
22 TUGboat, Volume 40 (2019), No. 1

Both TEX and DVI viewers inside the
web browser

Jim Fowler

Abstract

By using a Pascal compiler which targets WebAssem-
bly, TEX itself can be run inside web browsers. The
DVI output is converted to HTML. As a result, both
LATEX and TikZ are available as interactive input
languages for content on the web.

1 Introduction

Many people would like to make technical material
(often written in TEX) available on the World Wide
Web. Of course, this can be done via web pages, but
for mathematical expressions, HTML and MathML

produce inferior results. Consequently, many users
rely on client-side tools like MathJax [1] to provide
beautiful rendering for content in math mode.

There is also a need to go beyond math mode.
How might one render a TikZ [14] picture on the
web? In the past, this might have been done with
TEX4ht [8] to convert a TikZ picture to SVG. This
article describes the basis of a new method, TikZJax
[3], which, like MathJax, is client-side, perform-
ing its conversions in the client’s browser. When
the TikZJax JavaScript is run, any TikZ pictures
inside <script type="text/tikz"> tags are con-
verted into SVG images. TikZJax is emphatically not
a JavaScript reimplementation of TikZ, but instead
works by running ε-TEX itself inside the user’s web
browser; this copy of TEX is provided to the browser
with its memory already loaded with TikZ.

In short, TEX has been ported to JavaScript.
This article describes how we ported TEX to the
JavaScript-based environment of web browsers, and
how we render the resulting DVI output in HTML.
We hope that making TEX itself available in the
browser will open up many new possibilities.

2 A Pascal compiler targeting web
browsers

TEX was written in an era when computing resources
were rather more constrained than today. Many of
those constraints have returned within the JavaScript
ecosystem, e.g., JavaScript is slower than native code
and has limited access to persistent storage.

2.1 Goto is a challenge

To run TEX in a web browser, we initially wrote
a Pascal compiler targeting JavaScript. The main
challenge is handling goto which is used fairly fre-
quently in Knuth’s code (especially since the Pascal
of that era did not offer an early return from pro-

cedures and functions), and does not exist as such
in JavaScript. However, JavaScript does support
labeled loops, labeled breaks, labeled continues, and
alongside a trampoline-style device it is possible to
emulate in JavaScript the procedure-local gotos used
in TEX. There are a handful of cases in which a non-
local goto is used by TEX to terminate the program
early, but early termination can also be handled in
JavaScript.

Thus, it is possible to transpile Pascal to Java-
Script. However, it turns out that running TEX
inside JavaScript is not particularly efficient!

2.2 WebAssembly

WebAssembly [9] provides a speedier solution. Web-
Assembly is a binary format for a stack-based virtual
machine (like the Java Virtual Machine) which runs
inside modern web browsers and is designed as a
compilation target for languages beyond JavaScript.
There is still no support for goto, but the same tricks
with labeled loops that make goto possible in Java-
Script again work in WebAssembly. Our compiler
web2js [4] digests the dialect of Pascal code that
TEX is written in and outputs WebAssembly, which
can then be run inside modern web browsers. We
chose the “web” in web2js to evoke both WEB and
also the World Wide Web.

WebAssembly, as it is currently implemented in
web browsers, does not provide any high-level dy-
namic memory allocation; it is possible to resize the
heap but nothing like malloc is provided. Given that
TEX also does no dynamic allocation, it’s relatively
easy to compile TEX to this target.

Since we want to run LATEX in the browser, it is
necessary to use a TEX distribution which supports
the ε-TEX extensions. So before feeding the Pascal
source code to web2js, we TANGLE in the change file
for ε-TEX. Other change files are needed too. For
instance, there is a patch to the Pascal code needed
to get the current date and time from JavaScript.

Some additional JavaScript code is needed to
support components missing in the browser. For
instance, there is no filesystem in the browser, so the
Pascal filesystem calls make calls to JavaScript which
provides a fake filesystem. The terminal output of
TEX can be viewed by opening the “Web Console” in
the web browser. Satisfyingly, when it is all working,
the TEX banner is visible right there.

2.3 Why Pascal? Why not C?

There are other approaches to getting TEX to run
well in a web browser. An older project, texlive.js,
achieves this goal via emscripten [15], a C compiler
which targets WebAssembly. The resulting website

Jim Fowler



TUGboat, Volume 40 (2019), No. 1 23

enables client-side creation of a PDF, and so depends
on a PDF viewer to see the result. S. Venkatesan
[13] discussed this approach and the limitations of
PDF output in particular.

2.4 Putting it all together

In the quest for better performance, the same tricks
that TEX used historically with format files and mem-
ory dumps can be reused in the web browser. The
underlying theme is that the ecosystem of a web
browser, and its limitations, is more similar to com-
puting in the early 1980s than might have been easily
believed.

As with teTEX version 3.0, we do not bother
making a special initex version and simply allocate
a large number of memory cells to a single version
of TEX. A program called initex.js then loads
the initial LATEX format (with only some hyphen-
ation data) and whatever piece of a preamble (e.g.,
\usepackage{tikz}) might be useful for the desired
application. Then the WebAssembly heap is dumped
to disk, just as would have been done with virtex his-
torically. This produces a file, core.dump.gz, which
is only a couple of megabytes (after compression).

Note that initex.js is executed on a machine
that already has a complete TEX distribution in-
stalled, such as TEX Live. By loading packages and
then dumping core on a machine with a complete
distribution, it is not necessary to ship much in the
way of support files to the browser.

On the browser, both the WebAssembly machine
code and core.dump.gz are loaded, the dump decom-
pressed, and execution begins again at the beginning
of the TEX code but this time with the previously
dumped memory already loaded. As described in the
TEX82 source code [11, Part 51, Section 1331], when
TEX is loaded in such a fashion, the ready_already

variable is set in such a way as to shortcut the usual
initialization, making this browser-based version of
TEX ready to receive input very quickly.

3 Rendering DVI in HTML

Running TEX is only half the problem. To build
a viewer for the output of TEX, the easiest format
to parse is DVI [6, 7]. A DVI file is just a series of
commands which change the current position, place
characters and rules on the page, change the current
font, etc.

Some previous projects make it possible to view
DVI files from within web browsers. For instance,
dvihtml [12] uses DVI specials to appropriately tag
pieces of the content so that they can be wrapped
by appropriate HTML tags, similar to TEX4ht [8].

Other projects like DVI2SVG [5] translate DVI into
SVG with a Java-based tool.

Our new tool is called dvi2html [2] and works
somewhat differently. For starters, unlike DVI2SVG,
our new tool is written in JavaScript (and mostly
TypeScript) so it runs in the browser. It is used to
read the output of ε-TEX, running in the browser,
and output HTML in real-time.

3.1 Fonts

Why wasn’t all this done years ago? One signifi-
cant challenge was the state of “fonts” on the web.
Conveniently, it is possible (and relatively easy with
CSS) to load server-provided fonts. To support Com-
puter Modern and the like, dvi2html presently relies
on the BaKoMa TrueType fonts, but given their li-
cense, it would be good to generate fonts for the web
following MathJax’s technique.

It must be mentioned that while fonts can be
loaded, the web ecosystem lacks a robust way to
query metric information. So we still end up shipping
the standard collection of .tfm files to the browser,
all base64-encoded and placed into a single .json

file. A significant portion of the code comprising
dvi2html is designed to parse TEX Font Metric files.

3.2 The challenge of the baseline

But selecting the appropriate typeface is not enough;
an HTML viewer for DVI must also position the
glyphs in the appropriate positions. This is sadly
harder than it ought to be. Although HTML5 sup-
ports many methods for positioning text, it does
not support positioning text relative to a specified
baseline.

A solution to this is available precisely because
of the previously loaded metric information. By
knowing where the top of the glyph is relative to the
baseline, we can use HTML to place the glyph in the
correct position.

3.3 Streaming transformation

Instead of a monolithic converter, dvi2html is struc-
tured as a streaming transformer via asynchronous
generator functions. In particular, an input stream
is transformed into an object stream of DVI com-
mands. Since many DVI commands come in a variety
of lengths (i.e., one-byte, two-byte, three-byte, four-
byte versions), this initial transformation collapses
the variety of commands in the binary format to a
single command.

Armed with a sequence of DVI commands, addi-
tional transformations can be applied. For instance,
there is some overhead to placing a single glyph

Both TEX and DVI viewers inside the web browser



24 TUGboat, Volume 40 (2019), No. 1

on the page in HTML, so one transformer takes se-
quential SetChar commands from the DVI input and
collects them into a single SetText command which
can place a sequence of glyphs on the page at once.

The real benefit, though, to stream transfor-
mations is that the various transformations can be
composed, with new transformations plugged in as
desired. For instance, a package like xcolor will
generate \specials with push color and pop color
commands, and these can be processed by a single
stream transformer which understands these color
commands. Another composable transformer knows
about raw SVG data and can appropriately emit such
code into the generated HTML.

Finally, this sort of design will make it possible
to compose new transformers for hitherto unimagined
\specials. Most interestingly, such \specials could
facilitate additional interactivity on the web in future
versions.

4 Some next steps

The tools for running TEX itself inside a browser are
useful for more than TikZJax. For instance, these
same tools make a “live LATEX editor” possible in
which a user can edit LATEX source in a web page
and view the resulting DVI without installing soft-
ware and without relying on a cloud-based LATEX
compilation service.

The Ximera platform provides \answer which
creates answer blanks within mathematical expres-
sions. For instance, 1 + 3 = \answer{4} creates an
equation in which the right-hand-side is an answer
blank. It would be wonderful to add \answer to a
copy of LATEX running in the browser.

Additional extensions to TEX itself are possible,
like a hypothetical jsTEX which would extend TEX
with the ability to execute JavaScript code, akin to
LuaTEX [10]. The reader can imagine additional
applications of this platform.

References

[1] D. Cervone. MathJax: A platform for
mathematics on the Web. Notices of the
AMS 59(2):312–316, 2012. ams.org/notices/

201202/rtx120200312p.pdf

[2] J. Fowler. dvi2html. github.com/kisonecat/

dvi2html, 2019.

[3] J. Fowler. TikZjax. github.com/kisonecat/

tikzjax, 2019.

[4] J. Fowler. web2js. github.com/kisonecat/

web2js, 2019.

[5] A. Frischauf and P. Libbrecht. DVI2SVG:
Using LATEX layout on the Web. TUGboat
27(2):197–201, 2006. tug.org/TUGboat/

tb27-2/tb87frischauf.pdf

[6] D. Fuchs. The format of TEX’s DVI

files. TUGboat 1(1):17–19, Oct. 1980.
tug.org/TUGboat/tb01-1/tb01fuchs.pdf

[7] D. Fuchs. Erratum: The format of TEX’s DVI

files. TUGboat 2(1):11–11, Feb. 1981. tug.

org/TUGboat/tb02-1/tb02fuchszab.pdf

[8] E. M. Gurari. TEX4ht: HTML production.
TUGboat 25(1):39–47, 2004.
tug.org/TUGboat/tb25-1/gurari.pdf

[9] A. Haas, A. Rossberg, et al. Bringing the
web up to speed with WebAssembly. ACM

SIGPLAN Notices 52(6):185–200, 2017.

[10] T. Hoekwater. LuaTEX. TUGboat
28(3):312–313, 2007. tug.org/TUGboat/

tb28-3/tb90hoekwater-luatex.pdf

[11] D. E. Knuth. TEX82. Stanford University,
Stanford, CA, USA, 1982.

[12] M. D. Sofka. TEX to HTML translation via
tagged DVI files. TUGboat 19(2):214–222,
June 1998.
tug.org/TUGboat/tb19-2/tb59sofka.pdf

[13] S. K. Venkatesan. TEX as a three-stage
rocket: Cookie-cutter page breaking. TUGboat
36(2):145–148, 2015. tug.org/TUGboat/

tb36-2/tb113venkatesan.pdf

[14] Z. Walczak. Graphics in LATEX using
TikZ. TUGboat 29(1):176–179, 2008.
tug.org/TUGboat/tb29-1/tb91walczak.pdf

[15] A. Zakai. Emscripten: An LLVM-to-JavaScript
compiler. In Proceedings of the ACM

International Conference Companion on
Object Oriented Programming Systems
Languages and Applications Companion, pp.
301–312. ACM, 2011.

� Jim Fowler
100 Math Tower, 231 W 18th Ave
Columbus, Ohio 43212
USA
fowler (at) math dot osu dot edu

http://kisonecat.com/

Jim Fowler

ams.org/notices/201202/rtx120200312p.pdf
ams.org/notices/201202/rtx120200312p.pdf
github.com/kisonecat/dvi2html
github.com/kisonecat/dvi2html
github.com/kisonecat/tikzjax
github.com/kisonecat/tikzjax
github.com/kisonecat/web2js
github.com/kisonecat/web2js
tug.org/TUGboat/tb27-2/tb87frischauf.pdf
tug.org/TUGboat/tb27-2/tb87frischauf.pdf
tug.org/TUGboat/tb01-1/tb01fuchs.pdf
tug.org/TUGboat/tb02-1/tb02fuchszab.pdf
tug.org/TUGboat/tb02-1/tb02fuchszab.pdf
tug.org/TUGboat/tb25-1/gurari.pdf
tug.org/TUGboat/tb28-3/tb90hoekwater-luatex.pdf
tug.org/TUGboat/tb28-3/tb90hoekwater-luatex.pdf
tug.org/TUGboat/tb19-2/tb59sofka.pdf
tug.org/TUGboat/tb36-2/tb113venkatesan.pdf
tug.org/TUGboat/tb36-2/tb113venkatesan.pdf
tug.org/TUGboat/tb29-1/tb91walczak.pdf

	Introduction
	A Pascal compiler targeting web browsers
	Goto is a challenge
	WebAssembly
	Why Pascal? Why not C?
	Putting it all together

	Rendering DVI in HTML
	Fonts
	The challenge of the baseline
	Streaming transformation

	Some next steps

