refer
to what is matched by the (...) group on the lhs
when the substitution is executed. This turns out to
be a programming exercise in layers of evaluation.
�� The simplest way I found to do it was to

use a Perl feature I had never before needed,
or even heard of, in my 30-odd years of using Perl
since it first appeared: including the /ee modifier
on the substitution, as well as the /g. I won’t try to
explain it here; for the curious, there is a discussion at
stackoverflow.com/q/392644, in addition to the
Perl manual itself (perlre).

5 Performance and profiling

Although I said above that efficiency was not an issue,
that is not quite true. Especially during development
and debugging, doing a test run must not take too
long, since it gets done over and over. My extremely
naive initial version took over 45 seconds (on my
development machine, which is plenty fast) to process
the ≈120 TUGboat issues—much too frustrating to
be borne.

The Perl module Devel::NYTProf turned out
to be by far the best profiling tool available. (By the
way, NYT stands for New York Times ; a programmer
there did the initial development.) Unlike other Perl
profiling tools, it shows timing data per individual
source line, not just functions or blocks.

Using that, it turned out that almost all the
time was being consumed dealing with the substitu-
tions from the lists-* files, since the strings were
being read at runtime, instead of being literal in

the source code. The easy step of “precompiling”
the regular expressions after reading the files, with
qr//, resulted in the total runtime dropping an order
of magnitude, to under 4 seconds. So development
could proceed without any major surgery on the code
or data structures.

6 Conclusion

The ad hoc conversion approach described here is
viable only because we have complete control over
the not-very-complicated input, and desirable mainly
because we want complete control over the output.
I did not want to struggle with any tool to get the
HTML I wanted, namely to be reasonably format-
ted and otherwise comprehensible, and not making
significant use of external resources or JavaScript.

Although changes and new needs are inevitable,
I hope the program and data will be sufficiently
robust for years to come.

References

[1] K. Berry and D. Walden. TUGboat online.
TUGboat 32(1):23–26, 2011. http://www.tug.
org/TUGboat/tb32-1/tb100berry.pdf

⋄ Karl Berry
https://tug.org/TUGboat

Editor’s note: Until last year, the comprehensive
BibTEX database for TUGboat, tugboat.bib, which
Nelson Beebe maintains on the servers at the Uni-
versity of Utah was derived programmatically from
the TUGboat contents files. Earlier this year, Nelson
modified the procedures to instead use the HTML

files (generated as described here) for the issues. This
method should not only be easier to maintain, but
also contain additional information.

New labeling conventions have been applied to
newly created entries; these follow Nelson’s BibNet
Project. Labels of older entries are frozen in the old
form (e.g., Knuth:TB2-3-5), so as not to invalidate
user documents that cite such labels.

These files are on both the Utah web server, at
www.math.utah.edu/pub/tex/bib, and the parallel
FTP server. In addition to tugboat.bib, these as-
sociated files are present: .def, .dvi, .html, .ltx,
.pdf, .ps.gz, .ps.xz, .sok, and .twx. (To fetch
the whole collection under ftp, issue the command
“mget tugboat.*”.)

The collection is also on CTAN in the area info/
biblio, along with bib files on additional topics.
Some of these, including tugboat.bib, are also in
TEX Live. —Barbara Beeton

Karl Berry

TUGboat, Volume 40 (2019), No. 1 85

Book review: Never use Futura,
by Douglas Thomas

Boris Veytsman

Douglas Thomas, Never use Futura. Princeton
Architectural Press, 2017, paperback, 208pp.,
US$24.95, ISBN 978-1616895723.

The only extraterrestrial body visited by humans has
a plaque with the proud words WE CAME IN PEACE

FOR ALL MANKIND and signatures of Neil Arm-
strong, Michael Collins, Edwin Aldrin, & Richard
Nixon. This plaque is typeset in Futura (Figure 1),
a typeface created by German designer Paul Ren-
ner in 1927 and popularized by a German company
Bauer Type Foundry. Four decades later the typeface
was so ubiquitous, that its use on NASA documents,
including the famous plaque, became a matter of
course: astronauts were required to quickly read and
understand instructions, so a familiar readable type-
face was chosen. Today this ubiquitousness works
against the typeface: it is often considered overused,
prompting the advice Never use Futura by some ex-
perts. This advice is boldly used as a title by a book
by Douglas Thomas— followed by the sly unless you

are, and a long list of distinguished companies on
the title page.

The book is based on the author’s Master’s
thesis at the University of Chicago and is a well-
researched and generously illustrated treatise on the
history of Futura. One of the most important ques-
tions Thomas tries to answer in his book is why the
typeface became so popular. He argues that Futura
fortuitously combined the bold modernist simplicity
of geometric sans serif and a number of well-thought-

Figure 1: The moon plaque

out features based on the traditions of font design.
Among these features are the classical proportions
of the typeface; the subtle variations of height (the
sharp tops of capital A and W are slightly above the
other capital letters to create a visual uniformity of
height) and pen width (the bowls of a, d, p become
slightly thinner when they touch the stems). These
almost imperceptible features make the typeface alive
rather than mechanistic and cold.

The author is fascinated by the way the history
of Futura is intertwined with the history of the 20th
century. Due to its German origins, Futura was an
object of propaganda in the USA: “By buying Ger-
man fonts you help Nazis”, as American foundries
that sold their own clones of Futura wrote in their ad-
vertisements. Nevertheless, as Thomas shows, many
US Army materials were set in Futura and other
typefaces of German origin. In Germany the fate
of Futura was more complicated. The Nazi regime
disliked Bauhaus and modernist art. The anti-fascist
views of Paul Renner did not help either— the font
designer was briefly arrested after Hitler took power
(later he was able to emigrate to Switzerland).

Up to 1941 the official Nazi position on typog-
raphy was that only black letter fonts were truly
Aryan. However, in 1941 there was an abrupt change
in the policy: black letter fonts were declared a
Jewish corruption, and Germans were told to use
only Roman fonts. This story is discussed in a pa-
per by Yannis Haralambous (Typesetting Old Ger-
man: Fraktur, Schwabacher, Gotisch and Initials,
TUGboat, 12:1, 129–138, 1991, tug.org/TUGboat/
tb12-1/tb31hara.pdf). By the way, this paper re-
produces NSDAP order 2/41 introducing the change
in the font policy. Interestingly enough, the letter-
head of the order is typeset in black letter. At any
rate, many later Nazi documents are printed in Fu-
tura. Thomas shows the identification card of a

Book review: Never use Futura, by Douglas Thomas

86 TUGboat, Volume 40 (2019), No. 1

Figure 2: Futura in electoral politics

ghetto Jew typeset in Futura. Poignantly, several
pages later he reproduces the proclamation about
the internment of Japanese Americans typeset in the
same font.

The general feel of Futura, its combination of
modernity and familiarity, made it ideal for electoral
copy. At one point almost all electoral materials
were typeset in Futura or its clones; see Figure 2. In
our more sophisticated times, top ticket candidates
usually order bespoke typefaces for their campaigns—
often a version of geometric sans serif. In the 2016
US presidential elections, Hillary Clinton had a cus-
tom made typeface Unity based on Sharp Sans, while
many Republican candidates used Futura-based fonts
(Chris Christie, Marco Rubio, Jeb Bush). Interest-
ingly enough, the campaign of candidate Trump did
not make any design choice, so Trump posters in dif-
ferent places used quite different fonts, mostly bold-
face. While the word TRUMP was most often typeset
in Akzidenz-Grotesk Bold Extended, sometimes Mi-
crosoft’s default Arial was used. The typeface for
the phrase “Make America Great Again” on Trump
hats is the blandest Times New Roman, “almost an
antichoice”, writes Thomas.

While the book has many similar sociological
anecdotes, it also has many things one expects from
a book about fonts, for example, a comparison of
different digital versions of Futura (see, for example,
the tracing of the letter S in Figure 3). It thor-

Figure 3: ‘S’ in several digital versions of Futura

oughly explores Futura’s many uses, including art
and advertising (Figure 4).

Included in the book is a fascinating photo essay
Futura in the wild. An example of Futura in the mall
is accompanied with an interesting observation that
lighter faces subtly indicate more expensive wares
(see Figure 5).

The book has a useful index and expansive end
notes with the bibliography, showing its provenance
in academic research. It is well designed and compe-
tently typeset. The body text is set in a serif font
Lyon from Commercial Type. The chapter headings
are typeset in Futura ND Bold from Neufville Digital,
while captions are in Futura SB-Medium from Scan-
graphic. The foreword is written by Ellen Lupton,
the author of a number of interesting books including
Thinking with type. Even the blurbs on the back
cover are creative: they are “authored” by various
typefaces themselves.

This book is a good addition to any typography
lover’s library.

Acknowledgment. This review was suggested by
Dave Walden, who sent me his copy of the book.

⋄ Boris Veytsman
Systems Biology School, George

Mason University, Fairfax, VA
borisv (at) lk dot net

http://borisv.lk.net

Boris Veytsman

TUGboat, Volume 40 (2019), No. 1 87

Figure 4: Posters with Futura

Figure 5: In the mall, from the photo essay Futura in the wild

Book review: Never use Futura, by Douglas Thomas

88 TUGboat, Volume 40 (2019), No. 1

Die TEXnische Komödie 1/2019

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Christoph Gröninger, LATEX-Compiler in
CMake-Projekten verwenden [Using a LATEX compiler
in CMake-Projects]; pp. 13–17

In larger C++ projects one often uses the CMake
build system to invoke the compiler and linker in different
settings. If there is LATEX-based documentation it will
probably be compiled with CMake as well. For this pur-
pose the two projects UseLATEX.cmake and UseLatexMk

were created. This article describes their use.

Taco Hoekwater, Wie installiere ich eine Schrift
für ConTEXt? [How to install a font for ConTEXt?];
pp. 17–30

Installing a new font family for ConTEXt is not
especially difficult for experienced users, but newbies
usually struggle a little. This article describes the process
based on the freely available IBM Plex font.

Herbert Voß, Rekursive Aufrufe am Beispiel von
Abkürzungen [Using recursion for abbreviations];
pp. 31—34

Recursion is a commonly used strategy to solve
problems in programming. Since TEX is Turing-complete,
recursion can be used here as well. In this article we show
the process with an example to generate abbreviations.

Markus Kohm, Ergänzung zum Beitrag
„KOMA-Script für Paketautoren . . . “ [Supplement to
the article “KOMA-Script for package authors . . . ”];
pp. 34–36

This article is a supplement to the mentioned article
in DTK 4/2018. Due to some adjustments in the nomencl

package there are some changes described in this article.

Herbert Voß, Schriften für mehrsprachige Texte
[Fonts for multi-lingual texts]; pp. 37—38

The Noto font, developed by Google, is available
in so many versions that the compressed archive has
more than one gigabyte. In a TEX Live or MiKTEX full
installation, the most important fonts are included as
OpenType fonts.

Herbert Voß, Garamond-Math; pp. 38–40
With Garamond-Math there is a new OpenType

font for typesetting mathematical content.

[Received from Herbert Voß.]

Zpravodaj 2018/1–4

Zpravodaj is the journal of CSTUG, the TEX user group
oriented mainly but not entirely to the Czech and Slovak
languages (cstug.cz).

V́ıt Novotný, Př́ıprava Zpravodaje CSTUG

[Preparing the CSTUG Bulletin]; pp. 1–10
The article describes the structure, the typesetting

and the preflight of the CSTUG Bulletin. We take a
detailed look at the journey of a manuscript to the readers’
mailboxes. The author has been the editor of the CSTUG

Bulletin since 2016.

Michael Hoftich, Publikováńı z LATEXu na web
pomoćı TEX4ht [LATEX to web publishing using
TEX4ht]; pp. 11–21

[Reprinted in this issue of TUGboat.]

Marek Pomp, Tabulky v dobře dokumentovaných
statistických výpočtech [Tables in well-documented
statistical calculations]; pp. 22–37

The article describes the method of publishing well-
documented statistical calculations using the R software.
It is especially about creating tables using knitr and
kableExtra.

Hans Hagen, LuaTEX version 1.0.0; pp. 38–42
[Printed in TUGboat 37:3.]

Hans Hagen, Emoji again; pp. 43–58
Since the 10th International ConTEXt Meeting in

2016, ConTEXt has supported the OpenType colr and
cpal tables that are used in color fonts and also to pro-
duce emoji. The article introduces emoji and uses the
Microsoft’s seguiemj font to show how emoji are con-
structed from glyphs, how emoji can be stacked into
sequences, and how the palettes of a color font can be
changed in ConTEXt.

Hans Hagen, ConTEXt performance; pp. 59–78
The processing speed of a TEX engine is affected

by a number of factors, such as the format, macros,
scripting, fonts, microtypographic extensions, SyncTEX,
and command-line redirection. The article discusses the
individual factors from the perspective of a ConTEXt user.
The article also measures the overhead of ConTEXt MkII

and MkIV, the impact of command-line redirection and
fonts on the speed of ConTEXt MkIV, and the overall
speed of typesetting with ConTEXt MkII and MkIV.

Hans Hagen, Variable fonts; pp. 79–89
[Printed in TUGboat 38:2.]

Peter Wilson, Glisterings #8: It Might Work. VII –
Macros; pp. 90–100

[Printed in TUGboat 29:2.
Translated to Czech by Jan Šustek.]

[Received from Vı́t Novotný.]

TUGboat, Volume 40 (2019), No. 1 89

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from October 2018–April 2019,
with descriptions based on the announcements and
edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

biblio

alpha-persian in biblio/bibtex/contrib

Persian version of alpha.bst, using X ETEX.
econ-bst in biblio/bibtex/contrib

Customizable BibTEX style for economics papers.
zootaxa-bst in biblio/bibtex/contrib

BibTEX style for the journal Zootaxa.

fonts

crimsonpro in fonts

Eight weights and italics for each weight.
cuprum in fonts

Cuprum font family support for LATEX.
garamond-math in fonts

OpenType math font matching EB Garamond.
inriafonts in fonts

Inria fonts with LATEX support.

graphics

chordbars in graphics/pgf/contrib

Chord grids for pop/jazz tunes in TikZ.
chordbox in graphics/pgf/contrib

Draw chord diagrams in TikZ.
euflag in graphics

Flag of European Union using standard packages.
fiziko in graphics/metapost/contrib/macros

MetaPost library for physics textbook illustrations.
memorygraphs in graphics/pgf/contrib

Typeset graphs of program memory in TikZ.
ptolemaicastronomy in graphics/pgf/contrib

Diagrams of sphere models for variably strict
conditionals (Lewis counterfactuals).

pst-moire in graphics/pstricks/contrib

Moiré patterns in PSTricks.
pst-venn in graphics/pstricks/contrib

Venn diagrams in PSTricks.
tikz-imagelabels in graphics/pgf/contrib

Put labels on existing images using TikZ.
tikz-truchet in graphics/pgf/contrib

Draw Truchet tiles in TikZ.
tikzlings in graphics/pgf/contrib

Cute little animals and similar creatures in TikZ.

indexing

* xindex in indexing

Unicode-compatible index generation (in Lua).

info

* joy-of-tex in info

Text of Michael Spivak’s Joy of TEX, for the
AMS-TEX format.

latex4musicians in info

Guide for combining LATEX and music.
texonly in info

Sample document in plain TEX.

language/thai

zhlineskip in language/chinese

Line spacing for CJK documents.

language/japanese

bxjaholiday in language/japanese

Support for Japanese holidays.
pxjodel in language/japanese

Help change metrics of fonts from japanese-otf.

macros/generic

poormanlog in macros/generic

Standalone package for logarithms and powers,
with almost 9 digits of precision.

macros/latex/contrib

armymemo in macros/latex/contrib

Class for Army memorandums, following AR

25-50.
asmeconf in macros/latex/contrib

Template for ASME conference papers.
brandeis-problemset in macros/latex/contrib

Class for COSI problem sets at Brandeis University.
bussproofs-extra in macros/latex/contrib

Extra commands for bussproofs.sty.
changelog in macros/latex/contrib

Changelog environment; supports multiple authors,
unreleased changes, revoked releases, etc.

commedit in macros/latex/contrib

Commented (teacher/student) editions.

macros/latex/contrib/commedit

90 TUGboat, Volume 40 (2019), No. 1

elegantbook in macros/latex/contrib

“Elegant” (Chinese) template for books.

elegantnote in macros/latex/contrib

“Elegant” (Chinese) template for notes.

elegantpaper in macros/latex/contrib

“Elegant” (Chinese) template for economics papers.

els-cas-templates in macros/latex/contrib

Typeset articles for Elsevier’s Complex Article
Service (CAS) workflow.

eqexpl in macros/latex/contrib

Align explanations for formulas.

exam-randomizechoices in macros/latex/contrib

Random order of choices, under the exam class.

exercisepoints in macros/latex/contrib

Count and score exercises.

exframe in macros/latex/contrib

Framework for exercise problems.

fascicules in macros/latex/contrib

Create mathematical manuals for schools.

fbox in macros/latex/contrib

Extended \fbox macro from standard LATEX.

frenchmath in macros/latex/contrib

Typesetting mathematics with French rules.

ftc-notebook in macros/latex/contrib

Typeset FIRST Tech Challenge notebooks.

gammas in macros/latex/contrib

Template for the GAMM Archive for Students.

gitver in macros/latex/contrib

Typeset current git hash of a document.

globalvals in macros/latex/contrib

Declare global variables that can be used anywhere,
including before their declaration.

glossaries-estonian in macros/latex/contrib

Estonian translations for the glossaries package.

icon-appr in macros/latex/contrib

Create icon appearances for form buttons.

invoice-class in macros/latex/contrib

Make a standard US invoice from a CSV file.

iodhbwm in macros/latex/contrib

Unofficial template of the DHBW Mannheim.

identkey in macros/latex/contrib

Bracketed dichotomous identification keys.

keyindex in macros/latex/contrib

Index entry by key lookup, e.g., for names.

latex-uni8 in macros/latex/contrib

Generic inputenc, fontenc, and babel for pdfLATEX
and LuaLATEX.

latexalpha2 in macros/latex/contrib

Embed Mathematica code and plots into LATEX.

latexcolors in macros/latex/contrib

Color definitions from latexcolors.com.

lectures in macros/latex/contrib

Support for typesetting lecture notes.

lstfiracode in macros/latex/contrib

Use the Fira Code font for listings.

ltxguidex in macros/latex/contrib

Extended ltxguide class.

* metalogox in macros/latex/contrib

Adjust TEX logos, with font detection.
mi-solns in macros/latex/contrib

Extract solutions from exercises and quizzes.
mismath in macros/latex/contrib

Mathematical macros for ISO rules.
modeles-factures-belges-assocs in m/l/c

Make invoices for Belgian non-profit organizations.
multicolrule in macros/latex/contrib

Decorative rules between columns.
njurepo in macros/latex/contrib

Report template for Nanjing University.
qsharp in macros/latex/contrib

Syntax highlighting for Q# language.
realhats in macros/latex/contrib

Replace math hat (û) symbols with pictures of
actual hats.

rgltxdoc in macros/latex/contrib

Common macros for documentation of the author’s
packages.

rulerbox in macros/latex/contrib

Draw rulers around a box.
ryersonsgsthesis in macros/latex/contrib

Thesis template for the Ryerson School of Graduate
Studies (SGS).

scratch3 in macros/latex/contrib

Draw Scratch programs with LATEX.
tablvar in macros/latex/contrib

Tables of signs and variations per French usage.
topiclongtable in macros/latex/contrib

Extend longtable with cells that merge hierarchically.
ucalgmthesis in macros/latex/contrib

Thesis class for University of Calgary Faculty of
Graduate Studies.

xcpdftips in macros/latex/contrib

Extend natbib citations with PDF tooltips.

macros/latex/contrib/beamer-contrib/themes

beamerauxtheme in m/l/c/b-c/themes

Supplementary outer and inner themes for beamer.
beamertheme-light in m/l/c/b-c/themes

Minimal beamer theme.

macros/latex/contrib/biblatex-contrib

icite in m/l/c/biblatex-contrib

Indices locorum citatorum: indexes of authors
and works, generated from a bibliography.

windycity in m/l/c/biblatex-contrib

A Chicago style for BibLATEX.

macros/luatex/latex

beamer-rl in macros/luatex/latex

Right-to-left presentation with beamer and babel.
luaimageembed in macros/luatex/latex

Embed images as base64-encoded strings.
luarandom in macros/luatex/latex

Create lists of random numbers.

macros/latex/contrib/metalogox

TUGboat, Volume 40 (2019), No. 1 91

makecookbook in macros/luatex/latex

Support cookbook typesetting.

macros/xetex/latex

quran-de in macros/xetex/latex

German translations for the quran package.
technion-thesis-template in macros/xetex/latex

Thesis template for the Technion graduate school.
tetragonos in macros/xetex/latex

Macro mapping for Chinese characters for the
four-corner method.

macros/xetex/plain

do-it-yourself-tex in macros/xetex/plain

Modifiable forms, macros, samples for plain X ETEX.

support

pdftex-quiet in support

Filter and colorize pdftex terminal output.
pkgcheck in support

CTAN package checker.

systems/unix

tex-fpc in systems/unix

Change files for the Free Pascal compiler.

Comic by John Atkinson (https://wronghands1.com).

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Dominici, Massimiliano
Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

Latchman, David
2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

Sofka, Michael
8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document
conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

TEXtnik
Spain
Email: textnik.typesetting (at) gmail.com

Do you need personalised LATEX class or package
creation? Maybe help to finalise your current
typesetting project? Any problems compiling your
current files or converting from other formats to
LATEX? We offer +15 years of experience as advanced
LATEX user and programmer. Our experience with
other programming languages (scripting, Python
and others) allows building systems for automatic
typesetting, integration with databases, . . . We can
manage scientific projects (Physics, Mathematics, . . .)
in languages such as Spanish, English, German and
Basque.

92 TUGboat, Volume 40 (2019), No. 1

Veytsman, Boris
132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Webley, Jonathan
Flat 11, 10 Mavisbank Gardens
Glasgow, G1 1HG, UK
07914344479
Email: jonathan.webley (at) gmail.com

I’m a proofreader, copy-editor, and LATEX typesetter.
I specialize in math, physics, and IT. However, I’m
comfortable with most other science, engineering and
technical material and I’m willing to undertake most
LATEX work. I’m good with equations and tricky
tables, and converting a Word document to LATEX.
I’ve done hundreds of papers for journals over the
years. Samples of work can be supplied on request.

TUG2019

PaloAlto, California

USA

August 9–11, 2010

tug.org/tug2019

13thConTEXt Meeting

Bassenge

Belgium

Sept. 16–21, 2010

gust.org.pl/bachotex

TUGboat, Volume 40 (2019), No. 1 93

TUG financial statements for 2018

Karl Berry, TUG treasurer

The financial statements for 2018 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
https://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was slightly up in 2018
compared to 2017; this was the first year of offering
trial memberships, and we ended the year with 1,214
members. Contributions were up about $2,000, and
product sales (mainly Lucida) were down about the
same. We had no extra services income. Other
categories were about the same. Overall, 2018 income
was down < 1%.

Cost of Goods Sold and Expenses highlights,
and the bottom line

TUGboat production cost was down substantially,
due mostly to printing fewer pages. Other cost cat-
egories were about the same. The bottom line for
2018 was strongly negative, about $10,500, though
still a substantial improvement over 2017.

Balance sheet highlights

TUG’s end-of-year asset total is down by around
$8,040 (4.4%) in 2018 compared to 2017, following
the bottom-line loss.

Committed Funds are reserved for designated
projects: LATEX, CTAN, the TEX development fund,
and others (https://tug.org/donate). Incoming
donations are allocated accordingly and disbursed as
the projects progress. TUG charges no overhead for
administering these funds.

The 2018 Conference number is the net of the
TUG’18 conference (a gain of about $2000), the loss
(about $1100) from the cancelled PracTEX’18, and
preliminary TUG’19 registrations and expenses.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2018 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2018. The payroll liabilities are for 2018
state and federal taxes due January 15, 2019.

Summary

Due to the trial membership initiative, we ended
2018 with 36 more members than in 2017. We hope
the positive trend continues.

Additional ideas for attracting members, or ben-
efits TUG could provide, would be very welcome.

TUG 12/31/2018 (vs. 2017) Revenue, Expense

Dec 31, 18 Dec 31, 17

ORDINARY INCOME/EXPENSE

Income

Membership Dues 77,825 76,502

Product Sales 3,672 7,100

Contributions Income 9,463 7,654

Interest Income 870 546

Advertising Income 270 315

Services Income 761

Total Income 92,101 92,879

Cost of Goods Sold

TUGboat Prod/Mailing (17,410) (23,677)

Software Prod/Mailing (2,550) (2,599)

Members Postage/Delivery (1,470) (2,901)

Lucida Sales to B&H (1,465) (2,895)

Member Renewal (317) (364)

Total COGS (23,211) (32,437)

Gross Profit 68,890 60,442

Expense

Contributions made by TUG (2,000) (2,000)

Office Overhead (14,301) (13,741)

Payroll Expense (63,078) (63,186)

Professional Fees (38)

Interest Expense (4) (45)

Total Expense (79,383) (79,011)

Net Ordinary Income (10,493) (18,568)

OTHER INCOME/EXPENSE

Prior year adjust (3,356)

Net Other Income (3,356)

NET INCOME (10,493) (15,212)

TUG 12/31/2018 (vs. 2017) Balance Sheet

Dec 31, 18 Dec 31, 17

ASSETS

Current Assets

Total Checking/Savings 176,530 184,765

Accounts Receivable 470 275

Total Current Assets 177,000 185,040

LIABILITIES & EQUITY

Current Liabilities

Committed Funds 44,442 42,971

TUG Conference 1,000 596

Administrative Services 2,698 2,698

Prepaid Member Income 6,375 6,070

Payroll Liabilities 1,353 1,080

Total Current Liabilities 55,869 53,416

Equity

Unrestricted 131,624 146,836

Net Income (10,493) (15,212)

Total Equity 121,131 131,624

TOTAL LIABILITIES & EQUITY 177,000 185,040

94 TUGboat, Volume 40 (2019), No. 1

TUGBusiness

TUG 2019 election

Nominations for TUG President and the Board of
Directors in 2019 have been received and validated.
Because there is a single nomination for the office
of President and because there are not more nom-
inations for the Board of Directors than there are
open seats, there is no requirement for a ballot this
election.

For President, Boris Veytsman was nominated.
As there were no other nominees, he is duly elected
and will serve for a two-year term.

For the Board of Directors, the following indi-
viduals were nominated:

Barbara Beeton, Jim Hefferon, Norbert Preining.
As there were not more nominations than open posi-
tions, all the nominees are duly elected to a four-year
term. Thanks to all for their willingness to serve.

Terms for both President and members of the
Board of Directors will begin at the Annual Meeting.

Board members Susan DeMeritt, Michael Doob,
and Cheryl Ponchin have decided to step down at the
end of this term. All have been TUG board members
for many years, and their dedication and service to
the community are gratefully acknowledged.

Election statements by all candidates are given
below. They are also available online, along with
announcements and results of previous elections.

⋄ Karl Berry
for the Elections Committee
tug.org/election

Boris Veytsman

(Candidate for TUG President.)

I was born in 1964 in Odessa, Ukraine and have
a degree in Theoretical Physics. I am a Princi-
pal Research Scientist with Chan Zuckerberg Ini-
tiative and an adjunct professor at George Mason
University. I also do TEX consulting for a num-
ber of customers from publishers to universities to
government agencies to non-profits. My CV is at
http://borisv.lk.net/cv/cv.html.

I have been using TEX since 1994 and have been
a TEX consultant since 2005. I have published a

number of packages on CTAN and papers in TUG-
boat. I have been a Board member since 2010, Vice-
President since 2016, and President since 2017. I
am an Associate Editor of TUGboat and support
tug.org/books/.

During the last two years I have been working
with the Board as TUG President on keeping TUG

relevant for the user community. I hope to continue
this work if elected.

We performed experiments with membership
options (lotteries for new members, trial membership)
which helped to alleviate the steady loss of individual
members over the years. I think we need to increase
the effort to recruit institutional members.

I have spent some time working on the Web
pages for Education and Accessibility Working groups.
We have had a very interesting accessibility work-
shop at TUG’18 in Rio. There is a pilot project (joint
with GUST) of sponsoring participation of Ukrainian
students in BachoTeX planned for 2019.

We increased our outreach effort and established
a presence in Facebook and Twitter (I am grateful to
Norbert Preining for the curation of our FB pages).

I consider our flagship journal to be one of the
main activities of TUG. We solicited interesting
papers for TUGboat, and the recent issues are, in
my opinion, quite good. I hope our shortening of
embargo period for TUGboat will make the journal
even more important and relevant.

I think we need to do more outreach to the
TEXers outside TUG, including the huge audience
of Overleaf users, students, institutions and many
others. This is probably one of the most important
tasks for the TUG officers.

I hope the community will give me the honor of
serving TUG for another term.

Barbara Beeton

(Candidate for TUG Board of Directors.)

Biography : For TEX and the TEX Users Group:

• charter member of the TEX Users Group; charter
member of the TUG Board of Directors;

• TUGboat production staff since 1980, Editor
since 1983;

• Don Knuth’s “TEX entomologist”, i.e., bug col-
lector, through 2014;

TUG 2019 election

TUGboat, Volume 40 (2019), No. 1 95

• TUG committees: publications, bylaws, elec-
tions;

• liaison from Board to Knuth Scholarship Com-
mittee 1991–1992.

Retiring from the American Mathematical Society
in February 2019.

• Staff Specialist for Composition Systems; in-
volved with typesetting of mathematical texts
since 1973; assisted in initial installation of TEX
at AMS in 1979; implemented the first AMS

document styles; created the map and ligature
structure for AMS cyrillic fonts.

• Standards organizations: active 1986–1997 in:
ANSI X3V1 (Text processing: Office & publish-
ing systems), ISO/IEC JTC1/SC18/WG8 (Doc-
ument description and processing languages);
developing the standard ISO/IEC 9541:1991 In-
formation technology—Font information inter-
change.

• AFII (Association for Font Information Inter-
change): Board of Directors, Secretary 1988–
1996.

• STIX representative to the Unicode Technical
Committee for adoption of additional math sym-
bols, 1998–2012, with continuing informal con-
nections.

Statement : Although I will be retired from the AMS I
intend to continue to be active in TUG, where I have
made so many good friends. As the oldest user group
in the worldwide TEX community, TUG provides a
focus for dedicated TEX users and developers.

I believe there’s still a place in the TUG ranks
for one of the “old guard”, to provide institutional
memory when it’s appropriate, and cheer on the
younger folks who are trying new things.

With support from the members of this won-
derful community, I’d like to continue for four more
years.

Jim Hefferon

(Candidate for TUG Board of Directors.)

Experience: I have used TEX and LATEX since
the early 90s for a variety of projects, including
technical books and articles. I helped run CTAN for
a decade. I have been on the TUG Board a number
of terms, including terms as Vice President, and I
had the privilege of acting as President for a short
time.

Goals: Bringing in new users and keeping them
is a constant challenge. This includes both members

of the TEX community in general and members of
TUG. I am particularly interested in helping begin-
ners, who come with challenges of their own. It is
sometimes possible for a group of experienced users
to forget them and I hope I can help keep them in
focus.

Norbert Preining

(Candidate for TUG Board of Directors.)

Biography : I am a mathematician and computer
scientist living and working whereever I find a job.
After my studies at the Vienna University of Tech-
nology, I moved to Tuscany, Italy, for a Marie Curie
Fellowship. After another intermezzo in Vienna I
have settled in Japan since 2009, first working at the
Japan Advanced Institute of Science and Technology,
now for Accelia Inc., a CDN/IT company in Tokyo.

After years of being a simple user of (LA)TEX, I
first started contributing to TEX Live by compiling
some binaries in 2001. In 2005, I started working on
packaging TEX Live for Debian, which has developed
into the standard TEX package for Debian and its
derivatives. During EuroBachoTEX 2007, I got (by
chance) involved in the development of TEX Live
itself, which is now the core of my contribution to
the TEX world. Up till now I am continuing with
both these efforts.

Furthermore, with my move to Japan I got in-
terested in its typographic tradition and support in
TEX. I am working with the local TEX users to im-
prove overall Japanese support in TEX (Live). In this
course we managed to bring the TUG 2013 conference
for the first time to Japan.

More details concerning my involvement in TEX,
and lots of anecdotes, can be found at the TUG

interview corner (tug.org/interviews/preining.
html) or on my web site (preining.info).
Statement : After many years in the active develop-
ment and four years on the board of directors of
TUG, I want to continue serving TUG and the wider
TEX community.

The challenges I see for TUG remain the same
over the years: increase of members and funds, and
technical improvement of our software. Promoting
TEX as a publishing tool also outside the usual math/
CS environment will increase the acceptance of TEX,
and by this will hopefully bring more members to
TUG.

TUG 2019 election

2019

May 1 – 5 BachoTEX2019, “TEX old but gold:
the durability of typographic

TEXnologies”, 27th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex/2019-en

May 15 TUG 2019 deadline for abstracts
for presentation proposals.
tug.org/tug2019

Jun 1 TUG 2019 early bird registration
deadline. tug.org/tug2019

Jun 2 – 7 18th Annual Book History Workshop,
Texas A&M University,
College Station, Texas.
library.tamu.edu/book-history

Jun 7 – 14 Mills College Summer Institute for
Book and Print Technologies,
Oakland, California.
millsbookartsummer.org

Jun 10 –
Jul 13

Type Paris 2019, intensive type design
program, Paris, France. typeparis.com

Jun 19 – 21 The 7th International Conference on
Typography and Visual Communication
(ICTVC), “Challenging Design Paths”,
Patras, Greece. www.ictvc.org

Jun 24 – 27 Book history workshop, Institut d’histoire
du livre, Lyon, France. ihl.enssib.fr

Jul 3 – 5 Seventeenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), “The World 4.0: Convergences
of Knowledges and Machines”,
University of Granada, Granada, Spain.
thehumanities.com/2019-conference

Jul 4 – 5 International Society for the History and
Theory of Intellectual Property (ISHTIP),

11th Annual Workshop,
“Intellectual Property and the Visual”.
Sydney, Australia.
www.ishtip.org/?p=995

Jul 9 TUG 2019 hotel reservation discount
deadline. tug.org/tug2019

96 TUGboat, Volume 40 (2019), No. 1

Calendar

Jul 9 – 12 Digital Humanities 2019, Alliance of
Digital Humanities Organizations,
Utrecht, The Netherlands.
adho.org/conference

Jul 15 – 19 SHARP 2019, “Indigeneity, Nationhood,
and Migrations of the Book”.
Society for the History of Authorship,
Reading & Publishing.
University of Massachusetts, Amherst,
Massachusetts. www.sharp2019.com

Jul 28 –
Aug 1

SIGGRAPH 2019, “Thrive together”,
Los Angeles, California.
s2019.siggraph.org

Jul 29 –
Aug 2

Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

TUG 2019 Palo Alto, California

Aug 8 Opening reception, 4:00–6:00 pm

Aug 9 – 11 The 40th annual meeting of the
TEX Users Group.
tug.org/tug2019

Aug 18 TUGboat 40:2 (proceedings issue),
submission deadline.

Aug 28 –
Sep 1

TypeCon 2019, Minneapolis, Minnesota.
typecon.com

Sep 4 – 7 Association Typographique Internationale
(ATypI) annual conference,
Tokyo, Japan. atypi2019.dryfta.com

Sep 15 – 20 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 16 – 21 13th International ConTEXt Meeting,
“Dirty tricks & dangerous bends”,
Bassenge, Belgium.
meeting.contextgarden.net/2019

Sep 23 – 26 19th ACM Symposium on Document
Engineering, Berlin, Germany.
www.documentengineering.org/doceng2019

Oct 26 GuIT Meeting 2019,
XVI Annual Conference, Turin, Italy.
www.guitex.org/home/en/meeting

Status as of 15 April 2019

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 40 (2019), No. 1

Introductory

4 Barbara Beeton / Editorial comments
• typography and TUGboat news

5 Sarah Lang and Astrid Schmölzer / Noob to Ninja: The challenge of taking beginners’ needs into account
when teaching LATEX

• problems, solutions, and a manifesto to help all new users

3 Boris Veytsman / From the president
• thoughts on changes, fast and slow

Intermediate

89 Karl Berry / The treasure chest
• new CTAN packages, October 2018–April 2019

17 Susan Jolly / Nemeth braille math and LATEX source as braille
• braille examples of math vs. LATEX source; software project guide

28 Siep Kroonenberg / New front ends for TEX Live
• standalone Tcl/Tk-based GUIs for the TL installer and tlshell for tlmgr

44 LATEX Project Team / LATEX news, issue 29, December 2018

10 Carla Maggi / The DuckBoat—News from TEX.SE: Processing text files to get LATEX tables
• errata, Cinderella topics, using csvsimple to produce tables from data

14 Mike Roberts / No hands—the dictation of LATEX
• mathfly.org add-on to Dragon speech recognition for math

69 Joseph Wright / Real number calculations in LATEX: Packages
• user-level comparison of floating point arithmetic packages, recommending xfp

30 Yihui Xie / TinyTeX: A lightweight, cross-platform, and easy-to-maintain LATEX distribution
based on TEX Live

• on-the-fly TEX Live package installation for R users

Intermediate Plus

82 Karl Berry / TUGboat online, reimplemented
• (re)generation of TUGboat tables of contents and accumulated lists

22 Jim Fowler / Both TEX and DVI viewers inside the web browser
• compiling Pascal to WebAssembly to run ε-TEX in a browser, including TikZ

34 Hans Hagen / ConTEXt LMTX
• LuaMetaTEX, a minimized engine for future ConTEXt and other experiments

76 Michal Hoftich / TEX4ht: LATEX to Web publishing
• configuring HTML, XML, . . . generation with TEX4ht and make4ht

25 Vı́t Novotný / Markdown 2.7.0: Towards lightweight markup in TEX
• a Lua command-line interface, doc, and content slicing support for markdown

47 Nicola Talbot / Glossaries with bib2gls
• indexing infrastructure with glossaries-extra and/or using .bib format

71 Joseph Wright / Real number calculations in TEX: Implementations and performance
• precision, accuracy, and performance comparison of existing floating point arithmetic packages

33 Joseph Wright / Extending primitive coverage across engines
• \expanded and other primitives available in pdfTEX, X ETEX, (u)pTEX

Advanced

61 Enrico Gregorio / TEX.StackExchange cherry picking, part 2: Templating
• extended expl3 programming examples: templating and double loops, ISBN, catcode tables, and more

38 Khaled Hosny / Bringing world scripts to LuaTEX: The HarfBuzz experiment
• extended discussion of using HarfBuzz to shape text for LuaTEX output

Reports and notices

2 Institutional members

91 John Atkinson / Comic: Punctuation headlines

85 Boris Veytsman / Book review: Never use Futura by Douglas Thomas
• review of this wide-ranging book on the history and design of Futura

88 From other TEX journals: Die TEXnische Komödie 1/2019; Zpravodaj 2018/1–4

91 TEX consulting and production services

93 Karl Berry / TUG financial statements for 2018

94 TUG Elections committee / TUG 2019 election

96 Calendar

