
TUGBOAT

Volume 40, Number 2 / 2019

TUG 2019 Conference Proceedings

TUG 2019 98 Conference sponsors, participants, program, photos

101 Henri Menke / Back to the roots: TUG 2019 in Palo Alto

104 Jennifer Claudio / TEX Users Group 2019 Annual General Meeting notes

General Delivery 106 Jim Hefferon / What do today’s newcomers want?

Software & Tools 108 Tomas Rokicki / Type 3 fonts and PDF search in dvips

112 Arthur Reutenauer / The state of X ETEX

113 Arthur Reutenauer / Hyphenation patterns: Licensing and stability

115 Richard Koch / MacTEX-2019, notification, and hardened runtimes

126 Uwe Ziegenhagen / Combining LATEX with Python

119 Didier Verna / Quickref: Common Lisp reference documentation as a stress test
for Texinfo

129 Henri Menke / Parsing complex data formats in LuaTEX with LPEG

Methods 136 William Adams / Design into 3D: A system for customizable project designs

Electronic Documents 143 Martin Ruckert / The design of the HINT file format

147 Rishikesan Nair T., Rajagopal C.V., Radhakrishnan C.V. /

TEXFolio—a framework to typeset XML documents using TEX

150 Aravind Rajendran, Rishikesan Nair T., Rajagopal C.V. /

Neptune—a proofing framework for LATEX authors

LATEX 153 Frank Mittelbach / The LATEX release workflow and the LATEX dev formats

157 Chris Rowley, Ulrike Fischer, Frank Mittelbach /

Accessibility in the LATEX kernel—experiments in Tagged PDF

159 Boris Veytsman / Creating commented editions with LATEX—the commedit package

163 Uwe Ziegenhagen / Creating and automating exams with LATEX & friends

Bibliographies 167 Sree Harsha Ramesh, Dung Thai, Boris Veytsman, Andrew McCallum /

BIBTEX-based dataset generation for training citation parsers

Fonts 170 Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong /

FreeType MF Module2: Integration of METAFONT, GF, and PK inside FreeType

Multilingual
Document
Processing

179 Behrooz Parhami / Evolutionary changes in Persian and Arabic scripts
to accommodate the printing press, typewriting, and computerized
word processing

187 Petr Sojka, Ondřej Sojka / The unreasonable effectiveness of pattern generation

194 Emily Park, Jennifer Claudio / Improving Hangul to English translation
for optical character recognition (OCR)

196 Antoine Bossard / A glance at CJK support with X ETEX and LuaTEX

Abstracts 201 TUG 2019 abstracts (Anane, Asakura, Braun, Claudio & Ha, Fuchs,
Garcia-De Castro, Kannan, McKenna, Mittelbach, Moore, Shreevatsa, Terada)

204 MAPS: Contents of issue 49 (2019)

205 ConTEXt Group Journal 2018

Advertisements 206 TEX consulting and production services

TUG Business 207 TUG institutional members

News 208 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2019 dues for individual members are as follows:

Trial rate for new members: $20.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-
boat in a name other than that of an individual.
The subscription rate for 2019 is $110.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: September 2019]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Jim Hefferon
Taco Hoekwater
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2019 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included.

2019 Conference Proceedings

TEX Users Group

Fortieth annual TUG meeting

Palo Alto, California, USA

August 9–11, 2019

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 40, NUMBER 2, 2019

PORTLAND, OREGON, U.S.A.

98 TUGboat, Volume 40 (2019), No. 2

https://tug.org/2019

tug2019@tug.org

Sheraton Palo Alto Hotel

625 El Camino Real

Palo Alto, CA 94301

Sponsors TEX Users Group DANTE e.V.

Adobe Google Overleaf Pearson STM Document Engineering Pvt Ltd

with notable assistance from individual contributors. Thanks to all!

Special guest Donald E. Knuth

Conference committee

Karl Berry Jennifer Claudio Robin Laakso Boris Veytsman

Participants

Amine Anane, Montreal, Canada

William Adams, Mechanicsburg, PA

Pavneet Arora, Bolton, ON

Takuto Asakura, National Institute

of Informatics, Japan

Brian Bartling, AMS

Nelson Beebe, University of Utah

Barbara Beeton, TEX Users Group

Antoine Bossard, Kanagawa University

Erik Braun, CTAN

Aleksandar Bradic, Supplyframe

Kevin Edward Cain, Institute for the Study

of Graphical Heritage

Jaeyoung Choi, Soongsil University

Dennis Claudio

Jennifer Claudio, Oak Grove High School

Alan Davis, Oakland, CA

Susan DeMeritt, IDA/CCR, La Jolla, CA

David Fuchs

Shawn Gaither, Adobe

Federico Garcia-De Castro, Alia Musica Pittsburgh

Peter Giunta, Somerville, MA

Paul Gill, Los Gatos, CA

Steve Grathwohl, Chapel Hill, NC

Sally Ha, Oak Grove High School

Matthew Hardy, Adobe

Jim Hefferon, St Michael’s College

Joe Hogg, Los Angeles, CA

Chris Jimenez, Stetson University

Douglas Johnson, Savannah, GA

Shakthi Kannan, Chennai, India

Patrick Kelley, Google

Rohit Khare, Google

Donald Knuth, Stanford University

Richard Koch, University of Oregon

Yusuke Kuroki, Yokohama, Japan

Robin Laakso, TEX Users Group

Doug McKenna, Mathemaesthetics, Inc.

Henri Menke, University of Otago

Frank Mittelbach, LATEX3 Project

Mostafa Mortezaie, DeVry University

Andrea O’Riordan, UCLA

Behrooz Parhami, UC Santa Barbara

Emily Park, San Jose, CA

Ganesh Pimpale, San Jose, CA

Cheryl Ponchin, IDA/CCR, Princeton, NJ

Arthur Reutenauer, Uppsala, SE

Rishi T, STM Document Engineering Pvt Ltd

Tomas Rokicki, Palo Alto, CA

Chris Rowley, LATEX3 Project

Martin Ruckert, Hochschule München

Edgaras Šakuras, VTEX

Herbert Schulz, Naperville, IL

Senthil, San Ramon, CA

Michael Sharpe, UCSD

Keiichiro Shikano, Tokyo

Shreevatsa R, Sunnyvale, CA

Ondřej Sojka, CSTUG

Petr Sojka, Masaryk University, Faculty of Informatics

and CSTUG

Nate Stemen, Overleaf

Paulo Ney de Souza, BooksInBytes

Linas Stonys, VTEX

Yusuke Terada, Tokyo Educational Institute

Rebecca Turner, Google

Brian Tracy, Brown University

Didier Verna, EPITA

Boris Veytsman, Chan Zuckerberg Initiative

and George Mason University

Paul Vojta, UC Berkeley

Joseph Weening, San Diego, CA

Alan Wetmore, Silver Spring, MD

Uwe Ziegenhagen, Cologne, Germany

Jǐŕı Zlatuška,Masaryk University, Faculty of Informatics

TUG2019—Palo Alto, California, USA

TUG2019 program
(* = presenter)

Friday

August 9

8:15 am registration

8:55 am Boris Veytsman, TEX Users Group Welcome

9:00 am Erik Braun, CTAN Current state of CTAN

9:30 am Arthur Reutenauer, Uppsala, Sweden The state of X

E

TEX

10:00 am Frank Mittelbach, LATEX3 Project The LATEX “dev” format

10:30 am break

10:45 am Frank Mittelbach Taming UTF-8 in pdfTEX

11:15 am Uwe Ziegenhagen, Cologne, Germany Combining LATEX with Python

11:45 am Henri Menke, University of Otago Parsing complex data formats in LuaTEX with LPEG

12:15 pm lunch

1:30 pm Dick Koch, University of Oregon Big changes in MacTEX, and why users should never notice

1:45 pm Nate Stemen, Overleaf, Inc. A few words about Overleaf

2:00 pm Aravind Rajendran, Rishikesan Nair T*,
Rajagopal C.V., STM Doc. Eng. Pvt Ltd

Neptune—a proofing framework for LATEX authors

2:30 pm Pavneet Arora, Bolton, ON Rain Rain Go Away: Some thoughts on rain protection, and its uses

3:00 pm break

3:15 pm Shreevatsa R, Sunnyvale, CA What I learned from trying to read the TEX program

3:45 pm Petr Sojka, Masaryk University& CSTUG TEX in Schools? Just Say Yes, given that . . .

4:15 pm Shakthi Kannan, Chennai, India X

E

TEX Book Template

4:45 pm Jim Hefferon, St Michael’s College What do today’s newcomers want?

5:15 pm TUG Annual General Meeting

Saturday

August 10

8:55 am announcements

9:00 am Petr Sojka, Ondřej Sojka The unreasonable effectiveness of pattern generation

9:30 am Arthur Reutenauer Hyphenation patterns in TEX Live and beyond

10:00 am David Fuchs What six orders of magnitude of space-time buys you

10:30 am break

10:45 am Tomas Rokicki, Palo Alto, CA Searchable PDFs with Type 3 bitmap fonts

11:15 am Martin Ruckert, Hochschule Muenchen The design of the HINT file format

11:45 am Doug McKenna, Mathemaesthetics, Inc. An interactive iOS math book using a new TEX interpreter library

12:15 pm lunch

1:15 pm group photo

1:30 pm Jennifer Claudio, Sally Ha, Oak Grove H.S. A brief exploration of artistic elements in lettering

2:30 pm William Adams, Mechanicsburg, PA Design into 3D: A system for customizable project designs

3:00 pm break

3:15 pm Boris Veytsman, Sch. Systems Biology, GMU Creating commented editions with TEX

3:45 pm Behrooz Parhami, UC Santa Barbara Evolutionary changes in Persian and Arabic scripts to accommodate

the printing press, typewriting, and computerized word processing

4:15 pm Amine Anane, Montréal, QC Arabic typesetting using a Metafont-based dynamic font

4:45 pm Takuto Asakura, National Institute of
Informatics, Japan

A TEX-oriented research topic: Synthetic analysis on mathematical

expressions and natural language

5:15 pm Herb Schulz, Naperville, IL Optional workshop: TeXShop tips& tricks

6:30 pm banquet Sheraton Palo Alto

Sunday

August 11

8:55 am announcements

9:00 am Antoine Bossard, Kanagawa University A glance at CJK support with X

E

TEX and LuaTEX

9:30 am Jaeyoung Choi, Saima Majeed, Ammar
Ul Hassan, Geunho Jeon, Soongsil Univ.

FreeType MF Module 2: Integration of METAFONT and TEX-oriented

bitmap fonts inside FreeType

10:00 am Jennifer Claudio, Emily Park, Oak Grove H.S. Improving Hangul to English translation

10:30 am break

10:45 am Rishikesan Nair T*, Rajagopal C.V.,
Radhakrishnan C.V.

TEXFolio—a framework to typeset XML documents using TEX

11:15 am Sree Harsha Ramesh, Dung Thai, Boris
Veytsman*, Andrew McCallum, UMass-
Amherst, (*)Chan Zuckerberg Initiative

BibTEX-based dataset generation for training citation parsers

11:45 am Didier Verna, EPITA Quickref: A stress test for Texinfo

12:15 pm lunch

1:30 pm Uwe Ziegenhagen Creating and automating exams with LATEX& friends

2:00 pm Yusuke Terada, Tokyo Educational Institute Construction of a digital exam grading system using TEX

2:30 pm Chris Rowley*, Ulrike Fischer, LATEX3 Project Accessibility in the LATEX kernel—experiments in tagged PDF

3:00 pm break

3:15pm Ross Moore, Macquarie Univ. LATEX 508—creating accessible PDFs

≈ 3:45 pm end

100 TUGboat, Volume 40 (2019), No. 2

Pictures from the Annual Meeting

Here are some snapshots of the TUG 2019 meeting.
Credits to Jennifer Claudio, Rishikesan Nair T, and
Alan Wetmore. Thank you. You can also see a ten
second movie panorama of the group at:
tug.org/tug2019/photos/group-movie.mov

Don Knuth demonstrates the organ at his

home to Nelson Beebe

A
W

Frank Mittelbach, Michael Sharpe,

Steve Grathwohl

A
W

Yusuke Terada, Jennifer Claudio

A
W

Dennis Claudio, Boris Veytsman,

Barbara Beeton

A
W

Jim Hefferon,

Rishikesan Nair T
R
T

Don Knuth examining his gift,

with Chris Rowley at the

banquet

J
C

Ondřej Sojka, Petr Sojka

A
W

Martin Ruckert,

Doug McKenna

A
W

The whole group. Everybody smile!

A
W

TUGboat, Volume 40 (2019), No. 2 101

Back to the roots: TUG 2019 in Palo Alto

Henri Menke

Thursday, August 8

This year’s TUG meeting stood under a very spe-
cial sign. TEX returned to its birthplace, Stanford
University in Palo Alto, California, USA. And not
only did it return to its cradle, but also its inventor
would be there, none other than the great Donald E.
Knuth (DEK) himself. It was a great honor to have
such a very special guest at the meeting.

The evening before the meeting, there was a
reception and registration at the conference site, the
Sheraton Hotel. Many participants showed up and
DEK was also there to personally welcome everyone.

Friday, August 9

On the morning of the first day our current president,
Boris Veytsman, officially opened the conference.
The first speaker to kick off the program was Erik
Braun from the CTAN team to talk about goals and
difficulties CTAN is facing. A notable quote from
the talk is that “the Comprehensive TEX Archive
Network is neither comprehensive nor an archive”.
However, the team wants to change that in the future
together with some new web design.

Next up Arthur Reutenauer, a current main-
tainer of X ETEX, enlightened us about the past,
present, and future state of X ETEX. As it currently
seems, X ETEX might go into maintenance mode, be-
cause the original author Jonathan Kew has moved
on to other projects and major contributor Khaled
Hosny, who ported X ETEX from AAT to HarfBuzz,
has focused his attention on LuaTEX, leaving no com-
petent developer. With recent progress in LuaTEX
and its likely adoption of HarfBuzz, the main use
cases for X ETEX will be covered, making it kind of
obsolete. Right now, Arthur tries to isolate X ETEX-
specific code from the engine, to maybe contribute
those patches to LuaTEX.

Before the morning break, Frank Mittelbach
introduced us to the LATEX “dev” format. The “dev”
format is a preview of the next official release of
the LATEX format and is shipped with TEX Live for
interested users to try out. The LATEX team hopes to
attract more beta testers this way, so that problems,
especially regressions, can be detected before official
releases, reducing the number of required hotfixes.

After the break, Frank Mittelbach continued
with a second talk about UTF-8 in LATEX. A few years
ago the “Unicode revolution” was completed and al-
most everything is formatted in UTF-8 nowadays.
Unfortunately, the old 8-bit TEX engines do not sup-

port UTF-8 natively, so the well-known inputenc was
introduced, which knows about the “magic” multi-
byte sequences of UTF-8 and does the right thing
by converting the characters into the LATEX internal
character representation (LICR). This technique has
been integrated into the LATEX format last year and
is available to all users.

The next talk was presented by Uwe Ziegen-
hagen, a LATEX and Python enthusiast from Cologne.
After a short introduction to the Python program-
ming language, he presented two ways of combining
LATEX and Python: First, how to generate LATEX in
Python using a template engine, and second, how to
execute Python from within LATEX.

My own talk was the last before lunch, and the
audience had a lot to digest, despite their empty
stomachs. I talked about how to parse complex data
formats in LuaTEX using the integrated LPEG li-
brary. The LPEG library provides a domain-specific
embedded language for parsing expression grammars
(PEG) within Lua using operator overloading. After
an introduction to PEG, I demonstrated how to con-
struct a JSON parser, which can be used, for example,
to read document metadata from a configuration file.

After lunch, Dick Koch, the principal maintainer
of MacTEX, told us about how Apple is continuing
the war against its developers. If a macOS appli-
cation is not digitally signed by its developer, the
system will display a warning that the application is
not trusted, which is a good thing. However, with
the upcoming macOS Catalina, Apple will allow only
“notarized” applications to be run, which requires
the developer to apply to Apple directly for notariza-
tion. Dick outlined which changes were necessary
in MacTEX to pass the notarization test, so macOS

TEX users will not have to worry.
This was followed by a talk by Nate Stemen, a

software developer at Overleaf, about their product.
Overleaf is an online LATEX editor which allows mul-
tiple authors to edit the same document at the same
time. It is useful for beginners as well, because it
saves the user the installation of a full TEX distri-
bution on their own machine and it comes with a
large pool of example documents. With over four
million users world-wide, Overleaf is an expanding
business. The company is also very interested in
symbiosis with TUG and the TEX community.

The next speaker was Rishi T from STM DOCS

in India, presenting Neptune, which is part of STM’s
proofing framework TEXFolio (neptune.texfolio.
org). Neptune allows journal editors to send proofs
to authors with specific queries for them to address.
The talk was mostly an interactive demonstration.

Back to the roots: TUG 2019 in Palo Alto

102 TUGboat, Volume 40 (2019), No. 2

Before the afternoon break, Pavneet Arora spoke
about distraction-free writing with Vim and how he
leveraged those features to finish his latest novel.

The last session of the day started with a talk
about Knuth’s book TEX: The Program. Because
TEX is a literate program, the source code and the
documentation can be generated from the same file
and it should be possible to read the code like a
book. However, the structure of the TEX program
is bottom-up, i.e., numerous low-level details are
discussed before moving to the big picture, which
makes the book hard to read. The speaker, Shree-
vatsa R, has collected resources to aid with reading
at shreevatsa.net/tex.

Next up, Petr Sojka reviewed the history and
current usage of TEX at his home institution, the
Masaryk University in the Czech Republic where the
pdfTEX engine was born.

This was followed by Shakthi Kannan, who in-
troduced his free software framework “The X ETEX
Book Template” to publish multilingual books using
X ETEX, based on Emacs Org-mode and TEX. He pre-
sented prominent features and shared experience in
creating and publishing books using the framework.

The last speaker of the day was Jim Hefferon,
who spoke about his experience helping new LATEX
users (or as he called them “the great unwashed”)
in the r/latex forum on Reddit. He presented a
survey of which questions are frequently asked, and
pointed out that new users tend to frequent social
sites on the web much more than the TUG site.

After the sessions had ended it was time for the
TUG Annual General Meeting. The main theme was
how to raise money for TUG by interacting first and
foremost with the institutional members. Notes from
Jennifer Claudio follow this report.

Saturday, August 10

On the second day of the conference we were visited
by our special guest DEK, who attended all the
sessions and the banquet afterwards.

The first session of the second day was started off
by Petr Sojka and his son Ondřej, who spoke about
their recent effort in generating better hyphenation
patterns for the Czech language.

After that Arthur Reutenauer gave another,
more historical talk where he reviewed the history
of hyphenation patterns in TEX. The hyphenation
algorithm by Liang and Knuth has since made its
way into many other programs, such as OpenOffice.
Therefore it seemed appropriate to unify the mess of
hyphenation patterns and make them publicly avail-
able outside of CTAN. The project is ongoing and
very successful (hyphenation.org).

The next talk was an earthshaking announce-
ment by DEK’s former PhD student David Fuchs.
He has taken TEX and METAFONT and combined
them into a single program with graphical output of
the generated DVI. When TEX tries to load fonts,
these are created ad-hoc by METAFONT and cached.
At each page, the state of the TEX engine is recorded
and the difference to the previous state is cached.
When then editing the text, TEX is able to preview
the changes in real time, even for large documents
such as The TEXbook.

After the morning break we heard the presen-
tation by Tom Rokicki, maintainer of the dvips

program. Even though dvips has been mostly sta-
ble for a long time, Tom was unsatisfied with the
fact that when bitmapped Type 3 fonts were used,
it was not possible to copy and paste text from the
output PDF. To this end he implemented a new
font encoding routine, which reads optional encoding
data to map the font correctly. This change will be
available in an upcoming version of dvips.

In the next presentation, Martin Ruckert intro-
duced his newest creation, the HINT file format. The
HINT file format, produced using the HiTEX pro-
gram, is very similar to the output of \showlists,
as it captures most of the important information.
This information can then be used by a viewer to
generate screen output which is very similar (or even
equivalent) to TEX, without implementing all of the
algorithms. This allows reflowing the text, resulting
in a great application for eBook readers, which so
far have notoriously bad typesetting quality.

The last talk before the lunch break was given
by Doug McKenna about his implementation of a
TEX interpreter as a library, JSBox. This library is
bundled with iOS applications to typeset interactive
eBooks ad-hoc. This was demonstrated using his
latest book Hilbert Curves.

Before the program resumed after lunch it was
time for the group photo. After that Jennifer Claudio
entertained us with different shapes of the letter ‘E’
that she had seen on her way to the conference.

This was followed by a talk by Federico Garcia-
De Castro, a professional composer and typesetting
enthusiast, who has designed an algorithm for type-
setting so-called slurs in sheet music with META-
FONT. It was amazing to see how much attention
he spent to detail and how superior his approach is
compared to commercial scoring software.

Afterwards William Adams presented a fun little
project in which he manufactured a small wooden
box with a CNC machine at home. The blueprints
for this box were prepared with TEX.

Henri Menke

TUGboat, Volume 40 (2019), No. 2 103

The last session of the day was opened by Boris
Veytsman, who talked about another method to pre-
pare commented editions of a text. In this case the
target was a mathematics textbook in which the
teacher’s version contains extra comments all around
the page. This was achieved by means of his new
package commedit.

The next presentation was a history lesson by
Behrooz Parhami about the evolution of Persian and
Arabic scripts from the early days of handwritten
script, over the introduction of movable type, and
eventually typewriters, to computer typesetting and
the problems with bitmapped fonts due to small
features in the glyphs.

This talk set the stage perfectly for the next, by
Amine Anane, who introduced his software “Visual
METAFONT”, which can trace the outlines of scanned
glyphs and turn them into a variable font. The newly
introduced extensibility of glyphs should eventually
be respected by TEX when breaking lines to offer
superior typesetting for Arabic script.

The final talk of the day was presented by Takuto
Asakura. The use of mathematical markup is very
heterogeneous and does not necessary reflect the cor-
responding semantics in scientific documents. To
this end, the speaker designed a synthetic analysis
which harnesses the written descriptions of formulae
in natural language to assign meaning to the markup.

After the official program, Herbert Schulz ran a
workshop on the macOS (LA)TEX editor TeXShop.

In the evening of that day a lovely and delicious
banquet took place at the Sheraton hotel. We were
honored by the presence of our special guest DEK.
Dinner was followed by a raffle of TAOCP set of phys-
ical books and two e-book vouchers, all donated by
Pearson, as well as two TEX lion plushies donated
by Jill Knuth, and a framed original black and white
conference drawing. For her efforts on the local orga-
nizing committee, Boris presented Jennifer Claudio
with this year’s Duane Bibby signed original color
conference drawing. In addition, Cheryl Ponchin
and Sue DeMeritt’s long service to TEX and TEX
Users Group was recognized with a personalized gift
certificate, as they retired from the TEX Users Group
board this year. Barbara Beeton, a charter member
of TEX Users Group and the TEX Users Group board,
among many other TEX and TEX Users Group ac-
tivities, was also recognized, with the first lifetime
membership to TEX Users Group, on the occasion
of her retirement from the AMS. Barbara was also
given a personalized gift certificate and other group
memorabilia. Finally, Don Knuth was given unusual
books of organ music as a small token of appreciation,
on behalf of the entire TEX community.

Sunday, August 11

The last day of the conference was begun by Antoine
Bossard, who teaches at Kanagawa University in
Japan. There he is confronted with typesetting mixed
CJK and Latin content, so he presented his minimal
approach for TEX macros to facilitate this.

The next talk was delivered by Jaeyoung Choi,
who in collaboration with others designed a mod-
ule for the FreeType library to render METAFONT-
generated and TEX-oriented bitmap fonts. FreeType
is used on many platforms including Android and
Apple operating systems.

In the last talk of the first morning session,
Jennifer Claudio reported on a project she undertook
with her student Emily Park. They studied whether
machine learning techniques could be used to detect
transliterated English words in Korean text with the
Hangul alphabet. As of now it seems that measures
such as grayness are not sufficient to distinguish.

The second sessions started with Rishi T from
STM DOCS in India, with the second presentation
on STM’s proofing framework TEXFolio, which is a
complete journal production system that supports
LATEX and XML input and HTML5 and ePub output.

Then we moved on to the next talk by Boris
Veytsman. He had applied machine learning tech-
niques to BibTEX datasets. Starting from an anno-
tated set of BibTEX records he had collected from
online sources, a neural network was trained to iden-
tify author, title, journal, etc., from the generated
output. So far the results are mixed because citation
styles vary in a rather inconvenient fashion. Most
tend to abbreviate authors with initials, and physics
journals often omit titles.

Before lunch we heard about another TEX for-
mat that does not come up very often but is never-
theless very important—Texinfo. It is a format for
software documentation that can produce a number
of different outputs including HTML and PDF. The
speaker Didier Verna is applying Texinfo to the Com-
mon Lisp ecosystem to automatically generate docu-
mentation for all of the available libraries (numbered
in the thousands): quickref.common-lisp.net.

After lunch Uwe Ziegenhagen presented his sec-
ond talk, this time on creating and automating exams
with LATEX using the exam package. Again using
Python, he created different versions of the same
exam to make it harder for students to copy.

This was followed by another talk on exams, by
Yusuke Terada, who wants to optimize marking of
the Japanese national exam called the “center test”.
To this end he created machine-readable exam sheets
using TEX and matching software which presents the

Back to the roots: TUG 2019 in Palo Alto

104 TUGboat, Volume 40 (2019), No. 2

extracted answers to an examiner in an anonymized
fashion to remove bias. The marks are collected
electronically and reunited with the personalized
information to generate an evaluation sheet. So far
this system has only been implemented at Yusuke
Terada’s school, but should eventually become the
national standard.

The conference concluded with two talks on
accessibility, the first of which was delivered by Chris
Rowley of the LATEX3 team. He reported on the
current state of accessibility in LATEX and introduced
the tagpdf package by Ulrike Fischer which aids
in tagging LATEX-generated PDFs with the proper
structural elements. There are still a lot of open
problems, especially concerning mathematics.

After that Ross Moore, who joined via video
from Australia, demonstrated that accessibility is
already possible in LATEX if one is aware of certain
difficulties, using the example of a research report
he prepared for the U.S. National Park Service.

Conclusion

In summary, the TUG 2019 meeting in Palo Alto was
great. Many topics were touched on and it was amaz-
ing to see which recent developments are taking place.
There were a lot of lively discussions, especially with
participants from the big Silicon Valley companies
and it was a great honor to meet DEK. Next year’s
TUG 2020 will take place at the Rochester Institute
of Technology in Rochester, New York.

Acknowledgment

I’d like to thank the TUG bursary for funding, which
supported me in attending this conference.

⋄ Henri Menke

Dunedin, New Zealand

henrimenke (at) gmail dot com

TUG 2019 Annual General Meeting notes

Notes recorded by Jennifer Claudio

The TUG Annual General Meeting took place during
the TUG 2019 conference in Palo Alto, California, on
10 August 2019. The meeting was conducted by the
TUG president, Boris Veytsman.

Boris opened the discussion by reporting the
financial state of TUG and posing a question about
what we can do to improve it.

An attendee asked the question regarding re-
newals issue, mentioning that DANTE has an auto-
matic renewal system that TUG does not have, and

perhaps a larger size to call out the renewal vs. early
bird would be helpful. Henri pointed out the issue
that he went for the early bird renewal but didn’t
renew after. Another attendee commented that since
the Board is represented by more of an American
base, there is a lower likelihood of having an auto-
matic renewal system due to regional payment laws.

An attendee raised the question about options to
have monthly TUGboat online electronically to save
printing costs, and whether that actually provided
savings. A suggestion was to have a trial membership
that could be electronic membership only, hence a
person would need a full membership in order to
receive more benefits. In relation to this conversation,
Alan Wetmore questioned how many beginners would
be after TUGboat.

There was discussion that the physical copy
of the TUGboat itself goes beyond just the user
group; it is one of the few places where people can
do research level publication in document processing.
Frank Mittelbach noted that it is a library resource
and pointed out that the ACM digital library has no
physical form, which has been detrimental to it.

Frank also noted that we are not getting (as
user group members) the “great unwashed” that Jim
Hefferon alluded to in his talk.

It was reported that TUG membership is declin-
ing but TEX usership is not necessarily doing the
same. Frank pointed out that people are getting in-
formation for free as opposed to getting benefits from
community membership, and consequently proposed
that institutional members should pay more to help
cover the costs of the individual users and developers.
This led to a following discussion that the member-
ship needs to provide an advantage to its members.
William expressed a desire to see the feasibility of a
donation method. Attendees agreed that the method
should not be the banner approach of sites such as
Wikipedia, but should serve a similar purpose.

It was reported that 8000 people are using the
LATEX project website, of which a large proportion
are actually newcomers.

This raised the question of reliance on dona-
tions from corporate/institutional users, and if that
is the case, what methods should be used to increase
donations. An attendee suggested it would be diffi-
cult and would rely on collaboration with sites such
StackExchange and Overleaf.

Discussion ensued that the community is moving
into more of a cloud-based environment, but that is
not a particular goal of the user group. From the
user group perspective, developers feel like they are
producing the front end of something that is being
used in commercial ways (e.g., Overleaf, etc.).

TUGboat, Volume 40 (2019), No. 2 105

The question was raised as to whether TUG

would be able to buy an advertisement on Stack-
Exchange. A response was that it could be con-
sidered since a community ad currently exists in a
sidebar. Another person asked if it would be possible
to have a hotlink pointing to a donation page.

Chris Jimenez, as a new person, expressed that
he realized that the user group is an important com-
ponent. He noted that he sees the efforts of the
developers and that LATEX has more visibility. He
noted, however, that there is not a lot of incentive to
join the group itself. People tend to gravitate toward
the easiest or most convenient solutions, rather than
seeking the group. He is a Word user who has found
he needs more than what Word and InDesign offer,
hence is new to TEX.

Jim Hefferon asked a marketing question: Is it
possible on StackExchange to have a flare that says
“I’m a DANTE member” or “I’m a TUG member” to
show where the cohort giving answers is coming from,
in order to help make the user groups known.

Federico Garcia-DeCastro expressed that he has
a love and hobby for TEX, which is not what would
make him pay for membership, but after attending
the meeting, he feels connected. The TEX Live DVD

or such isn’t what makes him want to join the group.
Cheryl Ponchin asked if the group thought it

would be possible for representatives at universities,
and possibly at high schools, to post print media to
entice users to join the user group. A high school
or undergraduate initiative could include a poster
competition or hosting a high school poster session.

Federico pointed out that this kind of marketing
brings potentially TEX and LATEX users, but does
not bring in members to the user group.

Chris Rowley mentioned we have plenty of links
with people, including founders.

Discussion returned to how many library mem-
berships exist, since those would confer a huge poten-
tial for using TUGboat for library subscriptions to
draw in funding. Robin clarified that subscriptions
must be kept separate from membership subscrip-
tions in order to engage university faculty. The ques-
tion was raised as to whether marketing campaigns
should be directed to librarians.

Robin suggested that perhaps TUG needs to
redefine the TEX Users Group. She said that TUG

cannot compete with Overleaf and its 4.5 million
users or other commercial enterprises. She said that
years ago a newbie attending a TUG conference re-
layed in his talk the highly unusual fact that when
users write to (LA)TEX-related support lists they are
essentially getting answers from the top: developers,
professionals, the elite, the people who wrote the

code. Robin suggested that TUG should perhaps
stop wasting its time on nickel and dime issues, and
focus on old and new contributors and developers
who keep the language of TEX alive, relevant and
flourishing. Some form of TEX is used by Overleaf,
Adobe, Wikipedia, MathType, and many others,
and perhaps there could be dialogue (as Boris talked
about) between TUG and commercial enterprises to
offer grant money or a bonus or some form of adver-
tising, credits, something! to acknowledge the work
of the TEX community. She emphasized that the
large commercial enterprises should somehow sup-
port and reciprocate the generosity of the developers
of the TEX Live software and related products (such
as the accessibility effort). She suggested TUG help
find additional funding for major projects that de-
velopers could apply for. The core membership and
donations continues to support the office, overhead
and committed funds such as the bursary and smaller
TEX development projects, but perhaps larger grants,
other funding sources, could be found for develop-
ment projects with the help of seed money from
commercial sources. This could include a slice for
TUG, thus a well-deserved infusion of capital for
conferences, bursary, etc.

Didier Verna mentioned his experience with the
LISP community: back in the days there was the
Association of Lisp Users because it was a young
language and people with common interests needed
federation, but as soon as it was standardized, the
organization essentially vanished because the tool
was standardized to a high degree and people were
using it broadly. The end user had no incentive to
join a user group because all resources had become
available.

There was a suggestion that maybe the reality of
the technical fields is that there is a saturation point
where people know about and/or use TEX. Emails
are not coming from the tech fields, but rather from
the humanities.

Another question that was raised was whether
PDF usage decreased relative to the use of webpages
that have built-in PDF readers?

Adobe: licensing fees do not fly with most com-
panies because they feel like they are held hostage.
A better approach would be the idea of consultation
and fees that could come back to TUG. It would
save time for a company such as Adobe if they were
able to get fast feedback or support from TUG.

Didier suggested having a fundraiser, but Boris
pointed out that we don’t have extra money to make
a fundraiser happen. Seeking grants, as mentioned
above, was one option that was raised. ⋄

106 TUGboat, Volume 40 (2019), No. 2

What do today’s newcomers want?

Jim Hefferon

Abstract

Social media gives us a chance to hear directly from
today’s newcomers about what they are working on
and what hurdles they have.

1 Introduction

Helping users is a goal of the TEX Users Group. So
insight into what today’s beginners need is poten-
tially useful. Here we shall argue that social media
gives us a chance to listen in on beginners, and that
Reddit is a good place to do that. Then we shall
present some statistics from that site about what
these newcomers say.

Social media has many aspects that are like the
posting boards that people in the TEX and LATEX
community have used for years. One thing that is
new is that interacting in this way has become main-
stream so we can expect that many people will be
comfortable speaking up there. This includes people
who are newcomers to our community. Some of the
things they discuss are surprising.

2 Where are they?

Reddit is a news aggregation and social web site, at
http://www.reddit.com. Members submit content
to the site such as links, images, or text posts. Posts
are organized by subject into user-created subred-
dits, which cover a variety of topics. Site members
vote these up or down and submissions with more
votes are displayed at the top of their subreddit. In
addition, over time new posts replace older ones.

There are many subreddits, more than a hun-
dred thousand. They are named with the prefix r/.
One is r/latex, at www.reddit.com/r/latex, for
discussions about LATEX and TEX in general. (There
is also r/tex but it gets very little traffic.)

The r/latex page looks similar to other boards
that TEX and LATEX users have seen. A typical day
has a list of posts, which are usually questions, for
a visitor to read and for site members to vote on.
They can also comment on the post, perhaps by
answering the question.

2.1 Demographics

For us, the key point about Reddit is that it is
the sixth most visited website in US and twenty-
first in the world, with 542 million monthly visitors
(as of March 2019). The site is predominantly in
English: 54% of users are from the United States,
then 8% from the UK, and 6% from Canada. The
r/latex subreddit has 19,000 members. There are a

small number of posts each day and the atmosphere
is relaxed and polite.

Reddit attracts young people, as this compari-
son with the general US shows.

18–29 30–49 50–64 65+

US 22% 34% 25% 19%

Reddit 64% 29% 6% 1%

Users average fifteen minutes per day on the site,
usually lurking.

So the first argument for the presence of new-
comers here is simply the clustering of a good num-
ber of people of the right age.

2.2 Architecture

The second argument is about the alternatives. For
many TUGboat readers the first board that comes
to mind is Stack Exchange, tex.stackexchange.

com. Here too, the page contains a list of posts con-
sisting of questions on which site members can vote,
answer, or comment.

But the culture is very different. The About

page says, “The goal . . . is to be an exhaustive and
curated library of detailed answers to every ques-
tion related to TEX.” It strives to be all business,
“This site is all about getting answers. . . . There’s
no chit-chat” and, “Questions that need improve-
ment may be closed until someone fixes them, or
just closed.” The success of the site shows that this
social engineering is very effective, indeed.

However for newcomers this can be discourag-
ing. Being told that your query is closed can be
off-putting, even though you are told this politely.
Beginners may feel that they don’t know enough to
be able to state a precise question or to search for
one in the past that is related to theirs. And, a per-
son who lurks will see lots of stuff that is far beyond
them.

So, an 18–29 year old new LATEX-er who oc-
casionally scans the contents of r/latex may find
more of interest, and perhaps a more amenable at-
mosphere, than at Stack Exchange.

A word about two additional familiar English-
language boards. The Usenet group comp.text.tex

has been around for ages. But it doesn’t attract
newcomers because it has become mostly a CTAN

announcement list. Another long time board, and
a great resource, is texhax. But it is not as well-
known as the others to newcomers and it is low traf-
fic so it would not reward lurking.

Thus, a second reason that r/latex has a dis-
proportionate number of beginners is that the his-
tory or engineering of other places may nudge those
beginners over.

Jim Hefferon

TUGboat, Volume 40 (2019), No. 2 107

3 Results

I have been a regular on r/latex for more than a
decade. Some of the things I have found there are
surprising. To quantify them I collected some data.

3.1 Data

I grabbed one thousand posts, covering r/latex

from 2018-Nov-10 through 2019-July-08, and char-
acterized each post in a few ways. There is a good
deal of judgment involved in these characterizations
but despite this noise, the numbers tell an interest-
ing story.

3.2 Findings

First, many people make clear that they are begin-
ners, often simply by saying it. I counted 265 au-
thors as beginners, 29 as experienced, and 703 posts
were not clear. (The numbers do not add to 1000
because of some spam.) That is, many posts begin
like, “I’m a total noob . . . ,” supporting the earlier
analysis that this site attracts this group.

I suspected that many of today’s beginners do
not install TEX on their computer but rather start
at an online site such as Overleaf or CoCalc, so
I also characterized the posts by computing plat-
form. As TEX and LATEX are in many ways platform-
independent, the great majority of posts, 817, did
not name the platform. Of the remaining, 17 were
using GNU/Linux, 22 were Macintosh, 63 were Win-
dows, and the largest number, 78, were online.

The biggest challenge was to characterize the
post’s subject. In some cases there was more than
one subject and I judged what was the main one.
Here are the numbers; I’ll expand on the keys below.

Key Number

wrapper 92
biblio 81

graphics creation 78
resume 31
thesis 16
article 14
pandoc 13
book 13

presentation 12
classwork 12
unknown 169

other 466

The “wrapper” refers to editors or other creation
environments, from vim to TEXworks to Overleaf.
Thus, close to ten percent of all posts are from folks,
often newcomers to LATEX, who say they are strug-
gling with an inability to do something that is, in
some sense, not TEX or LATEX.

Often beginners have trouble distinguishing the
wrapper from TEX so they may ask, “how to get
LATEX to find and replace?” They are often not sure
whether they are using pdflatex, or xelatex, etc.,
because that is hidden in a submenu. This is an ex-
ample where the sophisticated systems available to
beginners today can at least to some extent prevent
them from understanding what they need to do to
move forward.

Number two on the most-asked list is bibliogra-
phies. This is an area where we can perhaps do a
better job helping people. For instance, on r/latex

I often urge people to get started with LATEX by
reading the Not So Short Introduction [3] but I note
that this document has less than two pages on this
topic. Also perhaps of use would be a web page like
the LATEX Font Catalogue [2], but instead containing
a selection of bibliography styles.

The next most asked topic is another one that
many experienced users also have trouble with, cre-
ating graphics. This usually takes the form of, “In
TikZ, how do I . . . ?”

After that, the next item is a surprise, at least
for me: today many people, as an early LATEX en-
counter, write a resume. One factor may be that
because resumes have rather complicated format-
ting, they could lead to a disproportionate number
of posts.

Following those are subjects that many readers
may have expected. This includes questions about
thesis and article styles, styles for books, and ques-
tions about presentations using Beamer. It also in-
cludes using TEX and LATEX for class notes or home-
work. (Pandoc is a program to convert files among
markup languages.)

The “other” category is large but also scattered.
Subjects that appeared include fonts, figures, and
tables. Also there are links to blog posts about
LATEX topics.

3.3 Observations

I will close with a few comments comparing new-
comers on r/latex with those in the past.

First, delightfully, missing from the board dis-
cussion are many things that in the past gave new-
comers trouble. There are not many questions about
installing an entire system, rarely are people stuck
on the “Hello World” problem of getting that first
document out the other end, and no one ever asks
about tuning font parameters for a printer.

Surprising to me is that many posters introduce
themselves as undergrads. No longer is the first en-
counter with TEX and LATEX, and our community,
restricted to professionals and graduate students.

What do today’s newcomers want?

108 TUGboat, Volume 40 (2019), No. 2

Perhaps related to the prior point is that often
posters acknowledge a sense that TEX does the best
documents. So there is widespread awareness among
this young group of the power of TEX and LATEX and
friends.

These beginners often ask for a “template,” by
which they mean a file into which they can drop
their content. For these, people are often pointed to
Overleaf.

Finally, related to that, newcomers have typi-
cally not looked on CTAN, or even heard of CTAN.
And if they have gone there, they can be stymied by
a paradox of choice.

3.4 Just ask them

As a follow-up to the survey, I posted: If you are

a beginner then what would help you in TeX and

LaTeX? . . . What do you find to be the biggest hur-

dle? [1] There were about a dozen responses, which
make interesting reading (see the link in the cita-
tion). These are largely in line with the description
above so that respondents described problems with
packages, including finding a suitable one or under-
standing interactions and conflicts among packages.
And, they expressed struggling with TikZ.

4 Summary

There are reasons to suppose that social media can
help us understand what beginners today are work-
ing on and struggling with. Analysis shows that
some real stumbling blocks from the past are not
present today and tells us a little about what does
give newcomers trouble. It also shows that today’s
beginners are younger than has been traditional.

References

[1] JimH10. Are you a newcomer to LaTeX?
https://www.reddit.com/r/LaTeX/

comments/ccc93c/are_you_a_newcomer_

to_latex/, 2019. [Online; accessed
2019-August-13].

[2] Palle Jørgensen. The LATEX Font Catalogue.
https://tug.org/FontCatalogue/, 2019.

[3] Tobias Oetiker. The Not So Short Introduction
to LATEX2ε. https://ctan.org/pkg/lshort,
2019.

⋄ Jim Hefferon

Saint Michael’s College

jhefferon (at) smcvt dot edu

Type 3 fonts and PDF search in dvips

Tomas Rokicki

Abstract

PDF files generated from the output of dvips using
bitmapped fonts have not been properly searchable,
indexable, or accessible. While a full solution is
challenging, only minimal dvips changes are required
to support English language text, changes that are
at least two decades overdue. I will describe these
changes and discuss their limitations.

1 Introduction

The Type 3 fonts generated by dvips for bitmapped
fonts lack a reasonable encoding vector, and this
prevents PDF viewers from interpreting those glyphs
as text. This in turn prevents text search, copy and
paste, screen readers, and search engine indexing
from working correctly. Fixing this is easy, at least
for English text, and comes with no significant cost.

This is not nearly a full solution to create ac-
cessible multilingual PDF documents. Support for
eight-bit input encodings [2], explicit font encodings
[3], and direct generation of PDF can yield better
results. But if you want to use METAFONT fonts as-
generated and dvips, this is an important change.

I describe how I generated reasonable encoding
vectors for common METAFONT fonts, how dvips

finds these encoding vectors and embeds them in the
PostScript file, and how the current implementation
allows for future experimentation and enhancement.

2 A little history

When dvips was originally written in 1986, the lone
PostScript interpreter on hand was an Apple Laser-
Writer with 170K available memory. I treated Post-
Script as just a form of compression for the page
bitmap, doing the bare minimum to satisfy the re-
quirements for Level 1 Type 3 fonts. One of those
requirements was to supply an /Encoding vector,
despite the fact that at the time, the vector was
completely unnecessary in rendering the glyphs. Not
considering that people might someday use that en-
coding vector for glyph identification, on that fateful
day in 1986 I generated a semantically nonsensical
but syntactically acceptable vector (/A0–/H3 in base
36) for all bitmapped fonts, and this vector remains
to this day, subverting any attempt to search copy,
or use screen readers.

Replacing this encoding vector with something
more reasonable allows PDF viewers to properly un-
derstand what characters are being rendered, at least
for English-language text.

TUGboat, Volume 40 (2019), No. 2 109

3 A sample

The following TEX file, cribbed from testfont.tex

but using only a single font, will be used for illustra-
tion.

\hsize=3in \noindent

On November 14, 1885, Senator \& Mrs.~Leland

Stanford called together at their San

Francisco mansion the 24~prominent men who

had been chosen as the first trustees of The

Leland Stanford Junior University.

?‘But aren’t Kafka’s Schlo{\ss} and {\AE}sop’s

{\OE}uvres often na{\"\i}ve vis-\‘a-vis the

d{\ae}monic ph{\oe}nix’s official r\^ole

in fluffy souffl\’es?

\bye

When you run this through TEX and dvips (giving
the -V1 option to enforce bitmapped and not Type 1
fonts), and then ps2pdf, the resulting PDF does not
support text search in most PDF viewers. In Ac-
robat with copy and paste it almost works; the c’s
are dropped throughout (San Francisco becomes San
Fran is o). The c’s are dropped because the origi-
nal dvips encoding uses /CR as the name for this
character, and it is apparently interpreted as a non-
marking carriage return. Ligatures also don’t work.
In MacOSX Preview (the default PDF viewer for the
Mac), selecting text appears to fail (it actually works,
but the selection boxes are too small to see that any-
thing has actually been selected) and no characters
are recognized as alphabetic. In Chrome PDF pre-
view, selecting text gives a random note appearance
with each word separately selected by its bounding
box and no alphabetic characters recognized.

Conversely, when you process the file with Type 1
fonts, all text functions perform normally, except
that accented characters are detected as two sepa-
rate characters (the accent and the base character).
The critical difference is not Type 3 (bitmaps) ver-
sus Type 1 (outline fonts), but rather the lack of a
sensible encoding vector in the Type 3 font.

4 First attempts and failure

If I manually copy the Encoding vector from the
output of dvips using Type 1 fonts and put that in
the font definition for the Type 3 fonts, the situation
improves; now Adobe Acrobat properly supports
text functions (including ligatures but not accented
characters). The other PDF viewers now recognize
alphabetic characters, but they still have a number
of problems.

With Preview, if you use command-A (to select
all the text) and then command-C (to copy it), and
then copy the result into a text editor (or a word

processing program “without formatting”), you get
the following mishmash of text:

On Novemb er 14, 1885, Senator & Mrs.
Leland Stanford called mansion the 24
together at their San Francisco prominent
men who had b een cho- Stanford sen as the
first trustees of The Leland Junior Æsop’s
University. ¿But aren’t Kafka’s Schloß and
Œuvres often na”ıve vis-‘a-vis the dæmonic
phœnix’s official rˆole in fluffy souffl’es?

In addition to the broken words and split accented
characters, if you look carefully you will notice some
surprising and substantial word reordering! What
could be going on?

5 Refinements and success

All PDF viewers use some heuristics to turn a group
of rendered glyphs into a text stream. The heuris-
tics differ significantly from viewer to viewer. The
most important heuristic appears to be interpreting
horizontal escapement into one of three categories:
kerns, word breaks, and column gutters. Preview
was failing so badly because it was recognizing rivers
in the paragraph as separating columns of text. To
satisfy the PDF viewers I had access to, I made two
additional modifications to each bitmapped font.

First, I adjusted the font coordinate system, as
defined by the so-called font matrix. The default
Adobe font coordinate system has 1000 units to the
em, while the original dvips uses a coordinate sys-
tem with one unit to the pixel both for the page
and for the font, and doesn’t use the PostScript
scalefont primitive. But not using scalefont ap-
parently makes some viewers think all the fonts are
just one point high, and they use spacing heuristics
appropriate for such a font. By providing a font ma-
trix more in line with conventional fonts, and using
scalefont, PDF viewers make better guesses about
the appropriate font metrics for their heuristics.

Second, I provide a real font bounding box. The
original dvips code gives all zeros for the font bound-
ing box, which is specifically allowed by PostScript,
but this confuses some PDF viewers. So I wrote code
to calculate the actual bounding box for the font
from the glyph definitions.

With these adjustments, using dvips with bit-
mapped fonts and ps2pdf generates PDF files that
can be properly searched with most PDF viewers—
at least, for English language text.

6 Other languages: No success

I would have liked things to work with other lan-
guages as well, but was not able to get it to work.
Clearly the PDF viewers are recognizing characters by

Type 3 fonts and PDF search in dvips

110 TUGboat, Volume 40 (2019), No. 2

the glyph names, but this appears to work only with
a small set of glyph names. I hoped that those listed
in the official Adobe Glyph List [1] would work, but
in my experiments they (for the most part) did not.
I also tried Unicode code point glyph names such as
/uni1234 and /u1234 but neither of these formats
worked in the PDF viewers I tried. I also experi-
mented with adding a cmap to the font, with no suc-
cess, and even tried some lightly documented Ghost-
View hacks, but was able to achieve only distressingly
partial success for most non-Roman characters.

Even if the individual glyphs are recognized,
problems remain with accents, and more generally,
virtual fonts. With a standard seven-bit encoding,
accents are generally rendered as two separate char-
acters, where the PDF viewer expects to see only
a single composite character. Further, the entire
virtual font layer would need to be mapped in some
fashion, as the PDF contains the physical glyphs that
are often combined in some way to provide the seman-
tic characters. Supporting this would have required
significantly more effort and heuristics, and there are
already efforts in this direction from people much
more knowledgeable and capable than I am. The
most logical general solution is to use properly coded
input, such as UTF-8, and where transformation to
multiple glyphs is necessary, embed the appropriate
mapping information directly in the PDF file.

The lack of success for other languages dimin-
ishes these proposed changes, but the changes are
still important as they do provide reasonable support
for English-language documents. Since PDF viewers
are a moving target, as are the PostScript to PDF

converters, the implementation provides for some
future experimentation and extension.

7 Finding font encodings

In order to provide more than a proof of concept, I
had to determine appropriate glyph names for the
fonts provided with TEX Live, as well as provide
a mechanism for end users to add their own glyph
names for their own personal fonts.

Over the years others have translated nearly
all of the METAFONT fonts provided with TEX Live,
and as part of that process, reasonable encoding
vectors have been created for the glyphs. I decided
to leverage this work, so I wrote a script that lo-
cated all the METAFONT sources in the TEX Live
distribution, all the corresponding Type 1 fonts, and
any encoding files used in the relevant psfonts.map
file. A big Perl script chewed on all of this, extract-
ing encoding vectors and creating appropriate files
for dvips. Some of the encoding vectors use glyph
names that are not particularly useful, and some use

glyph names based on Unicode code points that are
not currently recognized by the PDF viewers I tried.
I did not want to edit the names in any way; I aimed
for functional equivalence to using the Type 1 fonts.
If improvements are made to the Type 1 font glyph
names, or to the PDF viewers, I wanted to be able
to pick up those improvements.

I considered having dvips read the encoding
vectors directly from the Type 1 fonts, rather than
extracting them and storing them elsewhere, but
decided against this; I wanted dvips to use appro-
priate glyph names even if the Type 1 fonts didn’t
exist at all. This does introduce redundancy which
can potentially lead to an inconsistency in the glyph
names, but the fonts are currently mostly stable, and
the glyph name extraction process can be repeated
as needed if meaningful changes are made.

8 Storing and distributing encodings

After scanning all of the relevant METAFONT files
and corresponding Type 1 files, I found there were
2885 fonts; storing the encodings separately one
per font would require an additional 2,885 files in
TEX Live, occupying about 5 megabytes. I felt this
was excessive for the functionality added.

Karl Berry suggested combining all the encod-
ings into a single file, along with a list of fonts using
any particular encoding. Since there were only 138
distinct encodings, this gave tremendous compres-
sion, letting me store all of the encodings for all of
the fonts in a single file of size 183K. This also en-
abled me to distribute a simple test Perl script that
mimicked the changes so people could try them out
without updating their TEX installation.

This combined file, called dvips-all.enc, pro-
vides the default encoding used by the 2885 dis-
tributed TEX Live METAFONT fonts. In every case
that dvips looks for an encoding, e.g., for cmr10,
it first searches for dvips-cmr10.enc and only falls
back to the information in the combined file if the
font-specific file is not found. This permits users to
override the provided encodings, as well as define
their own encoding for local METAFONT fonts.

The format of the encoding file is slightly dif-
ferent from that of other encoding files in TEX Live.
The encoding file should be a PostScript fragment
that pushes a single object on the operand stack.
That object should either be a legitimate encod-
ing vector consisting of an array of 256 PostScript
names, or it should be a procedure that pushes such
an encoding vector. It should not attempt to define
the /Encoding name in the current dictionary, as
some other encoding file formats do. A sample file,
one that can be used for cmr10 (and many other

Tomas Rokicki

TUGboat, Volume 40 (2019), No. 2 111

Computer Modern fonts) is:

[/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon

/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi

/dotlessj/grave/acute/caron/breve/macron/ring

/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash

/suppress/exclam/quotedblright/numbersign

/dollar/percent/ampersand/quoteright/parenleft

/parenright/asterisk/plus/comma/hyphen/period

/slash/zero/one/two/three/four/five/six/seven

/eight/nine/colon/semicolon/exclamdown/equal

/questiondown/question/at/A/B/C/D/E/F/G/H/I/J

/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft

/quotedblleft/bracketright/circumflex

/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l

/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash

/hungarumlaut/tilde/dieresis

128{/.notdef}repeat]

9 Deduplicating encodings

The encodings inserted in the fonts do use a certain
amount of PostScript memory, and this memory us-
age is not presently accounted for in the memory
usage calculation of dvips. The memory usage is
small and modern PostScript interpreters have signif-
icant memory. Further, I doubt anyone actually sets
the dvips memory parameters anymore anyway. So
this is unlikely to be an issue. But to minimize the
effect, and also to minimize the impact on file size,
encodings that are used more than once are combined
into a single instance and reused for subsequent fonts.

10 The dvips Changes

Almost all changes to dvips are located in the single
new file bitmapenc.c, although a tiny bit of code
was added to download.c to calculate an aggregate
font bounding box, and the font description structure
extended to store this information. I also added code
to parse command line options and configuration file
options to disable or change the behavior of the new
bitmap encoding feature.

By default this feature is turned on. If no en-
coding for a bitmapped font is found, no change is
made to the generated output for that font.

11 Testing the changes without updating

You can test my proposed changes to the dvips

output files without updating your distribution or
building a new version of dvips. The Perl script
addencodings.pl [4] reads a PostScript file gener-
ated by dvips on standard input and writes the
PostScript file that would be generated by a modi-
fied dvips on standard output. No additional files
are required for this testing; the default encodings
for the standard TEX Live fonts are built into the
Perl script.

12 How to use a modified dvips

In general, dvips usage is unchanged. Warnings in
the functionality of the bitmap encoding are disabled
by default, so as to not disturb existing workflows;
this may change in the future.

I add a single command line and configuration
option, using the previously unused option character
J. The option -J0 disables the new bitmap encoding
functionality. The option -J or -J1 enables it but
without warnings, and is the default. The option -J2

enables it with warnings for missing encoding files.

13 Extension support

Remember that the encoding file is an arbitrary Post-
Script fragment that pushes a single object on the
operand stack, and that object can be a procedure. I
permit it to be a procedure to support experimenting
with other changes to the font dictionary to improve
text support in PDF viewers. For instance, if a tech-
nique for introducing Unicode code points for glyphs
into a PostScript font dictionary is found and sup-
ported by various PostScript to PDF converters, such
a procedure could introduce the requisite structures.
The procedure will not be executed until the font
dictionary for the Type 3 font is created and open.

To test this functionality, I created a rot13.enc
file that defines a procedure that modifies the En-
coding vector to swap single alphabetic characters
much like the rot13 obfuscation common during the
Usenet days. With this modification, copying text
from a PDF copies (mostly) content that has been
obfuscated (except for ligatures). This brings us full
circle to the current unreadable text copied from the
original dvips.

References

[1] Adobe. Adobe glyph list specification.
https://github.com/adobe-type-tools/

agl-specification, August 2018.

[2] A. Jeffrey and F. Mittelbach. inputenc.sty.
https://ctan.org/pkg/inputenc, 2018.

[3] R. Moore. Include CMap resources in PDF files
from pdfTEX. https://ctan.org/pkg/mmap,
2008.

[4] T. G. Rokicki. Type 3 search code. https:

//github.com/rokicki/type3search, July
2019.

⋄ Tomas Rokicki

Palo Alto, California

United States

rokicki (at) gmail dot com

Type 3 fonts and PDF search in dvips

https://github.com/adobe-type-tools/agl-specification
https://github.com/adobe-type-tools/agl-specification
https://ctan.org/pkg/inputenc
https://ctan.org/pkg/mmap
https://github.com/rokicki/type3search
https://github.com/rokicki/type3search

112 TUGboat, Volume 40 (2019), No. 2

The state of X ETEX

Arthur Reutenauer

Abstract

X ETEX was the first TEX engine to support Unicode
natively and was actively developed until recently,
but has since then gone into maintenance mode. I
will discuss avenues for future development.

0 X ETEX & LuaTEX

Let’s start with a quick comparison between X ETEX
and LuaTEX, its Unicode-supporting cousin. While
both are similar in their overarching goals to support
modern encodings and font standards, they differ
in an essential tenet of their philosophies: X ETEX
transplants a lot of additional features into the core
by means of external libraries, while LuaTEX opens
up the engine by allowing large parts of it to be
rewritten in the Lua scripting language (the surgical
metaphor is freely borrowed from Hans Hagen, main
developer of ConTEXt and designer of LuaTEX).

This is quite a significant difference. X ETEX’s
architecture enables it to delegate crucial tasks, no-
tably shaping (the processes necessary to display
complex scripts correctly, such as Arabic and Indic).
The library currently used for that task is called
HarfBuzz, and was integrated by Khaled Hosny in
2012–2013. Conversely, LuaTEX depends only on
Lua code for the same tasks, but such code has to
be written, and the only person currently doing so
is Hans. This means that the number of scripts sup-
ported in LuaTEX will necessarily be limited.

On a more technical level, the core of X ETEX
still uses the original WEB code, while LuaTEX has
been rewritten in C.

1 X ETEX + LuaTEX

One idea to shake up X ETEX was thus to use the
code base of LuaTEX to progressively replace the
WEB functions of the X ETEX source by their C equiv-
alent. This would be a somewhat sounder basis for
future developments. In addition, we would get Lua
“for free”, although the interaction with LuaTEX’s
callbacks probably would need to be massaged quite
a bit. But the prospect of taking advantage of the
very large amount of work already done on LuaTEX,
its comparatively higher development pace, and the
possibility of merging efforts, made it a goal worth
contemplating.

I have been experimenting last winter in that
direction and think this effort, that we would pre-
sumably call X ELuaTEX, is sustainable. Neverthe-

less, since it also entails considerable work, I have
also been exploring other options.

2 X E+ LuaTEX+ HarfBuzz

At about the same time, Khaled was working on in-
tegrating HarfBuzz into LuaTEX, to support more
scripts. This could be a possible future for X ETEX,
but it should be noted that the situation currently is
a little confused, since the ongoing effort inspired the
current LuaTEX maintainer, Luigi Scarso, to pro-
duce his own experimental version of LuaTEX with
HarfBuzz dubbed luahbTEX. It may thus be wise
to wait for the dust to settle before deciding if that
can be the future for X ETEX. And there’s more!

3 X E+ lmtx

Another new project is the effort by Hans, always
indefatigable, to overhaul LuaTEX into a leaner en-
gine with a different build system. This lmtx was
announced on 1 April (but wasn’t an April fool’s
joke) and will become the basis for the next major
version of ConTEXt. The first official release will be
during the 2019 ConTEXt meeting, two weeks from
the time of writing, hence I thought that as long
as I was contemplating possible futures for X ETEX,
I might as well have a look in some detail at the
upcoming lmtx! HarfBuzz will not be a part of it,
since ConTEXt is using the Lua shaping code, hence
a similar effort as the one mentioned in the previous
paragraph would be needed.

4 Why?

Why, one might ask, bother with such considera-
tions at all? X ETEX already exists and in spite of
some misfeatures (for example in the bidirectional
models), it has no serious bugs. The absence of new
development obviously means that it is very stable.

However, no program keeps being maintained in
the long run just by staying exactly identical (TEX90
being a lone exception). X ETEX still has essential
features that are unique in the TEX world: complex
scripts is the most important one; and the inter-
character token mechanism also lacks an equivalent
in LuaTEX (I’m grateful to Henri Menke for bringing
the latter to my attention during the conference). If
the developments outlined in section 2 do give rise
to an extended LuaTEX engine with all of X ETEX’s
high-level capabilities, it will be time to bridge the
gap by adding all the small missing bits and pieces,
and merge the two projects together (which obvi-
ously is my ultimate goal). Until such time, how-
ever, experiments are in order.

⋄ Arthur Reutenauer

arthur.reutenauer (at) normalesup dot org

Arthur Reutenauer

TUGboat, Volume 40 (2019), No. 2 113

Hyphenation patterns: Licensing and

stability

Arthur Reutenauer

Abstract

New thoughts on old questions: hyphenation pat-
terns, licensing, and stability.

1 Don Knuth’s question

The package hyph-utf8, started in 2008 by Mojca
Miklavec and myself to collect all known hyphenation
patterns for different languages, has already been
the subject of two TUGboat articles [2, 3], and the
talk I gave during TUG’19 was a summary of those.
Having worked on that project for over a decade, I
was nonetheless caught by surprise when Don Knuth,
who took the first question, asked me how we dealt
with archiving and the need to keep page breaks
stable over time. I improvised a reply that I’m afraid
was not very convincing, and partly missed the point.
Here is the answer I wish I had given.

2 Initial answer

There is no policy on stability and backward compat-
ibility for hyphenation patterns in TEX distributions.
When Mojca and I took over the existing patterns,
we found no evidence of a strategy, or even a rule
of thumb, to decide how to update them, and in
particular no safeguard against incompatibilities in-
troduced by correcting errors in existing patterns.
Depending on contributors’ availability, there could
be regular updates over a period of time (usually
not exceeding a few years), small improvements at
irregular intervals, or—most often—no changes at
all after the initial development effort.

A practical issue arose soon after we got started
on hyph-utf8, as the German patterns were being
worked on very actively, in an extensive effort that
was guaranteed to introduce incompatibilities. There
was however no doubt that such an update would be
beneficial to German-speaking users, as it addressed
many earlier misses and mistakes. Because we needed
a decision, we followed the sensible piece of advice
by Karl Berry (who was also the only person to
venture an opinion), that we simply keep the patterns
as-is for TEX and pdfTEX, and only use the new
patterns, as well as any later updates, for X ETEX
and LuaTEX. (The same team that updated the
German patterns produced a package to optionally
use the “experimental” patterns in the 8-bit engines
as well.) The sentiment was that it was essential
to commit to some kind of stability for a major
language like German, where incompatible changes

would affect more users; and for the older engines,
that were already mature.

All in all, however, surprisingly little discussion
has ever taken place about how to achieve stability in
such an essential part of any TEX installation. The
main topic of the conversations we’ve had has indeed
been rather different . . .

3 Interrogation

The problem of licences has already been discussed in
[3] in connection with other projects interested in the
patterns from hyph-utf8, which often had reservations
about the LPPL (LATEX Project Public License) for
one reason or another. Since that licence is quite
central to the TEX world, and it’s been used for many
pattern files, I will discuss it in the next two sections.

4 What’s in a licence

The LPPL was written in order to formalise the con-
ditions that Don put on distributing TEX—anyone
may freely use the idea and even the code, but a
program may not call itself TEX unless it passes the
trip.tex torture test—and boils down to:

• Any derivative work, whenever it “identifies it-
self to the user . . . clearly and unambiguously
identifies itself” as such [clause 6(a)].

• . . . except when made by a specific person, the
maintainer, in which case the derivative work
is considered an updated version of the original
work [clause 4]. A work under the LPPL can
be either author-maintained (only the original
author can ever be maintainer), maintained (a
new maintainer could take over in the future),
or unmaintained [section “Maintenance of The
Work”].

I explained in [3] why the latter point isn’t re-
ally suitable for hyph-utf8, and forgot to mention
that the former wasn’t either: except with LuaTEX,
patterns are dumped into the format, and thus never
“identif[y] [themselves] to the user” during a normal
TEX run. That clause of the LPPL is simply moot
for hyphenation patterns.

In other words, even if all the patterns were
under the LPPL, one could very well produce a new,
completely incompatible set of patterns while re-
specting the letter of the licence, and users wouldn’t
notice from looking at their terminal or log files.

It’s also striking that the only mechanism the
LPPL provides to ensure stability is to put everything
into the hands of an all-knowing maintainer, who
gets full control over the successive versions (and I do
mean full : the only duty of a maintainer is to publish
up-to-date contact details, not even to acknowledge
bug reports sent through this contact).

Hyphenation patterns: Licensing and stability

114 TUGboat, Volume 40 (2019), No. 2

5 What isn’t

The advantage to having one person, or a few people,
designated as solely responsible for a package, is
clear: distributions need to know who is entrusted
with making updates, with collecting bug reports and
(hopefully) fixing them, etc. Nor can too many formal
duties be attached to that responsibility, as that
would be unfair to the often overburdened volunteers
who put their time and effort at the service of the
community.

Beyond these practical considerations, however,
it’s not clear how maintainers are supposed to ensure
stability. They could of course be the ones to gather
user wishes and strike compromises, but equally they
could just make decisions without consulting anyone
else, and in our experience the latter is much more
common than the former. It even takes a more sin-
ister turn, as with the recurring case of one prolific
package maintainer renouncing his production and
dumping it on the lap of hapless volunteers, only to
later claim it back and try to assert what he considers
his rights, by among other means declaring his pack-
age author-maintained. (It’s a real problem. I am
among the people trying to deal with the situation.
We don’t know what to tell this person.)

Clearly, no licence is in and of itself going to
help with difficult people who abuse it. It can only
lay out conditions and principles that its adopters
will follow.

The problem is that the LPPL does not even do
that. As summarised in the previous section, it deals
in great details with name and maintainer changes,
but doesn’t actually offer any explanation of what
maintainers can do to guarantee compatibility. In
fact, it doesn’t even use the words “compatibility”,
“stability”, or any related ones, except in the pream-
ble and a paragraph near the end, both of which
state without explanation that the licence helps with
compatibility and stability. Readers are referred to
[1] to check for themselves.

Even more than specific words, what I’m miss-
ing in the LPPL is some sense of a commitment to
stability—an encouragement to package maintainers
to produce equivalents to trip.tex for example—
instead of rights without corresponding duties. (It’s
all the more surprising as modguide.tex, a precur-
sor document, did in fact mention regression tests
prominently.) This spirit of the LPPL has in my
opinion contributed to a certain complacency in the
TEX world, an unwarranted feeling that because of
its venerable origins our community is “better at
compatibility”.

6 A new answer

In light of the above, I hope I can be forgiven for
not having a ready answer to this essential question:
how can authors ensure that their linebreaks are
going to be stable in the future? At this point I
need to soften my initial response (lest Don should
have a heart attack!) because there is some policy
about stability: the original hyphen.tex will never
change and will always available as \language0 (that
is hardcoded in all our software); and there is, as
mentioned, a general feeling that patterns for “major
languages”, whatever those are, shouldn’t change
too much (although big changes were made to the
Spanish patterns under our watch a few years ago).
Apart for that, it’s pretty much free-for-all. We do of
course monitor the situation and discourage authors
from changes that are too extensive, but decisions
are made on an as-needed basis.

A more systematic approach would require an
actual discussion about what compatibility means for
hyphenation patterns, and how to achieve it. Among
the ideas usually mooted are a complete pattern
freeze; lists of hyphenated words whose breakpoints
are guaranteed not to change; and a versioning sys-
tem for patterns. I can’t imagine that a single strat-
egy is going to fit every language, but there could be
a multiple-tier system of pattern stability, with each
language mapped to one tier.

Most important, we need decisions. It’s not
clear to me that Mojca and I should be the ones to
make them, since we’re only the implementors, but
we’ll be more than happy to help along the way, and
to execute any vision that can be had in that area.
As indeed we have, for over a decade.

References

[1] LATEX3 Project. The LATEX Project Public License,
version 1.3c, 2008. http://mirror.ctan.org/

macros/latex/base/lppl.tex

[2] M. Miklavec and A. Reutenauer. Putting the Cork
back in the bottle— Improving Unicode support
in TEX. TUGboat 29(3):454–457, 2008. https:

//tug.org/TUGboat/tb29-3/tb93miklavec.pdf

[3] M. Miklavec and A. Reutenauer. Hyphenation
in TEX and elsewhere, past and future. TUGboat

37(2):209–213, 2016. https://tug.org/TUGboat/

tb37-2/tb116miklavec.pdf

⋄ Arthur Reutenauer
Storgatan 28B
753 31 Uppsala
Sweden
arthur (at) hyphenation dot org

Arthur Reutenauer

http://mirror.ctan.org/macros/latex/base/lppl.tex
http://mirror.ctan.org/macros/latex/base/lppl.tex
https://tug.org/TUGboat/tb29-3/tb93miklavec.pdf
https://tug.org/TUGboat/tb29-3/tb93miklavec.pdf
https://tug.org/TUGboat/tb37-2/tb116miklavec.pdf
https://tug.org/TUGboat/tb37-2/tb116miklavec.pdf

TUGboat, Volume 40 (2019), No. 2 115

MacTEX-2019, notification, and

hardened runtimes

Richard Koch

Abstract

MacTEX installs everything needed to run TEX on
a Macintosh, including TEX Live, Ghostscript, and
four GUI applications: TeXShop, TEX Live Utility,
LATEXiT, and BibDesk. In macOS 10.15, Catalina,
Apple requires that install packages be notarized,
and all command line and GUI applications in such
a package must be signed and adopt a hardened
runtime. I’ll explain what this means and how it was
accomplished.

MacTEX 2019

1 Recent changes

For many years, MacTEX supported macOS 10.5
(Leopard) and higher, on both PowerPC and Intel
processors. Starting in 2017, we decided to limit
support to those systems for which Apple still pro-
vides security updates. Consequently, we support
the three latest systems; in 2019 we support Sierra,
High Sierra, and Mojave (that is, 10.12 and higher).
Each fall, Apple introduces a new system and we
also support that. Thus MacTEX-2019 will support
Catalina when that is released this fall.

Mojca Miklavec compiles Mac binaries for older
systems; in 2019 she supports Snow Leopard (10.6)
and higher. TEX Live contains both our binaries
and Miklavec’s binaries. Our web pages (tug.org/
mactex) explain how to install TEX Live using either
the MacTEX installer or the standard Unix install
script (install-tl), so users with older systems can
update using the Unix install script. Both methods
produce exactly the same TEX Live in the end.

2 Security

I retired from the University of Oregon in 2002. In
that year, freshmen arriving at the University dis-
covered a CD and instruction sheet taped over the
ethernet jacks in their dorm rooms. The sheet said

Warning: You must install the virus checker on

this CD before connecting your computer to the

ethernet. If you fail to follow this instruction,

you will lose ethernet privileges in this room.

The note ended with one more sentence:

Macintosh users can ignore this message.

But that was 2002. This April, I got the following:

From: koch@math.uoregon.edu

Date: April 4, 2019

To: koch@math.uoregon.edu

Hey! I compromised your account and gained full

access to it. I just sent this email from your

account. You visited an adult website and got

infected. This gave me access to all of your

contacts, browsing history, your passwords,

your webcam, and even your microphone.

I noticed you were trying to please yourself by

watching one of those nasty videos, well my son,

I recorded your actions ... (thanks to your

webcam) and even recorded your screen (the video

you were watching). Now, if you do nothing, then

I will send this video to all of your email,

social media and messenger contacts. You have

the option to prevent me from doing all of this.

All you need to do is to make the transfer of

\$958 to my bitcoin address ...

3 Lessons

• The Macintosh is built on top of Unix. Unix
has strong protection against other irresponsible

users. Like most companies, Apple has security
engineers patching kernel and system bugs as
they are found.

• But Macs are generally used by one person,
and the remaining problem is to protect that
person against himself or herself. If my Mac is
attacked, I’m not worried that the criminal will
become root. I’m worried that he will activate
my camera, read my mail, find my contact list,
or turn on my microphone.

• For several years, Apple has provided a (manda-
tory) solution for applications in the App Store.
It is known as sandboxing. A sandboxed appli-
cation cannot interact with other programs; it
runs in its own sandbox.

• In Catalina (and also to some extent in Mojave)
Apple provides a different kind of security pro-
tection for other programs. Unlike sandboxing,
the new security is carefully tuned to allow any
program to run as usual. Here’s how it works.

4 Signing

This step was introduced in 2012. Apple Developers
can sign their applications and their install packages.
When software is downloaded from the Internet, the
system checks that the software has not been mod-
ified since it was signed, and that the signature is
from a known developer. It refuses to run software
that doesn’t pass. Otherwise it sets a Finder bit
to disable future checks and runs the software. A

MacTEX-2019, notification, and hardened runtimes

tug.org/mactex
tug.org/mactex

116 TUGboat, Volume 40 (2019), No. 2

control panel in Apple’s System Preferences controls
this behavior:

Signing requires developer status from Apple,
which costs $100 a year. TeXShop and MacTEX have
always been signed.

Apple issues two developer signing certificates,
one for applications and one for install packages.
Signing applications is done in XCode as part of the
build process. A command line binary signs install
packages.

Tricks explained on the Internet allow users
to disable the signing requirement and install any
program. At this year’s WWDC, Apple said that
such tricks would always be available.

5 Notarization

This spring, Apple added notarization. This works
like signing; both applications and install packages
can be notarized. Once software is signed and just
before release, it is sent to Apple. There it is checked
for viruses (no human hands touch the software).
Checking takes around 15 minutes. If the software
passes the test, a “certificate” is mailed back and
“stapled” to the software. In Catalina, software down-
loaded from the Internet must be both signed and
notarized before it can run.

Previously, software was only tested once to
make sure it was not modified. Now these tests
will be rerun periodically. The details are somewhat
vague (to me), so don’t ask.

6 Hardened runtimes

Signing and notarization are small potatoes. The
big security step in Catalina is the requirement that
all applications and command line programs in a
notarized install package must be signed and time-
stamped, and must adopt a Hardened Runtime. All
of this is new. The MacTEX install package has been
signed since 2012, but the individual TEX binaries
are not signed. And while TeXShop is signed, the
remaining applications TEX Live Utility, LATEXiT,
and BibDesk are not signed. The kicker, however, is
that these applications and all command line apps

must adopt a hardened runtime. What is that?
Apple has a list of 13 dangerous operations a

program might try to perform. I’ll give the full list
later, but among the items are these: accessing the
camera, accessing the microphone, accessing location
information, accessing the address book, accessing

the user’s calendars, accessing photos, sending Apple
events to other applications, executing JIT-compiled
code, loading third party libraries not by Apple. If
an application adopts a hardened runtime, it is not
allowed to perform any of these operations.

However, for each of the 13 dangerous opera-
tions, a developer can claim an entitlement. I have
always dreamed of a TEX editor attached to a cam-
era; to make a commutative diagram, draw it and
take a picture and the editor converts the drawing
into TEX. The author of such an editor would file
an entitlement for the camera operation.

Nobody at Apple checks the entitlement list;
there is no “approval process”. A developer can
claim all 13 entitlements and then the hardened
runtime has no effect.

So calm down that case of paranoia. Apple isn’t
restricting developers. It is providing a tool to help
open source developers improve security.

6.1 Dealing with command line programs

Command line programs can adopt a hardened run-
time without recompiling. The command below does
this for the xz binary used by tlmgr. The --force
option says to replace any previous signing by the
new one, and --options=runtime says to adopt a
hardened runtime with no exceptions.

codesign \

-s "Developer ID Application: Richard Koch" \

--force --timestamp --options=runtime xz

To claim exceptions for a command line program,
add a flag --entitlements=TUG.entitlement to
the previous call, where TUG.entitlement can be
any name and is a short XML file. The exam-
ple TUG.entitlement here allows linking with third
party libraries. (One long line has been broken for
TUGboat with a \; it should not be broken in a real
file.)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC

"-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.security.cs.\

disable-library-validation</key>

<true/>

</dict>

</plist>

By embedding the codesign call in a shell script,
it is easy to construct scripts which sign, timestamp,
and adopt hardened runtimes for all command line
binaries in an install package.

Richard Koch

TUGboat, Volume 40 (2019), No. 2 117

6.2 Case 1: BasicTEX

In addition to the full MacTEX, we provide a smaller
install package called BasicTeX, which installs the
distribution obtained by using install-tl with the
“small” scheme. To test the above ideas, I submitted
this package unmodified to Apple for notarization.
Apple refused to notarize it, but they sent back a de-
tailed and easy-to-read error sheet. The bin directory
of BasicTEX has 88 items. Apple ignored symbolic
links, scripts, and other files, but had problems with
30 commands. These were exactly the commands
which the Unix command file listed as “Mach-O
64-bit executable x86 64”.

In addition, Apple found three other such bina-
ries in tlpkg/installer: lz4, wget, xz.

I used the codesign script on these 33 binaries
and submitted BasicTEX again to Apple for nota-
rization. Approved!

6.3 Case 2: Ghostscript

Ghostscript only has two binaries, gs-X11 with X11
support and gs-noX11 without X. We install a sym-
bolic link named gs to the appropriate binary.

I ran codesign on gs-X11 and gs-noX11 and
submitted to Apple. Apple notarized the install
package. But when the package was used to install
Ghostscript, gs refused to run. Why?

Originally, Apple supplied an optional install
package for X11. But their package was often out
of date, so a mutual decision was made for a third
party to supply X11 for the Macintosh as open source.
Consequently, gs-X11 links in a third party library,
which is not allowed for hardened runtimes. Re-
signing gs-X11 and claiming an entitlement for such
linking solved the problem.

6.4 Case 3: biber

The biber binary is so complicated that TEX Live
builders do not compile it. Instead the author sub-
mits binaries. The codesign script didn’t work with
this binary. I contacted the author, Philip Kime. A
month later he sent a binary which worked. I suspect
Kime knows a lot more about notarization than I do
now.

6.5 Case 4: The big enchilada

Finally it was time to notarize the full TEX Live.
I hardened xz, wget, lz4, and all the binaries in
bin/x86_64-darwin which were not links and re-
ported to be “Mach-0 64-bit executables” by file.
Tests revealed that two of these binaries needed an
exception for X11: mf and xdvi-xaw. I submitted
the package to Apple. It was rejected.

A big difference between BasicTEX and the full
TEX Live is that the second package has documen-
tation provided by package makers. This documen-
tation comes in a wide variety of formats: source
files for illustrations, zip files, and so forth. When
Apple tests an install package for viruses, does it
unzip files and look inside? Yes, it does. Does it
examine illustration source files? Yes, it does that
too. So lots of things could go wrong.

Luckily, Apple provided clear explanations for
rejection, and it turned out that MacTEX had only
three problems:

• In texmf-dist/doc/support/ctan-o-mat, one
file is given an extension .pkg. Apple believes
that a file with extension .pkg is an install pack-
age, and this package was not signed. It turned
out to be an ordinary text file.

• In texmf-dist/doc/latex/codepage, Apple
could not unzip the file demo.zip.

• In texmf-dist/source/latex/stellenbosch,
there is a zip file named USlogos-4.0-src.zip

containing two CorelDraw source files for illus-
trations. Apple did not recognize these source
files and flagged them.

The three problems were easy to work around. Bug
reports were also sent to Apple so they can improve
the notarization machinery.

7 Status of notarization for MacTEX-2019

Fully notarized install packages for MacTEX-2019,
BasicTEX-2019, and Ghostscript-9.27 are available
on the web for testing. Indeed, the Ghostscript-
9.27 package on CTAN is already notarized. The
MacTEX-2019 and BasicTEX-2019 packages will be
moved to CTAN, replacing the original packages, in
late summer just before Catalina is released.

TEX Live Utility, LATEXiT, and BibDesk are
not in the notarized MacTEX-2019 because they are
applications rather than command line programs,
so their authors must sign and notarize them. This
has not yet happened. If these authors used the
XCode which comes with Mojave, these steps would
be trivial, but they use an older XCode. We are
working with the authors but have nothing to report.

8 Technical details

I end with some technical details for others who
may need to deal with these issues on the Macintosh.
I’ll explain how to sign install packages and how to
notarize such packages. Then I’ll list the six runtime
entitlements and seven resource access entitlements
from an official Apple document.

MacTEX-2019, notification, and hardened runtimes

118 TUGboat, Volume 40 (2019), No. 2

8.1 Signing an install package

Signing requires developer status from Apple, which
costs $100 a year. Certificate information and se-
curity codes are kept on Apple’s KeyChain, and
automatically retrieved by the signing software when
needed. If you buy a new machine or install a new
system, you must transfer this information to the
new system. XCode makes this easy if you know
what mysterious icon to click.

Signing applications happens automatically in
XCode as part of the build process. Signing install
packages is done on the command line. The command
here signs Temp.pkg and writes the signed package
Basic.pkg.

productsign \

--sign "Developer ID Installer: Richard Koch" \

Temp.pkg Basic.pkg

8.2 Notarizing an install package

Notarization of install packages is done on the com-
mand line, and is somewhat trickier. Below are the
crucial commands. The first command sends an in-
stall package to Apple to be notarized. If uploading
succeeds, this command returns an identifier which
I symbolize with YYYY; it is actually much longer.

xcrun altool --notarize-app \

--primary-bundle-id \

"org.tug.mactex.basictex" \

--username "koch@uoregon.edu" \

--password "XXXX" \

--file BasicTeX.pkg

When Apple is finished, it sends a brief email
stating whether notarization was successful. If there
were errors, this second command asks for a detailed
list of errors. The command returns a url, and the
error list will then appear in a browser pointed to
this url.

xcrun altool --notarization-info YYYY \

--username "koch@uoregon.edu" \

--password "XXXX"

If notarization was successful, this third com-
mand staples the certificate to the install package,
producing a notarized package:

xcrun stapler staple "BasicTeX.pkg"

In these commands, altool is a command line
tool which communicates with Apple. This com-
munication is normally protected using two-factor
authentication, but that is not convenient for com-
mand line work. So before using altool, Apple asks
developers to log into their account and give altool
a temporary password. The symbol XXXX in the first
and second commands represents this password.

The value org.tug.mactex.basictex in the
first command identifies the install package for the
notification process, but need not correspond to any
similar string in the package. So the identifier can
be selected randomly.

8.3 Runtime entitlements

All entitlements are boolean values; all keys start with

com.apple.security, not shown here for brevity.

Allow Execution of JIT-compiled Code: whether the app

may create writable and executable memory using

the MAP_JIT flag. Key: .cs.allow-jit

Allow Unsigned Executable Memory: whether the

app may create writable and executable

memory without using the MAP_JIT flag.

Key: .cs.allow-unsigned-executable-memory

Allow DYLD Environment Variables: whether the app

may be impacted by DYLD environment variables,

which can be used to inject code into the process.

Key: .cs.allow-dyld-environment-variables

Disable Library Validation: whether the app may load

plug-ins or frameworks signed by other developers.

Key: .cs.disable-library-validation

Disable Executable Memory Protection: whether to

disable code signing protections while launching

the app.

Key: .cs.disable-executable-page-protection

Debugging Tool: whether the app is a debugger and

may attach to other processes or get task ports.

Key: .cs.debugger

8.4 Resource access entitlements

Audio Input: whether the app may record audio using

the built-in microphone and access audio input

using Core Audio. Key: .device.audio-input

Camera: whether the app may capture movies

and still images using the built-in camera.

Key: .device.camera

Location: whether the app may access location

information from Location Services.

Key: .personal-information.location

Address Book: whether the app may have read-write

access to contacts in the user’s address book.

Key: .personal-information.addressbook

Calendars: whether the app may have read-write access

to the user’s calendar.

Key: .personal-information.calendars

Photos Library: whether the app may have

read-write access to the user’s Photos library.

Key: .personal-information.photos-library

Apple Events: whether the app may send Apple Events

to other apps. Key: .automation.apple-events

⋄ Richard Koch

koch (at) math dot uoregon dot edu

http://math.uoregon.edu/koch/

Richard Koch

TUGboat, Volume 40 (2019), No. 2 119

Quickref: Common Lisp reference

documentation as a stress test for Texinfo

Didier Verna

Abstract

Quickref is a global documentation project for the
Common Lisp ecosystem. It creates reference manu-
als automatically by introspecting libraries and gen-
erating corresponding documentation in Texinfo for-
mat. The Texinfo files may subsequently be con-
verted into PDF or HTML. Quickref is non-intrusive:
software developers do not have anything to do to
get their libraries documented by the system.

Quickref may be used to create a local website
documenting your current, partial, working environ-
ment, but it is also able to document the whole
Common Lisp ecosystem at once. The result is a
website containing almost two thousand reference
manuals. Quickref provides a Docker image for an
easy recreation of this website, but a public version
is also available and actively maintained.

Quickref constitutes an enormous and success-
ful stress test for Texinfo. In this paper, we give
an overview of the design and architecture of the
system, describe the challenges and difficulties in
generating valid Texinfo code automatically, and put
some emphasis on the currently remaining problems
and deficiencies.

1 Introduction

Lisp is a high level, general purpose, multi-paradigm
programming language created in 1958 by John Mc-
Carthy [2]. We owe to Lisp many of the programming
concepts that are still considered fundamental today
(functional programming, garbage collection, inter-
active development, etc.). Over the years, Lisp has
evolved as a family of dialects (including Scheme,
Racket, and Clojure, to name a few) rather than as a
single language. Another Lisp descendant of notable
importance is Common Lisp, a language targeting
the industry, which was standardized in 1994 [5].

The Lisp family of languages is mostly known
for two of its most prominent (and correlated) char-
acteristics: a minimalist syntax and a very high level
of expressiveness and extensibility. The root of the
latter, right from the early days, is the fact that
code and data are represented in the same way (a
property known as homoiconicity [1, 3]). This makes
meta-programming not only possible but also trivial.
Being a Lisp, Common Lisp not only maintains this
property, but also provides an unprecedented arsenal
of paradigms making it much more expressive and

extensible than its industrial competitors such as
C++ or Java.

Interestingly enough, the technical strengths of
the language bring serious drawbacks to its commu-
nity of programmers (a phenomenon affecting all the
dialects). These problems are known and have been
discussed many times [4, 7]. They may explain, at
least partly, why in spite of its technical potential,
the Lisp family of languages never really took over,
and probably never will. The situation can be sum-
marized as follows: Lisp usually makes it so easy
to “hack” things away that every Lisper ends up de-
veloping his or her own solution, inevitably leading
to a paradox of choice. The result is a plethora of
solutions for every single problem that every single
programmer faces. Most of the time, these solutions
work, but they are either half-baked or targeted
to the author’s specific needs and thus not general
enough. Furthermore, it is difficult to assert their
quality, and they are usually not (well) documented.

As this situation is well known, the commu-
nity has been attempting to “consolidate” itself in
various ways. Several websites aggregate resources
related to the language or its usage (books, tuto-
rials, implementations, development environments,
applications, etc.). The Common Lisp Foundation
(cl-foundation.org) provides technical, sometimes
even financial, support and infrastructure for project
authors. Once a year, the European Lisp Sympo-
sium (european-lisp-symposium.org) gathers the
international community, open equally to researchers
and practitioners, newcomers and experts.

From a more technical standpoint, solving the
paradox of choice, that is, deciding on official solu-
tions for doing this or that, is much more problem-
atic— there is no such thing as an official authority
in the community. On the other hand, some libraries
do impose themselves as de facto standards. Two of
them are worth mentioning here. Most non-trivial
Common Lisp packages today use ASDF for structur-
ing themselves (fig.1 has an example). ASDF allows
you to define your package architecture in terms of
source files and directories, dependencies and other
metadata. It automates the process of compiling and
loading (dependencies included). The second one is
Quicklisp (quicklisp.org). Quicklisp is both a cen-
tral repository for Common Lisp libraries (not unlike
CTAN) and a programmatic interface for it. With
Quicklisp, downloading, installing, compiling and
loading a specific package on your machine (again, de-
pendencies included) essentially becomes a one-liner.

One remaining problem is that of documenta-
tion. Of course, it is impossible to force a library
author to properly document his or her work. One

Quickref: Common Lisp reference documentation as a stress test for Texinfo

cl-foundation.org
european-lisp-symposium.org
quicklisp.org

120 TUGboat, Volume 40 (2019), No. 2

(asdf:defsystem :net.didierverna.declt

:long-name "Documentation Extractor from Common Lisp to Texinfo"

:description "A reference manual generator for Common Lisp libraries"

:author "Didier Verna"

:mailto "didier@didierverna.net"

:homepage "http://www.lrde.epita.fr/~didier/software/lisp/"

:source-control "https://github.com/didierverna/declt"

:license "BSD"

...)

Figure 1: ASDF system definition excerpt

could consider writing the manuals they miss for the
third-party libraries they use, but this never happens
in practice. There is still something that we can do to
mitigate the issue, however. Because Common Lisp
is highly reflexive, it is relatively straightforward to
retrieve the information necessary to automatically
create and typeset reference manuals (as opposed to
user manuals). Several such projects exist already
(remember the paradox of choice). In this paper
we present our own, probably the most complete
Common Lisp documentation generator to date.

Enter Quickref. . .

2 Overview

Quickref is a global documentation project for the
Common Lisp ecosystem. It generates reference man-
uals for libraries available in Quicklisp automatically.
Quickref is non-intrusive, in the sense that software
developers do not have anything to do to get their li-
braries documented by the system: mere availability
in Quicklisp is the only requirement. In this sec-
tion, we provide a general overview of the system’s
features, design, and implementation.

2.1 Features

Quickref may be used to create a local website docu-
menting your current, partial, working environment,
but it is also able to document the whole Quicklisp
world at once, which means that almost two thousand
reference manuals are generated. Creating a local
documentation website can be done in two different
ways: either by using the provided Docker image
(the most convenient solution for an exhaustive web-
site), or directly via the programmatic interface, from
within a running Lisp environment (when only the
documentation for the local, partial, installation is
required). If you don’t want to run Quickref yourself,
a public website is also provided and actively main-
tained at quickref.common-lisp.net. It always
contains the result of a full run of the system on the
latest Quicklisp distribution.

2.2 Documentation items

Reference manuals generated by Quickref contain
information collected from various sources. First of
all, many libraries provide a README file of some
sort, which can make for a nice introductory chapter.
In addition to source files and dependencies, ASDF

offers ways to specify project-related metadata in the
so-called system definition form. Figure 1 illustrates
this. Such information can be easily (programmati-
cally) retrieved and used. Next, Lisp itself has some
built-in support for documentation, in the form of
so-called docstrings. As their name suggests, doc-
strings are (optional) documentation strings that
may be attached to various language constructs such
as functions, variables, methods and so on. Figure 2
has an example. When available, docstrings greatly
contribute to the completeness of reference manu-
als, and again, may be retrieved programmatically
through a simple standard function call.

(defmacro @defconstant (name &body body)

"Execute BODY within a @defvr Constant.

NAME is escaped for Texinfo prior to rendering.

BODY should render on *standard-output*."

‘(@defvr "Constant" ,name ,@body))

Figure 2: Common Lisp docstring example

As for the rest, the solution is less straightfor-
ward. We want our reference manuals to advertise
as many software components as possible (functions,
variables, classes, packages, etc.). In general there
are two main strategies for collecting this informa-
tion.

Code walking. The first one, known as code walk-

ing, consists of statically analyzing the source code.
A code walker is usually at least as complicated as
the syntax of the target language, because it requires
a parser for it. Because of Lisp’s minimalist syn-
tax, using a code walker is a very tempting solution.
On the other hand, Lisp is extremely dynamic in
nature, meaning that many of the final program’s
components may not be directly visible in the source

Didier Verna

quickref.common-lisp.net

TUGboat, Volume 40 (2019), No. 2 121

Quicklisp foo/ Declt foo.texi Makeinfo foo.html

Figure 3: Quickref pipeline (Main thread, External Process)

code. On top of that, programs making syntactic
extensions to the language would not be directly
parsable. In short, it is practically impossible to
collect all the required information by code walking
alone. Therefore, we do not use that approach.

Introspection. Our preferred approach is by in-

trospection. Here, the idea is to actually compile
and load the libraries, and then collect the relevant
information by inspecting memory. As mentioned
before, the high level of reflexivity of Lisp makes
introspection rather straightforward. This approach
is not without its own drawbacks however. First,
actually compiling and loading the libraries requires
that all the necessary (possibly foreign) components
and dependencies are available. This can turn out
to be quite heavy, especially when the two thou-
sand or so Quicklisp libraries are involved. Secondly,
some libraries have platform, system, compiler, or
configuration-specific components that may or may
not be compiled and loaded, depending on the exact
conditions. If such a component is skipped by our
system, we won’t see it and hence we won’t docu-
ment it. We think that the simplicity of the approach
by introspection greatly compensates for the risk of
missing a software component here and there. That
is why introspection is our preferred approach.

2.3 Toolchain

Figure 3 depicts the typical manual production pipe-
line used by Quickref, for a library named foo.

1. Quicklisp is used first, to make sure the library
is installed, which results in the presence of a
local directory for that library.

2. Declt (lrde.epita.fr/~didier/software/
lisp/misc.php#declt) is then run on that li-
brary to generate the documentation. Declt is
another library of ours, written five years before
Quickref, but with that kind of application in
mind right from the start. In particular, it is for
that reason that the documentation generated
by Declt is in Texinfo intermediate format.

3. The Texinfo file is processed into HTML. Tex-
info (gnu.org/software/texinfo) is the GNU

official documentation format. There are three
main reasons why this format was chosen when
Declt was originally written. First, it is partic-
ularly well suited to technical documentation.
More importantly, it is designed as an abstract,
intermediate format from which human-readable

documentation can in turn be generated in many
different forms (notably PDF and HTML). Fi-
nally, it includes very convenient built-in anchor-
ing, cross-referencing, and indexing capabilities.

Quickref essentially runs this pipeline on the
required libraries. Some important remarks need to
be made about this process.

1. Because Declt works by introspection, it would
be unreasonable to load almost two thousand
libraries in a single Lisp image. For that reason,
Quickref doesn’t actually run Declt directly, but
instead forks it as an external process.

2. Similarly, makeinfo (texi2any in fact), the pro-
gram used to convert the Texinfo files to HTML,
is an external program written in Perl (with
some parts in C), not a Lisp library. Thus, here
again, we fork a makeinfo process out of the
Quickref Lisp instance in order to run it.

2.4 Performance

Experimental studies have been conducted on the
performance of the system. There are different sce-
narios in which Quickref may run, depending on
the exact number of libraries involved, their current
state, and the level of required “isolation” between
them. All the details are provided in [6], but in short,
there is a compromise to be made between the execu-
tion time and the reliability of the result. We found
that for a complete sequential run of the system on
the totality of Quicklisp, the most frequent scenario
takes around two hours on our test machine, whereas
the safest one requires around seven hours.

In order to improve the situation, we recently
added support for parallelism to the system. The
upgraded architecture is depicted in Figure 4. In
this new processing scheme, an adjustable number
of threads is devoted to generating the Texinfo files
in parallel. In a second stage, a likewise adjustable
number of threads is in charge of taking the Texinfo
files as they come, and creating the corresponding
HTML versions. A specific scheduling algorithm (not
unlike that of the make program) delivers libraries in
an order, and at a time suitable to parallel processing
by the Declt threads, avoiding any concurrency prob-
lems. With this new architecture in place, we were
able to cut the processing time by a factor of four,
reducing the worst case scenario to 1h45 and the
most frequent one to half an hour. These numbers

Quickref: Common Lisp reference documentation as a stress test for Texinfo

lrde.epita.fr/withtilde%20didier/software/!lisp/misc.php#declt
lrde.epita.fr/~didier/software/!lisp/misc.php#declt
gnu.org/software/texinfo

122 TUGboat, Volume 40 (2019), No. 2

Library Pool Declt

Declt

Declt

Texinfo files Makeinfo

Makeinfo

Makeinfo

HTML files

Figure 4: Quickref parallel processing (Declt thread, Makeinfo thread)

make it reasonable to run Quickref on one’s local
machine again.

3 Challenges

Quickref is a challenging project in many regards.
Two thousand libraries is a lot to process. Setting up
the environment necessary to properly compile and
run those libraries is not trivial, especially because
many of them have platform or system-specific code
and require foreign dependencies. Finally, Quickref
constitutes a considerable (and successful) stress test
for Texinfo. The Texinfo file sizes range from 7KB
to 15MB (double that for the generated HTML ones).
The number of lines of Texinfo code in those files
extends from 364 to 285 020, the indexes may contain
between 14 and 44 500 entries, and the processing
times vary from 0.3s to 1m 38s per file.

Challenges related to the project scalability and
performance have been described previously [6]. This
section focuses on more general or typesetting/Tex-
info issues.

3.1 Metadata format underspecification

One difficulty in collecting metadata is that their
format is often underspecified, or not specified at all,
as is the case with ASDF system items. To give just
one example, Figure 5 lists several of the possible
values we found for the author metadata. As you can
see, most programmers use strings, but the actual
contents vary greatly (single or multiple names, email
addresses, middle letter, nicknames, etc.), and so
does the formatting. For the anecdote, we found
one attempt at pretty printing the contents of the
string with a history of authors, and one developer
even went as far as concealing his email address by
inserting Lisp code into the string itself. . .

It would be unreasonable to even try to under-
stand all these formats (what others will we discover
in the future?), so we remain somewhat strict in
what we recognize— in this particular case, strings
either in the form "author" or "author <email>"

(as in either:
"Didier Verna"

"Didier Verna <didier@lrde.epita.fr>"

respectively), or a list of these. The Declt user man-
ual has a Guidelines section with some advice for
library authors that would like to be friendlier with
our tool. We cannot force anyone to honor our guide-
lines however.

"Didier Verna"

"Didier Verna <didier@lrde.epita.fr>"

"Didier Verna didier@lrde.epita.fr"

"didier@lrde.epita.fr"

"<didier@lrde.epita.fr>"

"Didier Verna and Antoine Martin"

"Didier Verna, Antoine Martin"

"Didier Verna Antoine Martin"

"D. Verna Antoine E Martin"

"D. Verna Antoine \"Joe Cool\" Martin"

("Didier Verna" "Antoine Martin")

"

Original Authors:

Salvi Péter,

Naganuma Shigeta,

Tada Masashi,

Abe Yusuke,

Jianshi Huang,

Fujii Ryo,

Abe Seika,

Kuroda Hisao

Author Post MSI CLML Contribution:

Mike Maul <maul.mike@gmail.com>"

"(let ((n \"Christoph-Simon Senjak\"))

(format nil \"~A <~C~C~C~C~A>\"

n (elt n 0) (elt n 10) (elt n 16)

#\\@ \"uxul.de\"))"

Figure 5: ASDF author metadata variations

On the other hand, Quickref has an interesting
social effect that we particularly noticed the first
time the public website was released. In general,
people don’t like our documentation for their work
to look bad, especially when it is publicly available.
In the first few days following the initial release and
announcement of Quickref, we literally got dozens of
reports related to typesetting glitches. Programmers
rushed to the website in order to see what their

library looked like. If the bugs were not on our side,
many of the concerned authors were hence willing

Didier Verna

TUGboat, Volume 40 (2019), No. 2 123

to slightly bend their own coding style, in order for
our documentation to look better. We still count on
that social effect.

3.2 Definitions grouping

Rather than just providing a somewhat boring list
of functions, variables, and other definitions, as ref-
erence manuals do, Declt attempts to improve the
presentation in different ways. In particular, it tries
to group related definitions together when possible.

A typical example of this is when we need to
document accessors (readers and writers to the same
information). It makes sense to group these defini-
tions together, provided that their respective doc-
strings are either nonexistent, or exactly the same
(this is one of the incentives given to library authors
in the Declt guidelines). This is exemplified in Fig-
ure 6. Another typical example consists in listing
methods (in the object-oriented sense) within the
corresponding generic function’s entry.

context-hyperlinksp CONTEXT [Function]

(setf context-hyperlinksp) BOOL CONTEXT [Function]

Access CONTEXT ’s hyperlinksp flag.

Package [net.didierverna.declt], page 29,

Source [doc.lisp], page 24, (file)

Figure 6: Accessors definitions grouping

Texinfo provides convenient macros for defin-
ing usual programming language constructs (@defun,
@defvar, etc.), and “extended” versions for adding
sub-definitions (@defunx, @defvarx, etc.). Unfortu-
nately, definitions grouping prevents us from using
them, for several reasons.

1. Nesting @def... calls would lead to undesirable
indentation.

2. Heterogeneous nesting is prohibited. For exam-
ple, it is not possible use @defvarx within a call
to @defun (surprising as it may sound, this kind
of heterogeneous grouping makes sense in Lisp).

On the other hand, that kind of thing is possible
with the lower-level (more generic) macros, as hetero-
geneous categories become simple macro arguments.
One can, for example use the following (which we
frequently do):

@deffn {Function} ...

@deffnx {Compiler Macro} ...

...

@end deffn

This is why we stick to those lower-level macros, at
the expense of re-inventing some of the higher-level
built-in functionality.

Even with this workaround, some remaining
limitations still get in our way.

1. There are only nine canonical categories and it
is not possible to add new ones (at least not
without hacking Texinfo’s internals).

2. Although we understand the technical reasons
for it (parsing problems, probably), some of the
canonical categories are arguable. For example,
the distinction between typed and untyped func-
tions makes little sense in Common Lisp which
has optional static typing. We would prefer
to have a single function definition entry point
handling optional types.

3. Heterogeneous mixing of the lower-level macros
is still prohibited. For example, it remains im-
possible to write the following (still making sense
in Lisp):

@deffn {Function} ...

@defvrx {Symbol Macro} ...

...

@end deffn

3.3 Pretty printing

Pretty printing is probably the biggest challenge
in typesetting Lisp code, because of the language’s
flexibility. In particular, it is very difficult to find
the right balance between readability and precision.

Identifiers. In Lisp, identifiers can be basically
anything. When identifiers contain characters that
are normally not usable (e.g. blanks or parentheses),
the identifier must be escaped with pipes. In order
to improve the display of such identifiers, we use
several heuristics.

• A symbol containing blank characters is nor-
mally escaped like this: |my identifier|. Be-
cause the escaping syntax doesn’t look very nice
in documentation, we replace blank characters
with more explicit Unicode ones, for instance
my identifier. We call this technique “reveal-
ing”. Of course, if one identifier happens to
contain one of our revealing characters already,
the typesetting will be ambiguous. This case is
essentially nonexistent in practice, however.

• On the other hand, in some situations it is better
to not reveal the blank characters. The so-called
setf (setter / writer) functions are such an ex-
ample. Here, the identifier is in fact composed
of several symbols, such as in (setf this). Re-
vealing the whitespace character would only clut-
ter the output, so we leave it alone.

• Finally, some unusual identifiers that are nor-
mally escaped in Lisp, such as |argument(s)|,

Quickref: Common Lisp reference documentation as a stress test for Texinfo

124 TUGboat, Volume 40 (2019), No. 2

do not pose any readability problems in docu-
mentation, so we just typeset them without the
escaping syntax.

Qualification. Another issue is symbol qualifica-
tion. With one exception, symbols in Lisp belong
to a package (more or less the equivalent of a name-
space). Many Lispers use Java-style package names,
which can end up being quite long. Typesetting a
fully qualified symbol would give something like this:
my.long.package.name:symbol. Lisp libraries usu-
ally come with their own very few packages, so type-
setting a reference manual with thousands of symbols
fully qualified with the same package name would
look pretty bad. Because of that, we avoid typeset-
ting the package names in general. Unfortunately, if
different packages contain eponymous symbols, this
leads to confusing output. Currently, we don’t have
a satisfactory answer to this problem.

Docstrings. The question of how to typeset doc-
strings is also not trivial. People tend to use varying
degrees of plain-text formatting in them, with all
kinds of line lengths, etc. Currently, we use only a
very basic heuristic to determine whether an end of
line in a docstring is really wanted here, or just a con-
sequence of reaching the “right margin”. We are also
considering providing an option to simply display
the docstrings verbatim. In the long term, we plan
to support markup languages such as Markdown.

References. A Texinfo-related problem we have
is that links are displayed differently, depending on
the output format, and with some rather undesirable
DWIM behavior. Table 1 shows the output of a
call to @ref{anchor, , label} in various formats
(anchor is the link’s internal name, label is the
desired output).

Table 1: Texinfo links formatting in various output
formats

HTML label
PDF [label], page 12,
Info *note label: anchor.

Emacs Info mode See label.

In PDF, the presence of the trailing comma
is context dependent. In Info, both the label and
the actual anchor name are typeset, which is very
problematic for us (see Section 3.4). In Emacs Info
mode, the casing of “See” seems to vary. In general,
we would prefer to have more consistent output across
the different formats, or at least, more control over it.

3.4 Anchoring

The final Texinfo challenge we want to address here
is that of anchoring. In Texinfo, anchor names have

severe limitations: dots, commas, colons, and paren-
theses are explicitly forbidden (due to the final dis-
play syntax in Info). This is very unfortunate be-
cause those characters are extremely common in Lisp
(parentheses of course, but also dots and colons in
the package qualification syntax).

Note that formats other than Info are not af-
fected by this problem. There is an Info-specific
workaround documented in Appendix G.1 of the Tex-
info user manual. In short, a sufficiently recent ver-
sion can automatically “protect” problematic node
names by surrounding them with a special marker in
the resulting Info files. Unfortunately, neither older
Info readers, nor the current Emacs mode are aware
of this feature. Besides, the latest stable release of
Texinfo still has problems with it (menus do not work
correctly). Consequently, this workaround is not a
viable solution for us (yet).

Our original (and still current) solution is to
replace those characters by a sequence such as <dot>.
Of course, this makes anchor names particularly ugly,
but we didn’t think that was a problem because we
have nicer labels to point to them in the output (in
fact, labels have a less limited syntax, although this
is not well documented). However, we later realized
that anchor names still appear in the HTML output
and also in pure Info. Consequently, we are now
considering changing our escaping policy, perhaps by
using Unicode characters as replacements, just as we
already do on identifiers (see Section 3.3).

The second anchoring problem we have is that
of Texinfo nodes, the fundamental document struc-
turing construct. In addition to the aforementioned
restrictions related to anchoring, nodes have two very
strong limitations: their names must be unique and
there is no control over the way they are displayed in
the output. This is a serious problem for us because
Lisp has a lot of different namespaces. A symbol
may refer to a variable, a function, a class, and
many other things at the same time. Consequently,
when nodes are associated with Lisp symbols, we
need to mangle their names in a way that makes
them barely human readable. Because of that, our
use of nodes remains rather limited, which is some-
what paradoxical, given the importance of nodes in
Texinfo. Apart from general, high level sectioning,
the only nodes associated with Lisp symbols are for
ASDF components and packages, probably already
a bit too much. It is our hope that one day, the
node names uniqueness constraint in Texinfo might
be relaxed, perhaps disambiguating by using their
hierarchical organization.

Didier Verna

TUGboat, Volume 40 (2019), No. 2 125

4 Conclusion and perspectives

Although a relatively young project, Quickref is al-
ready quite successful. It is able to document almost
two thousand Common Lisp libraries without any
showstoppers. Less than 2% of the Quicklisp libraries
still pose problems and some of the related bugs have
already been identified. The Common Lisp commu-
nity seems generally grateful for this project.

Quickref also constitutes an enormous, and suc-
cessful, stress test for Texinfo. Given the figures
involved, it was not obvious how makeinfo would
handle the workload, but it turned out to be very
reliable and scalable. Although the design of Texinfo
sometimes gets in our way, we still consider it a good
choice for this project, in particular given the diver-
sity of its output formats and its built-in indexing
capabilities.

In addition to solving the problems described
in this paper, the project also has much room for
improvement left. In particular, the following are at
the top level of our TODO list.

1. The casing problem needs to be addressed. Tra-
ditional Lisp is case-insensitive but internally
upcases every symbol name (except for escaped
ones). Several modern Lisps offer alternative
policies with respect to casing. Quickref doesn’t
currently address casing problems at all (not
even that of escaped symbols).

2. Our indexing policy could be improved. Cur-
rently, we only use the built-in Texinfo indexes
(Functions, Variables, etc.) but we also provide
one level of sub-indexing. For instance, macros
appear in the function index, but they are listed
twice: once as top level entries, and once under
a Macro sub-category. The question of which
amount of sub-indexing we want, and whether
to create and use new kinds of indexes is under
consideration.

3. Although our reference manuals are already
stuffed with cross-references, we plan to add
more. Because Declt was originally designed to
generate one reference manual at a time, only
internal cross-references are available. The exis-
tence of Quickref now raises the need for exter-
nal cross-references (that is, between different
manuals).

4. Many aspects of the pretty printing could be
improved, notably that of so-called “unreadable”
objects and lambda lists.

5. In addition to HTML, we plan to provide PDF

as well as Info files on the website, since they
are readily available.

6. We intend to integrate Quickref with Emacs
and Slime (a de facto standard Emacs-based
development environment for Common Lisp).
In particular, we want to give Emacs the abil-
ity to browse the Info reference manuals online
or locally if possible, and provide Slime with
commands for opening the Quickref documenta-
tion directly from Lisp source code displayed in
Emacs buffers.

7. Finally, we are working on providing new in-
dex pages for the website. Currently, we have a
library index and an author index. We are work-
ing on providing keyword and category indexes
as well.

References

[1] A. C. Kay. The Reactive Engine. PhD thesis,
University of Utah, 1969.

[2] J. McCarthy. Recursive functions of symbolic
expressions and their computation by
machine, part I. Communications of the ACM

3(4):184–195, Apr. 1960.
doi:10.1145/367177.367199

[3] M. D. McIlroy. Macro instruction extensions
of compiler languages. Communications of

the ACM 3:214–220, Apr. 1960.
doi:10.1145/367177.367223

[4] M. Tarver. The bipolar Lisp programmer.
marktarver.com/bipolar.html, 2007.

[5] Ansi. American National Standard:
Programming Language— Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[6] D. Verna. Parallelizing Quickref.
In 12th European Lisp Symposium, pp. 89–96,
Genova, Italy, Apr. 2019.
doi:10.5281/zenodo.2632534

[7] R. Winestock. The Lisp curse, Apr. 2011.
winestockwebdesign.com/Essays/Lisp_

Curse.html

⋄ Didier Verna
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre
France
didier (at) lrde dot epita dot fr

http://www.didierverna.info

Quickref: Common Lisp reference documentation as a stress test for Texinfo

http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/367177.367223
marktarver.com/bipolar.html
http://dx.doi.org/10.5281/zenodo.2632534
winestockwebdesign.com/Essays/Lisp_Curse.html
winestockwebdesign.com/Essays/Lisp_Curse.html

126 TUGboat, Volume 40 (2019), No. 2

Combining LATEX with Python

Uwe Ziegenhagen

Abstract

Even older than Java, Python has achieved a lot
of popularity in recent years. It is an easy-to-learn
general purpose programming language, with strong
capabilities, including in state-of-the-art topics such
as machine learning and artificial intelligence. In
this article we want to present scenarios where LATEX
and Python can work jointly. We will show examples
where LATEX documents are automatically generated
by Python or receive content from Python scripts.

1 Introducing Python

Python has steadily grown to be one of the most
widely used programming languages. Invented in
1991 by Guido van Rossum at the CentrumWiskunde
& Informatica in the Netherlands, Version 1.0 ap-
peared in 1994. The current versions are 2.7 and 3.x.
For people who wish to start with Python, Python 3
is strongly recommended.

print('Hello' + ' ' + 'World')

Listing 1: The unavoidable “Hello World” example

Python has a strong emphasis on code readabil-
ity by making whitespace significant. In contrast to
other programming languages, Python uses white-
space and indentation to define code blocks; a first
example is in Listing 2.

def addTwo(a, b):

return a+b

print(addTwo(5,3)) # gives 8

print(addTwo('U','S')) # gives 'US'

Listing 2: Basic function definition example

Python supports various programming para-
digms, such as procedural, object-oriented and func-
tional programming. Listing 3 shows an example
for the functional programming paradigm, using a
lambda function to filter those integers from a list
that are divisible by 2.

my_list = [1, 2, 3, 4, 5, 6, 7, 8]

result = filter(lambda x: x % 2 == 0, my_list)

print(list(result))

Listing 3: Using functional programming to filter a

list

Listing 4 shows an example for the OO-programming
paradigm. Here we define a class with two properties
that is then instantiated.

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def print_age(self):

print(self.name + ', ' + str(self.age))

john = Person('John', 50)

john.print_age()

Listing 4: Using object-oriented programming

Excellent literature is available for Python learn-
ers on- and offline; we can recommend [1].

2 Writing LATEX files with Python

After that brief introduction we will now focus on
the creation of LATEX files using Python. The rec-
ommended approach is to use a so-called “context
managers”, as it will handle the management of the
file references as well as errors in case the file is not
accessible or writable.

Listing 5 shows an example on how to write a
simple LATEX file. Backslashes need to be escaped,
the line endings need to be added. Depending on the
platform the code is executed, they will be replaced
by the system’s line ending. The resulting file is then
UTF-8-encoded and can easily be processed further.

with open('sometexfile.tex','w') as file:

file.write('\\documentclass{article}\n')

file.write('\\begin{document}\n')

file.write('Hello Palo Alto!\n')

file.write('\\end{document}\n')

Listing 5: Writing a TEX file

Processing, e. g., the compilation by pdfLATEX and
display by the system’s PDF viewer can also be trig-
gered from Python, as Listing 5 shows. We create
the LATEX file and use Python’s subprocess module
to call pdfLATEX. When this process has a non-error
exit code, the platform’s PDF viewer is launched.

import subprocess, os

with open('sometexfile.tex','w') as file:

file.write('\\documentclass{article}\n')

file.write('\\begin{document}\n')

file.write('Hello Palo Alto!\n')

file.write('\\end{document}\n')

x = subprocess.call('pdflatex sometexfile.tex')

if x != 0:

print('Exit-code not 0, check result!')

else:

os.system('start sometexfile.pdf')

Listing 6: Writing & processing TEX files

Uwe Ziegenhagen

TUGboat, Volume 40 (2019), No. 2 127

When LATEX files are created programmatically the
goal is often to create bulk letters or other dynami-
cally adjusted documents. Python offers various ways
to assist in this process. The most intuitive way is
probably to use search & replace to eplace placehold-
ers with text; Listing 7 shows an example for this
approach. The example should be self-explaining,
note the nested context managers to read and then
write the LATEX file.

place = 'Palo Alto'

with open('place.tex','r') as myfile:

text = myfile.read()

text_new = text.replace('$MyPlace$', place)

with open('place_new.tex', 'w') as output:

output.write(text_new)

Listing 7: Replacing text

While this approach works fine, it is not recom-
mended when more complicated documents need
to be created. Fortunately Python offers a variety
of template engines—either built-in or easily instal-
lable with the help of Python’s package manager—
that improve the workflow and avoid “re-inventing
the wheel”. Among the different template engines,
we have successfully worked with Jinja2. It offers
full Unicode support, sandboxed execution, template
inheritance and many more useful features. Listing 8
shows a non-LATEX example for Jinja2, which tells
us the following:

1. Syntax is (easily) understandable

2. Jinja2 brings its own notation for looping, etc.

3. Extensive use of {, %, }

from jinja2 import Template

mytemplate = Template("Hello {{place}}!")

print(mytemplate.render(place="Palo Alto"))

mytemplate = Template("Some numbers: {% for n

in range(1,10) %}{{n}}{% endfor %}")

print(mytemplate.render())

Listing 8: A non-LATEX Jinja2 template example

So, to make Jinja2 work well with LATEX we need
to modify the way a template is defined. Listing 2
shows1 how this reconfiguration can be made. In-
stead of braces, we use two LATEX commands, \BLOCK
and \VAR. Both commands will later be defined as
empty LATEX commands in the LATEX file to have the
file compile without errors.

1 Source: https://web.archive.org/web/

20121024021221/http://e6h.de/post/11/

import os

import jinja2 as j

latex_env = j.Environment(

block_start_string = '\BLOCK{',

block_end_string = '}',

variable_start_string = '\VAR{',

variable_end_string = '}',

comment_start_string = '\#{',

comment_end_string = '}',

line_statement_prefix = '%-',

line_comment_prefix = '%#',

trim_blocks = True,

autoescape = False,

loader = j.FileSystemLoader(os.path.abspath('.'))

)

The following Listing 9 shows an excerpt from the
final code. It loads the template, fills the placehold-
ers and writes the final document to the disk. One
advantage of this approach is that it allows the tem-
plate to be separated from the program logic that fills
it; in more complex situations, the built-in scripting
comes very handy.

template = latex_env.get_template('jinja-01.tex')

document = template.render(place='Palo Alto')

with open('final-02.tex','w') as output:

output.write(document)

Listing 9: Rendering the document

3 Running Python from LATEX

In this section we want to address the reverse: not the
creation of LATEX code but the execution of Python
code from within LATEX. Several packages and tools
are available to support this. Here we want to demon-
strate two of them. One is derived from code posted
to tex.stackexchange.com, the other, pythontex, is
a well-maintained LATEX package.

The idea for the code given below came from
the fact, that LATEX is a) able to write the content
of environments to external files and b) is able to
run external commands when --shell-escape is
enabled. One just needs need to combine both to
write and run external files. Based on our question on
TSX, an easily implementable solution was given;2

it is shown in Listing 10. When Python code is
placed in a pycode environment inside a document,
LATEX writes the code to the filename specified in
the parameter of the environment, runs Python on
this file and pipes its output to a .plog file. This
.plog file is then read by LATEX and typeset with
syntax highlighting provided by the minted package
(which also uses Python internally).

The advantage of this approach is that it can
be adjusted easily to different external programs, as

2 https://tex.stackexchange.com/questions/116583

Combining LATEX with Python

https://web.archive.org/web/20121024021221/http://e6h.de/post/11/
https://web.archive.org/web/20121024021221/http://e6h.de/post/11/
https://tex.stackexchange.com/questions/116583

128 TUGboat, Volume 40 (2019), No. 2

long as they are able to run in batch mode. One can
easily adjust the way the code is included, e.g., we
have worked successfully with a two-column setup
in Beamer, where the left column shows the source
code and the right column the result of the code
execution. One disadvantage is that the programs
are executed each time the LATEX code is compiled.

\usepackage{minted}

\setminted[python]{frame=lines, framesep=2mm,

baselinestretch=1.2, bgcolor=colBack,

fontsize=\footnotesize, linenos}

\setminted[text]{frame=lines, framesep=2mm,

baselinestretch=1.2, bgcolor=colBack,

fontsize=\footnotesize, linenos}

\usepackage{fancyvrb}

\makeatletter

\newenvironment{pycode}[1]%

{\xdef\d@tn@me{#1}%

\xdef\r@ncmd{python #1.py > #1.plog}%

\typeout{Writing file #1}%

\VerbatimOut{#1.py}%

}%

{\endVerbatimOut %

\toks0{\immediate\write18}%

\expandafter\toks\expandafter1%

\expandafter{\r@ncmd}%

\edef\d@r@ncmd{\the\toks0{\the\toks1}}%

\d@r@ncmd

\noindent Input

\inputminted{python}{\d@tn@me.py}%

\noindent Output

\inputminted{text}{\d@tn@me.plog}%

}%

\makeatother

Listing 10: The pycode environment

The pythontex package [2] uses a more advanced
approach: it can detect if the Python code has been
edited or not. Only if an edit took place is the
Python code rerun, thus saving time especially with
more complicated Python code. The workflow is the
following: first the LATEX engine of your choice is
run, followed by the pythontex executable, followed
by another latex run. The package offers various
LATEX commands and corresponding environments;
see the package documentation.

Let us show with an example (Listing 11) how
the package can be applied. After loading the pack-
age pythontex we use the \pyc command, which
only executes code and does not typeset it, for the
first line of Python code. Here we instruct Python
to load a function from the yahoo_fin library which
allows us to retrieve stock information from Yahoo,
given that an Internet connection is available.

In the following table we then use \py com-
mands to specify which stock quote to be retrieved.
This command requires the executed Python code
to return a single expression.

\documentclass[12pt]{article}

\usepackage[utf8]{inputenc}

\usepackage[T1]{fontenc}

\usepackage{pythontex}

\usepackage{booktabs}

\begin{document}

\pyc{from yahoo_fin import stock_info as si}

\begin{tabular}{lr}

\toprule

Company & Latest quote \\

\midrule

Apple & \py{round(si.get_live_price("aapl"),2)} \\

Amazon & \py{round(si.get_live_price("amzn"),2)} \\

Facebook & \py{round(si.get_live_price("fb"),2)} \\

\bottomrule

\end{tabular}

\end{document}

Listing 11: Using pythontex to retrieve stock prices

Company Latest quote

Apple 203.43

Amazon 1832.89

Facebook 190.16

Figure 1: Output resulting from Listing 11

The pythontex package provides many more fea-
tures, among them even symbolic computation. It
can thus be highly recommended.

4 Summary

We have shown how easy LATEX documents can be
enriched by Python, a scripting language that is easy
to learn and fun to work with. Accompanying this
article is the more extensive presentation held at
TUG 2019, for which the interested reader is directed
to the slides at www.uweziegenhagen.de.

References

[1] M. Lutz. Learning Python. O’Reilly, 2013.

[2] G. M. Poore. PythonTEX: Reproducible
documents with LATEX, Python, and
more. Comput. Sci. Disc. 8(1), 2015.
ctan.org/pkg/pythontex

⋄ Uwe Ziegenhagen

Escher Str. 221

50739 Cologne, Germany

ziegenhagen (at) gmail dot com

www.uweziegenhagen.de

Uwe Ziegenhagen

www.uweziegenhagen.de
ctan.org/pkg/pythontex

TUGboat, Volume 40 (2019), No. 2 129

Henri Menke

Parsing complex data formats in LuaTEX

with LPEG

Henri Menke

Abstract

Although it is possible to read external files in TEX,
extracting information from them is rather difficult.
Ad hoc solutions tend to use nested if statements or
regular expressions provided by several macro pack-
ages. However, these quick hacks don’t scale well
and quickly become unmaintainable.

LuaTEX comes to the rescue with its embedded
LPEG library for Lua. LPEG provides a domain-
specific embedded language that allows for writing
grammars in a natural way. In this article I give a
quick introduction to Parsing Expression Grammars
(PEG) and then show how to write simple parsers in
Lua with LPEG. Finally we will build a JSON parser
to demonstrate how easy it is to even parse complex
data formats.

1 Quick introduction to LPEG and Lua

The LPEG library [1] is an implementation of Pars-
ing Expression Grammars (PEG) for the Lua lan-
guage. It provides a domain-specific embedded lan-
guage for this task. Its domain is, naturally, parsing.
It is embedded in Lua using overloading of arith-
metic operators to give it a natural syntax. The
language it implements is PEG. The LPEG library
has been included in LuaTEX since the beginning [2].
The examples in this article are based on the talk
“Using Spirit X3 to Write Parsers” which was given
by Michael Caisse at CppCon 2015 [3], where the
speaker introduces the Spirit X3 library for C++ to
write parsers using PEG. The Spirit library is not
too dissimilar from LPEG and if you are looking for
a parser generator for C++, I recommend it.

To make sure that we are all on the same page
and the reader can easily understand the syntactic
constructions used throughout this manuscript, we
review some aspects of the Lua language. First of
all, let’s note that all variables are global by default,
whereas local variables have to be preceded by the
local keyword.

local x = 1

Most of the time we want definitions to be scoped,
so this pattern will show up often. Another impor-
tant thing to note about the Lua language is that,
in contrast to many other programming languages,
functions are first class variables. That means that
when we declare a function, what we actually do is

assign a value of type function to a variable. That
is to say, these two statements are equivalent:

function f(...) end

f = function(...) end

Lua implements only a single complex data structure,
the table. Tables in Lua act as both arrays and
key–value storage; in fact, it is possible to mix both
forms of access within a single instance, as in the
following:

local t = { 11, 22, 33, foo = "bar" }

print(t[2], t["foo"], t.foo) -- 22 bar bar

As can be inferred from that, array indexing in Lua
starts at 1. For tables and strings Lua offers a useful
shortcut. When calling a function with a single lit-
eral string or table, parentheses can be omitted. In
the following snippet the statements on the left are
equivalent to the ones on the right.

f("foo") f"foo"

f({ 11, 22, 33 }) f{ 11, 22, 33 }

Especially when programming with LPEG this short-
cut can save a lot of typing and, once used to it,
makes the code a lot more readable. I will make
extensive use of this syntax.

2 Why use PEG?

Before we delve into the inner workings of LPEG, let
me first give some motivation as to why we would
like to build parsers using PEG. Imagine trying to
verify that input has a certain format, e.g. a date
in the form day-month-year: 09-08-2019. One ap-
proach could be to split the input at the hyphens and
verify that each field only contains numbers, which is
simple enough to implement using TEX macro code.
However, the task quickly becomes more complicated
when further requirements come into play. Merely
because something is made up of three groups of
numbers doesn’t make it a valid date. In situations
like these, regular expressions (regex) sound like a
good solution and in fact, the regex to parse a “valid”
date looks fairly innocent:

[0-3][0-9]-[0-1][0-9]-[0-9]{4}

I put “valid” in quotation marks, because obviously
this regex misses several cases, such as different num-
ber of days in different months or leap years. I en-
courage the reader to look up a regular expression
which covers these special cases, to get an impres-
sion as to how quickly the regex gets out of hand.
Furthermore, neither a pure TEX solution nor regex
implementations in TEX are fully expandable, which

130 TUGboat, Volume 40 (2019), No. 2

Parsing complex data formats in LuaTEX with LPEG

is often desirable. Maybe they can be made fully
expandable but not without tremendous effort.

3 What is PEG?

The question remains, how does PEG help us here?
Let’s first look at a more or less formal definition of
PEG, adapted from Wikipedia [4]. A parsing expres-
sion grammar consists of:

• A finite set 𝑁 of non-terminal symbols.
• A finite set Σ of terminal symbols that is

disjoint from 𝑁.
• A finite set 𝑃 of parsing rules.
• An expression 𝑒𝑆 termed the

starting expression.

Each parsing rule in 𝑃 has the form 𝐴 ← 𝑒, where 𝐴
is a nonterminal symbol and 𝑒 is a parsing expression.

To illustrate this, we have a look at the following
imaginary PEG for an email address.

⟨name⟩ ← [a-z]+ ("." [a-z]+)∗

⟨host⟩ ← [a-z]+ "." ("com"/"org"/"net")

⟨email⟩ ← ⟨name⟩ "@" ⟨host⟩

The symbols in angle brackets are the non-terminal
symbols. The quoted strings and expressions in
square brackets are terminal symbols. The entry
point 𝑒𝑆 is the rule named email (not specially
marked).

The present grammar translates into natural
language rather nicely. We start at the entry point,
the email rule. The email rule tells us that an email
is a name, followed by a literal @, followed by a host.
The symbols name and host are non-terminal, mean-
ing they can’t be parsed without further information,
so we have to resolve them. A name is specified as
one or more characters in the range a to z, followed
by zero or more groups of a literal dot, followed by
one or more characters a to z. A host is one or more
characters a to z, followed by a literal dot, followed
by one of the literals com, org, or net. Here the
range of characters and the string literals are termi-
nal symbols, because they can be parsed from the
input without further information.

As a little teaser, we will have a look at how the
above grammar translated into LPEG.

local name = R"az"^1 * (P"." * R"az"^1)^0

local host = R"az"^1 * P"."

* (P"com" + P"org" + P"net")

local email = name * P"@" * host

We can already see that there is some sort of mapping
to translate PEG into LPEG; indeed, at first sight

it seems like this translation is almost 1:1. We will
learn what the symbols mean in the next section.

4 Basic parsers

LPEG provides some basic parsers to make life a
little easier. These map the terminal symbols in the
grammar. Here they are, with examples:

• lpeg.P(string) Matches string exactly.
This matches “hello” but not “world”:

lpeg.P("hello")

• lpeg.P(n) Matches exactly n characters.
To match any single character we could use

lpeg.P(1)

There is a special character which is not
mapped by any encoding — the end of input.
In LPEG there is a special rule for this:

lpeg.P(-1)

• lpeg.S(string) Matches any character in
string (a set). To match normal whitespace
we could use:

lpeg.S(" \t\r\n")

• lpeg.R("xy") Matches any character be-
tween x and y (a range). To match any digit:

lpeg.R("09")

To match any character in the ASCII range we
can combine lowercase and uppercase letters:

lpeg.R("az", "AZ")

It is tedious to constantly type the lpeg. prefix,
so we omit it from now on. This can be achieved
by assigning the members of the lpeg table to the
corresponding variables.

local lpeg = require"lpeg"

local P, R = lpeg.P, lpeg.R -- etc.

5 Parsing expressions

By themselves these basic parsers are rather use-
less. The real power of LPEG comes from the ability
to arbitrarily combine parsers. This is achieved by
means of parsing expressions. The available parsing
expressions are listed in table 1. Below, I show some
examples where the quoted strings in the comments
represent input that is parsed successfully by the as-
sociated parser unless stated otherwise.

• Sequence: This implements the “followed by”
operation, i.e. the parser matches only if the
first pattern is followed directly by the second
pattern.

TUGboat, Volume 40 (2019), No. 2 131

Henri Menke

Description PEG LPEG

Sequence 𝑒1𝑒2 patt1 * patt2

Ordered choice 𝑒1|𝑒2 patt1 + patt2

Zero or more 𝑒∗ patt^0

One or more 𝑒+ patt^1

Optional 𝑒? patt^-1

And predicate &𝑒 #patt

Not predicate !𝑒 -patt

Difference patt1 - patt2

Table 1: Available parsing expressions
in LPEG with their name and correspond-
ing symbol in PEG. Note that the difference
operator is an extension in LPEG and not
available in PEG.

P"pizza" * R"09" -- "pizza4"

P(1) * P":" * R"09" -- "a:9"

• Ordered choice: The ordered choice parses the
first operand first and only if it fails continues
to the next operand. So the ordering is indeed
important.

R"az" + R"09" + S".,;:?!"

-- "a", "9", ";"

-- "+" fails to parse

• Zero or more, one or more, and optional:
These are all captured by the same construct
in LPEG, the exponentiation operator. A pos-
itive exponent 𝑛 parses at least 𝑛 occurrences
of the pattern, a negative exponent −𝑛 parses
at most 𝑛 occurrences of the pattern.

R"az"^0 + R"09"^1

-- "z86", "abcde99", "99"

R"az"^1 + R"09"^1

-- "z86", "abcde99"

-- "99" fails to parse

R"az"^-1 + R"09"^1

-- "z86", "99"

-- "abcde99" fails to parse

• And predicate, not predicate: These are spe-
cial in that they do not consume any input.
As might be expected, the not predicate only
matches if the parser it negates does not
match.

R"09"^1 * #P";"

-- "86;"

-- "99" fails to parse

P"for" * -(R"az"^1)

-- "for()"

-- "forty" fails to parse

• Difference: The difference operator matches
the first operand only if the second operand
does not match. This can be useful to match
C style comments which collect everything
between the first /* and the first */. However,
care must be taken that the second operand
cannot successfully parse parts of the first
operand. If that is the case, the resulting rule
will never match.

P"/*" * (1 - P"*/")^0 * P"*/"

-- "/* comment */"

P"helloworld" - P"hell"

-- will never match!

6 Simple examples

Let us study a simple example which parses two
words separated by a space. The LPEG grammar is
stored in the variable rule. The rest of the example
shows the boilerplate that is necessary.

local lpeg = require"lpeg"

local P, R = lpeg.P, lpeg.R

local input = "cosmic pizza"

local rule = R"az"^1 * P" " * R"az"^1

print(rule:match(input) .. " of " .. #input)

This will print on the terminal “13 of 12” because all
the input has been consumed and the parser stopped
at the end of input, which is the 13th “character” in
this string. As we can see, the function rule:match

parses a given input string using a given parser and
returns the number of characters parsed. Another
way to invoke a parse is using lpeg.match(rule,

input), which is equivalent to rule:match(input).

132 TUGboat, Volume 40 (2019), No. 2

Parsing complex data formats in LuaTEX with LPEG

The next example is slightly more complicated.
We will parse a comma-separated list of colon-
separated key–value pairs.

local input = [[foo : bar ,

gorp : smart ,

falcou : "crazy frenchman" ,

name : sam]]

The double square brackets denote one of Lua’s so-
called long strings, which can have embedded new-
lines. The colons and commas that separate keys
and values, and entries, respectively, are surrounded
by whitespace. To match all possible optional white-
space we use the set parser and the optional expres-
sion.

local ws = S" \t\r\n"^0

With this, the specification for the key field is one or
more letters or digits surrounded by optional white-
space.

local name = ws * R("az", "AZ", "09")^1 * ws

The value field, on the other hand, can have either
the same specification as the key field, which does
not allow embedded whitespace, or it can be a quoted
string, which allows anything between the quotes. To
this end we specify the grammar for a quoted string,
which is simply the double quote character, followed
by anything that is not a double quote, followed
by another double quote. The whole thing may be
surrounded by optional whitespace.

local quote =

ws * P'"' * (1 - P'"')^0 * P'"' * ws

Therefore an entry in the key–value list is a name,
followed by a colon, followed by either a quote or a
name, followed by at most one comma. The whole
key–value list may have any number of entries, so we
apply the zero or more expression to the aforemen-
tioned rule.

local keyval =

(name * P":" * (quote + name) * P","^-1)^0

Matching the rule against the input in the same way
as the previous example gives “67 of 66”.

7 Grammars

The literal parser P has a second function. If its argu-
ment is a table, the table is processed as a grammar.
The table has the following layout:

P{"<entry point>",

<non-terminal> = <parsing expression>

...

}

The string “entry point” is the name of the rule to be
processed first. Afterwards the rules are listed in the
same manner as they were assigned to variables in the
previous example. To refer to non-terminal symbols
from within the grammar, the lpeg.V function is
used. Collecting the aforementioned rules into a
grammar could look like this:

local rule = P{"keyval",

keyval =

(V"name" * P":" * (V"quote" + V"name")

* P","^-1)^0,

name =

V"ws" * R("az", "AZ", "09")^1 * V"ws",

quote =

V"ws" * P'"' * (1 - P'"')^0 * P'"'

* V"ws",

ws = S" \t\r\n"^0,

}

It becomes a little more verbose because names of
non-terminal symbols have to be wrapped in V"...".
That is why I personally do not normally include
general-purpose rules like the ws rule in the example
into the grammar, because chances are high I want to
use it elsewhere again. The level of verbosity might
seem like a disadvantage but the encapsulation is
much better this way. It also makes it much easier
to define recursive rules, as we will see later.

8 Attributes

In the previous section we have parsed some inputs
and confirmed their validity by a successful parse, re-
ceiving the length of the parsed input. An important
question remains: how do we extract information
from the input? When a parse is successful, the basic
parsers synthesize the value they encountered, which
I am going to call their attributes. These attributes
can be extracted using LPEG’s capture operations.

The simplest capture operation is lpeg.C(patt)
which simply returns the match of patt. Here we
parse a sequence of only lowercase letters and print
the result.

local rule = C(R"az"^1)

print(rule:match"pizza") -- pizza

Another, very powerful, capture is the table cap-
ture lpeg.Ct(patt) which returns a table with all
captures from patt. This allows us to write a sim-
ple parser for comma-separated values (CSV) in only
three lines:

local cell = C((1 - P"," - P"\n")^0)

local row = Ct(cell * (P"," * cell)^0)

local csv = Ct(row * (P"\n" * row)^0)

local t = csv:match[[

TUGboat, Volume 40 (2019), No. 2 133

Henri Menke

a,b,c

d,e,f

g,,h]]

The variable t now holds the table representing
the CSV file and we can access the elements by
t[<row>][<column>], e.g. to access the “e” in the
middle of the table we can use t[2][2].

There are two more captures we need to see,
the grouping capture and the folding capture. The
grouping capture lpeg.Cg(patt [, name]) groups
the values produced by patt, optionally tagged with
name. The grouping capture is mostly used in con-
junction with the folding capture lpeg.Cf(patt,

func) which folds the captures from patt with the
function func. The most common application is
parsing of key–value lists. The key and the value are
captured independently at first but are then grouped
together. Finally they are folded together with an
empty table capture.

local key = C(R"az"^1)

local val = C(R"09"^1)

local kv = Cg(key * P":" * val) * P","^-1

local kvlist = Cf(Ct"" * kv^0, rawset)

kvlist:match"foo:1,bar:2"

9 More useful parsers

Now that we know how to parse input and extract
data, we can start constructing parsers that are more
useful. We will next write a parser for floating point
numbers. The parser presented here has some limi-
tations. It doesn’t handle an integer part that only
contains a sign, i.e. -.1 will not parse. It also doesn’t
handle hexadecimal, octal, or binary literals. (Con-
sider these to be left as exercises to the reader.)

With these limitations in mind, let’s take a look
at what floating point numbers look like:

integer part

+123⏞
fractional part

.45678⏞⏞⏞⏞⏞
⏟⏟⏟⏟⏟⏟⏟⏟⏟

mantissa

e-90⏟
exponent

With that we formulate the first rule in our grammar,
namely

number = (V"int" * V"frac"^-1 * V"exp"^-1)

/ tonumber,

i.e. a number has an integer part, followed by an
optional fractional part, followed by an optional ex-
ponent. The apparent division by tonumber that
we see here is called a semantic action. A semantic
action is applied to the result of the parser ad-hoc.
In general it is a bad idea to use semantic actions,

because they don’t fit into the concept of recursive
parsing and introduce additional state to keep track
of. Nevertheless there are some cases when semantic
actions are useful, as in this case, where we know
that what we just parsed is a number and we merely
convert the resulting string into Lua’s number type.

Now let’s parse the integer part. Here I show all
the rules that go into it at once.

int = V"sign"^-1 * (R"19" * V"digits"

+ V"digit"),

sign = S"+-",

digit = R"09",

digits = V"digit" * V"digits" + V"digit",

So the integer part is an optional sign, followed by a
number between 1 and 9, followed by more digits or
just a single digit. A sign is one of the characters +

or -. A single digit is just a number between 0 and
9. The digits rule is recursive, because many digits
are either a single digit followed by more digits, or
just that single digit.

Next is the fractional part, which is straightfor-
ward. It is just a period followed by digits.

frac = P"." * V"digits",

Last, the exponential part, which is also rela-
tively simple. It is either a lower- or uppercase E,
followed by an optional sign, followed by digits.

exp = S"eE" * V"sign"^-1 * V"digits",

Now let’s check this parser with some test input.
We expect the result to be the same number that we
input and we expect it to be of Lua type number.

local x = number:match("+123.45678e-90")

print(x .. " " .. type(x))

Output: 1.2345678e-88 number
The full code of the number parser is included

in the JSON parser in the Appendix.

10 Complex data formats: JSON

JSON is short for JavaScript Object Notation and is
a lightweight data format that is easy to read and
write for both humans and machines. JSON knows
six different data types of which two are collections.
These are null, bool, string, number, array, and
object. This maps nicely to Lua where null maps
to nil, bool maps to boolean, string and number

map to their like-named counterparts, and array

and object both map to Lua’s table type.
Finally, on the top level there is always an object.

Here’s an example JSON file [5]:

{"menu": {

"id": "file",

134 TUGboat, Volume 40 (2019), No. 2

Parsing complex data formats in LuaTEX with LPEG

"value": "File",

"popup": {

"menuitem": [

{"value": "New",

"onclick": "CreateNewDoc()"},

{"value": "Open",

"onclick": "OpenDoc()"},

{"value": "Close",

"onclick": "CloseDoc()"}

]

}

}}

Before we begin writing a parser for this, let’s
introduce a few general purpose parsers first, which
are also not part of the grammar.

local ws = S" \t\n\r"^0

This rule matches zero or more whitespace char-
acters, where whitespace characters are space, tab,
newline and carriage return.

local lit = function(str)

return ws * P(str) * ws

end

This function returns a rule that matches a literal
string surrounded by optional whitespace. This is
useful to match keywords.

local attr = function(str,attr)

return ws * P(str) / function()

return attr

end * ws

end

This function returns an extension of the previous
rule, in that it matches a literal string and if it
matched returns an attribute using a semantic ac-
tion. This is very useful for parsing a string but
returning something unrelated, e.g. the null value
of JSON will be represented by Lua’s nil.

As mentioned before, at the top level a JSON

file expects an object, so this will be the entry point:

local json = P{"object",

As discussed before, JSON supports different kinds
of values, so we want to map these in our parsing
grammar.

value =

V"null_value" +

V"bool_value" +

V"string_value" +

V"number_value" +

V"array" +

V"object",

So, a value is any of the value types defined by the
JSON format. Now we have to define what these

values are and how to parse them. We begin with
the easiest ones, the null and bool values:

null_value = attr("null", nil),

bool_value = attr("true", true)

+ attr("false", false),

These two types are defined entirely by keyword
matching. We use the attr function to return a suit-
able Lua value. Next we define how to parse strings:

string_value = ws * P'"'

* C((P'\\"' + 1 - P'"')^0)

* P'"' * ws,

A string may be surrounded by whitespace and is en-
closed in double quotes. Inside the double quotes we
can use any character that is not the double quote,
unless we escape it with a backslash, as in \". The
value of the string without surrounding quotes is
captured. To parse number values, we will reuse the
number parser defined in the previous section

number_value = ws * number * ws,

This concludes the parsing of all the simple data
types. We move on to the aggregate types, starting
with the array.

array = lit"["

* Ct((V"value" * lit","^-1)^0)

* lit"]",

An array is thus a comma-separated list of values,
enclosed in square brackets. The list is captured as
a Lua table. The final and most complicated type to
parse is the object:

member_pair = Cg(V"string_value" * lit":"

* V"value") * lit","^-1,

object = lit"{"

* Cf(Ct"" * V"member_pair"^0, rawset)

* lit"}"

An object is a comma-separated list of key–value
pairs enclosed in curly braces, where a key–value pair
is a string, followed by a colon, followed by a value.
To pack this into a Lua table, we use the grouping
and folding captures mentioned above. This con-
cludes the JSON grammar.

}

The full code of the parser is given in the Appendix
with a little nicer formatting. Now we can go ahead
and parse JSON files.

local result = json:match(input)

The variable result will hold a Lua table which can
be indexed in a natural way. For example, if we had
parsed the JSON example given in the beginning of
this section, we could use

TUGboat, Volume 40 (2019), No. 2 135

Henri Menke

print(result.menu.popup.menuitem[2].onclick)

-- OpenDoc()

In this way, we could write configuration files for our
document, parse them on-the-fly when firing up Lua-
TEX, and configure the style and content according
to the specifications.

11 Summary and outlook

Parsing even complex data formats like JSON is
relatively easy using LPEG. A possible next step
would be to parse the LuaTEX input file in the
process_input_buffer callback and replace tem-
plates in the file with values from JSON.

Acknowledgements

I’d like to thank the TUG bursary for funding, which
supported me in attending this conference.

References

[1] R. Ierusalimschy, A text pattern-matching
tool based on Parsing Expression Grammars.
Software: Practice and Experience 39(3),
221–258 (2009).

[2] T. Hoekwater, LuaTEX. TUGboat 28(3),
312–313 (2007).
tug.org/TUGboat/tb28-3/

tb90hoekwater-luatex.pdf

[3] M. Caisse, Using Spirit X3 to Write Parsers.
CppCon 2015.
youtube.com/watch?v=xSBWklPLRv

[4] Wikipedia, Parsing expression grammar.
wikipedia.org/wiki/

Parsing_expression_grammar

[5] D. Crockford, JSON Example.
json.org/example.html

Appendix: Full code listing of JSON parser

local lpeg = require"lpeg"

local C, Cf, Cg, Ct, P, R, S, V =

lpeg.C, lpeg.Cf, lpeg.Cg, lpeg.Ct, lpeg.P,

lpeg.R, lpeg.S, lpeg.V

-- number parsing

local number = P{"number",

number = (V"int" * V"frac"^-1 * V"exp"^-1)

/ tonumber,

int = V"sign"^-1 * (R"19" * V"digits"

+ V"digit"),

sign = S"+-",

digit = R"09",

digits = V"digit" * V"digits" + V"digit",

frac = P"." * V"digits",

exp = S"eE" * V"sign"^-1 * V"digits",

}

-- optional whitespace

local ws = S" \t\n\r"^0

-- match literal string surrounded by whitespace

local lit = function(str)

return ws * P(str) * ws

end

-- match literal string and synthesize

-- an attribute

local attr = function(str,attr)

return ws * P(str) /

function() return attr end * ws

end

-- JSON grammar

local json = P{

"object",

value =

V"null_value" +

V"bool_value" +

V"string_value" +

V"number_value" +

V"array" +

V"object",

null_value =

attr("null", nil),

bool_value =

attr("true", true) + attr("false", false),

string_value =

ws * P'"' * C((P'\\"' + 1 - P'"')^0)

* P'"' * ws,

number_value =

ws * number * ws,

array =

lit"[" * Ct((V"value" * lit","^-1)^0)

* lit"]",

member_pair =

Cg(V"string_value" * lit":" * V"value")

* lit","^-1,

object =

lit"{"

* Cf(Ct"" * V"member_pair"^0, rawset)

* lit"}"

}

⋄ Henri Menke
9016 Dunedin
New Zealand
henrimenke (at) gmail dot com

136 TUGboat, Volume 40 (2019), No. 2

Design into 3D: A system for customizable
project designs

William Adams

Abstract

Design into 3D is a system for modeling parametric
projects for manufacture using CNC machines. It
documents using OpenSCAD to allow a user to in-
stantly see a 3D rendering of the result of adjusting
a parameter in the Customizer interface, saving pa-
rameters as JSON files which are then read into a
LuaLATEX file which creates a PDF as a cut list/setup
sheet/assembly instructions and uses MetaPost to
create SVG files which may be loaded into a CAM

tool. A further possibility is using a tool such as
TPL (Tool Path Language) to make files which are
ready to cut.

1 iTEX

It has been almost ten years since Prof. Knuth made
the earthshaking announcement of iTEX (see fig. 1;
my thanks to Robin Laakso, executive director who
kept track of her keepsake as I did not). For the
folks who were not fortunate enough to be able to
attend: youtube.com/watch?v=eKaI78K_rgA (from
tug.org/tug2010/program.html).

The announcement posited a successor to TEX
which would among other things, support 3D, and
output to:

• lasercutters
• embroidering machines
• 3D printers
• plasma cutters

all of which are examples of Computer Numeric Con-
trol (CNC) machines. Presumably other machines
such as mills and routers would also have been sup-
ported. While 3D printers have a straightforward
mechanism for creating parts (load a 3D file into a

Figure 1: iTEX keepsake

Figure 2: Shapeoko 3 (XXL)

“slicing” application), and laser and plasma cutters
are limited to 2D (with the possibility of repeated
passes for lasers), mills and routers afford the limita-
tion of a 2.5D movement of the tool over and around
the part, and the flexibility of using tooling with
different shapes which will allow efficient cutting of
surfaces with finishes not readily achieved with other
tools. They also afford the possibility of loading
stock larger than the working area and either cutting
it incrementally (known as tiling) or cutting only a
small portion of the stock (e.g., when cutting joinery
into the end of a board).

2 CNC machines

Since then, CNC machines have become far more
affordable and accessible, mostly due to the open
sourcing of the Enhanced Machine Controller,1 and
the development of Grbl which runs on the inexpen-
sive Arduino,2 with one early machine on its third
iteration3 (see fig. 2).

I happened to pick up a Shapeoko 1 (an open
source hobbyist CNC machine based on Bart Dring’s
MakerSlide,4 which uses the open source G-Code
interpreter Grbl running on an Arduino) early on,
and became involved in the project doing documen-
tation and so forth, and now work for the company
as off-site tech support.

3 CAD/CAM

CNC is driven by Computer Aided Design (CAD),
and Computer Aided Manufacturing (CAM). Most
applications thus far developed for this follow the
same basic concept: Draw a design or shape, select
elements of it and assign appropriate toolpaths to
those elements. This works, but can be tedious
and repetitive, especially when a design needs some

1 www.nist.gov/publications/use-open-source-

distribution-machine-tool-controller
2 bengler.no/grbl
3 carbide3d.com/shapeoko
4 www.kickstarter.com/projects/93832939/

makerslide-open-source-linear-bearing-system

William Adams

TUGboat, Volume 40 (2019), No. 2 137

Figure 3: Carbide Create user interface

adjustment such as size or the inclusion or removal
of a feature.

Even a simple, small, round box scrolls off the
interface when enumerating all of its toolpath set-
tings, making it tedious to transfer said settings
to a different project, let alone set them up in the
first place. (Fig. 3 shows Carbide Create,5 a freely
available CAD/CAM program).

Some 3D CAM tools do afford options for export-
ing settings and loading them into different projects,
but then one is restricted to the toolpaths which a 3D
CAM tool can create, and must work up a 3D model
of the project in question. While the latter may not
be much of a limitation, the former certainly is.

4 Tagging vs. parameters

TEX works from the idea of a manuscript, assign-
ing to it macros/tagging/markup which then allow
the text to be typeset. Moreover, (LA)TEX typically
doesn’t describe a document as fully as would be
needed to make it into a finished object, omitting con-
siderations such as signatures, binding method, and
usually the design of a physical cover or dust jacket.
Unfortunately, the CAD/CAM workflow doesn’t al-
low for the sort of free-flowing narrative which even
a rigorous scientific paper would allow. For exam-
ple, it may be possible to define a potential project
concisely:

• Project type: Box
• Shape: Round
• Lid style: Fitted
• Number of compartments: 1
• Box dimensions:

– Diameter 50.8mm
– Height 16.175mm

5 carbide3d.com/carbidecreate

but there are no readily accessible tools for taking
such specifications (or parameters) and directly and
immediately creating the design in a format a com-
puter can work with. Parametric tools do allow one
to create such designs, but the design has to be
created (or programmed) in such a tool.

5 Parametric CAD

That last does indicate a class of tool which is suited
for this sort of work: Parametric CAD applications
allow one to use numbers, formulae, and algorithms
directly to define a design. Commercial examples:

• Autodesk Fusion 360/Inventor
• CATIA V5

• NX

• Onshape
• Pro Engineer
• Rhino 3D (when using the Grasshopper plug-in)
• Solid Edge
• SolidWorks

Many open source applications have also been devel-
oped which afford this style of design:

• FreeCAD —unfortunately somewhat limited in
the calculations which may be performed; using
a spreadsheet is advocated as a work-around6,
and importing OpenSCAD files is also an option.

• NaroCAD

• OpenVSP (Vehicle Sketch Pad from NASA)
• SolveSpace— fully graphical, with parameter

alteration requiring selection.
• Varkon

But the most notable implementations are those
which are programmatic in nature. Arguably there
are too many to name (especially as any program-
ming language can be one), but of special note are:

• Antimony — regrettably available for only GNU/
Linux and Mac OS X; previous versions were the
subject of the developer, Matt Keeter’s, aca-
demic thesis.

• Maker.JS—a Microsoft Garage Project, this
tool supports 2D design, but requires special
effort to create a 3D file or preview.

• OpenSCAD — the most popular tool, widely used
for 3D printing, and is notable for support on the
popular project-sharing site Thingiverse which
inaugurated the “Customizer” feature.

• PLaSM

• Tool Path Language (TPL)—a relatively re-
cent development, this is a JavaScript variant
supporting creation of G-Code to control the
machine.

6 floatingcam.com/blog/freecad-parametric-design

Design into 3D: A system for customizable project designs

138 TUGboat, Volume 40 (2019), No. 2

Figure 4: Blockly interface and graphical code of the
initial prototype

This attempt at a representative sampling includes
the most popular implementation, OpenSCAD, which
was used for the implementation of this project.

6 BlocksCAD

Initial development was done using the Blockly im-
plementation of OpenSCAD BlocksCAD (see fig. 4).7

There are a number of similar tools, with varying
tradeoffs, compromises, and difficulties. A better
tool, with better graphical integration (specifically,
the ability to select nodes, edges, or faces and drag
them) would make for even easier development.

BlocksCAD allows one to save a project as an
XML file, and to export to OpenSCAD. Similar tools
include OpenJSCAD and Flood Editor.

7 OpenSCAD

BlocksCAD allowed a rapid development without
worrying about the trivialities of coding such as the
placement of semi-colons and an easy conversion into
the textual OpenSCAD.

More important for the project is where the
Customizer features (unfortunately unsupported by
BlocksCAD) were implemented; see fig. 5.

8 Presets

Once a design has been worked up using the cus-
tomization interface, the parameters must be passed
to other tools. Fortunately, OpenSCAD implements
saving design settings as “presets” in a JSON file:

{

"parameterSets": {

"export": {

"$fn": "45",

"Boxshape": "0",

"Clearance": "0.01",

7 www.blockscad3d.com/editor

Figure 5: OpenSCAD design with Customizer

"Height": "13.5",

"Length": "66.675",

"PARTNO": "0",

"Thickness": "6.35",

"Width": "209.55",

"depth": "25.4",

"diameter": "3.175",

"dividers_lengthwise": "1",

"dividers_thickness": "3.175",

"dividers_widthwise": "2",

"endmillshape": "1",

"largecompartment": "2",

"partspacing": "12.7"

}

},

"fileFormatVersion": "1"

}

It is then a matter of loading the JSON data
into variables. The first tool which makes use of this
is LuaLATEX, as well as the embedded METAPOST

interpreter. Fortunately, the Lua scripting language
has a tool available for importing JSON data.8 Also,
Henri Menke (at the conference) demonstrated an
elegant system for reading in JSON which merits
investigation (see pp. 129–135 in this issue).

\newcommand{\boxspecification}{export}

%\typein[\boxspecification]{What preset to use?}

\begin{luacode}

function read(file)

local handler = io.open(file, "rb")

local content = handler:read("*all")

handler:close()

return content

end

JSON = (loadfile "JSON.lua")()

local table = JSON:decode(read(

"designinto3dboxfitted.json"))

8 regex.info/blog/lua/json

William Adams

TUGboat, Volume 40 (2019), No. 2 139

First, define a macro for each value which may
then be redefined at need:

% "PARTNO": "0",

\newcommand{\PARTNO}{\relax}

\newcommand{\definePARTNO}[1]

{\renewcommand{\PARTNO}{#1}}

Then read in each variable from the selected
preset (in this case, assigned to the LATEX macro
\boxspecification):

PARTNO = (table[’parameterSets’]

[’\boxspecification’][’PARTNO’])

Define the contents of the matching TEX macro:

\definePARTNO{\directlua{tex.print(PARTNO)}}

9 Drawing

Once one has all the numbers loaded, it’s a matter
of defining macros (the actual path definitions are
quite lengthy):

def rp (expr x,y,z,w,l,t,d) = draw 〈outer path〉;
enddef;

def rpf (expr x,y,z,w,l,t,d,f) =

fill 〈inner block〉 cycle withgreyscale f;

enddef;

def rpu (expr x,y,z,w,l,t,d) =

unfill 〈boundary〉 -- cycle; enddef;

and then using them to draw:

beginfig(1);

rpf(-diam,-diam,0, Width*u+diam*2, Length*u

+diam*2, Thickness*u, diameter*u,0.0);

rpu(0,0,0,Width*u, Length*u, Thickness*u, diam);

rpf(Thickness/2*u-halfclearance*u, Thickness/2*u

-halfclearance*u, 0, Width*u-Thickness*u

+Clearance*u, Length*u-Thickness*u+Clearance*u,

Thickness *u-Thickness/4*u, diam,0.5);

endfig;

and to fill in the project description:

\sbox{\projectdescription}{\vtop{PARTNO:

\dltw{PARTNO}\par

Boxshape: \dltw{Boxshape}\par

Clearance: \dltw{Clearance}\par

Height: \dltw{Height}\par

Length: \dltw{Length}\par

Thickness: \dltw{Thickness}\par

Width: \dltw{Width}\par

depth: \dltw{depth}\par

diameter: \dltw{diameter}\par

dividers:\par

\quad lengthwise: \dltw{dividerslengthwise}\par

\quad thickness: \dltw{dividersthickness}\par

\quad widthwise: \dltw{dividerswidthwise}\par

PARTNO: 0
Boxshape: 0
Clearance: 0.01
Height: 13.5
Length: 66.675
Thickness: 6.35
Width: 209.55
depth: 25.4
diameter: 3.175
dividers:
 lengthwise: 1
 thickness: 3.175
 widthwise: 2
endmillshape: 1
largecompartment: 2
partspacing: 12.7

Figure 6: Typeset project plans and parameters

Figure 7: MetaPost output

endmillshape: \dltw{cuttershape}\par

largecompartment: \dltw{largecompartment}\par

partspacing: \dltw{partspacing}}}%

to end up with what’s shown in fig. 6.
This is a basic representation — it would be pos-

sible to elaborate on that, adding colour and a depth
mapping notation, and identify the parts (in this case,
lid and base), and for more complex instructions, gen-
erate assembly instructions. It is also possible to add
geometry and colour code such images so that they
can be cut out directly.

The system includes code for making SVG files
which may be directly imported into a CAM tool.

outputtemplate := "%j-%c.svg";

prologues := 3;

outputformat := "svg";

input designinto3dboxfittedpreamble;

input designinto3dboxfittedfigure1;

input designinto3dboxfittedfigure2;

input designinto3dboxfittedpostamble;

The preamble and postamble files have macros
and code for cleaning things up. The final drawings
are shown in fig. 7.

Creating SVG files allows one to use METAPOST

only on the drawings, which is quick and efficient,
and to use an SVG viewer (here, nomacs from Image
Lounge (nomacs.org), shown in fig. 8) to interac-
tively edit and remake the files, adjusting until things
are as desired.

Once the files were ready, they could be im-
ported into a CAM tool (in this case, the free Carbide
Create) and toolpaths assigned so as to prepare the

Design into 3D: A system for customizable project designs

140 TUGboat, Volume 40 (2019), No. 2

Figure 8: nomacs interactive interface

Figure 9: Toolpaths in Carbide Create

project for cutting, as shown in fig. 9. This how-
ever, limits one to the capabilities of the program in
question, and requires a fair bit of manual effort.

10 Coding

The normal output for toolpaths is G-Code (RS-274),
developed by the Electronic Industries Alliance in
the early 1960s. For lack of a CAM tool which will
directly map such vector greyscale images to efficient
toolpaths we have instead chosen to work up a pro-
gram based on CAMotics (camotics.org) which will
import the JSON data parameters and directly create
the toolpaths which will allow the design to be cut
out, shown in fig. 10. The results of running this are
in fig. 11.

In addition to reading in the parameters, ide-
ally this tool would create optimal toolpaths using
advanced features such as:

• ramping in—moving into a cut on a diagonal,
or in a helical motion, rather than a straight
vertical plunge — endmills are four times better
at side-to-side cutting than they are at drilling.

Figure 10: Code for making toolpaths

Figure 11: Preview of toolpaths

• trochoidal toolpaths—shown in the curlicue
paths around the perimeter of the part in fig. 11,
trochoidal toolpaths allow efficient removal of
material in a narrow slot by reducing tooling
engagement, avoiding the full engagement of the
machine attempting to move directly through
material which has not yet been cut away.

• adaptive clearing—similar to trochoidal tool-
paths, this is an optimized motion to clear an
area, minimizing redundant motion while keep-
ing tooling engagement at or near optimum.

• roughing clearance and finishing passes—the
best finish and most precise/accurate parts are
achieved by allowing the machine to remove a
minimal amount of material at the end of a
cut — much of the complexity shown in the tool-
paths shown above were the result of manually
implementing these.

11 Cutting

Once toolpaths are created, whether programmati-
cally or using a typical CAM tool, the project may
then be cut on the machine (fig. 12).

William Adams

TUGboat, Volume 40 (2019), No. 2 141

Figure 12: Project cutting

Figure 13: Post-processing after the cut

Once cut, the part will usually require some sort
of post-processing (fig. 13) — at a minimum sanding,
but possibly cutting tabs to release it from surround-
ing stock, or cutting away material at the bottom of
the profile which was not completely removed.

But once, post-processed, one has a completed
project (fig. 14).

12 Concepts

The Tool Path Language program proves the concept
of beginning-to-end automation, but raises further
questions, and leaves much room for improvement:

• Each project design must be worked up as a col-
lection of specific programs — is there some way
to have a more general design language which
allows a more natural description of designs?

• The OpenSCAD customization interface is quite
limited—an early version attempted to imple-
ment a natural switching between Imperial and
metric units, but this was so awkward that it
was abandoned — using another tool to develop
a front-end would seem better.

• It requires that the user download, install, and
use a number of tools (OpenSCAD, LuaLATEX,
CAMotics/Tool Path Language)—this on top

Figure 14: Completed project

of the normal program(s) required to run the
machine.

12.1 Shapes

The above code, rather simplistically, only requires
clearing rounded corner pockets. More complex
projects will require macros/functions for additional
shapes, and names for them. Arranging them by the
number of points, we find that all but a few have
an accepted single word nomenclature (or suitably
concise description):

• 0

– circle
– ellipse (requires some sort of non-arc curve)

∗ egg-shaped (oval)

– annulus (one circle within another, forming
a ring)

– superellipse (see astroid below)

• 1

– cone with rounded end (arc) — see also
“sector” under 3 below

• 2

– semicircle/circular/half-circle segment (arc
and a straight line); see also sector below

– arch—curve possibly smoothly joining a
pair of straight lines with a flat bottom

– lens/vesica piscis (two convex curves)
– lune/crescent (one convex, one concave

curve)
– heart (two curves)
– tomoe (comma shape) —non-arc curves

• 3

– triangle

∗ equilateral

∗ isosceles

∗ right triangle

∗ scalene

– (circular) sector (two straight edges,
one convex arc)

∗ quadrant (90°)

∗ sextants (60°)

∗ octants (45°)

Design into 3D: A system for customizable project designs

142 TUGboat, Volume 40 (2019), No. 2

– deltoid curve (three concave arcs)
– Reuleaux triangle (three convex arcs)
– arbelos (one convex, two concave arcs)
– two straight edges, one concave arc

∗ An example is the hyperbolic sector9

– two convex, one concave arc

• 4

– rectangle (including square)
– parallelogram
– rhombus
– trapezoid/trapezium
– kite
– ring/annulus segment (straight line,

concave arc, straight line, convex arc)
– astroid (four concave arcs)
– salinon (four semicircles)
– three straight lines and one concave arc

Is the list of shapes for which there are not widely
known names interesting for its lack of notoriety?

• two straight edges, one concave arc — oddly, an
asymmetric form (hyperbolic sector) has a name,
but not the symmetrical—while the colloqui-
al/prosaic “arrowhead” was considered, it was
rejected as being better applied to the shape be-
low. (It’s also the shape used for the spaceship
in the game Asteroids (or Hyperspace), but that
is potentially confusing with astroid.) At the
conference, Prof. Knuth suggested “dart” as a
suitable term.

• two convex, one concave arc—with the above
named, the term “arrowhead” is freed up to use
as the name for this shape.

• three straight lines and one concave arc.

The first in particular is sorely needed for this project
(it’s the result of inscribing a circle in a square or
other regular geometric shape). Do these shapes
have names in any other languages which might be
used instead?

A final consideration: It has been said that there
are two types of furniture — the system fails to take
that into account or to leverage on it.

12.2 Two types of furniture

What are the two types of furniture?

• Boxes

• Platforms

This first project has involved making two-piece
boxes out of solid materials, simply removing what is
not needed for the design. While this works for small

9 en.wikipedia.org/wiki/Hyperbolic_sector and

www.reddit.com/r/Geometry/comments/bkbzgh/is_there_a_

name_for_a_3_pointed_figure_with_two

pieces, it is necessarily limited to the degree to which
it can be scaled up, and quickly becomes profligately
wasteful of material. The traditional solution for this
is joinery, of which there are many sorts, and thus
far for CNC, usually involve complicated fixtures and
jigs and multiple setups.

12.3 Further steps

Developing a solution which could incorporate joinery
efficiently is one obvious next step. All of the pockets
assume 2.5D cutting on a single plane—the ability
to make cuts at an angle would afford a welcome
flexibility which is needed in some sorts of joinery.
Similarly, the ability to make cuts using arbitrary
endmill shapes may enable designs as yet undreamed
of. Possibilities:

• Joinery
• General purpose design frameworks/grammars
• Special purpose tools— there are many extant

project generators for various sorts of boxes,
furniture (chairs and workbenches) gears, geog-
raphy, clocks, even houses—other possibilities
include telescopes, cribbage boards, &c.

• Would it be possible to create a font where a
series of letters would describe discrete aspects
of a design, assign toolpaths to the appropriate
letters using that font, and then to change the
design by just changing the text?

• Ornamentation — that’s next year’s Kickstarter
and presentation — ideas include Sheridan (tra-
ditional Western floral leatherworking), Celtic
knots and letters, and Arabesques, as well as
various arrangements of text.

13 Continuing work

This was initially a (funded) Kickstarter.10 It is being
developed as a wiki page on the Shapeoko project11

with code on GitHub.12 A number of sample files and
projects have already been made13,14,15; and this is
tied into a Thingiverse project16 and an online box
generator.17

⋄ William Adams
willadams (at) aol dot com

10 kickstarter.com/projects/designinto3d/design-

into-3d-a-book-of-customizable-project-desi
11 wiki.shapeoko.com/index.php/Design_into_3D
12 github.com/WillAdams/Design_Into_3D
13 cutrocket.com/p/5c9fb998c0b69
14 cutrocket.com/p/5cb536396c281
15 cutrocket.com/p/5cba77918bb4b
16 www.thingiverse.com/thing:3575705
17 chaunax.github.io/projects/twhl-box/twhl.html

William Adams

The design of the HINT file format

Martin Ruckert

Abstract

The HINT file format is intended as a replacement
of the DVI or PDF file format for on-screen reading
of TEX output. Its design should therefore meet the
following requirements: reflow of text to fill a win-
dow of variable size, convenient navigating of text
with links in addition to paging forward and back-
ward, efficient rendering on mobile devices, simple
generation from existing TEX input files, and an ex-
act match of traditional TEX output if the window
size matches TEX’s paper size.

This paper describes the key elements of the
design and motivates the design decisions.

Why do we need a new file format?

The first true output file format for TEX was the DVI

format [3]. When PostScript became available, it
was soon supplemented by dvips [7], and now, most
people I know use pdftex to produce TEX output in
PDF format. There are two good reasons for that:
partly, the PDF format is a near-perfect match [4]
for the demands of the TEX typesetting engine, but
first and foremost, the PDF format is in widespread
use. It enables us to send documents produced with
TEX to practically anybody around the globe and
be sure that the receiver will be able to open the
document and that it will print exactly as intended
by its author (unless a font is neither embedded in
the file nor available on the target device) .

But the main limitation of the PDF format is
its inherent inability to adapt to the given window
size. For reading documents on mobile devices, the
HTML format is a much more convenient format.
Part of the concept of HTML is a separation of con-
tent and presentation: the author prepares the con-
tent, the browser decides on the presentation—at
least in principle. It turns out that designers of web
pages spare no effort to control the presentation, but
often the results are poor. Different browsers have
different ideas about presentation, users’ preferences
and operating systems interfere with font selection,
and all that might conflict with the presentation the
author had in mind.

When it comes to ebooks, the popular epub for-
mat [2] is derived from HTML and inherits its advan-
tages as well as its shortcomings. As a consequence,
ebooks when compared with printed books are often
of inferior quality.

TUGboat, Volume 40 (2019), No. 2 143

What is needed is a document format which
meets the demands of the TEX typesetting engine
and that gives the author as much control over the
presentation as possible but still can adapt to a given
paper format—be it real or electronic paper. Build-
ing on previous work [8, 9], these two design objec-
tives guided the development of the HINT file format.

While the TEX typesetting engine, its internal
representation of data, its algorithms, and its de-
bugging output, was the driving force of the devel-
opment of the HINT file format, giving the whole
project its name (the recursive acronym for “HINT

Is Not TEX”), the result is not limited to the TEX
universe. In the contrary, it makes the best parts of
TEX available to any system that uses the HINT file
format.

Faithful recording of TEX output

At the beginning of the design, the primary necessity
was the ability to faithfully capture the output of the
TEX typesetting engine.

To build pages, TEX adds nodes to the so-called
“contribution list”. The content of a HINT file is ba-
sically a list of all these nodes, from which a viewer
can reconstruct the contributions and build pages
using TEX’s original algorithms. So with few excep-
tions, TEX nodes are matched one-to-one by HINT

nodes.
Of course, we need characters, ligatures, kerns,

rules, hlists and vlists; and as in TEX, dimensions
are expressed as scaled points. But even a sim-
ple and common construction like \hbox to \hsize

{. . . } requires new types of nodes: this is a hori-
zontal list that may contain glue nodes and has a
width that depends on \hsize which is not known
when the HINT file is generated. To express di-
mensions that depend on \hsize and \vsize, HINT

uses linear functions w + h · \hsize + v · \vsize,
called extended dimensions. Linear functions are a
good compromise between expressiveness and sim-
plicity. The computations that most TEX programs
perform with \hsize and \vsize are linear and in
the viewer, where \hsize and \vsize are finally
known, extended dimensions are easily converted
to ordinary dimensions. Necessarily, HINT adopts
TEX’s concepts of stretchability, shrinkability, glue,
and leaders.

One of the highlights of TEX is its line breaking
algorithm. And because line breaking depends on
\hsize, it must be performed in the viewer. But
wait—an expensive part of line breaking is hyphen-
ation and this can be done without knowledge of
\hsize. So HINT defines a paragraph node, its width

The design of the HINT file format

is an extended dimension, and all the words in it con-
tain all possible hyphenation points in the form of
TEX’s discretionary hyphens. To maintain complete
compatibility between TEX and HINT, two types of
hyphenation points had to be introduced: explicit
and automatic. TEX uses a three pass approach for
breaking lines: In the first pass, TEX does not at-
tempt automatic hyphenation and uses only discre-
tionary hyphens provided by the author. Likewise
HINT will use in its first pass only the explicit hy-
phenation points. Given the same value of \hsize,
TEX and HINT will produce exactly the same line
breaks. In a paragraph node, HINT also allows vad-
just nodes and a new node type for displayed for-
mulas to make sure that the positioning of displayed
equations and their equation numbers is exactly as
in TEX.

The present HINT format also has an experi-
mental image node that can stretch and shrink like
a glue node. Therefore, images stretch or shrink to-
gether with the surrounding glue to fill the enclosing
box. The insertion of images in TEX documents is
common practice. But TEX treats images as “exten-
sions” that are not standardized. In a final version
of HINT, I expect to have a more general media node.
I think it is better to have a clearly defined, limited
set of media types that is supported in all imple-
mentations than a wide variation of types with only
partial support.

One node type of TEX that is not present in
HINT is the mark node. TEX’s mark nodes contain
token lists, the “machine code” for the TEX inter-
preter, and for reasons explained next, HINT does
not implement token lists.

Efficient and reliable rendering

On mobile devices, rendering must be efficient and
files must be self-contained. To meet these goals,
the proper foundation is laid in the design of the file
format.

The most important decision was to ban the
TEX interpreter from the rendering application. A
HINT file is pure data. As a consequence, TEX’s out-
put routines (and with them mark nodes) were re-
placed by a template mechanism. Templates, while
not as powerful as programs, will always terminate
and can be processed efficiently. Whether they offer
sufficient flexibility remains to be seen. It is a fact,
however, that very few users of TEX or LATEX write
their own output routines. So it can be expected
that a collection of good templates will serve most
authors well.

144 TUGboat, Volume 40 (2019), No. 2

The current template mechanism of HINT is still
experimental. It is sufficient to replace the output
routines of plain TEX and LATEX.

HINT files contain all necessary resources, no-
tably fonts and images, making them completely
self-contained. Embedding fonts makes HINT files
larger— the effect is more pronounced for short texts
and less significant for large books—but it makes
HINT files independent of local resources and of lo-
cal character encodings. Indeed, a HINT file does not
encode characters, it encodes glyphs. While HINT

files use the UTF-8 encoding scheme, it is possible
to assign arbitrary numbers to the glyphs as long
as the assignment in the font matches the assign-
ment in the text. The only reason not to depart
from the standard UTF-8 encoding is to maximize
compatibility with other software, e.g., to search for
user-entered strings or for text to speech translation.

Zoom and size changes

On mobile devices it is quite common to switch
within one application between landscape or por-
trait mode to use the screen space as efficiently as
possible. Further, users usually can adjust the size
of displayed content by zooming in or out.

For rendering a HINT file, these operations sim-
ply translate into a change of hsize and vsize,
with consequences for line and page breaking. While
changing line breaks affects only individual para-
graphs, changing a page break has global implica-
tions, making precomputing page breaks impracti-
cal. Consequently, the HINT file format must sup-
port rendering either the next page or the previous
page based solely on the top or bottom position of
the current page. In turn, this implies that it must
be possible to parse the content of a HINT file in
both forward and backward directions.

A HINT file encodes TEX’s contribution list in
its content section. To support bidirectional pars-
ing, each encoding of a node starts with a tag byte
and ends with that same tag byte. From the tag
byte, the layout of the encoding can be derived. So
decoding in the backward direction is as simple as
decoding in the forward direction.

Changes in TEX’s parameters, for example para-
graph indentation or baseline spacing, pose another
problem for bidirectional parsing. HINT solves this
problem by using a stateless encoding of content. All
parameters are assigned a permanent default value.
To specify these defaults, HINT files have a definition
section. Any content node that needs a deviation
from the default values must specify the new val-
ues locally. To make local changes efficient, nodes

Martin Ruckert

in the content section can reference suitable prede-
fined lists of parameter values specified again in the
definition section, described next.

Simple and compact representation

At the top level, a HINT file is a sequence of sec-
tions. To locate each section in the file, the first
section of a HINT file is the directory section: a se-
quence of entries which specify the location and size
of each section. The first entry in the directory sec-
tion, the root entry, describes the directory section
itself. The HINT file format supports compressed
sections according to the zlib specification [1]. Us-
ing the directory, access to any section is possible
without reading the entire file.

The directory section is preceded by a banner
line: It starts with the four byte word hint and the
version number; it ends with a line-feed character.
The directory section is followed by two mandatory
sections: the definition section and the content sec-
tion. All further sections, containing fonts, images,
or any other data, are optional. The size of a sec-
tion must be less than or equal to 232 bytes. This
restriction is strictly necessary only for the content
section. It sets a limit of about 500 000 pages and
ensures that positions inside the content section can
be expressed as 32-bit numbers.

For debugging, the specification of a HINT file
also describes a “long” file format. This long file
format is a pure ASCII format designed to be as
readable as possible. Two programs, stretch and
shrink, convert the short format to the long for-
mat and back. They are literate programs [5], and
constitute the format specification [10].

Since large parts of a typical content section
contain mostly character sequences, there is a spe-
cial node type, called a text node, optimized for the
representation of plain text. It breaks with two con-
ventions that otherwise are true for any other node:
The content of a text node cannot be parsed in the
backward direction, and it depends on a state vari-
able, the current font. To mitigate the requirement
for forward parsing, the size of a text node is stored
right before the final tag byte. This enables a parser
to move from the final tag byte directly to the be-
ginning of the text. Since text nodes cannot span
multiple paragraphs, they are usually short.

Inside a text node, all UTF-8 codes in the range
25 + 1 to 220 encode a character in the current font;
codes from 0x00 to 0x20 and 0xF8 to 0xFF are used
as control codes. Some of these are reserved as
shorthand notation for frequent nodes. For exam-
ple, the space character 0x20 encodes the interword

TUGboat, Volume 40 (2019), No. 2 145

glue, and others introduce font changes or mark the
start of a node given in its regular encoding.

The two forms of content encoding, as regular
nodes or inside a text node, introduce a new require-
ment: when decoding starts at a given position, it
must be possible to decide whether to decode a reg-
ular node, a UTF-8 code, or a control code. Control
codes have only a limited range and the values of
tag bytes can be chosen to avoid that range. Con-
flicts between UTF-8 codes and tag bytes cannot be
avoided, hence positions inside text nodes are re-
stricted to control codes. A position of an arbitrary
character inside a text node can still be encoded be-
cause there is a control code to encode characters
(with a small overhead).

Clear syntax and semantics

Today, there are many good formal methods to spec-
ify a file format, and the time when file formats were
implicit in the programs that would read or write
these files seems like ancient history. The specifi-
cation of the HINT file format, however, is given as
two literate programs: stretch and shrink. The
first reads a HINT file and translates it to the “long”
format and the second goes the opposite direction
and writes a HINT file.

Of course, these programs use modern means
such as regular expressions and grammar rules to
describe input and output and are, to a large extent,
generated from the formal description using lex and
yacc. For this purpose, the cweb system [6] for lit-
erate programming had to be extended to generate
and typeset lex and yacc files. I consider this rep-
resentation an experiment. I tried to combine the
advantages of a formal syntax specification with the
less formal exposition of programs that illustrate the
reading and writing process and can serve as refer-
ence implementations. The programs stretch and
shrink can also be used to verify that HINT files
conform to the format specification.

Specifying semantics is a difficult task and a
formal specification is entirely impossible if the cor-
rectness depends partly on personal taste. Fortu-
nately the new file format is just an “intermediate”
format as part of the TEX universe. So the follow-
ing commutative diagram is an approximation to a
formal specification.

The design of the HINT file format

The programs HiTEX and HINTcl mentioned in
the diagram are currently in development. HiTEX
is a modified version of TEX that produces HINT

files as output; HINTcl is a command line program
which reproduces TEX’s page descriptions as if the
parameter \tracingoutput were enabled. While it
does not actually produce a DVI file, its output can
be compared to the page descriptions in TEX’s .log
file to make sure the diagram above would indeed
be commutative. The prototypes available so far do
not yet support all the features of TEX or HINT.

Conclusion

The experimental HINT file format proves that file
formats supporting efficient, high quality rendering
of TEX output on electronic paper of variable size
are possible. The upcoming prototypes for a TEX
version (HiTEX) that produces such files and viewer
programs on Windows and Android will provide a
test environment to investigate and improve con-
cepts and performance in practice.

In the long run, I hope that a new standard for
electronic documents will emerge that enjoys wide-
spread use, has the output quality of real books,
is easy to use and powerful enough to encode TEX
output, offers the author maximum control over the
presentation of her or his work, and can cope with
the variations in screen size and screen resolution of
modern mobile devices.

146 TUGboat, Volume 40 (2019), No. 2

References

[1] P. Deutsch and J.-L. Gailly. Zlib compressed data
format specification version 3.3. Technical report,
RFC Editor, 1996.
tools.ietf.org/html/rfc1950

[2] EPUB 3 Community Group. epub 3.
w3.org/publishing/groups/epub3-cg

[3] D. Fuchs. The format of TEX’s DVI files.
TUGboat 3(2):14–19, Oct. 1982.
tug.org/TUGboat/tb03-2/tb06software.pdf

[4] H. Hagen. Beyond the bounds of paper and
within the bounds of screens; the perfect match
of TEX and Acrobat. In Proceedings of the

Ninth European TEX Conference, vol. 15a of
MAPS, pp. 181–196. Elsevier Science, Sept. 1995.
ntg.nl/maps/15a/09.pdf

[5] D. E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Center for the Study
of Language and Information, Stanford, CA, 1992.

[6] D. E. Knuth and S. Levy. The CWEB System of

Structured Documentation. Addison Wesley, 1994.
ctan.org/pkg/cweb

[7] T. Rokicki. Dvips: A DVI-to-PostScript

translator. tug.org/dvips

[8] M. Ruckert. Computer Modern Roman fonts
for ebooks. TUGboat 37(3):277–280, 2017.
tug.org/TUGboat/tb37-3/tb117ruckert.pdf

[9] M. Ruckert. HINT: Reflowing TEX output.
TUGboat 39(3):217–223, 2019. tug.org/TUGboat/
tb39-3/tb123ruckert-hint.pdf

[10] M. Ruckert. HINT: The File Format. Aug. 2019.
ISBN 978-1079481594.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
ruckert (at) cs dot hm dot edu

Martin Ruckert

TUGboat, Volume 40 (2019), No. 2 147

TEXFolio—a framework to typeset XML

documents using TEX

Rishikesan Nair T., Rajagopal C.V.,
Radhakrishnan C.V.

Abstract

TEXFolio is a web-based framework on the cloud
to generate standards-compliant, hyperlinked, book-
marked PDF output directly from XML sources with
heavy math content, using TEX. TEXFolio is a com-
plete journal production system as well. It can pro-
duce strip-ins which are alternate GIF or SVG images
of MathML content. In addition, DOI look-up, HTML

rendering of XML/MathML, and the whole dataset
generation according to the customer’s specification
are also possible. Customer-specific validation tools
can be integrated in this system.

1 Introduction

TEXFolio is a web-based complete journal production
system that accepts XML documents as input and
generates a variety of outputs per user directives. At
the moment, TEXFolio accepts documents tagged per
the NLM/JATS or Elsevier Journal Article DTD. The
typesetting engine is TEX, which allows hyperlinked,
bookmarked and standards-compliant PDF outputs
of infinite variants in terms of look and feel. It further
permits TEX authors to directly edit their documents
at the proof stage and a master copy editor can pass
it for publishing with minimal loss of time.

Although the underlying engine of TEXFolio
hasn’t deviated from the genre of free/libre software,
the computing paradigms have markedly shifted to
those in vogue to make the system modernized and
competitive in terms of usability, technologies and
performance. In fact, TEXFolio allows users to under-
take any stage of work anywhere in the world, owing
to its absolute compatibility with cloud and mobile
computing. That is further augmented by the usage
of LATEX3 methodologies and programming to perfect
the production system to an efficient, automated and
accurate one.

2 The workflow

2.1 XML first

The input can be either XML or LATEX. XML must be
per NLM/JATS DTDs or the Elsevier Journal Article
DTD. TEXFolio ingests these two types of XML

documents and generates a LATEX file by applying
corresponding an XSLT stylesheet over the document.
This LATEX file is used to edit the content and/or to
generate PDF output.

The processing cycle of XML → LATEX → edit →
PDF can be repeated any number of times, as shown
in the schematic diagram provided in Figure 1.

Whenever the LATEX file is edited, the user can
either generate PDF or go through another cycle of
XML → LATEX→ PDF to ensure high fidelity between
XML and PDF, thereby making it a truly XML-first
workflow. We call it the “XROUND” process.

XML from

other

suppliers

XML from

TEX
XML from

Word

XML1 validate

TEX1 PDF1editXML2

validate TEX2 PDF2

editXML3

validate TEX3 PDF3

editXMLn

validate TEXn PDFn

U
p
d
a
te
/O
ve
rw
ri
te

Figure 1: XML-first workflow

2.2 LATEX input

For LATEX input, we need to restructure the docu-
ment to augment XML generation since the front
matter is very verbose and structured in a granular
way in XML documents. The bibliography must be
provided as a BibTEX database. Barring the front
and back matters, the main body of the document
does not pose any problem during XML generation.
The system can digest all the author’s macro defi-
nitions, newtheorem-type declarations, or any other
declarations provided by the AMS math packages
and other standard LATEX packages.

TEXFolio—a framework to typeset XML documents using TEX

148 TUGboat, Volume 40 (2019), No. 2

TEX4ht is our preferred engine to translate LATEX
documents to XML format among all the tools and
available software around. Since TEX is being used
to process the document, it can easily and effectively
handle all the macros and user definitions or dec-
larations seamlessly. See Figure 2 for a schematic
diagram of the workflow.

file.dvi

+
TEX4ht
(Post-processor)

file.html or

file.xml

LATEX

+

TEX4ht.sty
file.tex

Figure 2: LATEX to XML generation diagram.

3 Features

A list of the most commonly used features built into
TEXFolio are given here.

3.1 General

Cloud With the development of TEXFolio, we are
able to do text processing in the cloud rather
than on a personal computer. This is critically
important in the current scenario. Previously,
text processing software was installed on each
user’s desktop and updating the systems with
the most recent changes always caused problems.
In the text processing world, much software is
subject to regular updates and ensuring these
updates was a herculean task. With the de-
ployment of TEXFolio, we need to update the
software on the server only and users’ desktops
need not be touched.

TEX For the whole process (i.e., generate XML, PDF,
strip-ins, etc.), we are using TEX and friends.
TEX being the most sophisticated software for
high-quality typesetting, TEXFolio ensures high-
quality output especially for mathematics, com-
puter science, economics, engineering, linguis-
tics, physics, statistics.

Low learning curve With the help of user-friendly
and an attractive interface, even a novice user
can use it without much learning. Since stan-
dard LATEX commands are used, a normal LATEX
user can quickly start using it.

Cross-platform Since it is browser-based, users
with different operating systems can access it
without any difficulty.

Browser, sole software A desktop with any cur-
rent browser and an Internet connection is all
that is required to access TEXFolio. Instead of
a desktop machine, if you have a Raspberry Pi,
that is more than enough.

Self-publishing Supporting self-publishing is an-
other feature of TEXFolio. TEXFolio serves well
the “author as publisher” since it accepts TEX
documents as input and can easily generate PDF,
HTML 5, NLM/JATS or Elsevier Journal Article
XML outputs if the sources are marked up per
the elsarticle or stm document classes. These
are the deliverables required for a web platform.
As mentioned above, the bibliography needs to
be provided as a BibTEX database.

3.2 Inputs

TEXFolio can currently accept the following input for-
mats. The first is for a LATEX-first workflow whereas
the second and third are for an XML-first workflow.

LATEX In the case of a LATEX-first workflow, the
input source has to be structured according to
neptune.cls, elsarticle.cls or stm.cls.

NLM/JATS XML The user loads the XML file in
one of these DTDs. TEXFolio generates a TEX
file from this loaded JATSXML. From now on,
the source will be this machine-generated TEX
file. Using this, the user can paginate, make
changes and/or generate different deliverables
from this source.

Elsevier Journal Article XML The user loads an
Elsevier DTD XML file. TEXFolio generates a
TEX file from the input. Just as with NLM/JATS,
from now on, the source will be the machine-
generated TEX file, and the user can generate
different deliverables from this source.

3.3 Outputs

Whatever the input (i.e., LATEX or XML), the user can
generate the following output files from the source
in a few seconds.

PDF The PDF output generated will be according to
the standards. You may generate a web version
PDF as well as a print version PDF. The Web
version will be hyperlinked, bookmarked and
according to the PDF/A-1 standards whereas
the print ready or fat PDF will be according to
PDF/X-1a standards. It can easily be configured
by a developer if the user wants a PDF according
to another ISO standard.

HTML5 + MathML This is another deliverable or
output which can be generated from the LATEX
or XML workflow. MathJax is supported.

XML The user can always generate a client version
XML file in either the LATEX-first or XML-first
workflow. The XML used for generating PDF

can have processing instructions embedded if
any vital instructions for TEX was lost in the

Rishikesan Nair T., Rajagopal C.V., Radhakrishnan C.V.

TUGboat, Volume 40 (2019), No. 2 149

Figure 3: Main page of TEXFolio: File manager (left), text editor (center), output
viewer (right), log windows (bottom), tools (top).

translation to XML. Before delivering to the
client, these processing instructions can also be
removed, and any other necessary changes made.
Some publishers even require the XML document
to be on a single physical line. Currently, it
can ship either NLM/JATS XML + MathML or
Elsevier Journal Article XML + MathML.

e-pub It is not one of the standard outputs at
present, but is easily configurable.

MathML Math in the above XML documents will
be tagged as MathML, SVG, GIF/PNG/JPG,
TEX math, or all. Both MathML 2.0 and 3.0 are
supported.

3.4 More features

1. Depends on LATEX3 methodologies and
paradigms.

2. DOI link fetching and checking

3. Crossmark, ORCID, FundRef linking

4. Linking external objects such as Genbank
accession numbers, PDB, CTGOV, OMIM, etc.

5. Source editing with track-changed source,
PDF and XML at proof/final stages

6. Author proofing with Neptune

7. Tooltips in PDF

8. Technical support for TEX authors

9. NLM validator to check against NLM Article
Publishing, CrossRef Deposit Schema and
PMC style checker

10. Supports pdfLATEX, ConTEXt and
X ELATEX for PDF creation. However, for
standard-compliant PDF generation, pdfLATEX
is used for the time being.

4 Summary

Figure 3 shows the main page of TEXFolio.
For more details and screenshots, please visit

https://texfolio.org.

⋄ Rishikesan Nair T., Rajagopal C.V.,
Radhakrishnan C.V.

STM Document Engineering
Pvt. Ltd., River Valley
Campus, Mepukada, Malayinkil,
Trivandrum 695571, India

rishi (at) stmdocs.in

http://stmdocs.com

TEXFolio—a framework to typeset XML documents using TEX

https://texfolio.org

150 TUGboat, Volume 40 (2019), No. 2

NEPTUNE—a proofing framework
for LATEX authors

Aravind Rajendran, Rishikesan Nair T.,
Rajagopal C.V.

Abstract

NEPTUNE is a web-based proofing framework for
LATEX authors. It is part of TEXFolio, the complete
journal production system in the cloud.

NEPTUNE accepts author-submitted LATEX doc-
uments (with or without enrichment and restructur-
ing) as well as machine-generated LATEX documents
from XML sources. Authors can edit LATEX sources
as in any standard editor with additional features.

Starting from the end of November 2018 when
NEPTUNE was first released, the framework has been
used for author proofing of more than 2,500 articles
in more than 100 journals, through August 31, 2019.

1 Introduction

In academic publishing, LATEX authors may be consid-
ered difficult, since they insist on better typography,
adherence to conventions (particularly in math equa-
tions), and use of their finely crafted LATEX sources
for final output by utilizing myriad benefits offered
by LATEX. In recent times, galley proofs are provided
to authors as editable sources as a web page in XML

or HTML format. Authors who have submitted their
articles in LATEX format often dislike viewing and
editing their output on a web page since the original
LATEX sources for math is not provided. Further,
embedded TikZ graphics, XY-pic and commutative

diagrams, prooftree math, and the like are replaced
with their respective graphics, denying any opportu-
nity to edit in case of mistakes. Source code with
packages like listings suffers a similar fate . . . the
woes are many. Hence, LATEX authors are not with-
out cause when they complain of publishers’ lack of
typographic and semantic sensibilities.

Neptune is an answer for all these problems,
wherein a LATEX author can be provided with copy-
edited LATEX sources and corresponding PDF output
in the final print format side by side with enough
facilities to navigate between source and PDF, a nav-
igable list of track changes showing copy edits that
can be accepted or rejected, a navigable list of author
edits made during the proofing session, comparison
of pre- and post-proof LATEX sources side by side
with the ability to discard any edit, comparison of
pre- and post-edit PDF versions, navigable query
lists, multiple sessions for proofing, standard editor
features, etc.

2 Where to start?

The typesetter uploads the author’s proof to Neptune
and sends the link to the author. Clicking the link
will take the author to the opening page of Neptune
where instructions are given. A [Proceed] button
enables the author to access the LATEX source and
PDF output of the proof. The general interface is
shown in Fig. 1.

The author can edit the LATEX source and con-
firm changes in the PDF after recompiling (the menu
bar has a [Compile] button).

Figure 1: Neptune—Main page.

Aravind Rajendran, Rishikesan Nair T., Rajagopal C.V.

TUGboat, Volume 40 (2019), No. 2 151

Figure 2: Query window and Ignore compilation error feature.

3 The process

As a web application, Neptune provides facilities
to edit LATEX documents as with any desktop text
editor. While keeping the native LATEX experience,
several other additional features have been provided
to make the job easier.

Neptune allows editing text in any area of the
document and adding or removing any object (sec-
tion level headings, figures, tables, math, list items,
cross references, citations, bibliography items, . . .).
If the editing results in any counter changes, all ob-
jects will be re-numbered and cross-references and
citations will be fixed automatically.

The PDF output can be generated any time and
can be downloaded if needed.

4 General editing

There is nothing special to say about general editing
of text. The usual text attributes: bold (\textbf),
italics (\emph, \textit); font attributes like sans
serif (\textsf), fixed width font (\texttt), small
caps (\textsc); size changing commands (\large,
\small, \footnotesize); and so forth all work as
one would expect.

Moreover, you may insert sections, paragraphs,
floats such as figures, tables, etc., inline or display
math equations, theorems and similar environments,
bibliographic items, cross-references, etc.

In short, all standard commands in general text
manipulations work fine without any surprises.

5 Main features

In addition to the general editing features, other
main features are listed below:

5.1 Article, Source Comparison and
PDF Comparison tabs

The three main tabs are Article, Source Comparison,
and PDF Comparison. The Article tab contains
mainly features for editing, compiling, functional

tracker, resolving queries, seeing TEX logs, upload
files, PDF viewer, versioning control, etc. See Figs. 1
and 2.

The Source Comparison tab is for comparing
the copy-edited source (provided to the author as
the source of a galley proof) with the author-edited
source. Using this facility, authors can compare the
two TEX sources and verify the changes. Synchro-
nised movement of both TEX files is available, with a
scroll button to move both TEX files simultaneously,
which helps make the comparison easier.

Similar to the Source Comparison tab, the PDF

Comparison tab is for comparing copy-edited PDF

file (again provided to the author as a galley proof)
with author-edited PDF file. Synchronised movement
of both PDFs is enabled in this tab also.

5.2 Synchronized pre/post-edited sources

Pre- and post-edited document sources, along with a
tracker window with hyperlinked list of edit changes,
are available. Authors can make last minute checks
and confirm all edits or discard any change at will.

5.3 Source–PDF navigation

One-to-one links between the source TEX file to PDF

and back are available, making it easier to navigate
from source to the corresponding location in the
PDF and vice-versa. The user needs to compile the
sources once for this feature to take effect.

5.4 Notes, requests, comments

Any number of notes, requests, comments, etc., can
be added to the document sources by clicking at line
number. In addition to this, an [Additional Com-
ments] tab is provided to provide a general comment.

5.5 Error-stop/non-stop modes

PDF generation can optionally be stopped at an
error or continued until the end of the job, without

NEPTUNE—a proofing framework for LATEX authors

152 TUGboat, Volume 40 (2019), No. 2

Figure 3: Functional tracker.

stopping at errors, to facilitate an author’s preferred
style of debugging.

5.6 Functional tracker

A convenient tracker of changes made by a copy
editor is available. The line/column numbers of the
insertion or deletion are provided. When you click
any text in the tracker window, a pop-up with the
corresponding item will appear with [Reject] and
[Accept] buttons. You can click a button according
to your choice. By default, Accept will be applied.
See Fig. 3.

5.7 PDF output

At the end of the editing job or at any other time,
authors can generate a PDF from their edited sources
which is exactly like the one that will be ultimately
printed in the journal.

5.8 No need for another proof

Since authors edit directly on the LATEX sources and
view/save the final output as a PDF, there is no need
to request (and wait for) a revised proof from the
typesetter. This saves considerable production time.

5.9 Version history

Version control systems allow authors to compare
files, identify differences, and merge changes if needed
prior to committing anything. Neptune’s version
history facility gives authors full confidence to edit
without any fear of losing anything from the source.
They are free to save as many versions they want and
retrieve any specific version as needed. See Fig. 4.

Figure 4: Version control.

5.10 Miscellaneous features

• The PDF output has active hyperlinks and book-
marks.

• Unlimited Undo/Redo is supported.

• Search/replace and regular expressions are sup-
ported.

• Neptune works well with Raspberry Pi, thus
saving energy, consistent with our environment-
friendly production technologies.

6 Supported browsers

Neptune supports the following browsers with version
numbers noted against their names or later:

• Firefox: 54+
• Google: Chrome 55+
• Safari: 11.02+
• Internet Explorer: 11+
• Edge 41.16+

7 Success story

Finally the success story.
One of the world’s major scientific, technical,

and medical publishers recently adopted NEPTUNE

as their LATEX proofing tool. Beginning in November
2018, up through August 31, more than 2500 arti-
cles have been proofed through NEPTUNE. The first
three months were a pilot period, with only four jour-
nals. Continuing to roll out more journals in batches,
NEPTUNE now supports more than 100 journals.
Before submitting an article, authors can take an
optional survey. From this survey, the customer sat-
isfaction score was 95%, showing NEPTUNE as an
efficient and user-friendly web proofing framework.

⋄ Aravind Rajendran, Rishikesan Nair T.,

Rajagopal C.V.

STM Document Engineering Pvt. Ltd.,

River Valley Campus, Mepukada,

Malayinkil, Trivandrum 695571, India

aravind (at) stmdocs.in

http://stmdocs.com

Aravind Rajendran, Rishikesan Nair T., Rajagopal C.V.

TUGboat, Volume 40 (2019), No. 2 153

The LATEX release workflow and

the LATEX dev formats

Frank Mittelbach, LATEX Project

Abstract

How do you prevent creating banana software (i.e.,
software that gets ripe at the customer site)? By
proper testing! But this is anything but easy.

The paper will give an overview of the efforts
made by the LATEX Project Team over the years
to provide high-quality software and explains the
changes that we have made this summer to improve
the situation further.

Contents

Some history 153
The growing release support infrastructure 153

The typical release workflow for LATEX 154

Reasons for failure 155
Finding all these dependencies up front . 155
The missing maintainer problem 155
No or not enough third-party testing . . . 155

The LATEX dev formats 156
Pre-release identification 156
How does it work? 156
Reporting issues in the dev format 156

Some history

The LATEX Project team’s attempts to provide re-
liable high-quality software can be traced back to
the first days when we took over LATEX 2.09 from
Leslie Lamport for maintenance and started to work
on producing a new major version of LATEX which
came into existence around 1993 under the name of
LATEX 2ε. In its core this is still the version you are
using today, albeit these days with many extensions
and additional kernel features.

While LATEX 2ε looked fairly similar on the user
interface level (to allow for easy transition), under the
hood it used completely different internal concepts
in some parts of the software and was therefore quite
different in many areas from the LATEX 2.09 version.
After all, the goal of the new system was to overcome
(most) limitations and deficiencies of the original
program that had surfaced since its introduction in
1986.

Executing such major software changes was and
is a daunting task, especially when a huge user base
relies on the software to continue to function seam-
lessly with old and new documents (and preferably
produce identical results).

To have a fighting chance of success, we came
up with the idea of a regression test suite for LATEX
where certified results from document runs could be
used to automatically check that changes made to
the internal code base did not affect the behavior
of LATEX document level interfaces, etc.1 A good
overview of the features and mechanisms of the early
regression test suite can be found in [1].

Around 1992 we then initiated several volunteer
projects [2], one of which was helping to build a base
set of test files which would test all interfaces, and
additionally provide unit tests for known bugs and
issues that we intended to fix.

It was largely due to Daniel Flipo (coordina-
tor back then) and the volunteers who worked on
this initial test set that the introduction of LATEX 2ε

turned out to be quite successful. Even though we
experienced some problems and also some level of
push back (as in “Why do we need a new system
which is so much bigger and contains all these fonts
with accented characters that nobody is ever going
to need . . . ”), on the whole the system was favorably
received and after a round of smaller maintenance
releases that fixed overlooked issues and added a few
more missing bits and pieces, the kernel settled to a
stable state with little update or extension. Instead,
further development moved into the package area,
for which the new kernel provided a better basis than
the old.

The growing release support infrastructure

With each bug that was found and any new feature
that got added, the test suite grew. These days
it contains roughly 700 test documents. There are
about 400 for the core of LATEX and another 300 for
the packages that form the required set, i.e., amsmath,
graphics and tools, but excluding babel, which
has its own test suite and release cycle.

At the beginning the support scripts to auto-
matically run the tests were Unix-based (mainly a
huge Makefile plus a few bash scripts). We then
switched over to a Windows-based system and fi-
nally, when LuaTEX became generally available in
the distributions, rewrote the whole system in Lua.
Thanks mainly to Joseph Wright, Will Robertson
and others this l3build program is now a very flexi-
ble and sophisticated tool that is not only capable of
running the test suite for our own LATEX work, but
also able to automate the whole release cycle up to
and including automatic uploads to CTAN [3, 4].

As its actions are configured through a simple
but powerful configuration file that you maintain

1 Nothing especially spectacular these days, but around

1990 it was a rather uncommon approach.

The LATEX release workflow and the LATEX dev formats

154 TUGboat, Volume 40 (2019), No. 2

in your package source tree, it is perfectly capable
of supporting any sort of package development in
the TEX world (it doesn’t have to be LATEX). So if
you are a developer and haven’t seen it yet, try it
out; it will most certainly make your life simpler and
through its automation, more reliable.

The typical release workflow for LATEX

With l3build, our typical release work flow these
days looks roughly like this:

1. Development phase

– Make some changes (bug fixes or minor exten-
sions) to the LATEX kernel or to core packages.

– Write some new test files to cover the change
and the expected behavior.

2.a Testing phase (run l3build check)

– This way we immediately see if the changes
break anything.

– All tests are executed with pdfTEX, X ETEX,
LuaTEX and for a certain subset also with
pTEX and upTEX.

– This means that running l3build with the
check target executes more than 2000 test
documents for the LATEX 2ε distribution, which
even on a reasonably fast machine requires
some patience.

2.b Testing phase (do a texmf-dist search)

– If we had to modify internal kernel commands
we do a sweep over the whole TEX Live distri-
bution tree to check if those commands have
been used or (often more importantly) modi-
fied by other packages and whether or not our
change will conflict with that usage.

– If so, we analyze the situation further and
inform the package authors to coordinate any
necessary updates.

– Depending on the analysis, we may also con-
clude that we need to revert our change or
implement it differently.

2.c Testing phase (asking for user testing)

– This requires manually installing a prerelease
of the new kernel locally and thus is unfortu-
nately both somewhat time consuming and
requiring knowledge that is not so easy to
come by these days.

– As a result we had little to no feedback in the
last years from this step.

3. Everything is finally “in the Green”

– . . . or so everybody believes.

4.a Upload phase (run l3build ctan)

– This target reruns all checks with all engines,
processes all documentation and if this suc-
ceeds without any errors, collects the result in
a .zip for upload to CTAN.

4.b Upload phase (run l3build upload)

– Based on preconfigured information this tar-
get automatically uploads the .zip file to-
gether with the necessary metadata to CTAN.
For some pieces of information, such as in-
stallation instructions to the CTAN team, we
are prompted, as they change from upload to
upload.

4.c Upload phase (reaching the distributions)

– Once installed on CTAN the kernel and pack-
ages move into the TEX distributions, e.g.,
TEX Live and MikTEX, and then, depending
on the update policy chosen by the end user,
show up on the user machines either automat-
ically or through a manually initiated update
process. And then . . .

❆ BOOM!

– Thousands of users use (a.k.a. “test”) the
changes and a few encounter issues, due to
dependencies our test suite hasn’t signaled,
packages we have overlooked, code or pack-
ages that are not on CTAN, etc.

5. Urgent patch phase

– The problem is that with the user base mea-
suring in millions2 even a rate of 0.001% of
users being affected by some issue translates
into a noticeable number of users with prob-
lems.

– Thus, even a single issue with some nearly-
unused package may need urgent correction
(and it takes a few days from producing a
patch to getting it into end user hands). As a
consequence this is usually a phase of hectic
activity and we have seen in recent releases
more than one patch needing to be provided
in quick succession — the worst case was three
in 2016.

2 Nobody knows for sure how many active LATEX users

are out there as there is no easy way to measure this.

Downloads of TEX Live or from CTAN, for example, are

done through a large network of mirrors and the download

numbers per mirror are unknown. But there are somewhat

between six and ten thousand hits on the LATEX project

web site per day, most of which look at the “get” or “about”

pages, i.e., are most likely new users. Another indication

is that visitor numbers grow substantially at the start of

university terms. This would mean more than two million

prospective new users hitting the site per year.

Frank Mittelbach, LATEX Project

TUGboat, Volume 40 (2019), No. 2 155

Reasons for failure

What are the reasons that despite extensive regres-
sion testing we often end up with patch releases?
They are largely due to the ineffectiveness of steps
2.b and 2.c in the above sequence.

The regression test suite we run in step 2.a
ensures that our official interfaces are all working
correctly and any bugs we have fixed in the past do
not suddenly reappear. In fact on several occasions
it has saved us from major blunders by stopping us
from distributing “harmless changes that couldn’t
by any chance produce problems” but did after all —
often in, on the surface, unrelated places.

Finding all these dependencies up front

However, even a huge test suite can’t find and test for
all kinds of possible dependencies in several thousand
contributed packages and millions of user documents.
This problem is increased by the fact that the LATEX
code was written for a very constrained engine and
the kernel is therefore very much tailored and stream-
lined, saving token space whenever possible.3 As a
result there aren’t many interfaces where third-party
packages can officially hook into kernel functionality,
so it isn’t surprising that there is nearly no internal
LATEX command that hasn’t been (mis)used in one
way or another by some package out there.

This is the reason for the importance of step 2.b,
but since this is largely a manual effort it is easy to
miss cases or fool oneself into believing that no one
could possibly have altered this or that internal com-
mand in a package — in the end somebody usually
did after all.

The missing maintainer problem

The other issue with step 2.b is that these days there
are unfortunately many packages in use where the
original author is no longer reachable, because he or
she has moved on. Their packages are on CTAN and
in the distributions but the maintainer information is
no longer correct. As long as everything works that is
not necessarily a problem, but the moment something
breaks it can be quite hard or even impossible to
find the person and even if the search is successful it

3 In the early ’90s when most of this code was initially

written, this was an absolute must as TEX’s main memory,

register space, pool size, etc., was much smaller than today.

These days one would produce quite different-looking code

that would support extensions much better, by offering the

necessary hooks, and this is what we are gradually introducing

in various parts of the code. However, given that there are

many packages out there that expect the code to look exactly

like it does right now, changing anything means that these

packages need to have corresponding changes.

may turn out that they no longer have any interest
in their work which they did years ago.

A recent prominent example of this problem
is the package tabu which implements a nice user
syntax on top of array, tabularx and longtable.
That package was abandoned by its author around
2011 but people continued to use it despite a few
unfixed (minor) bugs, because it does implement a
number of nice ideas.

Unfortunately, its code hacks in rather bad ways
into the kernel internals in places that should never
have been altered by other packages. So when we had
to fix a color leakage problem in tabular cells in the
core kernel commands by adding color safe groups
that then broke the package for good. Without a
maintainer who was willing to spend the necessary
time to unravel these hacks in the package code, the
package remained broken when the 2018 kernel got
released.4

The biggest problem resulting from this was
that doxygen, the de-facto open source standard for
producing annotated C++ code documentation was
making heavy use of the tabu package when pro-
ducing LATEX-based PDF documents. As a result
their toolset was initially unable to use the current
LATEX release. We recently resolved this for them
by providing a dedicated rollback of the involved
kernel fixes to be used within their workflow (i.e.,
reintroducing the kernel bug so that a special version
of doxygen-tabu could be used as part of their doc-
umentation tools). This is clearly far from a perfect
solution, so we hope that a new maintainer for tabu

will eventually step forward so that this rollback can
be removed again.

No or not enough third-party testing

However, we believe that the most important factor
for ending up with patch level releases was in step
2.c: the insufficient public testing of the release prior
to its move into the main distributions.

In essence, the effort needed from users was sim-
ply too high and the setup too complicated, so only
a very small number of people participated. Testing
was therefore neither sufficient nor comprehensive.

As a result, overlooked dependencies on third-
party packages or failure with typical user input were

4 In fact the LATEX Project team tried to update the pack-

age when it became clear that nobody was maintaining it, and

we managed to produce a version that didn’t die right out

from the beginning. However, the package altered so many

commands and used them in new ways that this emergency

fix was only partially successful. So in the end we could only

suggest that people should not use it in the future, or more ex-

actly not until a new maintainer stepped forward and spends

the necessary time to unravel the coding issues.

The LATEX release workflow and the LATEX dev formats

156 TUGboat, Volume 40 (2019), No. 2

seldom found beforehand but only when the release
moved to the distributions and everybody became
(unwillingly) a tester — banana software after all,
despite our best efforts above.

The LATEX dev formats

To improve this situation and hopefully get to a
release workflow that doesn’t normally involve step
5, we developed the concept of a LATEX development
format. This format contains a prerelease of the
upcoming main LATEX release and is ready for testing
by anybody using either TEX Live or MikTEX.

All the user needs to do is to replace his or her
standard engine call by adding the suffix -dev to the
name, for example, using

pdflatex-dev myfile

instead of pdflatex myfile on the command line.
If you use an editing environment with integrated
TEX processing, then there is normally some config-
uration possibility, where you can either make the
same change or even add another menu item. Be-
sides pdfTEX, all other major engines are supported
as well, e.g., with lualatex-dev you get the new
format on top of the LuaTEX engine, etc.

Pre-release identification

If you call LATEX in this way you can immediately
see that the pre-release format is used. For example
processing this document with the line above gives:

This is pdfTeX, Version 3.14... (TeX Live 2019)

(preloaded format=pdflatex-dev)

restricted \write18 enabled.

entering extended mode

(./TUB-latex-dev.tex

LaTeX2e <2019-10-01> pre-release-2

As you can see the format announces itself as
a pre-release of the upcoming 2019-10-01 release of
LATEX, and the number tagged at the end indicates
that it is the second pre-release we have distributed
(the first was a trial to see if the mechanism functions
correctly). If bugs are found during the testing (or if
we enable further features for the upcoming release)
we might issue another pre-release in which case the
number would increase accordingly.

However, the important point to note here is
that the development format is not like a “nightly
build” (that you would get by tracking the LATEX
source at GitHub); rather, it changes only if we think
that the code is ready for public testing, i.e., has
passed our own internal tests in steps 2.a and 2.b.

How does it work?

The files for the pre-release are uploaded by the
LATEX Project Team to CTAN under the package

names latex-base-dev, latex-graphics-dev, and
if necessary latex-tools-dev, etc. From there they
are integrated into the distributions into the tree
tex/latex-dev/..., which is not searched by de-
fault. Thus, when you are using, say, pdflatex, only
the files from the main release are used.

However, if any of the programs ending in -dev

are called, then this extra tree is prepended to the
search tree, so that not only the pre-release format
is used, but also any other file from that tree, e.g.,
article.cls, is found first. For any package not
part of the pre-release, the TEX engine will continue
to find it in the main tree and use that version.

This allows any user who works on an important
project (such as a thesis or a book) to quickly test
if this work continues to typeset correctly under the
upcoming format. Similarly, it enables any developer
of a package that has known or unknown depen-
dencies on a certain kernel version to check if any
adjustments made work well with both the current
and upcoming LATEX release — and if so, upload a
new version of his or her work prior to the actual
release date of the new LATEX kernel.

Reporting issues in the dev format

If, during such testing, issues or incompatibilities are
found (that in the past would have led to step 5) we
suggest that a Github issue is opened for them so
that they can be tracked and addressed by the team.
Details on how to open such an issue can be found
at the LATEX Project website [5].

References

[1] Frank Mittelbach. A regression test suite
for LATEX 2ε. TUGboat, 18(4):309–311, 1997.
tug.org/TUGboat/tb18-4/tb57mitt.pdf

[2] Frank Mittelbach, Chris Rowley, and Michael
Downes. Volunteer work for the LATEX3
project. TUGboat, 13(4):510–515, 1992.
tug.org/TUGboat/tb13-4/tb37mitt-l3.pdf

[3] Frank Mittelbach, Will Robertson, and
LATEX3 team. l3build – A modern Lua
test suite for TEX programming. TUGboat,
35(3):287–293, 2014. tug.org/TUGboat/tb35-3/

tb111mitt-l3build.pdf

[4] Joseph Wright. Automating LATEX(3)
testing. TUGboat, 36(3):234–236, 2015.
tug.org/TUGboat/tb36-3/tb114wright.pdf

[5] LATEX Project Team. Bugs in LATEX software.
www.latex-project.org/bugs

⋄ Frank Mittelbach, LATEX Project

Mainz, Germany

frank.mittelbach (at) latex-project dot org

www.latex-project.org

Frank Mittelbach, LATEX Project

TUGboat, Volume 40 (2019), No. 2 157

Accessibility in the LATEX kernel—

experiments in Tagged PDF

Chris Rowley, Ulrike Fischer, Frank Mittelbach

Abstract

This is a brief summary of a talk given by the first
author at the TUG’19 conference, together with some
references for further reading and viewing.

1 Introduction

Accessibility requirements for PDF documents are
described in two standards: PDF/UA and the more
recent PDF2.0. One of the major features they man-
date is that the PDF must be properly tagged, so we
are investigating how LATEX can be adapted to easily
produce tagged PDF.

The main purpose of this talk was to introduce
the experimental package tagpdf by the second au-
thor. But we start with a quick “bullet points intro-
duction” to the structure of a PDF file and what is
meant by “Tagged PDF”.

2 PDF in bullets

The first thing to understand about PDF is: In a
PDF file (almost) everything is . . . PDF Objects!
Here are two examples of important object types
that we always find in a PDF file:

• many objects are Dictionaries, which are simply
key-value (property) lists

• other objects are Streams: Text Streams are an
important part of each Page Object

Some important particular objects are:

• Resource Objects: containing, for example, font
and encoding information

• Page Objects: containing information about a
page

• Navigation Objects: these enable quick access
to all the important objects within the PDF file.

For Tagged PDF, in addition to Page Objects and
their Text Streams, the following are required:

• a Structure Tree Object, whose nodes are PDF

Objects (surprise?), with:

– a root node

– structure element nodes: each of these is a Dic-
tionary Object containing references to its par-
ent, siblings and child nodes

– leaf nodes: each containing additional references,
each of which is to:
– a page, plus
– a “marked part” of that page’s Text Stream

The slides for the talk contain examples of the
type of code used in a PDF file for defining the objects
related to structure and tagging.

3 Philosophy

We believe that the production of documents that
exploit the large range of functionality that can nowa-
days be incorporated into PDF is very important and
is fundamental to what LATEX, as a document pro-
cessing system, is all about!

We also believe that the production system must
pay close attention to the actual, detailed contents
of the input LATEX file: these details must not be
ignored as they contain everything that the system
knows about the author’s intentions.

We are therefore certain that we first need to
adapt and enhance the LATEX kernel to better sup-
port all these new ideas. Furthermore we must go
on to help package developers and maintainers in
exploiting the new possibilities.

We are currently working primarily on getting
right the low-level basic coding so that we can build
on top of this to add necessary features into the
LATEX system. We do not want to add lots of new
stuff on top of the current LATEX, or to produce a
parallel system that will most likely conflict badly
with standard LATEX processing.

4 Current work

Development has started on the experimental pack-
age tagpdf. Its purposes are summarised here:

• allow experimenters to identify problems they
find with tagging, and to discover the support
needed for other accessibility requirements;

• develop a code basis for the support of tagging
in the LATEX kernel.

Please note that, being experimental, it needs exper-
imenters to use it, of at least these types:

• authors and users of documents:
– What is truly needed in an accessible docu-
ment?

• package maintainers/developers:
– What is needed for a package to produce acces-
sible output?
– How can the LATEX Team help ease the conver-
sion of all packages?

The current (preliminary) version of the tagpdf pack-
ages provides low-level mark-up commands to sup-
port tagging. For example, commands to:

• add structure element nodes to the structure
tree

• add ”marked content” tags to the content stream

Accessibility in the LATEX kernel—experiments in Tagged PDF

158 TUGboat, Volume 40 (2019), No. 2

• add to the structure tree nodes all the necessary
pointers to the marked content associated with
a given node

The package also supports other aspects of accessi-
bility, such as setting up links appropriately, and the
input of essential document meta-data. It is well
documented with descriptions of how to use it and
of how to provide us with feedback. Please do!

The documentation contains more background
information about accessibility and tagging, with
descriptions of how PDF works and what makes a
PDF file accessible. It also lists some currently known
problems and how we plan to solve them.

5 Coming soon, we hope!

We of course hope to get many ideas from all you ex-
perimenters, but meanwhile we are looking in detail
at how the LATEX kernel can better support tagging
and other aspects of accessibility. We are also look-
ing at whether the various TEX engines need any
enhancements to better support the production of
full-featured PDF.

In the TEX community, Ross Moore and others
in TUG’s Accessibility Working Group have done con-
siderable work on many of these problems, including
the complex subject of how to represent formulas,
etc., in accessible PDF. We are therefore actively
exchanging ideas with them and we are pleased to
thank TUG and DANTE e.V. for their current sup-
port of this work.

We are of course also very interested in collab-
oration with other organisations, individuals and
companies who have engineering expertise in this
area (from both the TEX perspective and the PDF

perspective) and we intend to actively pursue such
contacts.

As part of their program to position PDF as
a prime source of accessible information in “value-
added documents”, the expert engineers at the “home
of PDF”, Adobe, are showing a high level of interest
in the use of LATEX to produce accessible PDF. This
gives a clear indication of the importance of LATEX
for the production of PDF documents and we are
therefore planning to collaborate closely with them.

References

The tagpdf package This is available at:
https://github.com/u-fischer/tagpdf and
https://ctan.org/pkg/tagpdf.

PDF Standards PDF/UA (PDF/Universal Accessi-
bility) is the informal name for ISO 14289.
On July 28, 2017, ISO 32000-2:2017 (PDF 2.0)
was published. See:
https://www.iso.org/standard/64599.html

and
https://www.iso.org/standard/63534.html

More on PDF Lots of information is available at:
https://en.wikipedia.org/wiki/PDF

Moore on PDF Ross Moore has published many
talks and articles, see:
https://maths.mq.edu.au/~ross/TaggedPDF

Videos of both his talk and this one at TUG

2019 can be seen at:
http://science.mq.edu.au/~ross/

TaggedPDF/TUG2019-movies

Slides for this talk These are available at:
https://latex-project.org/publications/

indexbyyear/2019/

TUG’s Accessibility Working Group

More information and a fuller bibliography on
Accessibility is available at:
https://tug.org/twg/accessibility/

⋄ Chris Rowley
LATEX3 Team
chris.rowley (at) latex-project

dot org

https://www.latex-project.org

⋄ Ulrike Fischer
LATEX3 Team
fischer (at) troubleshooting-tex

dot de

https://www.latex-project.org

⋄ Frank Mittelbach
LATEX3 Team
frank.mittelbach (at)

latex-project dot org

https://www.latex-project.org

Chris Rowley, Ulrike Fischer, Frank Mittelbach

https://github.com/u-fischer/tagpdf
https://ctan.org/pkg/tagpdf
https://www.iso.org/standard/64599.html
https://www.iso.org/standard/63534.html
https://en.wikipedia.org/wiki/PDF
https://maths.mq.edu.au/~ross/TaggedPDF
http://science.mq.edu.au/~ross/!TaggedPDF/TUG2019-movies
http://science.mq.edu.au/~ross/!TaggedPDF/TUG2019-movies
https://latex-project.org/publications/!indexbyyear/2019/
https://latex-project.org/publications/!indexbyyear/2019/
https://tug.org/twg/accessibility/

TUGboat, Volume 40 (2019), No. 2 159

Creating commented editions with LATEX—

the commedit package

Boris Veytsman

1 Introduction

An edition of a classic or sacred text where the origi-
nal is accompanied by layers of comments is one of
the most ancient types of books. One of the most
prominent examples is the traditional layout of the
Talmud, where the original text is surrounded by the
comments (Figure 1). Usually this commented edi-
tion is completely different from another subgenre of
academic books: a facsimile edition, which faithfully
reproduces the original. In the latter case the pages
are typeset exactly as in the historical book, and
there are no footnote markers in the text, because
it would break the integrity of the page. Instead,
sometimes endnotes are added, which refer to the
page numbers in the main corpus.

One can imagine a combination of facsimile and
commented edition: a page of the original is repro-
duced either in the full size or reduced and typeset
together with the notes. Again, Talmud pages (Fig-
ure 1) can be an inspiration for this.

Interestingly enough, this style was chosen for a
series of students’ textbooks accompanied by teach-
ers’ materials by Livro Aberto de Matemática, a
project of the Institute of Pure and Applied Mathe-
matics, Brazil.1 According to this design, a teachers’
book reproduces students’ books, adding to them a
layer of comments and discussion as shown in Fig-
ure 2. The comments in the teachers’ book should
appear close to the corresponding page of the stu-
dents’ books. Thus a page of the teachers’ book
might not be completely filled with the comments;
alternatively, in the case of more comments than can
be fit around the students’ page, the comments may
continue on the subsequent pages of the teachers’
book.

The package commedit [4] is intended to imple-
ment this design in LATEX. The main aim of this
package is to create a single source that can be used
to produce both students’ and teachers’ books, or, in
other words, the original and the commented versions
of the same textbook.

There are many TEX packages that allow one to
typeset academic editions, often following EDMAC’s
ideas [2,3,5]. However, none of them allows the easy
creation of two books, with and without comments.
Thus a new package seemed to be warranted.

1 https://impa.br/noticias/projeto-do-impa-propoe-

livro-didatico-aberto-e-colaborativo/

2 User interface

The user interface [4] assumes the main source to be
the students’ book. It is a conventional LATEX file
with additional text put between \begin and \end

of a special environment. When the students’ book
is typeset, these environments are omitted from the
output. However, they are not completely ignored:
LATEX writes them, along with the information about
the page of the students’ book where they appeared,
into a separate .tex file. Typesetting the latter
results in the teachers’ book.

There are three kinds of special environments.
The environment commeditPreamble has a manda-
tory argument filename —the name of the teachers’
book file. It should precede all other special en-
vironments and appear only once in the students’
book. When LATEX sees this environment, it opens
the file filename.tex and writes to it the preamble
using the text until \end{commeditPreamble}. The
environment commeditText contains the chunks of
teachers’ books which are not tied to pages of stu-
dents’ book: front matter, teachers-only chapters,
etc. Lastly, the commeditComments environment con-
tains the text that is tied to the pages of the students’
book.

There are various parameters and hooks allow-
ing one to customize the way the teachers’ book is
typeset: paper size, the number of columns, page
geometry, etc. See [4] for a detailed user manual.

3 Under the hood

The implementation is based on altering the output
routine for both students’ and teachers’ editions.
Below we describe how it is done.

3.1 Students’ book

When LATEX typesets the students’ book, it writes the
contents of commeditPreamble and commeditText

directly to the teachers’ book source, adding some
packages and commands to the preamble. How-
ever, the contents of commeditText environments
are written to the teachers’ book inside the special
commentsBox environment.

When LATEX ships out a page of the students’
book, the command \typesetComments{page} out-
puts to the teachers’ book, where page is the “real”
(or “PDF”) page number, the one which is not reset
by the \pagenumbering command.

When LATEX finishes the students’ book, it also
closes the teachers’ book source.

3.2 Teachers’ book

When LATEX typesets the teachers’ book, it starts by
reading the .aux file for the students’ book. This

Creating commented editions with LATEX—the commedit package

https://impa.br/noticias/projeto-do-impa-propoe-livro-didatico-aberto-e-colaborativo/
https://impa.br/noticias/projeto-do-impa-propoe-livro-didatico-aberto-e-colaborativo/

160 TUGboat, Volume 40 (2019), No. 2

a aaאמקא ןושאר tקר zוaאהעaרא zרzֹמ
z"שה

aezpfiwio`העaרא

.

`izekz`l`zpidoknedjeabnx`bai

ylyryxd`aezpfiwioea`xardngeqxiktxd(kxizez

sg:)e`izekz`wzpidokwzpi`xardyenxiodo(yaerez'nh

.

)

e`xardx`yiypimdo(x"d'a

.

eym):(blieo

.

e`"z`n`il`w`nx

`xard`aezpfiwiodokwzpi'x`yi

ypimdoei"lyl`a``l`ldbi`xard

`aezdllel`ifdgx`ifdewvzwyd

abnx`nekgpkizzp`lnpiiontxij

ezp`ion`ihrn`l`zpidpilji"l

iynwenezlzpidok`qkgoa`xard

ngeqxiktxd"

.

r"d):

edaex.tixeyawephxqkqרושהx

ypkzaeatxydqxoanypd

e`srlbaln"zoyexlxblel`dei

kqxdtxydxblptwloneylg`z

arixdkziaazxaedn"nymyexkzia

wematxyddiipepbikdwxoeln"

nardfd`m`r"blazxdarxdkzia

atxyz`nexnkdadnd`ylnpddiipe

`m`fiwyexl`gmlypezekqxdtxydltiyxgewklkjeyp`e

kqxl`dxiqit`ynardwemldarx:

dxidyexkdxidnardאל

.

tixey`iowelzeylyexkwelzeyl

mnardkntxylwnoabn'ln"zp`yexlwxpeenardlyipe

nyemyexkeepzeldfiwenard`iokeepzeldfiweltij`ikzaxgnp`

yexl``zinardnipdyde`wlnipde`iotixeyeky`xnwenezyazlnel`x`ifddzmtixeye`iogenx`ylqdkgenx`ylfdelkj`io

dgenxezbexnezfddio`l`dvdyedyadobexmdiodioeyipdk`odzlnetixeyenay`xnweneznyemdfkixdgnexzgildal`fd

efdyiyadoxeggiim:

fdefdyiyadoxeggiimkdxid`yאלו

.

baiyexenardl`devxjltxydgenx`kidk`nyemgngwllnvergenxa`gndy`io

agaixeedl`zpidjl`dxid`ykxidyexenardkwzpilrill`dxidnardkxidyexnyemylrdidikellnvergenx`ndy`io

aypidm`inyemkg`gxnrexaaee`iodeljlrzekneyexe`iofdgenx`nl`gyialdbaigenxadmnayexed``nixolwno(sb:

ese.)bai`apeeqkipen`iyp``ygj`gxnrexaaee`iodeljlrzed"wn`iyp``yy`r"sykg`gxnrexaaex`eildzgiiaaenyem

ydernepjeynixzeke'eaqit`baiaexdednvilninxl`dxidaexyzgilzryiizelpfw

העaרא העaרא העaרא
העaְֶמַּהַוְרֹבהַוְרÀֹהַ,ןיקִיזִנaֹzְאֲ
,העaְֶמַּהַירֵהֲכַרÀֹהַירֵהֲ»ל.רעaְֵהֶהַוְ
הזֶ»לוְ,רÀֹהַירֵהֲכַהעaְֶמַּהַירֵהֲ»לוְ
ןיאֵֶ°°אHֵהירֵהֲכַ,םייִּחַחַ�רֽןהHֶב°יֵֶּ°הזHֶו
²לֵילֵןHכרְדֶַּ°הזHֶוהזֶ»לוְ,םייִּחַחַ�רֹֽב
קיזִּהַלְןHכרְדֶַּ°ןהHֶבֶ°הוHֶ°הַדצַּהַ.קיזִּהַלְ�
םלֵַ°לְקיזִּמַּהaַחַקיזִּהִֶ°�kְ,³י¹לHעןHzHרימִשְ�
ינzקדמ’מג:ץרºֶאHהaטַימֵבְקז¹ֶנימֵ�לְ°תַ
.zודלוzאkאדללkמzוaא

aezpfiwio`העaרא

.

`aezwxildpjkziaoawx`adi`.

eabnx`ntxydifidezelez:dyexedaexke'

.

kqx

ydokzeaioatxydqxoanypd.txydx`yepdp`nxdayexypid

aex:nard

.

ntxyabn':darx

.

kizv``y:l`dxidyexkdxi

dnard

.

klenx`ikzaxgnp`l`ptw

nardnipide`nheldki`ivhxkelnikza

eldkipwhaxiy`kdxidnardel`pwh

ldekqxl`dxidyexkdxidaexnyem

zel`deinvilnizpil`fdefdyiy

adoxeggiimerehrn``gxip`d`

xaez``ynriy`r"byiylypidmxeg

giiml`ptiwgngaxideabn'ntxy

n`il`dxiw`nx:kdxid`yy`io

aexeggiim

.

e`il`gzaidxgnpdde`

gniprlithx:lrfdefdke'

.

`leylyzo

ywlimg.

xkoliljeldfiw:dvdyedke'

.

ntxy

abn'l`zeiin`i:anihadrxu

.

nriz

pkqieibadnidfwe`mxevdltxerl`

wxwr:מג’gh`z

.

ayebb:qwild

.

anfi:`iraiyzi`aez

.

ayebb:nigiia

.

zxzigh`ez:l`

nigiia`l`g`

.

``anl`kd`al`zeldiidlnigiia:elx"`

ngiiazxzike'

.

`irai`aezeldiidngiiazxzigh`ez

kxizeza:

anq'kxizezas'`nxele(shf.)kelde`aeznl`kezmnyko

bnxipoldeanqkzyaz(snh:):

Figure 1: A Talmud page with several layers of comments (typeset in TEX, see [1])

allows one to refer to pages, equations and figures in
the students’ book using the label-ref system.

The parts of the teachers’ book that are not tied
to students’ book pages are typeset in the usual way.
However, when LATEX encounters a commentsBox en-
vironment (see Section 3.1), it is not typeset. Rather,
it is added to a running galley of comments. The
command \typesetComments{page} triggers the fol-
lowing processes. First, we start a new page of the
teachers’ book, and put the image of the students’
book page on it (we use \includegraphics for this).
Second, we start to typeset the galley of comments
around this image, using \vsplit to split it into
columns. If the galley is too long to fit on the cur-

rent page, we start continuation pages, putting the
remainder of the galley on them. When the galley is
typeset, we clear the page. A typical result is shown
in Figure 3.

This method does not allow “real” floats or
inserts in the comments—we convert floats to non-
floating tables and figures, and footnotes become
endnotes.

4 Conclusions

We present a simple way to typeset both commented
and original editions from a single source. A combi-
nation of students’ and teachers’ books is an example
of the application of this package.

Boris Veytsman

TUGboat, Volume 40 (2019), No. 2 161

8

LIVRO ABERTO MATEMÁTICA

14

O QUE?
A seleção brasileira foi tetracampeã no

futebol de cinco nos Jogos Paraolímpicos

do Rio, em 2016.

O futebol de cinco é praticado por defi-

cientes visuais, exceto os goleiros, e exige

silêncio das arquibancadas. Isso porque a

bola tem guizos internos, que sinalizam a

posição exata dela para os jogadores. Um

guia (chamador), posicionado atrás do gol

adversário, orienta os jogadores de ataque

de sua equipe.

POR QUE?

FunçõesFunções3

1

Números triangulares

Objetivos específicos

Levar o estudante a:
• Reconhecer a relação de depen-

dência entre a ordem e os termos
de uma sequência.

• Reconhecer, a partir de um pa-
drão geométrico, os primeiros
termos de uma sequência e ser
capaz de, a partir do padrão
identificado, inferir os próximos
termos da sequência.

• Generalizar, ainda que em pala-
vras, a determinação de um termo
qualquer da sequência a partir da
sua ordem, segundo um padrão
identificado.

Observações e recomendações

• Nível de abstração Ação.
• Muito provavelmente os estudan-

tes descreverão a sequência de
formas diferentes, mas obtendo o
mesmo resultado para o sexto, o
sétimo e o oitavo números triangu-
lares. Por exemplo, um estudante
poderá dizer que, para identificar
os números triangulares solicita-
dos, “constrói” os triângulos “de
cima para baixo”. Já ouro pode ar-
gumentar que o faz “de baixo para
cima”. Outro ainda pode agumen-
tar a partir da observação do pa-
drão recursivo: “basta acrescentar
uma linha ao último triângulo cons-
truído”. Assim, como a resposta
ao ítem (b) não é única, procure
aproveitar e explorar as diferentes
respostas na discussão com a tur-
ma: os resultados são os mesmos
para essas diferentes formas de
descrever a sequência? Por que?
Por exemplo, “somar de cima para
baixo” produz o mesmo resultado
que “somar de baixo para cima”,
pois a adição é comutativa.

• Pela mesma razão apontada no
ítem (b), a resposta do item (d)
não é única.

• Não é objetivo, neste momento,
que o estudante expresse a rela-
ção por meio da linguagem sim-
bólica matemática, escrevendo,
por exemplo, Tn = −1 + , ma s
que seja matematicamente pre-
ciso em suas palavras, dizendo,
por exemplo, que “o -ésimo ter -
mo da sequência é obtido a partir
do termo anterior acrescido de
ma is uma fileir a com ” ou que “o
-ésimo tr iângulo da sequência é
obtido a partir do triângulo ante-
rior acrescido de mais uma fileira

com cír culos, por ta nto, “o -ésimo númer o
triangular é obtido a partir do termo anterior
a cr escido de ” 𝑥𝑥

• É possível que algum estudante descreva
o -ésimo númer o tr ia ngula r como a soma
dos pr imeir os númer os na tur a is𝑥𝑥 Nesse
caso, você pode mostrar que essa maneira
de descrever o procedimento é equivalente
à recursiva. Não apenas testando exem-

plos, mas sim fazendo uso da propriedade
a ssocia tiva da a dição: seja qua l for o tem-
-se que

 = 1 + 2 + 𝑥𝑥𝑥𝑥𝑥𝑥 + (− 1) +
= [1 + 2 + 𝑥𝑥𝑥𝑥𝑥𝑥 + (− 1)] +

= −1 + 𝑥𝑥

13

C
A

P
ÍT

U
L

O

1

11

F
U
N
Ç
Õ
E
S

1 Assim como os números triangulares (ver

Atividade: Números triangulares), fala-se

nos números quadrados perfeitos, penta-

gonais, hexagonais, inspirados, respecti-

vamente, pelas sequências abaixo:

a) Para cada uma destas sequências,
represente as próximas duas figuras;

b) Escreva uma sequência de números
que possa estar associada a cada
sequência de figuras;

c) Descreva a regra de formação de cada
uma dessas sequências de números.

2 Observe as duas sequências que se se-

guem:

1, 1, 2, 3, 5, 8, 13, . . .

1000, 100, 10, . . .

a) Descreva, em palavras ou em lingua-
gem simbólica, uma regra de forma-
ção que você percebe em cada uma
das sequências apresentadas.

b) Baseado na regra que você identifi-
cou no item anterior, descubra qual
é o 20º termo de cada uma das se-
quências anteriores.

3 Cada prisma obtém-se empilhando cubos

do mesmo tamanho, brancos e cinzas,

segundo uma regra sugerida na figura.

a) Descreva, em palavras ou em lingua-

gem simbólica, uma regra de forma-

ção sugerida pela figura.

b) Para construir o prisma 4 dessa se-

quência, segundo o padrão por você

descrito, quantos cubos cinzas são

necessários?

c) Justifique a afirmação: “O número

total de cubos cinzas necessários

para construir qualquer prisma des-

ta sequência é par.”

d) Segundo o padrão por você descrito,

quantos cubos cinzas terá o prisma

200?

e) Explicite uma expressão numérica

que permita determinar o número de

cubos cinzas do Prisma n em função

de n, isto é, uma expressão que de

forma geral associe a ordem da figu-

ra à quantidade de cubos cinzas em

sua composição.

f) Justifique novamente a afirmação do

item (c), agora a partir da expressão

que você explicitou no ítem anterior.

g) Se x representar o número total de

cubos (brancos e cinzas) de um pris-

ma desta sequência, qual das ex-

pressões seguintes representará o

número de cubos cinzas desse pris-

ma. Justifique sua escolha.

  x − 8

  2x − 4

  x − 4

 4x

4 Ao final de um treino para a prova de 100

metros rasos, uma corredora recebe de

seu treinador a seguinte tabela com as

marcas intermediárias da sua melhor

corrida.

Tempo (s) Distância (m)

5 25

10 50

15 75

20 100

EXERCÍCIOS

Pluviometria no Sistema
Cantareira

Objetivos específicos

Levar o estudante a:
• Interpretar representações gráfi-

cas de relações de dependência
entre grandezas.

• Reconhecer uma relação de de-
pendência entre grandezas a par-
tir da sua representação gráfica.

• Reconhecer a univocidade em
uma relação de dependência
entre grandezas.

Observações e recomendações

• Nível de abstração Processo.

• Os valores apresentados no grá-
fico são estimativas. Na página
http://www.nivelaguasaopaulo.
com/ cantareira é possível ter
acesso aos valores exatos para
cada mês. No entanto, cabe ob-
servar que os dados do período
apresentado na atividade (de
12/2013 a 11/2016) podem não
estar mais disponíveis na pági-
na de referência. Você pode (e
é interessante que o faça) mo-
dificar e adequar esta atividade
usando dados atualizados do
Sistema Cantareira ou subs-
tiuindo esses dados por dados
da região em que você leciona.

• No item (b), o objetivo é identifi-
car o valor absoluto da diferen-
ça, não sendo importante se o
valor é positivo ou negativo, ou
seja, se choveu menos ou mais
do que o esperado.

Respostas: Pluviometria no Sistema Cantareira

a) Há duas relações: uma envolvendo tempo e volume de chuva real e a outra tempo e o vo-
lume de chuva esperado.

b) De acordo com os dados apresentados no gráfico, a maior e a menor incidência de chuvas
ocorreram em fevereiro de 2015 e em abril de 2016, respectivamente.

c) Em dezembro de 2013, janeiro e fevereiro de 2014, janeiro e fevereiro de 2015 e junho de
2016.

d) Sim, nos meses de abril e julho do ano de 2016.

e) Houve uma coincidência entre a quantidade de chuva esperada e a que realmente caiu
sobre a região do Sistema Cantareira.

EXEMPLOS DE APLICAÇÃO DA DIAGRAMAÇÃO BOXE LATERAL

Figure 2: A teachers’ book design, Livro Aberto de Matemática

Acknowledgments This work was supported by
Livro Aberto de Matemática, Instituto Nacional de
Matemática Pura e Aplicada, Brazil. I am grateful
to Augusto Quadros Teixeira and Fabio Luiz Borges
Simas for their patience.

References

[1] A. Hoenig. Makor. A System for Typesetting

Biblical and Modern Hebrew with Omega and

TEX, 2003. https://ctan.org/pkg/makor2

[2] J. Lavagnino and D. Wujastyk. Critical

Edition Typesetting: The EDMAC format for

plain TEX. TEX Users Group and UK TEX
Users Group, San Francisco; Birmingham,
1996. https://ctan.org/pkg/edmac and
https://tug.org/edmac

[3] M. Rouquette. reledmac. Typeset scholarly

editions with LATEX, 2019.
https://ctan.org/pkg/reledmac

[4] B. Veytsman. Creating commented editions,
2019. https://ctan.org/pkg/commedit

[5] P. Wilson, H. Press, and M. Rouquette. ledmac.

A presumptuous attempt to port EDMAC,

TABMAC and EDSTANZA to LATEX, 2016.
https://ctan.org/pkg/ledmac

⋄ Boris Veytsman
School of Systems Biology
George Mason University
borisv (at) lk dot net

Creating commented editions with LATEX—the commedit package

https://ctan.org/pkg/makor2
https://ctan.org/pkg/edmac
https://tug.org/edmac
https://ctan.org/pkg/reledmac
https://ctan.org/pkg/commedit
https://ctan.org/pkg/ledmac

162 TUGboat, Volume 40 (2019), No. 2

8 CHAPTER 1. FIRST CHAPTER

Comments for the chapter 1 of
the base edition2.

e = mc
2 (1.3)

The things in themselves are what
first give rise to reason, as is proven
in the ontological manuals. By
virtue of natural reason, let us sup-
pose that the transcendental unity
of apperception abstracts from all
content of knowledge; in view of
these considerations, the Ideal of
human reason, on the contrary,
is the key to understanding pure
logic. Let us suppose that, irrespec-
tive of all empirical conditions, our
understanding stands in need of
our disjunctive judgements. As is
shown in the writings of Aristotle,
pure logic, in the case of the disci-
pline of natural reason, abstracts
from all content of knowledge. Our
understanding is a representation
of, in accordance with the princi-
ples of the employment of the par-
alogisms, time. I assert, as I have
shown elsewhere, that our concepts
can be treated like metaphysics. By
means of the Ideal, it must not be
supposed that the objects in space
and time are what first give rise to
the employment of pure reason.

2A footnote

Chapter 1

Some thoughts

Here we switch back to the base edition.
An equation for the base edition:

e = mc
2
. (1.1)

And pseudo-lating gibberish.
Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean

faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros,
malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed
ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc.
Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in,
fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem.
Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque
non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac,
erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue
purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu,
lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec
odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae
justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend
ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea
dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus,
tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam.
Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit
sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui
varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et
ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum,
urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique
arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam
auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed
augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce
sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui.
Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc
placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros
pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem
dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien.
Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit.
Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

1

10 CHAPTER 1. FIRST CHAPTER

More comments. Note the con-
tinuation pages. . . Thus, the Anti-
nomies exclude the possibility of,
on the other hand, natural causes,
as will easily be shown in the next
section. Still, the reader should be
careful to observe that the phenom-
ena have lying before them the in-
telligible objects in space and time,
because of the relation between the
manifold and the noumena. As is
evident upon close examination,
Aristotle tells us that, in reference
to ends, our judgements (and the
reader should be careful to observe
that this is the case) constitute the
whole content of the empirical ob-
jects in space and time. Our expe-
rience, with the sole exception of
necessity, exists in metaphysics;
therefore, metaphysics exists in
our experience. (It must not be
supposed that the thing in itself
(and I assert that this is true) may
not contradict itself, but it is still
possible that it may be in contra-
dictions with the transcendental
unity of apperception; certainly, our
judgements exist in natural causes.)
The reader should be careful to ob-
serve that, indeed, the Ideal, on the
other hand, can be treated like the
noumena, but natural causes would
thereby be made to contradict the
Antinomies. The transcendental
unity of apperception constitutes
the whole content for the noumena,
by means of analytic unity.

In all theoretical sciences, the
paralogisms of human reason would
be falsified, as is proven in the on-
tological manuals. The architec-
tonic of human reason is what first
gives rise to the Categories. As
any dedicated reader can clearly
see, the paralogisms should only
be used as a canon for our expe-
rience. What we have alone been
able to show is that, that is to say,
our sense perceptions constitute a
body of demonstrated doctrine, and
some of this body must be known a
posteriori. Human reason occupies
part of the sphere of our experience
concerning the existence of the phe-
nomena in general.

By virtue of natural reason, our
ampliative judgements would thereby
be made to contradict, in all theo-
retical sciences, the pure employ-
ment of the discipline of human

reason. Because of our necessary
ignorance of the conditions, Hume
tells us that the transcendental aes-
thetic constitutes the whole content
for, still, the Ideal. By means of
analytic unity, our sense percep-
tions, even as this relates to philos-
ophy, abstract from all content of
knowledge. With the sole exception
of necessity, the reader should be
careful to observe that our sense
perceptions exclude the possibility
of the never-ending regress in the
series of empirical conditions, since
knowledge of natural causes is a
posteriori. Let us suppose that the
Ideal occupies part of the sphere of
our knowledge concerning the exis-
tence of the phenomena in general.
By virtue of natural reason, what

we have alone been able to show is
that, in so far as this expounds the
universal rules of our a posteriori
concepts, the architectonic of nat-
ural reason can be treated like the
architectonic of practical reason.
Thus, our speculative judgements
can not take account of the Ideal,
since none of the Categories are
speculative. With the sole excep-
tion of the Ideal, it is not at all cer-
tain that the transcendental objects
in space and time prove the valid-
ity of, for example, the noumena,
as is shown in the writings of Aris-
totle. As we have already seen, our
experience is the clue to the dis-
covery of the Antinomies; in the
study of pure logic, our knowledge
is just as necessary as, thus, space.
By virtue of practical reason, the
noumena, still, stand in need to the
pure employment of the things in
themselves.
The reader should be careful to

observe that the objects in space
and time are the clue to the dis-
covery of, certainly, our a priori
knowledge, by means of analytic
unity. Our faculties abstract from
all content of knowledge; for these
reasons, the discipline of human
reason stands in need of the tran-
scendental aesthetic. There can
be no doubt that, insomuch as
the Ideal relies on our a posteri-
ori concepts, philosophy, when thus
treated as the things in themselves,
exists in our hypothetical judge-
ments, yet our a posteriori concepts
are what first give rise to the phe-

nomena. Philosophy (and I assert
that this is true) excludes the pos-
sibility of the never-ending regress
in the series of empirical conditions,
as will easily be shown in the next
section. Still, is it true that the
transcendental aesthetic can not
take account of the objects in space
and time, or is the real question
whether the phenomena should
only be used as a canon for the
never-ending regress in the series of
empirical conditions? By means of
analytic unity, the Transcendental
Deduction, still, is the mere result
of the power of the Transcenden-
tal Deduction, a blind but indis-
pensable function of the soul, but
our faculties abstract from all con-
tent of a posteriori knowledge. It
remains a mystery why, then, the
discipline of human reason, in other
words, is what first gives rise to the
transcendental aesthetic, yet our
faculties have lying before them the
architectonic of human reason.

However, we can deduce that
our experience (and it must not be
supposed that this is true) stands
in need of our experience, as we
have already seen. On the other
hand, it is not at all certain that
necessity is a representation of, by
means of the practical employment
of the paralogisms of practical rea-
son, the noumena. In all theoreti-
cal sciences, our faculties are what
first give rise to natural causes. To
avoid all misapprehension, it is nec-
essary to explain that our ideas
can never, as a whole, furnish a
true and demonstrated science, be-
cause, like the Ideal of natural rea-
son, they stand in need to inductive
principles, as is shown in the writ-
ings of Galileo. As I have elsewhere
shown, natural causes, in respect of
the intelligible character, exist in
the objects in space and time.

Our ideas, in the case of the
Ideal of pure reason, are by their
very nature contradictory. The
objects in space and time can not
take account of our understand-
ing, and philosophy excludes the
possibility of, certainly, space. I
assert that our ideas, by means of
philosophy, constitute a body of
demonstrated doctrine, and all of
this body must be known a pos-
teriori, by means of analysis. It

9

2 CHAPTER 1. SOME THOUGHTS

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed,
ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis
consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam
non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede
quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus
nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

More gibberish for base edition.
Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant

morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo.
Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod.
Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est.
Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra
gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum
ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede.
Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl,
malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit
sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst.
Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent
scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus
a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede,
tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut
pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id
dolor.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero.
Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit.
Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas
lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat
magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel
magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam
cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu
massa.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam.
Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit
sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui
varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et
ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum,
urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique
arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam
auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed
augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce
sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui.
Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc
placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros
pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem
dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.
Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien.
Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit.
Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed,
ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis
consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam
non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede
quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus

We can reference base equa-
tion (1.1) on base page (1) and
commented edition equations (1.1)
and (1.2) on the commented edition
page (5).

More gibberish3.
As is evident upon close exam-

ination, to avoid all misapprehen-
sion, it is necessary to explain that,
on the contrary, the never-ending
regress in the series of empirical
conditions is a representation of
our inductive judgements, yet the
things in themselves prove the va-

lidity of, on the contrary, the Cat-
egories. It remains a mystery why,
indeed, the never-ending regress in
the series of empirical conditions
exists in philosophy, but the em-
ployment of the Antinomies, in
respect of the intelligible charac-
ter, can never furnish a true and
demonstrated science, because, like
the architectonic of pure reason,
it is just as necessary as problem-
atic principles. The practical em-
ployment of the objects in space
and time is by its very nature con-

tradictory, and the thing in itself
would thereby be made to con-
tradict the Ideal of practical rea-
son. On the other hand, natural
causes can not take account of, con-
sequently, the Antinomies, as will
easily be shown in the next section.
Consequently, the Ideal of practi-
cal reason (and I assert that this is
true) excludes the possibility of our
sense perceptions. Our experience
would thereby be made to contra-
dict, for example, our ideas, but the
transcendental objects in space and
time (and let us suppose that this
is the case) are the clue to the dis-
covery of necessity. But the proof
of this is a task from which we can
here be absolved.
Comments. As we have already

seen, what we have alone been able
to show is that the objects in space
and time would be falsified; what
we have alone been able to show
is that, our judgements are what
first give rise to metaphysics. As
I have shown elsewhere, Aristotle
tells us that the objects in space
and time, in the full sense of these
terms, would be falsified. Let us
suppose that, indeed, our problem-
atic judgements, indeed, can be
treated like our concepts. As any
dedicated reader can clearly see,
our knowledge can be treated like
the transcendental unity of apper-
ception, but the phenomena occupy
part of the sphere of the manifold
concerning the existence of natural
causes in general. Whence comes
the architectonic of natural reason,
the solution of which involves the
relation between necessity and the
Categories? Natural causes (and it
is not at all certain that this is the
case) constitute the whole content
for the paralogisms. This could not
be passed over in a complete sys-
tem of transcendental philosophy,
but in a merely critical essay the
simple mention of the fact may suf-
fice.

u = v · a (1.4)

• item

• item

• item

12 CHAPTER 1. FIRST CHAPTER

Here we add a figure.

Figure 1.1: Vitruvian man

There is no difference between
starred and unstarred floats

Gnus Gnats

12 20
24 10

Table 1.1: A table

3

nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.
Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra

tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus
sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien.
Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et
nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie
odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu
pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet
neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero.
Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus.
Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel
turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum
commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo.
Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod.
Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est.
Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra
gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum
ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede.
Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl,
malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit
sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst.
Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent
scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus
a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede,
tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut
pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id
dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae,
fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac
mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum.
Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris
sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a
tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam
varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus sit amet mattis rhoncus, sapien
dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo
consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis
ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac
enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus
pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse
risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam
enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor
at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

Figure 3: Spreads from the teachers’ book

Boris Veytsman

TUGboat, Volume 40 (2019), No. 2 163

Creating and automating exams

with LATEX & friends

Uwe Ziegenhagen

Abstract

Although LATEX is widely used in academia and edu-
cation only a few teachers use it to prepare exams
for their students. In this article we show how the
exam package can be used to create various exercise
types and how exercises can be created randomly
using Python.

1 Introducing the exam class

The exam package [1] is maintained by Philip Hirsch-
horn; the current version, 2.6, is from November 2017.
It supports various question types, described in the
well-written manual accompanying the package.

A basic example for an exam-based exam sheet
can be found in Figure 1 below. It uses exam as the
document class. Inside the document a questions

environment is used, with item-like \question com-
mands that take the number of achievable points for
this exercise as an optional parameter.

For exams in languages other than English, the
exam-specific terms can be translated. See Listing 1
for a translation into German.

\pointpoints{Punkt}{Punkte}

\bonuspointpoints{Bonuspunkt}{Bonuspunkte}

\renewcommand{\solutiontitle}

{\noindent \textbf{Lösung:}\enspace}

\chqword{Frage} \chpgword{Seite}

\chpword{Punkte} \chbpword{Bonus Punkte}

\chsword{Erreicht} \chtword{Gesamt}

\hpword{Punkte:} \hsword{Ergebnis:}

\hqword{Aufgabe:} \htword{Summe:}

Listing 1: Localization, here for German

The package also allows for defining the layout of
headers and footers, separately for the first page and
all subsequent pages. An example of the commands
and output is shown in Figure 2. Each command

\documentclass[12pt]{exam}

\begin{document}\Large

\begin{questions}

\question[10] Who was Albert Einstein?

\question[10] Compute \(e = m \cdot c^2 \)!

\end{questions}

\end{document}

1. (10 points) Who was Albert Einstein?

2. (10 points) Compute e = m · c2!

Figure 1: A basic example of exam, source and output

\pagestyle{headandfoot}

\firstpageheadrule

\runningheadrule

\firstpageheader{<left>}{<center>}

{John Doe \\ Statistics 101 - 2019}

\runningheader{<l>}{<c>}{Statistics 101 - 2019}

\firstpagefooter{\today}{ACME University}

{\thepage\,/\,\numpages}

\runningfooter {\today}{ACME University}

{\thepage\,/\,\numpages}

\begin{document}\Large

\begin{questions}

\question[10] Who was Albert Einstein?

\question[10] Compute \(e = m \cdot c^2 \)!

\end{questions}

\end{document}

<left> <center>
John Doe

Statistics 101 - 2019

1. (10 points) Who was Albert Einstein?

2. (10 points) Compute e = m · c2!

Resulting output (top of page)

August 19, 2019 ACME University 1 / 1

Resulting output (bottom of page)

Figure 2: Setting headers and footers

\begin{questions}

\question[10] Who was Albert Einstein?

\begin{parts}

\part[1] Where was he born?

\part[4] What has he become famous for?

\begin{subparts}

\subpart[2] What does \(e=mc^2\) mean?

\subpart[2] What did he get the Nobel prize for?

\end{subparts}

\end{parts}

\end{questions}

<left> <center>
John Doe

Statistics 101 - 2019

1. (10 points) Who was Albert Einstein?

(a) (1 point) Where was he born?

(b) (4 points) What has he become famous for?

i. (2 points) What does e = mc2 mean?

ii. (2 points) What did he get the Nobel prize for?

Figure 3: Subdividing questions: \part and \subpart

has three parameters, for the left, the center, and
the right part of the corresponding header/footer.

Questions can be further elaborated. The exam
package provides the environments parts, subparts,
and subsubparts. Inside these environments indi-
vidual subquestions are added with \part, \subpart
or \subsubpart. See Figure 3 for examples.

Creating and automating exams with LATEX & friends

164 TUGboat, Volume 40 (2019), No. 2

\question Who was not a Beatle?

\begin{choices}

\choice John

\choice Paul

\choice George

\CorrectChoice Benedict

\end{choices}

\question Who was not a Beatle?

\begin{checkboxes}

\choice John

\choice Paul

\choice George

\CorrectChoice Benedict

\end{checkboxes}

<left> <center>
John Doe

Statistics 101 - 2019

1. Who was not a Beatle?

A. John

B. Paul

C. George

D. Benedict

2. Who was not a Beatle?

© John

© Paul

© George

© Benedict

Figure 4: Examples for choices and checkboxes

Besides the text-based questions we have seen
so far, the exam class offers several environments for
multiple choice and fill-in questions:

• choices for vertical choices using letters

• checkboxes for vertical checkboxes

• oneparcheckboxes for horizontal checkboxes

• \fillin[〈solution text〉] prints a horizontal line
where the students should put their answer.

For multiple choice questions, the correct answer
is defined with the \CorrectChoice command. To
typeset a version of the exam that has the correct
answers and solutions highlighted, answers is added
to the list of class options. See Figures 4 and 5.

To create space for answers, the package not
only supports the usual TEX commands (Figure 6),
but also “enriched” solution space commands that
provide lines, dotted lines or a grid (Figure 7).

To also insert solutions into the exam, one can
use the solution environment—see Figure 8—or
one of the following environments:

• solutionorbox

• solutionorlines

• solutionordottedlines

• solutionorgrid

For the solutionorgrid environment an exam-
ple is shown in Figure 9 which, depending on whether

\question Who was not a Beatle?

\begin{oneparcheckboxes}

\choice John

\choice Paul

\choice George

\choice Ringo

\CorrectChoice Benedict

\end{oneparcheckboxes}

\question \fillin[James Bond][11em] has the

\enquote{license to kill}.

<left> <center>
John Doe

Statistics 101 - 2019

1. Who was not a Beatle?

© John © Paul © George © Ringo
√

Benedict

2. James Bond has the “license to kill”.

Figure 5: oneparcheckboxes option and \fillin

command, with answers option set

% simple vertical space

\vspace*{<length>}

% vertical space to the end of the page

\vspace*{\stretch{1}}

\newpage

% empty framed box

\makeemptybox{<length>}

% empty framed box to the end of the page

\makeemptybox{\stretch{1}}

\newpage

Figure 6: TEX commands to make answer spaces

the class option answers is set, either presents a plot
of a quadratic function or a grid where the students
are to draw the function themselves.

As mentioned earlier, the different question en-
vironments take the number of points as optional
parameters. To assist with the creation of the grad-
ing table, exam has commands for producing vertical
or horizontal grading tables that are either based on
the page or exercise number. Figure 10 shows vari-
ations of the \gradetable command and example
output from \gradetable[h][questions].

2 Automating exam

In this section we want to show how exam questions
can be created individually for each student, e.g.,
to prevent cheating. We also use QR codes that
are printed behind each exercise, thus generating a
teacher-friendly version by eliminating the need to
calculate all the individual results herself as a modern
smartphone suffices to see the result immediately.

Uwe Ziegenhagen

TUGboat, Volume 40 (2019), No. 2 165

\fillwithlines{<length>} % for lines

% Remark: \linefillheight for interline spacing

\fillwithdottedlines{<length>} % for dotted lines

% Remark: distance in \dottedlinefillheight

\fillwithgrid{<length>} %

% \setlength{\gridsize}{5mm}

% \setlength{\gridlinewidth}{0.1pt}

\answerline[answer] % for short answers

<left> <center>
John Doe

Statistics 101 - 2019

1. Give a short overview of whatever!

2. (5 points) Describe the general theory of relativity!

. .

. .

. .

(output from \fillwithlines and \fillwithdottedlines)

<left> <center>
John Doe

Statistics 101 - 2019

1. Give a short overview of whatever!

2. (5 points) When was Henry VIII born?

2.

(output from \fillwithgrid and \answerline)

Figure 7: Examples of enriched answer spaces.

\begin{questions}

\question[1] How much does lead (Pb) weigh?

\begin{solution}

Pb weighs \SI{11,342}{\gram\per \centi\meter^3}

\end{solution}

\end{questions}

<left> <center>
John Doe

Statistics 101 - 2019

1. (1 point) How much does lead (Pb) weigh?

Solution: Pb weighs 11.342 g/cm3

Figure 8: Example of using the solution

environment, with answers set

\question[5] Draw the function $3x^2+4x+5$!

\begin{solutionorgrid}[8cm]

\begin{tikzpicture}[baseline]

\begin{axis}[axis y line=center,axis x line=middle,

grid=both,xmax=5,xmin=-5,ymin=0,ymax=10,

xlabel=x,ylabel=y

xtick={-5,...,5},ytick={0,...,11},anchor=center]

\addplot[smooth,blue,thick,samples=100]

{3*x^2+4*x+5} ;

\end{axis}

\end{tikzpicture}

\end{solutionorgrid}

<left> <center>
John Doe

Statistics 101 - 2019

1. (5 points) Draw the function 3x2 + 4x+ 5!

Solution:

−5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

x

y

Figure 9: Example of using the solutiongrid

environment, with answers set

\gradetable[v][questions] vertically per question

\gradetable[h][questions] horizontally per question

\gradetable[v][pages] vertically per page

\gradetable[h][pages] horizontally per page

1. (2 points) What’s the specific weight of air?

2. (2 points) What’s the specific weight of air?

Question: 1 2 Total

Points: 2 2 4

Score:

Figure 10: A grading table made with
\gradetable[h] (requires two LATEX runs)

We will first work on the LATEX part before we
automate the whole process. First we define a simple
math question, as in Listing 2.

\begin{questions}

\question[5] Calculate!

\begin{parts}

\part[1] \(12345 + 67890 = \) \fillin[80235]

\end{parts}

Listing 2: A simple math exercise

We then use the \qrcode command from the qrcode
package. This command takes just one parameter,
the text to be encoded. In our case, this will be the
numeric result of the calculation. For the vertical

Creating and automating exams with LATEX & friends

166 TUGboat, Volume 40 (2019), No. 2

\begin{questions}

\question[5] Calculate!

\begin{parts}

\part[1] \(12345 + 67890 = \) \fillin[80235]

\hfill\qrcode{80235}\vspace{2em}

\part[1] \(12345 + 67890 = \) \fillin[80235]

\hfill\qrcode{80235}\vspace{2em}

% ...

1. (5 points) Calculate!

(a) (1 point) 12345 + 67890 =

(b) (1 point) 12345 + 67890 =

Figure 11: Adding and aligning QR codes

and horizontal alignment we use the \hfill and
\vspace commands; see Figure 11 for sample input
and output.

Next we develop the required Python code; see
Listing 3. We create a function named gen_exercise
to find two random integers and compute their sum,
and return the LATEX string to typeset the exercise
with the QR code. The code in the \pyc command
parameter is only executed; it does not generate
any printed text. The same holds for the pycode

environment.

\pyc{from random import randrange}

\begin{pycode}

def gen_exercise():

a = randrange(1000, 10000, 1)

b = randrange(1000, 10000, 1)

c = a + b

a = str(a)

b = str(b)

c = str(c)

return '\\(' + a + ' + ' + b

+ ' = \\) \\fillin[' + c

+ '] \\hfill\\qrcode{' + c

+ '}\\vspace*{3em}'

\end{pycode}

Listing 3: Python (inside LATEX) code to create an
exercise

To automate our LATEX document with the Py-
thon code we use the pythontex package by Geof-
frey Poore [2], which we presented in another talk
at TUG 2019 (pp. 126–128 in this proceedings), and
write the LATEX document shown (partially) in List-
ing 4.

\begin{questions}

\question[5] Calculate!

\begin{parts}

\part[1] \py{gen_exercise()}

\part[1] \py{gen_exercise()}

\part[1] \py{gen_exercise()}

\part[1] \py{gen_exercise()}

\part[1] \py{gen_exercise()}

\end{parts}

Listing 4: Excerpt of the LATEX document using the
pythontex code

In the LATEX exam document, inside the parts
environment we use \py to call our gen_exercise
function. It creates and returns the LATEX code
desired. With the sequence pdflatex, pythontex,
pdflatex we can then compile the final document.
The output is similar to the previous one shown in
Figure 11, but with randomly-generated numbers.

3 Summary

In this article we have presented the most important
features of the exam class and shown how exams
can be typeset with LATEX in a straightforward way.
We have also shown how individual exercises can be
created to allow more variability in the numerical
values used in the exam.

Accompanying this article is the more exten-
sive presentation held at TUG 2019 for which the
interested reader is directed to the slides at www.

uweziegenhagen.de.

References

[1] P. Hirschhorn. Using the exam document class,
2017. ctan.org/pkg/exam

[2] G. M. Poore. PythonTEX: Reproducible
documents with LATEX, Python, and
more. Comput. Sci. Disc. 8(1), 2015.
ctan.org/pkg/pythontex

⋄ Uwe Ziegenhagen
Escher Str. 221
50739 Cologne, Germany
ziegenhagen (at) gmail dot com

https://www.uweziegenhagen.de

Uwe Ziegenhagen

www.uweziegenhagen.de
www.uweziegenhagen.de
ctan.org/pkg/exam
ctan.org/pkg/pythontex

TUGboat, Volume 40 (2019), No. 2 167

BIBTEX-based dataset generation

for training citation parsers

Sree Harsha Ramesh, Dung Thai,
Boris Veytsman, Andrew McCallum

A citation graph is an important part of modern sci-
entometrics (the field of analyzing and measuring of
scientific literature) [2–19,21,23–31]. To construct it,
we need to disambiguate citations: determine which
paper cites which paper. While many publishers now
deposit citation data in a machine readable format,
some do not—and there are millions of older pa-
pers where only textual citation strings are available.
Since manual conversion of these strings to parsed
entries is not possible, we need to teach machines
how to do this.

An important part of supervised learning is a
good dataset of ground truth—in our case, a large
amount of already parsed citations both as text
strings and key-value pairs. The traditional way
to generate these datasets is to take a large num-
ber of citations and manually parse each of them.
This process is tedious and expensive, since in many
cases it requires trained annotators. Therefore the
existing datasets are relatively small: the CORA

Field Extraction dataset [22] has 500 citations, and
the UMass Citation Field Extraction dataset [1] has
1829 citations.

Our new approach to creating the dataset over-
comes this difficulty. We start with already parsed
data: BibTEX files of papers. Using different bib-
liography styles (bst files), we generate formatted
citations, for which we know the content in the key-
value format as we used this content to create the
formatted text.

Initially we intended to use Nelson Beebe’s ex-
tensive BibTEX archives.1 However, we discovered
that the bibliographies there are not suitable for
our task: they have a large, but still limited num-
ber of journals, they do not have “unusual” fields
like eprint, and they do not have the errors and
inconsistencies often encountered in the wild. There-
fore software trained on Beebe’s files were not very
successful in parsing “wild” citations.

So, we used another approach. We scraped the
Internet for .bib files, finding 9393 BibTEX files
(mostly personal bibliographies) with 1 216 607 en-
tries. We manually cleaned them, deleting duplicate
fields, missing delimiters, unenclosed braces, etc. We
used 297 bst files from TEX Live. The resulting
dataset is described in Table 1. The size of this

1 http://math.utah.edu/~beebe/bibliographies.html

Table 1: Generated dataset

Parameter Value

Total number of annotated
citations

353 892 568

Vocabulary size 179 682
Total number of styles 237
Total number of field types 55
Total number of BibTEX

source files
9393

Table 2: Field extraction performance on a subset
of data (ELMO tagger)

Best fields

Label F1

Ref-marker 99.99
CODEN 99.74
Year 99.73
ISSN 99.72
Pages 99.63
Volume 99.33
Number 99.32
DOI 99.32
Language 99.31
Month 99.25

Worst fields

Label F1

Type 86.64
E-Print 85.71
Issue 80.00
Price 80.00
How-Published 75.15
Organization 69.95
Key 60.59
EID 54.84
Comment 40.00
Annote 30.77

dataset is several orders of magnitude larger than
the largest previously available [1].

We trained a number of modern algorithms for
citation parsing based on our dataset. The results
for the ELMO tagger [20] are shown in Tables 2
and 3 with the common accuracy measure F1 (the
harmonic mean of recall and precision) shown.

It is interesting to see how use of the BibTEX
dataset improves the performance of the tagger, as
trained and tested on the UMass dataset [1]. The
results are shown in Table 4. We see a significant

Table 3: Performance for different BibTEX styles

Style Recall Precision F1

The styles with the highest scores
swealpha 98.21 99.00 98.60
unsrtnat 98.51 99.02 98.76
ACM-Reference 97.24 97.66 97.45

The styles with the lowest scores
ksfh_nat 94.74 95.66 95.19
rsc 95.34 96.45 95.89
gp 95.60 96.37 95.98

BibTEX-based dataset generation for training citation parsers

http://math.utah.edu/~beebe/bibliographies.html

168 TUGboat, Volume 40 (2019), No. 2

Table 4: Improvement in UMass dataset parsing

Training Recall Precision F1

UMass 93.58 94.02 93.80
BibTEX 94.25 93.18 93.78
UMass + BibTEX 97.59 97.23 97.41

improvement in the parsing of the existing dataset
when additional data are added for training.

In conclusion, programmable typesetting and
formatting systems like TEX and BibTEX can create
“natural” text from structured data. This pseudo-
natural text can be used to train machines.

⋄ Sree Harsha Ramesh

College of Information and Computer

Sciences, UMass Amherst

shramesh (at) cs dot umass dot edu

⋄ Dung Thai

College of Information and Computer

Sciences, UMass Amherst

dthai (at) cs dot umass dot edu

⋄ Boris Veytsman

Meta, Chan Zuckerberg Initiative

bveytsman (at) chanzuckerberg dot com

⋄ Andrew McCallum

College of Information and Computer

Sciences, UMass Amherst

mccallum (at) cs dot umass dot edu

References

[1] S. Anzaroot and A. McCallum. A new dataset
for fine-grained citation field extraction.
In Proceedings of the 30th International
Conference on Machine Learning, Atlanta,
Georgia, USA, 2013.

[2] L. Bornmann, K. B. Wray, and R. Haunschild.
Citation concept analysis (CCA)—a new form
of citation analysis revealing the usefulness
of concepts for other researchers illustrated
by two exemplary case studies including
classic books by Thomas S. Kuhn and Karl
R. Popper. arXiv e-prints 1905.12410,
May 2019.

[3] C. Castillo, D. Donato, and A. Gionis.
Estimating number of citations using author
reputation. In N. Ziviani and R. Baeza-Yates,
eds., String Processing and Information
Retrieval: 14th International Symposium,
SPIRE 2007 Santiago, Chile, October 29-31,
2007 Proceedings, pp. 107–117. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.
doi:10.1007/978-3-540-75530-2_10

[4] T. Chakraborty, S. Kumar, et al. Towards a
stratified learning approach to predict future
citation counts. In Proceedings of the 14th
ACM/IEEE-CS Joint Conference on Digital
Libraries, JCDL ’14, pp. 351–360, Piscataway,
NJ, USA, 2014. IEEE Press. http://dl.acm.
org/citation.cfm?id=2740769.2740830

[5] C. Chen. Predictive effects of structural
variation on citation counts. Journal of the
American Society for Information Science and
Technology 63(3):431–449, 2012.
doi:10.1002/asi.21694

[6] L. Dietz, S. Bickel, and T. Scheffer.
Unsupervised prediction of citation
influences. In Proceedings of the 24th
International Conference on Machine
Learning, Corvallis, OR, 2007. https:

//icml.cc/imls/conferences/2007/

proceedings/papers/257.pdf

[7] S. Feldman, K. Lo, and W. Ammar. Citation
count analysis for papers with preprints. ArXiv
e-prints 1805.05238, May 2018.

[8] L. D. Fu and C. F. Aliferis. Using
content-based and bibliometric features
for machine learning models to predict
citation counts in the biomedical literature.
Scientometrics 85(1):257–270, 2010.
doi:10.1007/s11192-010-0160-5

[9] D. Herrmannova, P. Knoth, and R. Patton.
Analyzing citation-distance networks for
evaluating publication impact. In 11th edition
of the Language Resources and Evaluation
Conference, May 2018.
http://oro.open.ac.uk/53638/

[10] D. Herrmannova, R. M. Patton, et al. Do
citations and readership identify seminal
publications? CoRR abs/1802.04853, 2018.
http://arxiv.org/abs/1802.04853

[11] B. I. Hutchins, X. Yuan, et al. Relative
citation ratio (RCR): A new metric that uses
citation rates to measure influence at the
article level. PLOS Biology 14(9):1–25, 09
2016.
doi:10.1371/journal.pbio.1002541

[12] I. Iacopini, S. Milojević, and V. Latora.
Network dynamics of innovation processes.
Phys. Rev. Lett. 120:048301, Jan 2018.
doi:10.1103/PhysRevLett.120.048301

[13] Y. Jia and L. Qu. Improve the performance
of link prediction methods in citation network
by using h-index. In 2016 International
Conference on Cyber-Enabled Distributed

Sree Harsha Ramesh, Dung Thai, Boris Veytsman, Andrew McCallum

http://dx.doi.org/10.1007/978-3-540-75530-2_10
http://dl.acm.org/citation.cfm?id=2740769.2740830
http://dl.acm.org/citation.cfm?id=2740769.2740830
http://dx.doi.org/10.1002/asi.21694
https://icml.cc/imls/conferences/2007/proceedings/papers/257.pdf
https://icml.cc/imls/conferences/2007/proceedings/papers/257.pdf
https://icml.cc/imls/conferences/2007/proceedings/papers/257.pdf
http://dx.doi.org/10.1007/s11192-010-0160-5
http://oro.open.ac.uk/53638/
http://arxiv.org/abs/1802.04853
http://dx.doi.org/10.1371/journal.pbio.1002541
http://dx.doi.org/10.1103/PhysRevLett.120.048301

TUGboat, Volume 40 (2019), No. 2 169

Computing and Knowledge Discovery
(CyberC), pp. 220–223, Oct 2016.
doi:10.1109/CyberC.2016.51

[14] M. Kaya, M. Jawed, et al. Unsupervised
link prediction based on time frames
in weighted–directed citation networks.
In R. Missaoui, T. Abdessalem, and
M. Latapy, eds., Trends in Social Network
Analysis: Information Propagation, User
Behavior Modeling, Forecasting, and
Vulnerability Assessment, pp. 189–205.
Springer International Publishing, Cham,
2017.
doi:10.1007/978-3-319-53420-6_8

[15] P. Klimek, A. S. Jovanovic, et al.
Successful fish go with the flow: citation
impact prediction based on centrality
measures for term–document networks.
Scientometrics 107(3):1265–1282, Jun 2016.
doi:10.1007/s11192-016-1926-1

[16] C. Lokker, K. A. McKibbon, et al.
Prediction of citation counts for
clinical articles at two years using
data available within three weeks of
publication: retrospective cohort study.
BMJ 336(7645):655–657, 2008.
doi:10.1136/bmj.39482.526713.BE

[17] K. McKeown, I. Daume, Hal, et al.
Predicting the impact of scientific concepts
using full-text features. Journal of the
Association for Information Science and
Technology 67(11):2684–2696, 2016.
doi:10.1002/asi.23612

[18] H.-M. Park, Y. B. Sinshaw, and K.-A. Sohn.
Temporal citation network-based feature
extraction for cited count prediction. In K. J.
Kim and N. Joukov, eds., Mobile and Wireless
Technologies 2017: ICMWT 2017, pp. 380–388.
Springer Singapore, Singapore, 2018.
doi:10.1007/978-981-10-5281-1_41

[19] B. K. Peoples, S. R. Midway, et al.
Twitter predicts citation rates of ecological
research. PLoS ONE 11:e0166570, 2017.
doi:0.1371/journal.pone.0166570

[20] M. E. Peters, M. Neumann, et al.
Deep contextualized word representations.
In NAACL, 2018.

[21] N. Pobiedina and R. Ichise. Citation count
prediction as a link prediction problem.
Applied Intelligence 44(2):252–268, Mar 2016.
doi:10.1007/s10489-015-0657-y

[22] K. Seymore, A. McCallum, and R. Rosenfeld.
Learning hidden Markov model structure
for information extraction. In AAAI-99
workshop on machine learning for information
extraction, pp. 37–42, 1999.

[23] X. Shi, J. Leskovec, and D. A. McFarland.
Citing for high impact. CoRR abs/1004.3351,
2010. http://arxiv.org/abs/1004.3351

[24] H. Small, K. W. Boyack, and R. Klavans.
Citations and certainty: a new interpretation
of citation counts. Scientometrics
118(3):1079–1092, Mar 2019.
doi:10.1007/s11192-019-03016-z

[25] I. Tahamtan, A. Safipour Afshar, and
K. Ahamdzadeh. Factors affecting number
of citations: A comprehensive review of the
literature. Scientometrics 107(3):1195–1225,
June 2016.
doi:10.1007/s11192-016-1889-2

[26] I. Tahamtan, A. Safipour Afshar, and
K. Ahamdzadeh. Factors affecting number
of citations: a comprehensive review of the
literature. Scientometrics 107(3):1195–1225,
Jun 2016.
doi:10.1007/s11192-016-1889-2

[27] B. Veytsman. How to measure the consistency
of the tagging of scientific papers? In 2019
ACM/IEEE Joint Conference on Digital
Libraries (JCDL), pp. 372–373, 2019.
doi:10.1109/JCDL.2019.00076

[28] L. Weihs and O. Etzioni. Learning to predict
citation-based impact measures. In 2017
ACM/IEEE Joint Conference on Digital
Libraries (JCDL), pp. 1–10, June 2017.
doi:10.1109/JCDL.2017.7991559

[29] R. Yan, C. Huang, et al. To better stand on
the shoulder of giants. In Proceedings of the
12th ACM/IEEE-CS Joint Conference on
Digital Libraries, JCDL ’12, pp. 51–60, New
York, NY, USA, 2012. ACM.
doi:10.1145/2232817.2232831

[30] R. Yan, J. Tang, et al. Citation count
prediction: learning to estimate future
citations for literature. In Proceedings of
the 20th ACM international conference on
Information and knowledge management,
CIKM ’11, pp. 1247–1252, New York, NY,
USA, 2011. ACM.
doi:10.1145/2063576.2063757

[31] T. Yu, G. Yu, et al. Citation impact prediction
for scientific papers using stepwise regression
analysis. Scientometrics 101(2):1233–1252,
Nov. 2014.
doi:10.1007/s11192-014-1279-6

BibTEX-based dataset generation for training citation parsers

http://dx.doi.org/10.1109/CyberC.2016.51
http://dx.doi.org/10.1007/978-3-319-53420-6_8
http://dx.doi.org/10.1007/s11192-016-1926-1
http://dx.doi.org/10.1136/bmj.39482.526713.BE
http://dx.doi.org/10.1002/asi.23612
http://dx.doi.org/10.1007/978-981-10-5281-1_41
http://dx.doi.org/0.1371/journal.pone.0166570
http://dx.doi.org/10.1007/s10489-015-0657-y
http://arxiv.org/abs/1004.3351
http://dx.doi.org/10.1007/s11192-019-03016-z
http://dx.doi.org/10.1007/s11192-016-1889-2
http://dx.doi.org/10.1007/s11192-016-1889-2
http://dx.doi.org/10.1109/JCDL.2019.00076
http://dx.doi.org/10.1109/JCDL.2017.7991559
http://dx.doi.org/10.1145/2232817.2232831
http://dx.doi.org/10.1145/2063576.2063757
http://dx.doi.org/10.1007/s11192-014-1279-6

170 TUGboat, Volume 40 (2019), No. 2

FreeType MF Module2: Integration of
METAFONT, GF, and PK inside FreeType

Jaeyoung Choi, Saima Majeed,
Ammar Ul Hassan, Geunho Jeong

Abstract

METAFONT is a structured font definition system
with the ability to generate variants of different font
styles by changing its parameter values. It does not
require creating a new font file for every distinct font
design. It generates the output fonts such as Generic
Font (GF) bitmaps and its relevant TEX Font Metric
(TFM) file on demand. These fonts can be utilized
on any size of resolution devices without creating a
new font file according to the preferred size. How-
ever, METAFONT (mf), GF, and Packed Fonts (PK,
a compressed form of GF) cannot be utilized beyond
the TEX environment as they require additional con-
version overhead. Furthermore, existing font engines
such as FreeType do not support such fonts.

In this paper, we propose a module for FreeType
which not only adds support for METAFONT, but also
adds support for GF and PK fonts in the GNU/Linux
environment. The proposed module automatically
performs the necessary conversions without relying
on other libraries. By using the proposed module,
users can generate variants of font styles (by mf) and
use them on devices of any desired resolution (via
GF). The proposed font module reduces the creation
time and cost for creating distinct font styles. Fur-
thermore, it reduces the conversion and configuration
overhead for TEX-oriented fonts.

1 Introduction

In recent times, technology has developed rapidly. In
such environments, there is always a need for better
and reliable mediums of communication. Tradition-
ally, fonts were used as a means of communication,
replacing pen and paper. A font was originally a
collection of small pieces of metal manifesting a par-
ticular size and style of a typeface. This traditional
technique was eventually replaced by a new concept
of digital systems. Modern fonts are implemented
as digital data files which contain sets of graphically
related characters, symbols, or glyphs. Modern fonts
are expected to provide both the letter shape as it is
presented on the metal and the typesetter’s informa-
tion on how to set position and replace the character
as appropriate.

The ability of science and technology to improve
human life is known to us. With the rapid increase in
development of science and technology, the world is
becoming “smart”. People are automatically served

by smart devices. In such smart devices, digital fonts
are commonly used, rather than analog fonts. A font
is the representation of text in a specific style and
size; therefore, designers can use font variations to
give meaning to their ideas in text. Text is still
considered the most common way to communicate
and gather information. Although different styles of
digital fonts have been created, still they do not meet
the requirements of all users, and users cannot alter
digital font styles easily [1]. A perfect application
for the satisfaction of users’ diversified requirements
concerning font styles does not exist [2].

Currently, popular digital fonts, whether bit-
map or outline, have limits on changing font style [3].
These limitations are removed by another type of
fonts, parameterized fonts, e.g., METAFONT, which
will be discussed in depth later. METAFONT pro-
vides the opportunity to font designers to create
different font styles by merely changing parameter
values. It generates TEX-oriented font files, namely
Generic Font (GF) bitmaps and its equivalent TEX
Font Metric (TFM) file. Thus, the usage of META-
FONT directly in today’s digital environment is not
easy, as it is specific to the TEX-oriented environ-
ment. Current font engines such as the FreeType
rasterizer do not support METAFONT, GF, or Packed
Font (PK, a compressed form of GF) files. In order to
use METAFONT, GF, or PK files, users have to specif-
ically convert them into equivalent outline fonts.

When METAFONT was created, standard hard-
ware was not fast enough to perform runtime conver-
sion of METAFONT into outline fonts. Therefore,
users were not able to take advantage of META-
FONT’s approach to get different font styles. To-
day, though, the hardware in typical systems is fast
enough to perform such conversions at runtime. If
such fonts were supported by the current font en-
gines, the workload of font designers would be re-
duced, compared to the designers having to create a
separate font file for every distinct style. This task
of recreation takes considerable time, especially in
case of designing CJK (Chinese-Japanese-Korean)
characters due to their complex letters and shapes.
Therefore, the benefits given by METAFONT can be
applied to CJK fonts to produce high quality fonts
in an efficient manner.

Our previous work, FreeType MF Module [10],
has accomplished direct usage of METAFONT, ex-
cluding TEX-based bitmap fonts, inside the FreeType
rasterizer. But the work was based on external soft-
ware such as mftrace during the internal conversion.
Such dependencies have disadvantages related to per-
formance and quality. Hence, the purpose of this
research is to present a module inside the FreeType

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2 171

that will directly use METAFONT, GF, and PK font
files in a GNU/Linux environment.

In Section 2, the primary objective of this work
is discussed. In Section 3, the METAFONT processing
with its compiler/interpreter such as the mf program
is explained. In Section 4, related research regard-
ing the conversion of METAFONT is discussed along
with their drawbacks. The implementation of the
proposed module is discussed in Section 5. The exper-
iments with the proposed module and performance
evaluation along with other modules of the FreeType
rasterizer are presented in Section 6. Section 7 gives
some concluding remarks.

2 Objective of the research

With the continuing enhancement of technology, ty-
pography needs to keep pace. The primary focus of
this work is to understand the TEX-oriented bitmap
fonts and find ways to utilize them in the GNU/Linux
environment using current font engines. Hence, the
objective of this research is:

1. To save the time designers require to study the
details of each font design from scratch and then
create font files for each distinct design.

2. To generate variants of different font styles us-
ing a parameterized font system such as META-
FONT.

3. To utilize the TEX-based bitmap fonts such as
GF, ordinarily specific to the TEX environment,
inside the FreeType font engine.

4. To increase the performance by using the com-
pact form of GF, Packed Font (PK).

5. To automatically set the magnification and res-
olution according to the display.

3 METAFONT processing with the mf

program

METAFONT, a font system to accompany TEX, was
created by D.E. Knuth [4]. It is an organized font
definition language which allows designers to change
the style of a font per their requirements by changing
values of parameters. METAFONT benefits the user
in that they do not need to create a different font file
for every unique style. It is considered a program-
ming language which contains drawing guidelines for
lines and curves which are later interpreted by the
interpreter/compiler of METAFONT, notably the mf
program, to render the glyph definitions into bitmaps
and store the bitmaps into a file when done. The
mf program determines the exact shapes by solving
mathematical equations imposed by the author of
the METAFONT program.

To process the METAFONT definitions using mf,
users must understand how to invoke mf [5]. Figure 1

shows the proper way of processing the METAFONT

using mf. (It can accept many other commands.)
Therefore, to get the correct GF file, the given set-
tings must be provided: mode, mag, and the META-
FONT file to process. The mode setting specifies the
printed mode; if this is omitted, a default of proof
mode will be used, in which METAFONT outputs at
a resolution of 2602dpi; this is not usually accom-
panied by a TFM file. The mag setting specifies a
magnification factor to apply to the font resolution
of the mode. As a result, mf generates the bitmap
font GF file, its relevant TFM font metric file, and a
log file.

Figure 1: mf invocation

For example, if the given mode specifies a resolution
of 600dpi, and the magnification is set to 3, the mf

program will perform calculations internally and gen-
erate the output in the form of a GF file at 1800dpi,
along with its corresponding TFM and a log file.

Generic Font (GF) format is a TEX-oriented
bitmap font generated by the mf program by taking
a METAFONT program as input along with other
information related to the output device. GF font
files are generated for a given output device with
a specific scaled size. Such font files contain the
character shapes in a bitmap form. However, the
metric information relevant to the characters is stored
in the TEX font metric (TFM) file. To make the GF

font usable for typesetting, its corresponding TFM

is required, as TEX reads only the font metric file,
not the GF. These fonts are utilized in TEX-based
typesetting systems.

To view or print, these fonts are converted into
device-independent (.dvi) files (the same format
that is output by TEX). Such a conversion is per-
formed by the utility gftodvi. Later, a DVI driver is
needed to interpret the .dvi file. In order to preview,
a utility such as xdvi (for Unix systems) is utilized.

The Packed Font (PK) format is also a bitmap
font format utilized in the TEX typesetting system.
It is obtained by compressing the GF font; the size of

FreeType MF Module2: Integration of METAFONT, GF, and PK inside FreeType

172 TUGboat, Volume 40 (2019), No. 2

a PK is usually about half of its GF counterpart. The
content of a PK file is equivalent to a GF. The file
format is intended to be easy to read and interpreted
by the device drivers. It reduces the overhead of
loading the font into memory. Due to its compressed
nature, it reduces the memory requirements for those
drivers that load and store each font file into mem-
ory. PK files are also easier to convert into a raster
representation. This also makes it easy for a driver
to skip a particular character quickly if it knows that
the character is unused.

4 Related work

4.1 Existing font systems

VFlib [6] is a virtual font system that can handle
a variety of font formats, e.g., TrueType, Type 1,
and TEX bitmap fonts. It does not support META-
FONT fonts directly. It provides a software library
and a database font file which defines the implicit
and explicit fonts. Although it supports different
font formats, for some fonts it makes use of external
libraries, as shown in Figure 2. The font searching
mechanism utilized in VFlib is time consuming if
the font does not appear in its database. Therefore,
to handle such fonts, various font drivers are called
to check whether the requested font can be opened
or not. Hence, this font system is not suitable for
adding METAFONT support because of the extra
dependencies and need for database updates.

Figure 2: VFlib library dependencies

An alternative is the FreeType [7] font raster-
izer. It has the ability to handle different font styles
regardless of platform, unlike the T1lib [8] font ras-
terizer. It does not support the TEX-oriented bitmap
fonts and METAFONT fonts, but it provides intuitive
interfaces to allow users to add new font modules to
enhance the functionality of the engine. Therefore,
the FreeType font engine is the best choice for adding
the TEX-oriented bitmap fonts because it has no de-
pendency and database issues. If there is a module
inside FreeType which supports the TEX-oriented
bitmap fonts such as GF and PK, then users can
take advantage of these fonts, which are normally
specific to the TEX environment. No pre-conversion

by utilizing DVI drivers will be required to preview
TEX-oriented fonts.

4.2 Research on adding METAFONT

support in existing font systems

As mentioned in Section 4.1, the FreeType font en-
gine provides the capability of adding new font mod-
ules. MFCONFIG [2] adds indirect support for META-
FONT inside FreeType. It provides an intuitive way
to use METAFONT in the GNU/Linux environment.
As shown in Figure 3, it allows users to utilize META-
FONT fonts, but has some dependency problems in
that it is built on the high-level font libraries Font-
config [9] and Xft. These dependencies affect the
performance of the module compared to the built-in
font driver modules of FreeType. Also, it is unable
to handle the TEX-oriented bitmap fonts such as
GF and PK, and adding support for the TEX bit-
map fonts would be inadequate as it’s not directly
implemented inside FreeType.

FreeType MF Module [10], a METAFONT mod-
ule inside the FreeType font engine, resolves the
dependency and performance issues which were seen
in MFCONFIG. Its performance is much faster than
MFCONFIG as it is implemented inside FreeType. Us-
ing METAFONT fonts requires transformation into
an outline font. Hence, FreeType MF Module per-
forms this conversion, relying on mftrace. Although
this generates high-quality output, during conversion
font file information is lost due to the reliance on
mftrace.

As shown in Figure 4, when the request for a
METAFONT font is received by FreeType, it sends it
to FreeType MF Module. In its sub-module Trans-
formation Module, it calls mftrace, which has its
own drawbacks. It was specifically designed for trans-
lating METAFONT to Type 1 or TrueType formats
by internally utilizing the autotrace and potrace

libraries for conversion of bitmaps into vector fonts.
This approximate conversion gives an approximate
outline, and loses information about nodes and other
control points [11]. Also, it processes the METAFONT

font but is unable to process TEX-based GF and PK

bitmap fonts. Therefore, to add support for GF and
PK inside FreeType MF Module is inconvenient due
to the dependency on the external libraries, which
also decreases the performance of the module.

The proposed FreeType MF Module2 is intended
to resolve the problems of FreeType MF Module,
and is able to support TEX bitmap fonts along with
METAFONT. The module can process METAFONT

and GF independently without relying on any exter-
nal software, e.g., mftrace. It can be easily installed

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2 173

Figure 3: MFCONFIG internal architecture

Figure 4: FreeType MF Module architecture

and removed, as it is implemented just like the de-
fault FreeType driver module. Therefore, META-
FONT and TEX-oriented bitmap fonts can be used
just like any existing digital font format using the
proposed module.

5 Implementation of the module

To use digital fonts, FreeType is a powerful library
to render text on screen. It is capable of producing
high quality glyph images of bitmap and outline
font formats. When FreeType receives a request
for a font from the client application, it sends the
font file to the corresponding driver module for the
necessary manipulation. Otherwise, it displays an
error message to the client that the requested font
file is not supported. So, the proposed module is
directly installed inside FreeType to process requests
for METAFONT, GF, and PK fonts. As shown in
Figure 5, when FreeType receives a request for one of
these formats, it is sent on to FreeType MF Module2.

As shown in Figure 6, theMF Script module calls
its submodule Font Style Extractor. This extracts
the font style parameters from the METAFONT file.
For example, if the METAFONT request given to the
module has the italic style, this will extract the italic
style parameters from the METAFONT file and apply
them. Once it extracts the font style parameters,
the corresponding outline will be generated, with
the requested style, by utilizing the Vectorization
submodule.

5.1 METAFONT (mf) request

When FreeType sends a METAFONT request to the
proposed FreeType MF Module2, its submodule Re-
quest Analyzer API analyzes the font file to determine
whether the requested is for a usable METAFONT file
or an incorrect one, by analyzing its style parameters.
After analyzing, it checks whether the requested font
has already been manipulated by the font driver or
if the new request has arrived via the Cache (again,

FreeType MF Module2: Integration of METAFONT, GF, and PK inside FreeType

174 TUGboat, Volume 40 (2019), No. 2

Figure 5: FreeType MF Module2 architecture

see Figure 5). If the requested font is found in the
Cache, it is sent directly back to FreeType for ma-
nipulation. But if the font is not found in the Cache,
it sends the METAFONT request to the Conversion
Module. After receiving the request, this utilizes a
submodule Script Handler. The core functionality
of the module is performed in this module. It calls
the scripting module based on the request. For a
METAFONT request, it calls the MF Script module,
passing the METAFONT file.

After extracting the character outlines, it is nec-
essary to remove redundant nodes from the shapes to
improve the quality. Therefore, a Node Redundancy
Analysis step receives the transformed METAFONT,
analyzes the outline contours, and removes the re-
dundant nodes from the font to create the simplified
outline. Once the simplification task is done, auto-
hinting is performed on the font with the Hinting
Module. After hinting, the corresponding outline
font will be generated with the Outline Converter
module and the outline font file sent to the mod-
ule Response API. This updates the Cache with

Figure 6: MF Script internal architecture

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2 175

Figure 7: GF Script internal architecture

the newly generated outline font for reusability and
high performance. After updating, FreeType renders
this outline font that was created from the META-
FONT with the requested style parameter values.

5.2 Generic Font (GF) request

When FreeType sends a GF request to the proposed
module, again, the requested font goes first to the
Request Analyzer API module. This checks whether
the requested GF font has been converted with cor-
rect use of the mf compiler by analyzing the device
specific information. If the requested GF file was
not generated correctly, the Request Analyzer API

module will not proceed, as it has to compute file
names using the device resolution and magnification
font parameters. On the other hand, if the GF font
is generated by correct use of mf, then its TEX font
metric file must exist.

For a GF request, its corresponding TFM must
be provided for internal computations related to char-
acter shapes. (Similarly, TEX only reads the TFM

instead of GF as all the relevant information is pro-
vided by the TFM). After the Request Analyzer API

module analyzes the GF request, it checks in the
Cache to see if the manipulated font exists. If the re-
quested font does not exist in the Cache, the request
is forwarded to the Conversion Module where the
Script Handler submodule handles the GF request

Figure 8: PK Script internal architecture

along with its companion TFM file. As shown in
Figure 7, when GF Script receives the GF file, its
submodule Extractor Module contains the main func-
tionality. Its internal module Font Info Extractor
extracts the font-related information from the TEX
font metric file as well as a sequence of bitmaps at a
specified resolution from the GF file.

After extraction, it merges the extracted infor-
mation and makes the GF file usable in the form of
character images via Merge Extracted Info module.
From the bitmap font, it makes character images.
After merging and creating the vector images, it ex-
tracts the outline of the characters via the Outline
Extractor module. After extracting the outline, it
sends the extracted outline characters to the Sim-
plify module, which, as described above, analyzes
the font and removes the redundant nodes from the
font to make high quality outlines. It then outputs
the simplified outline using the Outline Converter
module internally. The newly created outline font
is sent to the Response API module, which updates
the Cache with the generated outline font for later
reusability. Once the Cache is updated, it sends back
the response to the core FreeType module for further
processing. Lastly, FreeType renders this outline
font that was designed from the requested GF with
the styled parameter values at a specified resolution.

5.3 Packed Font (PK) request

A PK font request is handled with the same pro-
cess as described in Sections 5.1 and 5.2, up until
the Conversion Module. Once the Script Handler
receives the requested PK font, it passes control to
PK Script. As shown in Figure 8, the Extractor mod-
ule extracts the raster information from the packed
file. After extraction, it performs autotracing on

FreeType MF Module2: Integration of METAFONT, GF, and PK inside FreeType

176 TUGboat, Volume 40 (2019), No. 2

the merged font via Autotracing Module, which out-
puts the character images. The Autotracing Module
not only uses an autotracing program, it improves
the basic result with additional functionality such as
auto-hinting and eliminating redundant nodes from
the font image. These enhancements result in high
quality output. Once done, it sends the transformed
output to the Outline Extractor Module where it ob-
tains the outline of the characters. After getting the
outline character images, it performs the outline con-
tour analysis and removes the redundant nodes from
the outlines using the submodule Outline Contour
Analysis. As before, it sends the simplified output
to the Outline Converter, and the generated outline
font file is sent to the Response API which updates
the Cache and sends to the corresponding FreeType
module for rendering.

The proposed module provides direct support
for METAFONT, GF, and PK. It is perfectly com-
patible with FreeType’s default module drivers. It
can manipulate the request with the desired style
parameters and scale size. As a result, it provides
better quality outline fonts without needing external
libraries.

6 Experiments and performance evaluation

To test the proposed module, an application server
is utilized. The application server is responsible for
rendering the text on the screen by receiving the font
file from FreeType along with the text requested
to be displayed. FreeType can only process those
fonts in formats which it supports. When the client
application sends the METAFONT, GF, or PK request
to FreeType, it internally processes the requested
font using the proposed module and sends the newly
generated outline font file, along with the input text,
to the application server to display on screen.

For testing purposes, the METAFONT font Com-
puter Modern is used. The Computer Modern fonts
are examined with the usual four styles: Normal,
Italic, Bold, and Bold+Italic. (We chose to use the
slanted roman instead of the cursive italic styles,
due to resolution considerations.) These styles are
generated by changing the METAFONT parameters.
To verify the quality of the proposed module results,
the authors used the same four styles of another font
family, FreeSerif. The sample text is composed of
words and characters, including the space character.

The same font family was used to test the origi-
nal FreeType MF Module, with the same four font
styles. Thus, changing the parameter values and
generating new styles are explained in [10]. The
same concept is applied to the proposed module for
experiments. The only difference comes in the cases

of GF and PK fonts. To manipulate such fonts, in-
formation about the printer device and resolution
is required. In the proposed module, the GF and
PK fonts are directly manipulated by the module
without requiring any DVI driver or previewer. It
accepts the input text by the client application and
internally calculates the font resolution in pixels per
inch. Afterwards, it internally processes the GF and
PK file as described in Sections 5.2 and 5.3 respec-
tively, and generates the necessary output with the
desired style.

When FreeType sends the METAFONT request
to the proposed module, it internally manipulates
the request by extracting the styled parameters from
the source file. The default style of Computer Mod-
ern METAFONT is generated by extracting the de-
fault parameters. The four font styles Normal, Bold,
Italic, and Bold+Italic are generated by the mod-
ule, and it generates output similar to that shown
in Figure 9(a–d), respectively. Using one Computer
Modern METAFONT file, different font styles can be
generated according to desires and requirements.

When FreeType receives a Generic Font request
from the client application server, it sends it to the
proposed module along with the input text, where it
extracts the font-related information from the TFM

file and resolution information from the GF file. Then
it internally calculates the font resolution in pixels
per inch by referring to a device definition. Later,
it generates the output for the resulting resolution,
as shown in Figure 9. The default style of Generic
Font is generated by extracting the default style
parameters at 1200dpi. The remaining font styles
such as Bold, Italic, and Bold+Italic are generated
by the module at the calculated resolution, with
results as shown in Figure 9(a–d), respectively. The
GF results differ from METAFONT slightly, due to
the variations in the resolution—the authors tested
the GF font with different magnifications at the time
of manipulation.

The GF font created by METAFONT has a rather
large size which takes considerable memory during
the manipulation. To reduce memory consumption,
it is converted into packed form using the utility
gftopk. PK files contain exactly the same informa-
tion and style parameters as the GF files. Therefore,
their resulting output differs only in performance,
rather than quality; again, Figure 9 shows the results.

The authors compared the obtained results with
the first FreeType MF Module. It is concluded that
the results are quite similar and the proposed module
handles the TEX-oriented bitmap fonts along with
METAFONT format inside FreeType, without reliance
on external software for the conversions.

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2 177

(a) Normal style Packed Font output (b) Bold style Packed Font output

(c) Slanted style Packed Font output (d) Bold-Slanted style Packed Font output

Figure 9: Text printed with Packed Font (PK) format

Table 1: Average time of rendering (in milliseconds)

The authors have not only considered the qual-
ity of the generated font using the proposed module,
but also performance. As shown in Table 1, the per-
formance of FreeType MF Module is slightly slower
in processing the Bold and Bold+Italic font styles of
METAFONT. This takes time due to the dependency
on the external software such as mftrace. Therefore,
the proposed module overcomes such performance
and dependency issues by adding the functionality
integrating the bitmap font formats. GF fonts take a
little more time compared to PK, but less time than
METAFONT, as it is already in a compiled form. PK

fonts take less time than either METAFONT or GF,
as it is the compressed form of GF.

The proposed FreeType MF Module2 provides
parameterized font support. The proposed module
does not require any preconversion before submitting
such fonts to the FreeType rasterizer. Client appli-
cations which utilize FreeType can thus now also
utilize the TEX-oriented bitmap font formats GF and
PK, as well as METAFONT fonts, using the proposed
module. Such fonts can be used just as TrueType
or other font formats supported by FreeType, with
similar performance. The proposed module can be
utilized in the FreeType font engine as a default
driver module. The proposed module works in the
same fashion as the other driver modules in FreeType.
It is able to support real-time conversion in a modern
GNU/Linux environment.

FreeType MF Module2: Integration of METAFONT, GF, and PK inside FreeType

178 TUGboat, Volume 40 (2019), No. 2

7 Conclusion

In this paper, a new module is proposed for the
FreeType font rasterizer which enhances its function-
ality by adding support for TEX-oriented parameter-
ized (METAFONT) and bitmap (GF and PK) fonts.
FreeType supports many font formats, but not these,
which originated in the TEX environment.

Although our recent studies provided a way
to utilize METAFONT fonts inside FreeType, it had
dependency issues which affected the performance
of the module. Furthermore, it could only handle
METAFONT requests. The proposed module over-
comes these issues and adds TEX-oriented bitmap
font support as well. With the proposed module,
users can use METAFONT, GF, and PK fonts without
needing other drivers for conversion. Therefore, with
the proposed module, users can now utilize these
fonts outside the TEX environment.

Furthermore, the proposed module overcomes
the disadvantage of outline fonts requiring users to
change font styles using only existing font files, thus
requiring a different font file to be created for every
distinct font style and size. Creating a new outline
font file for CJK fonts consumes significant time and
cost, as they have rather complicated shapes com-
pared to alphabet-based fonts. Various studies have
been conducted to implement CJK fonts, such as
Hongzi [14] and the use of a structural font generator
using METAFONT for Korean and Chinese [15]. It
might take a longer time to process CJK METAFONT

fonts, which have complicated shapes and several
thousands of phonemes. The proposed module op-
timization and utilization for the CJK fonts will be
considered in the future.

Acknowledgement

This work was supported by an Institute of Informa-
tion & Communications Technology Planning and
Evaluation (IITP) grant funded by the government
of Korea (MSIP) (No. 2016-0-00166, Technology De-
velopment Project for Information, Communication,
and Broadcast).

References

[1] S. Song. Development of Korea Typography
Industry Appreciating Korean Language, 2013.
www.korean.go.kr/nkview/nklife/2013_3/23_

0304.pdf

[2] J. Choi, S. Kim, H. Lee, G. Jeong. MFCONFIG:
A METAFONT plug-in module for FreeType
rasterizer.
TUGboat 37(2):163–170 (TUG 2016 conference
proceedings).
tug.org/TUGboat/tb37-2/tb116choi.pdf

[3] Y. Park. Current status of Hangul in the
21st century [in Korean]. 〈The T 〉Type and

Typography magazine, vol. 7, August 2012.
www.typographyseoul.com/news/detail/222

[4] D. E. Knuth. Computers and Typesetting, Volume
C: The METAFONTbook. Addison-Wesley, 1996.

[5] Web2c: A TEX implementation.
tug.org/web2c

[6] H. Kakugawa, M. Nishikimi, N. Takahashi,
S. Tomura, K. Handa. A general purpose
font module for multilingual application
programs. Software: Practice and Experience,
31(15):1487–1508, 2001.
dx.doi.org/10.1002/spe.424

[7] D. Turner, R. Wilhelm, W. Lemberg. FreeType.
freetype.org

[8] R. Menzner. A Library for Generating

Character Bitmaps from Adobe Type 1 Fonts.
inferiorproducts.com/docs/userdocs/t1lib/

t1lib_doc.pdf

[9] K. Packard. The Xft font library: Architecture
and users guide. Proceedings of the 5th annual

conference on Linux Showcase & Conference, 2001.
keithp.com/~keithp/talks/xtc2001/paper

[10] J. Choi, A. Hassan, G. Jeong.
FreeType MF Module: A module for using
METAFONT directly inside the FreeType
rasterizer. TUGboat 39(2):163–170 (TUG 2018
conference proceedings). tug.org/TUGboat/
tb39-2/tb122choi-freetype.pdf

[11] H.-W. Nienhuys. mftrace—Scalable fonts for
METAFONT. 2017. lilypond.org/mftrace

[12] M. Weber. Autotrace— converts bitmap to vector
graphics. 2002.
autotrace.sourceforge.net

[13] K. Ṕı̌ska. Creating Type 1 fonts from METAFONT

sources: Comparison of tools, techniques and
results. Preprints for the 2004 Annual TUG
Meeting. tug.org/TUGboat/tb25-0/piska.pdf

[14] J. R. Laguna. Hóng-z̀ı: A Chinese METAFONT.
TUGboat 26(2):125–128, 2005.
tug.org/TUGboat/tb26-2/laguna.pdf

[15] J. Choi, G. Gwon, M. Son, G. Jeong. Next
Generation CJK Font Technology Using the
Metafont. LetterSeed 15:87–101, Korea Society of
Typography, 2017.

⋄ Jaeyoung Choi
Saima Majeed
Ammar Ul Hassan
Geunho Jeong

369 Sangdo-Ro, Dongjak-Gu
Seoul 06978, Korea
choi (at) ssu.ac.kr

saimamajeed089 (at) gmail.com

ammar (at) ssu.ac.kr

ghjeong (at) gensolsoft.com

Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong

TUGboat, Volume 40 (2019), No. 2 179

Evolutionary Changes in Persian and Arabic Scripts to Accommodate
the Printing Press, Typewriting, and Computerized Word Processing

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

1. Introduction

I have been involved in Iran’s computing scene for five
decades, first as an engineering student and instructor for
five years, then as a faculty member at Tehran’s Sharif
(formerly Arya-Mehr) University of Technology for 14
years (1974-1988), and finally, as an interested observer
and occasional consultant since joining the University of
California, Santa Barbara, in 1988. Recently, I put
together a personal history of efforts to adapt computer
technology to the demands and peculiarities of the Persian
language, in English [1] and Persian [2], in an effort to
update my earlier surveys and histories [3-6] for posterity,
archiving, and educational purposes.

In this paper, I focus on a subset of topics from the just-
cited publications, that is, the three key transition periods
in the interaction of Persian script with new technology.
The three transitions pertain to the arrivals in Iran of
printing presses, typewriters, and computer-based word
processors. Specifically, I will discuss how the Persian
script was adapted to, and in turn shaped, the three
technologies. In each adaptation stage, changes were
made to the script to make its production feasible within
technological limitations. Each adaptation inherited
features from the previous stage(s); for example,
computer fonts evolved from typewriter fonts.

2. The Persian Script

Throughout this paper, my use of the term “Persian
script” is a shorthand for scripts of a variety of Persian
forms (Farsi/Parsi, Dari, Pashto, Urdu), as well of Arabic,
which shares much of its alphabet with Persian. Work on
adapting the Arabic script to modern technology has
progressed in parallel with the work on Persian script,
with little interaction between the two R&D communities,
until fairly recently, thanks to the Internet.

The Persian language has a 2600-year history, but the
current Persian script was adapted from Arabic some
1200 years ago [7]. For much of this period, texts were
handwritten and books were copied manually, or
reproduced via primitive printing techniques involving
etching of the text on stone or wood, covering it with a
layer of ink, and pressing paper or parchment against it.

Given the importance attached by Persians to aesthetics in
writing, decorative scripts were developed by artists
adorning monuments and other public spaces with scripts
formed by painting or tilework (Fig. 1). Unlike in
printing, typewriting, and computerized word processing,
decorative writing is primarily focused on the proportions
and interactions of textual elements and the color scheme,
with script legibility being a secondary concern.

Editor’s note: This article is different in style from the rest of the proceed-

ings, as the author is not a TEX user, and prepared it with the tools he nor-

mally uses. Due to the nature of the material and pressing publication dead-

lines, we felt it best to print it this way, rather than take the considerable

additional time that would have been necessary to typeset it in the custom-

ary fashion.

Fig. 1. Calligraphic writing as art (left; credit: Farrokh Mahjoubi)
and tile-based writing at Isfahan’s Jāmeh Mosque, which is very

similar to modern dot-matrix printing (uncredited photo).

Prior to the arrival of modern technology, Persian was
commonly written in two primary scripts: Nastaliq and
Naskh. Rules for the scripts were passed on by word of
mouth from masters to students. Thus, there were many
styles of writing, whose popularity rested on the
reputation of the practicing master. Among the rules were
proper ways of generating combinations of letters (much
like the “fi” & “ffi” combinations in English calligraphy).
Because the Naskh script is more readily adaptable to
modern technology, including to computer printers and
displays, it has become more popular and has forked into
many varieties in recent decades.

Nevertheless, Nastaliq holds a special place in the hearts
and minds of Persian-speaking communities. The fanciest
books of poetry are still produced in Nastaliq, and some
printed flyers use Nastaliq for main headings to embellish
and attract attention. Some progress has been made in
producing the Nastaliq script automatically, and the
results are encouraging. The Web site NastaliqOnline.ir
allows its users to produce Nastaliq and a variety of other
decorative scripts by entering their desired text within an
input box. An image of the generated text can then be
copy-pasted into other documents.

One final point about the Persian script, before entering
the discussion of the three transition periods: On and off,
over the past several centuries, reformation of the Persian
script, to “fix” its perceived shortcomings in connection
with modernity, has been the subject of heated debates.
My personal view is that technology must be adapted to
cultural, environmental, and linguistic needs, and not the
other way around. Fortunately, success in producing high-
quality print and display output has quelled sporadic
attempts at reforming the Persian script or changing the
alphabet [8], in a manner similar to what was done in
Turkey, to save the society from “backwardness.”

3. The Transition to Printing Press

The printing press arrived in Iran some 400 years ago (see
the timeline in Fig. 2). Shah Abbas I was introduced to
Persian and Arabic fonts and decided that he wanted them
for his country [9]. A printing press and associated fonts
were sent to Isfahan in 1629, but there is no evidence that
they were ever put to use. Over the following decades,
printing was limited mostly to a few religious tomes.

Broader use of printing technology dates back to 300
years ago. The invention of the Stanhope hand-press in
1800 revolutionized the printing industry, because it was
relatively small and easy to use. This device was brought
to Tabriz by those who traveled to Europe and Russia,
around 1816 [10], and to Isfahan and Tehran a few years
later, leading to a flurry of activity in publishing a large
variety of books.

A key challenge in Persian printing was the making of the
blocks that held the letters and other symbols (Fig. 3).
English, with its comparably sized letters and the space
between them, was much easier for printing than Persian,
which features letters of widely different widths/heights,
connectivity of adjacent letters, minor variations in letter
shapes involving small dots (imagine having the letter “i”
with 1, 2, or 3 dots), and more curvy letters.

Year Events Affecting the Development of Persian Script
1600
 - Printing press arrives in Iran; little/no use early on
 - Armenian press established in Jolfa, Isfahan
 -
 -
1700
 - |
 - | Limited print runs; mostly on poetry and religion
 - |
 - Persian books published in Calcutta
1800
 - First Stanhope hand-press arrives; printing spreads
 - Presses open in multiple cities; use of lithography
 - Technical books appear; newspapers flourish
 -
1900 First typewriter arrives in Iran
 -
 - Typewriters begin to be used widely
 - Electric typewriters, Linotype, and computers arrive
 - Standards for information code and keyboard layout
2000 Use of personal computers broadens
 - Computer-software and mobile-app industries thrive

Fig. 2. Rough timeline of key events and transitions in the history
of adapting the Persian script to modern technology [9].

180 TUGboat, Volume 40 (2019), No. 2

Behrooz Parhami

Fig. 3. Re-creation of Gutenberg’s press at the International

Printing Museum in Carson, California, USA (image: Wikipedia)
and the Stanhope hand-press, introduced in 1800 [10].

The first order of business was to make the Persian script
horizontally partitionable into letters that could then be
juxtaposed to form the desired text. Pre-printing-press
Persian script was not horizontally decomposable, as
letters tended to mount each other vertically and overlap
horizontally (bottom of Fig. 4). The modified form
required some compromises in aesthetics, according to
the prevailing tastes at the time (top-right of Fig. 4),
which proved rather insignificant in retrospect.

Once conceptual changes were made, typographers got
busy producing letters, letter combinations, and symbols
for Persian printing (Fig. 5). We are now so used to the
print-friendly Persian script that the pre-printing-press
variants may look quaint to us!

Fig. 4. For printing with movable type, the Persian script had to be

made horizontally decomposable (uncredited Web images).

Fig. 5. Early Persian or Arabic metal fonts in the compartments of

a typesetter’s tray (uncredited Web image)

Fig. 6. Features of Persian script that make its printing difficult

also create challenges in automatic text recognition [11].

The variable sizes and spacings of Persian letters also
created manufacturing headaches for the font and
difficulties for typesetters, who needed to handle blocks
of widely different sizes. Interestingly, the features that
make typesetting of Persian texts difficult are the same
ones that make their automatic recognition challenging.
As shown in Fig. 6, these include connectivity (a), error-
causing minor differences (b), significant width variations
(c), horizontal overlaps (d), and vertical overlaps (e).

Eventually, font designers succeeded in rendering the
Persian alphabet with four shapes for each letter, in lieu of
the nearly unlimited variations in calligraphic writing,
where letters morph in shape, depending on the preceding
and following letters (and sometimes, according to an
even broader context). Still, with 4 variations for each
letter, the number of different blocks needed was more
than twice that of Latin-based scripts, the latter requiring
a total of only 52 lowercase/uppercase letters. This made
the utilization of typeface variations (boldface, italics, and
the like) much more challenging.

Linotype, a hot-metal typesetting system invented by
Ottmar Mergenthaler for casting an entire line of text via
keyboard data entry, arrived in Iran in the 1950s,
transforming and somewhat easing the typesetting
problem for daily newspapers [12]. Contemporary Persian
print output is now vastly improved (Fig. 7).

Fig. 7. Contemporary Persian newspaper print scripts. (Credit:

The Atlantic Web site; Atta Kenare / Getty Images).

TUGboat, Volume 40 (2019), No. 2 181

Evolutionary Changes in Persian and Arabic Scripts

4. The Transition to Typewriting

Typewriters arrived in Iran around 120 years ago (Fig. 8),
but much like the printing press, their use did not catch on
right away. By the 1950s, many Western office-machine
companies had entered Iran’s market. Again, peculiarities
of the Persian script created adaptation challenges.

Direct adoption of print fonts was impossible, given that
with 32 letters, each having four variants, too many keys
would be required. For most Persian letters, however, the
initial and middle forms, and the solo and end forms, are
sufficiently similar to allow combining, with no great
harm to the resulting script’s readability and aesthetic
quality. Of course, early typewriters, all using fixed-width
symbols, were ill-suited to the Persian script, with its
highly-variable letter widths. It would be many years
before variable-width symbols improved the Persian
typewritten script quality substantially.

For example, the letters “meem” (م) and “beh” (ب) aren’t
too damaged by having two forms in lieu of four (Fig. 9).
The same holds for “heh” (ه), at the left edge of Fig. 9,
with slightly more distortion. The letters “ein” (ع) and
“ghein” (غ) are the only exceptions needing all four
variations (see the top-left of Fig. 9).

One of the highest-quality fonts for typewriters was
offered by IBM in its Selectric line, which used a golf-
ball print mechanism (right panels of Figs. 8 and 9). The
golf-ball was easily removable for replacement with
another golf-ball bearing a different font or alphabet
(italic, symbol, etc.), making it easy to compose technical
manuscripts involving multiple typefaces and equations.
Even multiple languages could easily be incorporated in
the same document. I used such a typewriter to produce
my first textbook, Computer Appreciation [13], sample
pages of which appear in Fig. 10.

Fig. 8. Mozaffar al-Din Shah’s custom-made typewriter, ca. 1900

(Golestan Palace Museum, Tehran) and a later-model IBM
Selectric with golf-ball printing mechanism, ca. 1975 (IBM).

Fig. 9. The four shapes of Persian letters and their reduction to

two shapes in most cases (left; uncredited Web image) and IBM’s
Persian golf-ball print mechanism (personal photo).

Fig. 10. Pages of the author’s book Computer Appreciation [13]
which he personally created on an IBM Selectric (Fig. 8, right)

with a Persian golf-ball print mechanism (Fig. 9, right).

A common approach to building a Persian keyboard was
to take an existing Arabic keyboard and add to it the four
Persian-specific letters at arbitrary spots, giving rise to a
multiplicity of layouts and making it difficult for typists
to move between different typewriters. A standard Persian
typewriter keyboard layout was thus devised [14]. Years
later, standardization was taken up in connection with
computer keyboards, creating the “Zood-Gozar” (ذر زود)
layout [15], so named because of the sequence of letters at
the very bottom row of Fig. 11, similar to the naming of
the QWERTY keyboard. However, neither the keyboard
layout nor the accompanying data interchange code [16]
was adopted, given the pre-/post-revolutionary chaos.

Fig. 11. Unified Persian keyboard layout, a proposed standard for

computers, typewriters, and other data-entry systems [15].

182 TUGboat, Volume 40 (2019), No. 2

Behrooz Parhami

Intelligent typewriters soon arrived on the scene. First
came word-processors that could store a line of text, thus
allowing back-spacing to correct errors by striking the
printing hammer on a white ribbon that would overwrite
what was previously printed in a given position. This easy
erasure mechanism is what allowed a non-professional
typist like me to consider self-producing an entire book;
cut-and-paste was, of course, still necessary for making
larger corrections or moving paragraphs around.

The ultimate in intelligent typewriters, dubbed “word
processors,” allowed the use of a single key for each
letter, with a built-in algorithm deciding which variant of
the letter to print. This required a one-symbol delay in
printing, as the shape of each letter could depend on the
letter that followed it. As an example, to print the word
“kamtar” (كمتر), first the letter “kāf” (ك) would be entered.
That letter would then be transformed from the solo/end
variant to initial-middle form (اك), once the connectable
letter “meem” (م) follows. This process continues until a
space or line-break is encountered.

Interestingly, I cannot enter on my Microsoft Word
program the initial/middle variant of “kāf” in isolation, as
it is automatically converted to the solo/end variant. Thus,
in the preceding paragraph, I was forced to connect
something to “kāf” and then change the color of that letter
to white, in order to make it disappear!

5. The Transition to Computer Printing

True word-processing and desktop publishing arrived in
Iran in the 1980s [17], a few years after the worldwide
personal-computer revolution. Prior to that, we produced
Persian-script output on bulky line-printers and other
kinds of printer devices connected to giant mainframes
running in air-conditioned rooms of our computer centers,
and, in later years, to mini- and micro-computers in our
departmental and personal research labs.

One of the earliest computer printer technologies was the
drum printer (Fig. 12, left). The rotating drum had one
band of letters and symbols for each of the (typically 132)
print positions. With the drum rotating at high speed,
every letter/symbol would eventually be aligned with the
print position, at which time, a hammer would strike on
the paper and print ribbon, causing an impression of the
raised symbol to be formed on the paper. A complete line
was printed after one full revolution of the drum.

Fig. 12. Print mechanisms in early drum and chain printers (credit:

PC Magazine Encyclopedia).

Drum printers were bulky and noisy, but, more
importantly, were ill-suited to the production of legible
Persian script. The separation of the bands of symbols on
the drum and the spacing between adjacent hammers led
to the appearance of white space between supposedly
connected letters (Fig. 12, top-left). This space, combined
with up- and down-shifting of symbols due to imprecision
in the timing of hammer strikes, led to additional quality
problems. The Latin script remains legible if adjacent
letters are slightly up- or down-shifted, but the Persian
script is much more sensitive to misalignment.

The problem with the bulk of drum printers was mitigated
with chain (Fig. 12, right) and daisy-wheel printers, but
print quality did not improve much, if at all. All three
mechanisms suffered from smudging due to high-speed
hammer strikes. Thus, letters appeared to be fuzzy, which,
ironically, helped with filling the undesirable inter-
symbol gaps, but it created additional legibility problems
for similar-looking Persian letters.

Several other printing technologies came and went, until
improvements in dot-matrix printing made all other
methods obsolete. Early dot-matrix printers had a column
of 7 pins that made contact with a ribbon to form small
black dots on paper (Fig. 13, left). Then, either the
needles moved to the next print column or the paper
moved in the reverse direction, thereby forming symbols
via printing 5 or more columns and continuing on until a
complete line of text was formed.

Fig. 13. Early dot-matrix print mechanism with a column of pins

(left; credit: PC Magazine Encyclopedia) and the versatility of dot-
matrix printing for producing images, in addition to text.

TUGboat, Volume 40 (2019), No. 2 183

Evolutionary Changes in Persian and Arabic Scripts

Fig. 14. Examples of Persian scripts produced by line printers and

very early dot-matrix printers in the 1970s. [13]

Early dot-matrix printers, though convenient and
economical, did not improve the quality of computer-
generated Persian scripts, due to the matrix used being too
small. In fact, there was a noticeable drop in print quality
at first (Fig. 14). As matrix sizes grew and the dots were
placed closer and closer to each other, the quality
improved accordingly. We faced two categories of R&D
problems in those days. First, given a dot-matrix size,
how should the Persian letters and digits be formed for an
optimal combination of legibility and aesthetic quality?
Second, for a desirable level of legibility and aesthetics,
what is the minimum required dot-matrix size?

To answer the first question, we would fill out matrices
with letter designs and assemble them into lines (at first
manually and later using a computer program) to check
the script quality (Fig. 15, left). We then repeated the
process with different matrix sizes to see the trade-offs.
From these studies, we drew two key conclusions in
connection with the second question.

First, for low-cost applications in which we cannot afford
to use large dot-matrices, a lower bound of 9-by-9/2 dot-
matrix size was established, below which legibility and
quality become unacceptable. The simulation results for
fonts in 7-by-5, 7-by-9/2, and 9-by-9/2 are depicted in
Fig. 15, right. A matrix dimension m/2 implies the
presence of m rows/columns of dots in skewed format, so
that the physical dimension of the matrix is roughly m/2,
despite the fact that there are m elements. This kind of
skewed arrangement helps with generating fonts of higher
quality, when the letters have curved or slanted strokes.

Second, we used the results from a Persian printed-text
automatic recognition study to conclude that a “pen-
width” of 4 is adequate for a legible and aesthetically
pleasing script output (Fig. 16, left), although, of course,
greater resolution can only help (Fig. 16, right).

Fig. 15. Illustrating the design of dot-matrix fonts and juxtaposition

of letters to check on the quality of the resulting script (left) and
results of a study to establish a lower bound on the size of the

dot-matrix for producing Persian script [18].

Fig. 16. Decomposition of connected Persian text into letters and

recognizing the letters or composite forms [11].

In modern computer applications, a variety of Persian
fonts are available to us. Legibility has improved
significantly, but aesthetic quality is still lacking in some
cases. In order to make small point sizes feasible, certain
features of Persian letters must be exaggerated, so that
details are not lost when font sizes are adjusted downward
or when images are resized (as in fitting a map on the
small screen of a mobile device). Some examples based
on the Arial font appear in Fig. 17.

For actual modern computer-generated Persian scripts, I
have chosen samples from Microsoft Word (Fig. 18). The
samples show both high legibility/quality and problem
areas (such as inordinately small dots for Tahoma).

Fig. 17. Illustrating the quality of Persian script using the Arial font
of different sizes (top) and the effects of font-size adjustment and

image resizing on readability of the resulting text.

184 TUGboat, Volume 40 (2019), No. 2

Behrooz Parhami

Fig. 18. Examples of modern Persian text output produced by

Microsoft Word and the resulting script quality [1-2].

It appears that Calibri and Dubai fonts provide the best
combination of legibility and aesthetic quality. The fixed-
width Courier sample near the middle of Fig. 18
highlights the fact that fixed-width fonts produce even
poorer-quality Persian text than is the case for Latin.

6. Digital Display Technologies

Displays used the dot-matrix approach much earlier than
printers. CRT displays, in which an electron beam scans
various “rows” on the screen, turning the beam on and off
to produce a light or dark point on the screen’s coating,
constitute a form of dot-matrix scheme. Before modern
LCD or LED displays made the use of dot-matrix method
for display universal, stadium scoreboards and airport
announcement boards used a primitive form of dot-matrix
display formed by an array of light bulbs.

For completeness of this historical perspective, I present a
brief account of efforts to build Persian line-segment
displays for calculators and other low-cost devices. The
designs and simulated outputs are depicted in Fig. 19.
Peculiarities of the Persian script made the designs of
such displays a major challenge. We established that 7
segments would be barely enough for displaying Persian
digits and that a minimum of 18 segments would be
required for a Persian script that is readable (with some
effort). Such displays became obsolete before the project
moved to the production stage.

Fig. 19. Line-segment displays for Latin-based alphabets (left)

and corresponding designs for Persian digits (top) and letters [1].

Fig. 20. Persian text displayed on Jam-e Jam news site of the
government-run Islamic Republic of Iran Broadcasting system
(top; laptop screen capture on July 16, 2019, 10:30 AM PDT)

along with the BBC Persian news site and Digikala e-commerce
site on a smartphone (bottom; captured the same afternoon).

Dot-matrix display methods are now producing Persian
scripts that are comparable in quality to those of our best
printers. The transition from CRTs to LCD, LED, and
other modern display technologies has removed the
flicker problem, the effect of low refresh rate which is
particularly significant on CRT displays. Even though
modern screens have a much larger number of dots,
increases in processing rate and clock speed has made it
less likely to have an inadequate refresh rate.

Examples of Persian scripts on modern displays, both
spacious desktop/laptop screens and smaller screens of
personal electronic devices, appear in Fig. 20. Web sites
generally format their contents differently, depending on
whether they are viewed on a big screen or a small screen,
so that legibility does not become an issue even on the
smallest device screens. It is however true that when such
screens are viewed in bright environments, such as well-
lit offices or outdoors, legibility may suffer.

TUGboat, Volume 40 (2019), No. 2 185

Evolutionary Changes in Persian and Arabic Scripts

7. Conclusion and Future Work

Today, technological tools for producing legible and
aesthetically pleasing Persian script are widely available.
So, whatever problems still remain are algorithmic and
software-based in nature. Put another way, whereas until
a couple of decades ago, computer typefaces had to be
designed with an eye toward capabilities and limitations
of printing and display devices, we can now return to
typeface design by artists, with only aesthetics and
readability in mind. Any typeface can now be mapped to
suitably large dot-matrices to produce high-quality and
easily-readable Persian script.

We now have reasonably good tools for generating and
editing Persian texts. Among them are TeX systems for
Arabic [19] and Persian [20], as well as many other text-
processing systems based on Unicode [21]. Some popular
programming languages also have built-in support for
Persian text processing and I/O [22].

What remains to be done are systematic studies of trade-
offs between Persian script legibility [23] and aesthetic
quality and devising methods for taking care of
formatting issues, particularly when bilingual text is
involved. Use of crowdsourcing may help with solving
the first problem. The second problem has persisted
through many attempted solutions over several decades. It
is still the case that when, for example, a Persian word is
entered within an English text, or vice versa, the text may
be garbled depending on the location of the alien word in
the formatted line (e.g., close to a line break). An
integrated, easy-to-use bilingual keyboard and improved
optical character recognition would be important first
steps in solving the remaining text-input problem.

References
[1] B. Parhami, “Computers and the Challenges of Writing in

Persian: A Personal History Spanning Five Decades,”
being prepared for publication. (English version of [2])

[2] B. Parhami, “Computers and Challenges of Writing in
Persian” (in Persian), Iran Namag, Vol. 4, No. 2, Summer
2019, to appear. (Persian version of [1])

[3] B. Parhami and F. Mavaddat, “Computers and the Farsi
Language: A Survey of Problem Areas,” Information
Processing 77 (Proc. IFIP World Congress), North
Holland, 1977, pp. 673-676.

[4] B. Parhami, “On the Use of Farsi and Arabic Languages
in Computer-Based Information Systems,” Proc. Symp.
Linguistic Implications of Computer-Based Information
Systems, New Delhi, India, November 1978, pp. 1-15.

[5] B. Parhami, “Impact of Farsi Language on Computing in
Iran,” Mideast Computer, Vol. 1, No. 1, pp. 6-7, 1978.

[6] B. Parhami, “Language-Dependent Considerations for
Computer Applications in Farsi and Arabic Speaking
Countries,” System Approach for Development (Proc.
IFAC Conf.), North-Holland, 1981, pp. 507-513.

[7] G. Lazard, “The Rise of the New Persian Language,” The
Cambridge History of Iran, Vol. 4 (Period from the Arab
Invasion to the Saljuqs), 2008, pp. 566-594.

[8] M. Borjian and H. Borjian, “Plights of Persian in the
Modernization Era,” Handbook of Language and Ethnic
Identity: The Success-Failure Continuum in Language
and Ethnic Identity Efforts, Vol. 2, pp. 254-267, 2011.

[9] W.M.Floor, “Čāp,” Encyclopedia Iranica, I/7, pp. 760-764.
[10] N. Green, “Persian Print and the Stanhope:

Industrialization, Evangelicalism, and the Birth of
Printing in Early Qajar Iran,” Comparative Studies of
South Asia, Africa, and the Middle East, Vol. 30, No. 3,
2010, pp. 473-490.

[11] B. Parhami and M. Taraghi, “Automatic Recognition of
Printed Farsi Texts,” Pattern Recognition, Vol. 14, Nos.
1-6, pp. 395-403, 1981.

[12] T. Nemeth, Arabic Type-Making in the Machine Age: The
Influence of Technology on the Form of Arabic Type,
1908-1993, Brill, Leiden, 2017, p. 288.

[13] B. Parhami, Computer Appreciation (in Persian), Tehran,
Tolou’e Azadi, 1984.

[14] Institute of Standards and Industrial Research of Iran,
Character Arrangement on Keyboards of Persian
Typewriters (in Persian), ISIRI 820, 1976.

[15] B. Parhami, “Standard Farsi Information Interchange
Code and Keyboard Layout: A Unified Proposal,” J.
Institution of Electrical and Telecommunications
Engineers, Vol. 30, No. 6, pp. 179-183, 1984.

[16] Iran Plan and Budget Organization, Final Proposal for the
Iranian National Standard Information Code (INSIC),
Persian and English versions, 1980.

[17] M. Sanati, “My Recollections of Desktop Publishing” (in
Persian), Computer Report, Vol. 40, No. 239, pp. 53-60,
Fall 2018.

[18] B. Parhami, “On Lower Bounds for the Dimensions of
Dot-Matrix Characters to Represent Farsi and Arabic
Scripts,” Proc. 1st Annual CSI Computer Conf., Tehran,
Iran, December 1995, pp. 125-130.

[19] K. Lagally, “ArabTeX, a System for Typesetting Arabic,”
Proc. 3rd Int’l Conf. Multi-lingual Computing: Arabic
and Roman Script, Vol. 9, No. 1, 1992.

[20] B. Esfahbod and R. Pournader, “FarsiTeX and the Iranian
TeX Community,” TUGboat, Vol. 23, No. 1, pp. 41-45,
2002: https://tug.org/TUGboat/tb23-1/farsitex.pdf

[21] Unicode.org, “About the Unicode Standard,” on-line
resource page with pertinent links, accessed on July 16,
2019: https://unicode.org/standard/standard.html

[22] Python.org, “Links to Python Information in
Persian/Iranian/Farsi,” On-line resource page, accessed on
July 16, 2019: https://wiki.python.org/moin/PersianLanguage

[23] N. Chahine, “Reading Arabic: Legibility Studies for the
Arabic Script,” Doctoral Thesis, Leiden University, 2012.

.

186 TUGboat, Volume 40 (2019), No. 2

Behrooz Parhami

TUGboat, Volume 40 (2019), No. 2 187

The unreasonable effectiveness

of pattern generation

Petr Sojka, Ondřej Sojka

Abstract

Languages are constantly evolving, and so are their
hyphenation rules and needs. The effectiveness and
utility of TEX’s hyphenation have been proven by
its usage in almost all typesetting systems in use
today. The current Czech hyphenation patterns were
generated in 1995, and no hyphenated word database
was freely available.

We have developed a new Czech word database
and have used the patgen program to generate new
effective Czech hyphenation patterns efficiently and
evaluated their generalization qualities. We have
achieved full coverage on the training dataset of
3,000,000 words and developed a validation proce-
dure of new patterns for Czech based on the testing
database of 105,000 words approved by the Czech
Academy of Science linguists.

Our pattern generation case study exemplifies
a practical solution to the widespread dictionary
problem. The study has proved the versatility, ef-
fectiveness, and extensibility of Liang’s approach to
hyphenation developed for TEX. The unreasonable
effectiveness of pattern technology has led to appli-
cations that are and will be used, even more widely
now, nearly 40 years after its inception.

. . . the best approach appears to be to embrace the
complexity of the domain and address it by harnessing

the power of data: if other humans engage in the
tasks and generate large amounts of unlabeled, noisy

data, new algorithms can be used to build high-quality
models from the data. (Peter Norvig, [7])

1 Introduction

In their famous essays, Wigner [19], Hamming [1] and
Norvig [7] consider mathematical and data-driven
approaches to be miraculously, unreasonably effec-
tive. One of the very first mathematically founded
approaches that harnessed the power of data was
Franklin Liang’s language-independent solution for
TEX’s hyphenation algorithm [6] and his program
patgen for a generation of hyphenation patterns from
a word list.

Dictionary problem The task at hand was a
dictionary problem. A dictionary is a database of
records; in each record, we distinguish the key part
(the word) and the data part (its division). Given
an already hyphenated word list of a language, a
set of patterns is magically generated. Hyphenation
patterns are much smaller than the original word list

and typically encode almost all hyphenation points
in the input list without mistakes. Liang’s pattern
approach thus could be viewed as an efficient lossy,
ideally lossless, compression of the hyphenated dic-
tionary with a compression ratio of several orders of
magnitude.

It has been proved [16, chapter 2] that the opti-
mization problem of exact lossless pattern minimiza-
tion is non-polynomial by reduction to the minimum
set cover problem.

Generated patterns have minimal length, e.g.,
shortest context possible, which results in their gener-

alization properties. Patterns could hyphenate words
not seen during learning: yet another miracle of the
generated patterns.

Pattern preparation In the 36 years of patgen

use, there have been hundreds of hyphenation pat-
terns created, either by hand or generated by the
program patgen, or by the combination of both meth-
ods [8]. The advantage of pattern generation is that
one can fine-tune pattern qualities for specific us-
age. Having an open-source and maintained word
list adds another layer of flexibility and usability to
the deployment of patterns. This approach is al-
ready set up for German variants and spellings [5]
and was an inspiration for doing the same for the
Czech language.

In this paper, we report on the development
of the new Czech word list with a free license and
complementary sets of hyphenation patterns. We
describe the iterative process of initial word list prepa-
ration, word form collection, estimation of pattern
generation parameters, and novel applications of the
technology.

Hyphenation is neither anarchy nor the sole
province of pedants and pedagogues. Used in

moderation, it can make a printed page more visually
pleasing. If used indiscriminately, it can have the

opposite effect, either putting the reader off or
causing unnecessary distraction. (Major Keary)

2 Initial word list preparation

As a rule of thumb, the development of a large new
hyphenated word list starts with a small dataset.
The experience and outputs from this initial phase,
e.g., hyphenation patterns, are then applied to the
larger and larger lists.

Bootstrapping idea As word lists of a well-estab-
lished language are sizeable, and manual creation
of a huge hyphenated word list is tedious work, we
used the bootstrapping technique. We illustrate the
process of initial word list preparation in the dia-
gram in Figure 1 on the following page. We have

The unreasonable effectiveness of pattern generation

https://web.archive.org/web/20050310054738/http://www.melbpc.org.au/pcupdate/9100/9112article4.htm

188 TUGboat, Volume 40 (2019), No. 2

cs-lemma-ujc-orig.wl
 (105 k hyphenated words)

patgen
 (as hyphenator)

cs-lemma-ujc-[1-4].wlh

patgen
 (as hyphenator)

czhyphen.pat
 (levels 1-4)

cs-sojka-correctoptimized.par
 (levels 1-4)

pattmp.8
 (created by patterns from 8 levels)

cs-init-[1-3].par
 (levels 5-8)

human + vim
(fixes bad hyphens)

Figure 1: Life cycle of initial word list preparation, illustrated with the development
of 105 k Czech consistently hyphenated words. czhyphen.pat represents the original
Czech hyphenation patterns from [17] and cs-sojka-correctoptimized.par are
correct optimized patgen parameters from the same paper. cs-init-[1-3].par are
custom parameters that trade off bad hyphens (which have to be manually checked)
for missed hyphens. Information on which hyphenations patgen missed, and where it
wrongly inserted a hyphen is sourced from pattmp.

obtained a hyphenated word list with 105,244 words
from the Czech Academy of Sciences, Institute of the
Czech Language (ÚJČ). Upon closer inspection, we
discovered many problems with the data, probably
stemming from the facts that it has been crafted
by multiple linguists and over many years. The few
hyphenation rules [2] that are in the Czech language
are not applied consistently. The borderline cases
were typically between syllabic (ro-zum) and etymo-
logical variants (roz-um) of hyphenation, or the way
to handle words borrowed from German or English
into Czech. There are sporadic examples of words
where correct syllabification depends on the seman-
tics of the word: narval and oblít are two examples
of them in Czech. These are preferably not to be
hyphenated, to stay on the safe side.

It is impractical to try to manually find incon-
sistencies and systemic errors, even in a relatively
short word list like this. We slightly modified and
extended the process suggested in [15, page 242]:
We used patgen and the current Czech patterns to
hyphenate the word list and manually checked only

the 25,813 words where the proposed hyphenation
points differed from the official (were bad or missed),
creating a new word list cs-lemma-ujc-1.wlh [13]
in the process.

However, we are erroneous humans making mis-
takes. To find these, we have used patgen to generate
the four additional levels of hyphenation patterns
on top of the current patterns from the checked
word list. We have also adjusted the parameters
(see cs-init-[1-3].par [13]) used for generation of
the four additional levels to trade off bad hyphens
(which have to be manually checked) for missed ones.
We have then used these patterns, with eight lev-
els in total, to hyphenate the checked word list and
manually rechecked the wrongly hyphenated points
(dots in patgen output), with missed hyphenation
points (implicitly marked as the hyphen sign in hy-
phenated word list). We have repeated this process
three times, iterating on cs-lemma-ujc-[2-4].wlh.
Word list number four is used for the generation of
bootstrapping patterns and final pattern validation.

Petr Sojka, Ondřej Sojka

TUGboat, Volume 40 (2019), No. 2 189

3 Word list preparation and design

Any live language continually changes, and Czech is
no exception. Many new Czech words now come from
other languages, mostly from English. It presents a
challenge for the patterns; they must not only cor-
rectly hyphenate Czech words according to Czech
syllabic boundaries, but foreign words must be hy-
phenated correctly too, according to their new Czech
syllabic pronunciation [14]. To have the patterns
keep up with language evolution, we must maintain
not only the patterns but also a hyphenation word
list. In this section, we detail how we have built such
a word list.

csTenTen corpus We have first obtained a word
list with frequencies, generated from the Czech Web
Corpus of TenTen family (csTenTen) [3]. We then
filtered this word list to include only words that
appear more than ten times in two crawls [18] made
in years 2012 and 2017. We ended up with a word list
containing 922,216 words, a non-negligible fraction
of which are misspellings and jargon.

Word list cleanup We have then cleaned this
word list by using the Czech morphological analyzer
majka [12] to remove all words not known to it. We
removed 370,291 typos, misspellings, and similar
atypical lexemes and kept only 551,925 frequently
occurring valid words in the dataset.

Word list expansion The morphological analyzer
majka [12] also allows us to expand words into all
their inflected forms. We chose not to use the expan-
sion feature of majka because the word list would
grow to 3,779,379 (almost a fourfold increase) and
csTenTen already contains most of the commonly
used types of inflections. It would also distort which
hyphenation patgen gives the most weight to. We
tried supplying logarithms of word frequencies from
csTenTen to the word list, so more weight could be
given to patterns that cover the most common words.
It did not significantly improve validation scores in
our case, as one can see in Table 2 on page 191. We
think that this is partly because patgen is limited to
one digit of frequency per word and partly because
the validation score (computed from error rate on
ujc word list) does not capture real-world usage.

We expanded the word list with majka by adding
54,569 lemmas (base forms) that were present in the
word list, but not in their base form. It increased
the word list size to 606,494 words.

We list the word list statistics that we used for
pattern generation in Figure 2.

shortcut word list description count

ujc checked word list for
validation

105,244

all all frequent word forms
from web known to
majka plus all lemmas
known to majka

606,494

allflex previous plus all word
forms generated by
majka

2,100,581

allflexjargon previous plus all
non-standard and jargon
word forms

3,779,379

biggest tokens that are present
in the csTenTen more
than 10 times

3,918,054

Figure 2: Czech word lists’ shortcut names and
statistics

Maintenance The German wortliste [5] project
served as inspiration for our open word list format,
detailed in the README.md [13].

One must regard the hyphen as a blemish to be
avoided wherever possible. (Winston Churchill)

4 Bootstrapping — iterative development

of hyphens in the big word list

It would be tedious to hyphenate such a big word
list by hand manually, so we train patterns on a
small list and apply them to the big word list, as
illustrated in Figure 3 on the next page. Then, we
train patterns on the (now hyphenated) big word list
and have patgen show what it would have hyphen-
ated differently. With this approach, we cherry-pick
inconsistencies in the word list.

Since the big word list contains not only lemmas
of words, but also characteristic inflections, we use
regular expressions to add hyphens around them and
fix inconsistencies. We keep iterating on this, as
shown in Figure 3 on the following page, until the
patterns, generated with cs-init-[1-3].par [13],
achieve nearly perfect coverage.

The resulting patterns hyphenate according to
the standard Czech hyphenation rule: hyphenation
is allowed everywhere where it does not change the
pronunciation of the word. Thanks to the effective-
ness of pattern generation, this works not only in
Czech words but also foreign (Latin, French, German,
English) ones.

The unreasonable effectiveness of pattern generation

190 TUGboat, Volume 40 (2019), No. 2

cs-lemma-ujc-4.wlh
(105 k correctly hyphenated word lemmata)

patgen
 (as pattern generator)

cs-sojka-boot.pat

patgen
 (as hyphenator)

cs-all-cstenten-[1-n].wlh

patgen
 (as hyphenator)

pattmp.4

 human + vim + regex
(fixes inflections)

cs-sojka-boot.par

cs-all-cstenten.wls
(606 k words with common inflections)

Figure 3: How we bootstrapped hyphenation of the big word list by training patterns
(cs-sojka-boot.pat) on the small word list and applying them on the big one.
cs-sojka-boot.par are patgen parameters that are designed to generate many
patterns but still retain their generalization properties. pattmp highlights which
hyphenation points in the source file the new pattern level missed, which were
correctly covered and where they wrongly put a hyphen.

Hyphens, like cats, are capable of arousing
tenderness or shudders. (Pamela Frankau)

5 Pattern generation

The last Czech hyphenation patterns were generated
in 1995 [17], and are in use not only in TEX but
also in other widespread typesetting systems. For
conservative users, there is no strong incentive for
change, because the error rate is relatively low (the
first version of the validation set measured an error
rate around 4%), and coverage is relatively high (the
first version of the validation set measured around
7% missed hyphenation points).

Pattern generation from 3,000,000 words does
not take hours as it did two decades ago, but seconds,
even on commodity hardware, which allows for rapid
development of “home-made” patterns.

We have developed a Python wrapper for patgen

that we use in Jupyter notebooks. It allows rapid
iteration, and easy sharing of results — see Table 1
on the next page and demo.ipynb [13].

Had Liang in 1983 had the same ease of chang-
ing patgen parameters, run it, and see the results
in 60 seconds, he would inevitably have generated
higher than 89% coverage while staying within the
limit of 5,000 patterns [6, page 37].

It has also become common to use a validation
dataset to ensure generalization abilities. Our usage
of a validation dataset has proved useful. Table 2
shows that if we were to use the correct optimized

parameters from [17] that have been in use for Czech,
we would overfit the training dataset and perform
worse than their size optimized counterparts. The

Petr Sojka, Ondřej Sojka

TUGboat, Volume 40 (2019), No. 2 191

Table 1: Outputs from running patgen in our Jupyter notebook with two different
parameter sets. The first parameter set is from the German Trennmuster project [5]
and generates 7,291 patterns, 40 kB. The second one from [17] generates shorter and
smaller patterns — 4,774 patterns, 25 kB.

Level Patterns Good Bad Missed Lengths Params

1 750 1,683,529 525,670 0 1 5 1 1 1
2 3,178 1,628,874 38 54,655 2 6 1 2 1
3 2,548 1,683,528 9,931 1 3 7 1 1 1
4 1,382 1,683,287 0 242 4 8 1 4 1
5 92 1,683,528 0 1 5 9 1 1 1
6 0 1,683,528 0 1 6 10 1 6 1
7 1 1,683,529 0 0 7 11 1 4 1

Level Patterns Good Bad Missed Lengths Params

1 1,608 1,655,968 131,481 27,561 1 3 1 5 1
2 1,562 1,651,840 2,533 31,689 1 3 1 5 1
3 2,102 1,683,528 2,584 1 2 5 1 3 1
4 166 1,683,135 6 394 2 5 1 3 1

Table 2: Effectiveness and effectivity of pattern generation on Czech word lists.
Comparison of validation scores of patterns trained on various word list and
parameter combinations.

Word list Params Good % Bad % Missed % Size Patterns Time (s)

all correctopt [17] 99.76 2.94 0.24 30 kB 5,593 58.13
sizeopt [17] 98.95 2.80 1.05 19 kB 3,816 59.46
german [5] 99.74 2.21 0.26 51 kB 8,991 201.9

weighted all correctopt [17] 99.76 2.94 0.24 30 kB 5,590 59.23
sizeopt [17] 98.95 2.80 1.05 20 kB 3,821 58.74
german [5] 99.74 2.21 0.26 51 kB 8,978 207.35

allflex correctopt [17] 99.46 4.02 0.54 28 kB 5,387 212.55
sizeopt [17] 99.26 3.72 0.74 29 kB 5,537 212.59
german [5] 99.42 3.35 0.58 49 kB 8,663 1,035.16

allflexjargon correctopt [17] 99.47 4.08 0.53 29 kB 5,612 365.96
sizeopt [17] 99.31 3.78 0.69 31 kB 5,938 369.92
german [5] 99.43 3.36 0.57 53 kB 9,308 1,786.4

validation word list has to be carefully checked with
linguists from UJČ for consistency to minimize the
generalization error. Most of the current errors stem
from foreign words used in the Czech texts.

When the validation word list is added to train-
ing, then patterns could be developed to serve as a
lossless compression of word list dataset, thus maxi-
mize the effectiveness of pattern technology.

Life is the hyphen between matter and spirit.
(Augustus William Hare)

6 The unreasonable effectiveness

We were able to solve the dictionary problem for
Czech hyphenation effectively.

Space effectiveness From 3,000,000+ hyphen-
ated words stored in approximately 30,000,000 bytes
we have produced patterns of size 30,000 bytes,
achieving roughly 1000× space lossless compression.

Time effectiveness Using the trie data structure
for patterns makes the time complexity of accessing
the record related to the word, e.g., hyphenation

The unreasonable effectiveness of pattern generation

192 TUGboat, Volume 40 (2019), No. 2

point, in very low constant time. The constant is
related to the depth of the pattern trie data structure,
e.g., 5 or 6 in the case of Czech. If the entire pattern
trie resides in RAM, the time for finding the patterns
for a word is on the scale of tens, at most hundreds,
of single processor instructions. Word hyphenation
throughput is then about 1,000,000 words per second
on a modern CPU.

Optimality Even though finding exact space and
time-optimal solutions is not feasible, finding an
approximate solution close to optimum is possible.
Heuristics and insight expressed above, together with
interactive fine-tuning of patgen parameter options,
in our case on a Jupyter notebook, allows for rapid
pattern development.

Automation A close-to-optimal solution to the
dictionary problem could be useful not only for Czech
hyphenation, but for all other languages [8, 9], and
more generally, for other instances of the dictio-
nary problem. Developing heuristics for threshold-
ing of patgen pattern generation parameters could
be based on a statistical analysis of large input
datasets. It could allow the deployment of presented
approaches on a much broader problem set and scale.
We believe that parameters could be approximated
automatically from the statistics of the input data.

Pattern generation — in Wigner’s words — “has
proved accurate beyond all reasonable expectations”.
Let us paraphrase another one of his quotes:

The miracle of the appropriateness of the lan-
guage of mathematics patterns for the formula-
tion of the laws of physics data is a wonderful
gift which we neither understand nor deserve.
We should be grateful for it and hope that
it will remain valid in future research and
that it will extend, for better or for worse, to
our pleasure, even though perhaps also to our
bafflement, to wide branches of learning.

“We should stop acting as if our goal is
to author extremely elegant theories, and

instead embrace complexity and make use
of the best ally we have: the unreasonable
effectiveness of data.” (Peter Norvig, [7])

7 Conclusion

We have developed a flexible open language–inde-
pendent system [13] for hyphenation pattern gener-
ation. We have demonstrated the effectiveness of
this system by updating the old Czech hyphenation
patterns [17] and achieving record accuracy. We
have also applied recent data and computer science
advancements, like the usage of interactive Jupyter

notebooks and a validation dataset to prevent over-
fitting, to the more than three decades old problem
of pattern generation.

Future work

Word lists for other languages The logical next
steps will be applying developed techniques for dif-
ferent languages: for Slovak and virtually all others
that do not yet have word list–based hyphenation
patterns, and a word list either in Sketch Engine or
elsewhere is available.

Stratification Pattern generation could be further
sped up by several techniques, such as stratification
of word lists on the level of input, or on the level
of counting pro and con examples to include a new
pattern or not.

Pattern-encoded spellchecker We have a big
dictionary of frequent spelling errors from the csTen-
Ten word list. Nothing prevents us from encoding
these into specific patterns or pattern layers with
extra levels and use that information during typeset-
ting, e.g., to typeset those words with red underlining
in LuaTEX. LuaTEX allows dynamic pattern loading
and Lua programming that can enable the imple-
mentation of this feature, which people are used to
having in editors.

Word segmentations Recent progress in machine-
learned natural language processing and machine
translation builds on subword representations and
various types of semantically coherent sentence or
word segmentations. As tokenization and segmen-
tation are at the beginning of every natural lan-
guage processing pipeline, there is a demand for ef-
fective and efficient universal segmentation [11]. New
neural machine translation systems are capable of
open-vocabulary translation by representing rare and
unseen words as a sequence of subword units [10, Ta-
ble 1]. Segmentation is crucial, especially for compo-
sitional languages like German, where there are many
compounds (mostly out of vocabulary words) and
for morphologically rich languages like Hebrew [20]
or Arabic, that need to be segmented, represented,
and translated.

Pattern-based learnable key memories Solu-
tions to versions of the dictionary problem are a hot
topic of leading-edge research to design memory data
architectures like those used in machine learning of
language [4]. Pattern-based memory network archi-
tectures could speed up language data access in huge
memory neural networks considerably.

Multilingual hyphenation patterns Given that
there are close languages with syllabic-based rules
like Czech and Slovak, generating patterns from

Petr Sojka, Ondřej Sojka

TUGboat, Volume 40 (2019), No. 2 193

merged word lists is straightforward. It would save
energy on low-resource devices like e-book readers
by having them load fewer patterns at a time.

Acknowledgments The authors thank the TEX
Users Group and CSTUG for financial support to
present the project at TUG 2019. We owe our grat-
itude also to Vít Suchomel of Lexical Computing
for word lists from Sketch Engine, to Pavel Šmerk,
Frank Liang and Don Knuth for majka, patgen and
TEX, respectively. Thanks go to Vít Novotný and
Pavel Šmerk for valuable comments to the paper.

References

[1] R. W. Hamming. The unreasonable effectiveness of
mathematics. The American Mathematical Monthly
87(2):81–90, 1980.
http://www.jstor.org/stable/2321982

[2] Internetová jazyková příručka (Internet Language
Reference Book). Institute of Czech language,
Czech Academy of Sciences.
http://prirucka.ujc.cas.cz/?id=135

[3] M. Jakubíček, A. Kilgarriff, et al. The TenTen
Corpus Family. In Proc. of 7th International
Corpus Linguistics Conference (CL), pp. 125–127,
Lancaster, July 2013.

[4] G. Lample, A. Sablayrolles, et al. Large memory
layers with product keys, 2019.
https://arxiv.org/pdf/1907.05242

[5] W. Lemberg. A database of German words
with hyphenation information.
https://repo.or.cz/wortliste.git

[6] F. M. Liang. Word Hy-phen-a-tion by
Com-put-er. PhD thesis, Department of
Computer Science, Stanford University, Aug. 1983.
tug.org/docs/liang

[7] F. Pereira, P. Norvig, and A. Halevy.
The unreasonable effectiveness of data.
IEEE Intelligent Systems 24(02):8–12, Mar. 2009.
doi:10.1109/MIS.2009.36

[8] A. Reutenauer and M. Miklavec. TEX hyphenation
patterns. tug.org/tex-hyphen

[9] K. P. Scannell. Hyphenation patterns for
minority languages. TUGboat 24(2):236–239, 2003.
tug.org/TUGboat/tb24-2/tb77scannell.pdf

[10] R. Sennrich, B. Haddow, and A. Birch.
Neural machine translation of rare words
with subword units. In Proceedings of the
54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pp. 1715–1725, Berlin, Germany, Aug.
2016. Association for Computational Linguistics.
doi:10.18653/v1/P16-1162

[11] Y. Shao, C. Hardmeier, and J. Nivre. Universal
word segmentation: Implementation and
interpretation. Transactions of the Association for
Computational Linguistics 6:421–435, 2018.
doi:10.1162/tacl_a_00033

[12] P. Šmerk. Fast morphological analysis of Czech. In
P. Sojka and A. Horák, eds., Proceedings of Recent
Advances in Slavonic Natural Language Processing,
RASLAN 2009, pp. 13–16, Karlova Studánka,
Czech Republic, Dec. 2009. Masaryk University.
http://nlp.fi.muni.cz/raslan/2009/

[13] O. Sojka and P. Sojka. cshyphen repository.
https://github.com/tensojka/cshyphen

[14] P. Sojka. Notes on compound word hyphenation
in TEX. TUGboat 16(3):290–297, 1995.
tug.org/TUGboat/tb16-3/tb48soj2.pdf

[15] P. Sojka. Hyphenation on demand.
TUGboat 20(3):241–247, 1999.
tug.org/TUGboat/tb20-3/tb64sojka.pdf

[16] P. Sojka. Competing Patterns in Language
Engineering and Computer Typesetting. PhD thesis,
Masaryk University, Brno, Jan. 2005.

[17] P. Sojka and P. Ševeček. Hyphenation in TEX —
Quo Vadis? TUGboat 16(3):280–289, 1995.
tug.org/TUGboat/tb16-3/tb48soj1.pdf

[18] V. Suchomel and J. Pomikálek. Efficient web
crawling for large text corpora. In A. Kilgarriff
and S. Sharoff, eds., Proc. of the Seventh Web as
Corpus Workshop (WAC), pp. 39–43, Lyon, 2012.
http://sigwac.org.uk/raw-attachment/wiki/

WAC7/wac7-proc.pdf

[19] E. P. Wigner. The Unreasonable Effectiveness
of Mathematics in the Natural Sciences.
Richard Courant Lecture in Mathematical
Sciences delivered at New York University,
May 11, 1959. Communications on Pure and
Applied Mathematics 13(1):1–14, 1960.
doi:10.1002/cpa.3160130102

[20] A. Zeldes. A characterwise windowed approach
to Hebrew morphological segmentation. In Proc.
of the Fifteenth Workshop on Computational
Research in Phonetics, Phonology, and
Morphology, pp. 101–110, Brussels, Belgium, Oct.
2018. Association for Computational Linguistics.
doi:10.18653/v1/W18-5811

⋄ Petr Sojka
Faculty of Informatics, Masaryk University
Brno, Czech Republic and CSTUG
sojka (at) fi dot muni dot cz

https://www.fi.muni.cz/usr/sojka/

⋄ Ondřej Sojka
CSTUG, Brno, Czech Republic
ondrej.sojka (at) gmail dot com

The unreasonable effectiveness of pattern generation

http://www.jstor.org/stable/2321982
http://prirucka.ujc.cas.cz/?id=135
https://arxiv.org/pdf/1907.05242
https://repo.or.cz/wortliste.git
tug.org/docs/liang
http://dx.doi.org/10.1109/MIS.2009.36
tug.org/tex-hyphen
tug.org/TUGboat/tb24-2/tb77scannell.pdf
http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.1162/tacl_a_00033
http://nlp.fi.muni.cz/raslan/2009/
https://github.com/tensojka/cshyphen
tug.org/TUGboat/tb16-3/tb48soj2.pdf
tug.org/TUGboat/tb20-3/tb64sojka.pdf
tug.org/TUGboat/tb16-3/tb48soj1.pdf
http://sigwac.org.uk/raw-attachment/wiki/WAC7/wac7-proc.pdf
http://sigwac.org.uk/raw-attachment/wiki/WAC7/wac7-proc.pdf
http://dx.doi.org/10.1002/cpa.3160130102
http://dx.doi.org/10.18653/v1/W18-5811

194 TUGboat, Volume 40 (2019), No. 2

Improving Hangul to English translation for
optical character recognition (OCR)

Emily Park, Jennifer Claudio

Abstract

Real-time translation of languages using camera in-
puts occasionally results in awkward failures. As a
proposed method of assisting such tools for Korean
(Hangul) to English translation, an optical assess-
ment method was proposed to help translation algo-
rithms first assess whether the Korean text has been
written as English syllables in Korean or in true Ko-
rean vocabulary before producing translated phrases.
Although the current approach was not viable, future
work will implement feedback regarding methods to
meaningfully handle the optical data received.

1 Introduction

1.1 Korean alphabetic syllabary

Hangul, the writing system of the Republic of Ko-
rea, currently uses an alphabet constituent of 14
consonants and 10 vowels. The Hangul alphabet is
described as an alphabetic syllabary, meaning that
although alphabet units consist of vowels and conso-
nants working together to depict a sound, letter and
syllable combinations have both a vertical and hori-
zontal relationship. This relationship is in contrast
to a language such as English, where each alphabetic
letter has only a horizontal relationship with the ones
that precede or follow it. In Korean, sets of syllables
thus produce words which, to a non-Korean speaker,
must be converted into semantic units.

Hangul has changed immensely over its history,
including historic concern about class differences in
the original Korean writing systems to inclusion of
the modernized systems. Even more recently, the
spread of Konglish, words derived from English but
used in a Korean context, pose new issues and face
new criticisms. Firstly, the linguistic divide between
North and South Korea is further emphasized by
the divergence of word choice or usage, and secondly
transliterations require contextual relevance, as oth-
erwise a homograph may be substituted by the reader.
When read by a human, this context can easily be
picked up through visual cues such as images asso-
ciated with the text or with contiguous lines of text,
however, an Optical Character Recognition (OCR)
reader may only grasp sequential words and less
context, hence leading to mistranslation of words.

1.2 Language conversion and accessibility

The relevant forms of language conversion for this sit-
uation are transliteration and translation. Transliter-

ation provides a syllabic conversion using characters
of another alphabet, whereas translation provides
the meaning of a word in a different language.

To couple linguistic and physical accessibility,
Optical Character Recognition (OCR) is widely used
for recognizing text from scanned documents and
converting them to editable data. One method of
language-relevant OCR is through Google Translate,
though many other programs and platforms exist. As
many individuals who have used an OCR language
conversion on a food menu may know, awkward
translations can occur due to insufficient context
for the reader or due to literal translations and loss
of figurative speech. Furthermore, the adoption of
Konglish presents a problem where a language learner
or a speaker who has had less exposure to English
may not recognize a word that is actually English
that has been transliterated into Korean.

2 Goals

The goal of this project was to create a predictive
method for text conversion as an alternative or sup-
plement to sole reliance on counting database refer-
ences. In doing so, such a predictive method would
improve results for Korean language learners and
older or more traditional speakers.

Currently, language translators rely on a data-
base of known words, and many include common
transliterations and borrowed words. The function-
ality of any OCR-based language translator therefore
depends on the size and integrity of its associated
database. While some translators have mentioned
AI implementation based on word associations or
probability calculations of word linkage, this aspect
is beyond the scope of this project.

3 Methods

Fifty common words in English and Korean were
both transliterated phonetically and translated across
languages to assess preliminary data and feasibility
testing. A script was written using Python to de-
termine pixel area represented by the text and the
area of its bounding box as determined by the outer-
most edges of a word’s letters. Image samples were
taken from different print media, specifically from
newspapers, children’s books, and advertisements.
Each image was fed into the software five times to
test reliability, then the ratios of text space to back-
ground space were tabulated and calculated. This
was done to determine if the ratio retrieved from an
OCR could inform the translator as to whether the
word was true Korean or transliterated English.

The program imported the cv2 (a.k.a. OpenCV)
Python package for image recognition. The code first

Emily Park, Jennifer Claudio

TUGboat, Volume 40 (2019), No. 2 195

filtered the image into a pure black and white image.
Subsequently, the height and width were calculated
by detecting the number of pixels that comprised
the word. The code looped over every pixel and
finally printed the total number of black pixels in the
filtered image. The gathered results of black pixels
over the area of the bordered word fell between the
ratios of 0.3 and 0.5.

Initially, the code used for bordering the text
first recognized the words in the image and traced
around the detected word to define the border. This
was attempted with pytesseract (Python Tesseract),
which was found unfeasible for recognizing words;
this was thus adjusted to use the Google platform
to recognize and translate their images.

Upon refining the script to find a bounding edge
and verifying that the difference in area between
foreground text and background could be determined,
word samples were collected and processed.

4 Results and discussion

Although the code generated was able to perform
calculations of text versus background, the ratios
of foreground to background were not statistically
different from each other across transliterated and
translated words. This is attributed to the limited
number of characters that comprise Hangul, of which
fewer than five basic shapes (vertical sticks, hori-
zontal sticks, circles, boxes, and huts). This shape
limitation restricts the number of symbols that could
be formed. An alternative method of informing a
translation platform would be to assess the num-
ber of strokes in a word and the number of words
that use a given consonant sound. The number of
strokes could be viable because many transliterated
words result in three syllables, despite being a single
syllabic word when pronounced in native Korean.

A secondary issue with the input method in-
cluded the necessary conversion into black and white.
This text then needed to be manually uploaded into
the translator, rather than performing in real time
in tandem with the OCR itself. This method conse-
quently defeats the purpose of pairing with an OCR.

As expected, font, typeface, and stylizations
affected ratios, however, this was determined not to
be a contributing factor to the inability to create
predictive translation.

5 Conclusions

In the manner approached, using text to background
ratios is not a viable method of implementing a
predictive algorithm without context. Current AI

methods used by translators exhibit fairly consistent
performance.

6 Acknowledgments

Special thanks to the TEX Users Group and its asso-
ciated community for their support during our atten-
dance at the annual conference. Additional thanks
to Govind and Ganesh Pimpale for their support
with generating the Python code for OCR use.

⋄ Emily Park, Jennifer Claudio

Oak Grove High School

Science Research Program

San Jose, CA

Improving Hangul to English translation for optical character recognition (OCR)

196 TUGboat, Volume 40 (2019), No. 2

A glance at CJK support with X ETEX

and LuaTEX

Antoine Bossard

Abstract

From a typesetting point of view, the Chinese and
Japanese writing systems are peculiar in that the
characters are concatenated without using spaces to
separate them or the meaning units (i.e., “words”
in our occidental linguistic terminology) they form.
And this is also true for sentences: although they are
usually separated with punctuation marks such as
periods, spaces remain unused. Conventional type-
setting approaches, TEX in our case, thus need to be
revised in order to support the languages of the CJK

group: Chinese, Japanese and, to a lesser extent, Ko-
rean. While more or less complete solutions to this
issue can be found, in this article we give and ped-
agogically discuss a minimalistic implementation of
CJK support with the Unicode-capable X ETEX and
LuaTEX typesetting systems.

1 Introduction

The Chinese, Japanese and Korean writing systems
are conventionally gathered under the CJK appel-
lation. The Chinese writing system consists of the
Chinese characters, which can be in simplified or tra-
ditional form, amongst other character variants [1].
The (modern) Japanese writing system is made of
the Chinese characters and the kana characters. The
Chinese and Japanese writing systems concatenate
characters without ever separating them with spaces.
The Korean writing system consists mainly of hangul
characters, in principle together with the Chinese
characters, but they are rarely used nowadays. Al-
though modern Korean does separate words with
spaces, traditionally, the Korean writing system does
not (as an illustration, see, e.g., Sejong the Great’s
15th century manuscript Hunminjeongeum1).

Notwithstanding other critical issues such as
fonts (and to a lesser extent indexing [2]), by not
relying on spaces between characters or words, the
CJK scripts are a challenge to conventional type-
setting solutions such as TEX. In fact, the algo-
rithms for line-breaking, which conventionally oc-
curs at spaces, and for word-breaking (hyphenation),
become inapplicable.

On a side note, although we consider hereinafter
only the CJK writing systems, this discussion can
be extended to related scripts such as Tangut and
Vietnam’s Chữ Nôm.

1 King Sejong (世宗) introduced hangul in the Hunmin-

jeongeum (訓民正音) manuscript (1443–1446).

In this paper, we provide a glance at CJK sup-
port with X ETEX and LuaTEX by giving a minimal-
istic implementation for these East Asian scripts.
This work is both a proof of concept and a peda-
gogical discussion on how to achieve CJK support
as simply as possible with the aforementioned type-
setting solutions. Both X ETEX and LuaTEX support
Unicode, which enables us to focus on typesetting is-
sues, leaving encoding and font considerations aside.

The rest of this paper is organised as follows.
Technical discussion of the proposed implementa-
tion is conducted in Section 2. The state of the art
and paper contribution are summarised in Section 3.
The paper is concluded in Section 4.

2 A minimalistic implementation

We describe here the proposed minimalistic imple-
mentation of CJK support with X ETEX and LuaTEX
step by step in a pedagogical manner:

• paragraph management (Step 1) is addressed in
Section 2.1,

• Latin text mingling (Step 2) in Section 2.2,
• Latin text paragraphs (Step 3) in Section 2.3,
• Korean text paragraphs (Step 4) in Section 2.4,
• sophisticated line-breaking (Step 5)

in Section 2.5.

“Latin text” here designates text written with the
Latin alphabet, or similar; for instance English and
French text.

A handful of TEX commands appear hereinafter
without being detailed; see [5] for those that are not
self-explanatory. The document preamble specifies
nothing in particular. The fontspec package [12]
is loaded for ease of font manipulation, and, as de-
tailed in the rest of this section, since it is considered
without loss of generality that the document consists
of Chinese or Japanese paragraphs by default, the
main font of the document is set accordingly (e.g.,
\setmainfont{Noto Serif CJK JP} [4]).

2.1 Paragraph management

A conventional approach to break long character se-
quences (i.e., Chinese or Japanese characters in our
case) is to insert between each two glyphs a small
amount of horizontal space so that TEX can split the
sequence across multiple lines (see for instance [15]).
Without such extra space, line breaks can in general
still occur thanks to hyphenation, but this is not
applicable in the case of CJK. We rely on a “scan-
ner” macro to transform a paragraph by interleaving
space between its characters. In practice, according
to the TEX terminology, this extra space will be a
horizontal skip of 0pt width and ±1pt stretch.

Antoine Bossard

TUGboat, Volume 40 (2019), No. 2 197

The scanner macro is a recursive process that
takes one token (e.g., a character) as single parame-
ter and outputs it with on its right extra horizontal
space. The recursion stops when the parameter to-
ken is the stop signal (more on this later), in which
case the macro outputs \par, thus triggering the end
of the paragraph. The scanner macro \cjk@scan is
defined as follows:

\def\cjk@scan#1{% #1: single token

\ifx#1\cjk@stop% stop signal detected

\par% so, complete the paragraph

\else

#1% display the current character

\hskip 0pt plus 1pt minus 1pt\relax% space

\expandafter\cjk@scan% recursive call

\fi

}

This scanner is started by the \cjk@scanstart

macro, whose primary objective is to append the
stop signal \cjk@stop at the end of the paragraph
that is about to be transformed. This initial macro
takes one parameter: the paragraph to transform.
In a pattern matching fashion, a paragraph is taken
as a whole by setting \par as delimiter for the pa-
rameter of the \cjk@scanstart macro. This will
require inserting \par once the paragraph has been
transformed, since the \par command that ends the
paragraph is treated as a delimiter by the macro and
thus skipped. In addition, each paragraph needs to
be ended by a blank line (or, equivalently, \par) for
this pattern matching to work. The scanner starting
macro is this:

\def\cjk@scanstart#1\par{% #1: paragraph

\cjk@scan#1\cjk@stop% append \cjk@stop

}

In this work, paragraphs are considered to be
written in Chinese or Japanese by default. Hence,
paragraph typesetting mode selection by means of
a command such as \CHJPtext is not suitable. We
rely on the \everypar token parameter to trigger
the transformation of each paragraph with the scan-
ner previously described. This is simply done with
the following assignment:

\everypar={\cjk@scanstart}

or, in a safer manner [3]:

\everypar=\expandafter{\the\everypar

\cjk@scanstart}

An illustration of the result of this paragraph
transformation is given in Figure 1 with two tradi-
tional Chinese paragraphs.

人民身體之自由應予保障。除現行犯之逮捕由法律另定外，非經司法或警察機關依法定程序，不得逮捕拘禁。非由法院依法定程序，不得審問處罰。非依法定程序之逮捕、拘禁、審問、處罰，得拒絕之。
人民因犯罪嫌疑被逮捕拘禁時，其逮捕拘禁機關應將逮捕拘禁原因，以書面告知本人及其本人指定之親友，並至遲於二十四小時內移送該管法院審問。本人或他人亦得聲請該管法院，於二十四小時內向逮捕之機關提審。

1

(a)

人民身體之自由應予保障。除現行犯之逮捕
由法律另定外，非經司法或警察機關依法定程
序，不得逮捕拘禁。非由法院依法定程序，不
得審問處罰。非依法定程序之逮捕、拘禁、審
問、處罰，得拒絕之。
人民因犯罪嫌疑被逮捕拘禁時，其逮捕拘禁

機關應將逮捕拘禁原因，以書面告知本人及其
本人指定之親友，並至遲於二十四小時內移送
該管法院審問。本人或他人亦得聲請該管法院
，於二十四小時內向逮捕之機關提審。

1

(b)

Figure 1: Before (a) and after (b) paragraph
transformation: line breaking now enabled (traditional
Chinese text example).

2.2 Latin text mingling

It is often the case that Latin text such as English
words, expressions or sentences is mingled within
Chinese or Japanese paragraphs. In the paragraph
transformation method described so far, spaces, if
any, are “gobbled” and never passed as parameters
to the scanner macro \cjk@scan. This is not a
problem for Chinese and Japanese text since, as
explained, they do not rely on spaces. But now
that we are considering Latin text mingling in such
paragraphs, spaces need to be retained since Latin
text, such as English, does rely on spaces to separate
words, sentences, etc.

Without going too far into the details, to force
TEX to also pass spaces as parameters to the scanner
macro, spaces need to be made active, in TEX termi-
nology. Hence, it suffices to call the \obeyspaces

macro, whose purpose is exactly to make the space
character active, at the beginning of the document.
In addition, the scanner macro is refined to avoid
adding extra space when the current character is a
space:

\def\cjk@scan#1{%

\ifx#1\cjk@stop

\par

\else

#1%

\if#1\space% no extra space if #1 is a space

\else

\hskip 0pt plus 1pt minus 1pt\relax

\fi

\expandafter\cjk@scan

\fi

}

An illustration of the result of this refined para-
graph transformation is given in Figure 2.

We conclude this section with the following two
remarks. First, it should be noted that Latin text
mingled within Chinese or Japanese paragraphs is
treated just as Chinese or Japanese text: extra space
is inserted between glyphs. Therefore, line- and

A glance at CJK support with X ETEX and LuaTEX

198 TUGboat, Volume 40 (2019), No. 2

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。そもそも国政は、国⺠
の厳粛な信託によるものであつて、その権威
は国⺠に由来し、その権力は国⺠の代表者が
これを行使し、その福利は国⺠がこれを享受
する。これは人類普遍の原理であり、この憲
法は、かかる原理に基くものである。われら
は、これに反する一切の憲法、法令及び詔勅
を排除する。We,theJapanesepeople

(a)

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。そもそも国政は、国⺠
の厳粛な信託によるものであつて、その権威
は国⺠に由来し、その権力は国⺠の代表者が
これを行使し、その福利は国⺠がこれを享受
する。これは人類普遍の原理であり、この憲
法は、かかる原理に基くものである。われら
は、これに反する一切の憲法、法令及び詔勅
を排除する。We, the Japanese people

(b)

Figure 2: Before (a) and after (b) making spaces
active: Latin text mingling now retains spaces
(Japanese text example).

word-breaking for mingled Latin text can occur any-
where, and thus no word-breaking by hyphenation
will happen. Second, even though no extra space
is added after a space character, extra space is still
added before a space character. This issue will be
tackled in a subsequent section.

2.3 Latin text paragraphs

Because the \obeyspaces macro has been called
so as to typeset Chinese and Japanese paragraphs,
Latin text paragraphs would be typeset just as those,
that is, with extra space added between consecu-
tive glyphs (except after spaces). As a result, as
explained above, line- and word-breaking would not
be satisfactory.

Hence, we next enable the proper typesetting
of Latin text paragraphs, that is, paragraphs that
include spaces between words. To this end, we de-
fine the \iflatin conditional statement that will be
used to distinguish Latin text paragraphs from oth-
ers. The flag command \latinfalse is called at the
beginning of the document to reflect that Chinese
and Japanese paragraphs are the norm. Latin text
paragraphs are marked as such by calling the flag
command \latintrue at the beginning of the para-
graph. The scanner starting macro \cjk@scanstart

is adjusted so as to not start the scanner in case the
Latin flag is set.

Since the \obeyspaces macro has been previ-
ously called, spaces are active characters; this set-
ting needs to be reverted in the case of a Latin text
paragraph in order to have proper line- and word-
breaking. Hence, the scanner starting macro in ad-
dition reverts spaces from the active state back to
their default state in the case of a Latin text para-
graph. The refined code is given next:

\newif\iflatin % flag to detect whether to scan

\latinfalse % flag initially set to false

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。
We, the Japanese people, acting throug

h our duly elected representatives in the N
ational Diet, determined that we shall secu
re for ourselves and our posterity the fruits
of peaceful cooperation with all nations an
d the blessings of liberty throughout this la
nd, and resolved that never again shall we
be visited with the horrors of war through
the action of government, do proclaim tha
t sovereign power resides with the people
and do firmly establish this Constitution.

(a)

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。
We, the Japanese people, acting

through our duly elected representatives
in the National Diet, determined that
we shall secure for ourselves and our
posterity the fruits of peaceful coopera-
tion with all nations and the blessings of
liberty throughout this land, and resolved
that never again shall we be visited with
the horrors of war through the action of
government, do proclaim that sovereign
power resides with the people and do
firmly establish this Constitution.

(b)

Figure 3: Before (a) and after (b) Latin mode
enabling: Latin text now properly typeset (Japanese
and English text example).

\def\cjk@scanstart#1\par{%

\iflatin% if Latin text paragraph, don't scan

\catcode`\ =10% revert \obeyspaces

#1\par% display the paragraph normally

\latinfalse% back to default

\else

\cjk@scan#1\cjk@stop

\fi

}

An illustration of the result of this refined para-
graph transformation is given in Figure 3.

2.4 Korean text paragraphs

Let us now discuss the case of Korean text para-
graph typesetting. As mentioned in the introduc-
tion, modern Korean relies on spaces to separate
words. Hence, Korean text paragraphs are treated
as Latin text paragraphs, concretely marked with
the \latintrue flag. Yet, because Korean glyphs
(i.e., hangul or hanja) are wider than Latin ones,
the width of spaces is adjusted. In addition, a font
switch is also used to select a Korean font since it
is common that Korean glyphs are not included in
the default font used for Chinese and Japanese para-
graph typesetting.

Such settings need to be applied at the begin-
ning of the paragraph, so we need to embed the
paragraph into a group for font selection and the
adjusted space setting. Therefore, the paragraph
starts with a ‘{’ token, and thus it is required to
leave vertical mode for proper parsing of the para-
graph when it is used as the parameter of our macro
\cjk@scanstart which starts the scanner. Specifi-
cally, the problem with starting the paragraph with
a command like {\malgun (e.g., a font switch) is
that TEX is still in vertical mode when it is pro-

Antoine Bossard

TUGboat, Volume 40 (2019), No. 2 199

日本国⺠は、正当に選挙された国会における代表者を通じて行動し、
われらとわれらの子孫のために、諸国⺠との協和による成果と、わが国全
土にわたつて自由のもたらす恵沢を確保し、政府の行為によつて再び戦争
の惨禍が起ることのないやうにすることを決意し、ここに主権が国⺠に存
することを宣言し、この憲法を確定する。

대통령은 내우·외환·천재·지변 또는 중대한 재정·경제상의 위기에 있어서
국가의 안전보장 또는 공공의 안녕질서를 유지하기 위하여 긴급한 조치가
필요하고 국회의 집회를 기다릴 여유가 없을 때에 한하여 최소한으로 필요한
재정·경제상의 처분을 하거나 이에 관하여 법률의 효력을 가지는 명령을
발할 수 있다.

(a)

日本国⺠は、正当に選挙された国会における代表者を通じて行動し、
われらとわれらの子孫のために、諸国⺠との協和による成果と、わが国全
土にわたつて自由のもたらす恵沢を確保し、政府の行為によつて再び戦争
の惨禍が起ることのないやうにすることを決意し、ここに主権が国⺠に存
することを宣言し、この憲法を確定する。

대통령은 내우·외환·천재·지변 또는 중대한 재정·경제상의 위기에 있어서
국가의 안전보장 또는 공공의 안녕질서를 유지하기 위하여 긴급한 조치가
필요하고 국회의 집회를 기다릴 여유가 없을 때에 한하여 최소한으로 필요한
재정·경제상의 처분을 하거나 이에 관하여 법률의 효력을 가지는 명령을 발할
수 있다.

(b)

Figure 4: Before (a) and after (b) space width
adjustment for Korean text: no more overfull
horizontal boxes (Japanese and Korean text example).

cessed. Switching to horizontal mode starts a new
paragraph and thus triggers \everypar, but then
with an unmatched ‘}’ remaining (i.e., the one cor-
responding to, say, the font switch) at the end of
the paragraph, and thus the parsing error.

For convenience, these Korean text paragraph
settings are gathered in a \korean{} macro as de-
fined below.

\def\korean#1{%

\latintrue% activate the Latin mode

\leavevmode% leave the vertical mode

{% Adjust the space size:

\spaceskip=\fontdimen2\font plus

3\fontdimen3\font minus

3\fontdimen4\font% ×3 stretch and shrink

\malgun #1% Korean font switch

}

}

Note that this redefinition of \spaceskip for
the current paragraph would also be applied to Latin
text mingled within a Korean paragraph. Further-
more, this font selection process — without neces-
sarily activating the Latin mode and adjusting the
space width — could also be used in the case where
distinct fonts for Chinese and Japanese text are re-
quired.

An illustration of the result of this paragraph
typesetting is given in Figure 4. One should note
the overfull horizontal boxes which are shown by the
two black boxes in the left-hand example, when the
space width adjustment has not been applied yet.

2.5 Sophisticated line-breaking

Just as, say, in French, where line breaks are not
allowed before the punctuation marks ‘:’, ‘;’, ‘!’ and
so on — even though these need to be preceded by
a space and are thus typical usages of non-breaking
spaces — CJK typesetting forbids breaking lines be-
fore punctuation marks such as commas and peri-
ods.

We derive in this section a new scanner macro,
\cjk@scanbis, to address this remaining problem.
The approach is simple: refrain from adding extra
space after the current character when the next one

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの
子孫のために、諸国⺠との協和による成果と
、わが国全土にわたつて自由のもたらす恵沢
を確保し、政府の行為によつて再び戦争の惨
禍が起ることのないやうにすることを決意し
、ここに主権が国⺠に存することを宣言し、
この憲法を確定する。

(a)

日本国⺠は、正当に選挙された国会におけ
る代表者を通じて行動し、われらとわれらの子
孫のために、諸国⺠との協和による成果と、
わが国全土にわたつて自由のもたらす恵沢を
確保し、政府の行為によつて再び戦争の惨禍
が起ることのないやうにすることを決意し、
ここに主権が国⺠に存することを宣言し、こ
の憲法を確定する。

(b)

Figure 5: Paragraph transformation by the original
(a) and the new (b) scanner macro: no more line break
before a comma (Japanese text example).

is a punctuation mark. At the same time, this new
scanner allows us to solve the aforementioned incon-
gruity of extra space being added before a space
character in Latin text paragraphs.

To implement this, the new scanner takes two
tokens as parameters instead of one: the first param-
eter is the currently processed token and the second
one is the next token in line. The recursive call is
also updated since it is now expecting two tokens as
parameters instead of one; here it is:

\def\cjk@scanbis#1#2{% two tokens passed

#1%

\ifx#2\cjk@stop

\par

\else

\if#2、% no extra space before character `、'

\else\if#2。% idem before character `。'

\else\if#2\space% idem before a space

\else\if#1\space% idem after a space

\else\hskip 0pt plus 1pt minus 1pt\relax

\fi\fi\fi\fi

\expandafter\cjk@scanbis\expandafter#2%

\fi

}

Similar additional conditions for other CJK punctu-
ation marks can easily be appended if needed.

One other change is needed: in the scanner
macro \cjk@scanstart, the initial expression
\cjk@scan#1\cjk@stop

is modified to
\cjk@scanbis#1\cjk@stop.

An illustration of the effect of this new scanner
is shown in Figure 5.

3 State of the art and contribution

Early solutions for supporting the CJK writing sys-
tems within the TEX ecosystem include the CJK pack-
age [6] and the Japanese TEX system pTEX [8]. Al-
though the former provides some support for Uni-
code, the latter does not. Notably, pTEX supports
vertical typesetting [10], while the CJK package only
partially supports it. Based on the CJK package,

A glance at CJK support with X ETEX and LuaTEX

200 TUGboat, Volume 40 (2019), No. 2

the BXcjkjatype package [16] provides some sup-
port for Japanese typesetting with pdfLATEX (UTF-8
files). Regarding Korean, the hlatex package [14]
enables the processing by LATEX of KS X 1001 en-
coded files, and of UTF-8 files via the obsolete TEX
extension Omega [11]. Omega also has some support
for multi-directional CJK typesetting.

More recent solutions include the xeCJK pack-
age [7], which is dedicated to X ETEX (i.e., no LuaTEX
support). This package is very large, consisting of
more than 14,000 lines of macro code. As of sum-
mer 2019, it is only documented in Chinese. An-
other extensive package, luatex-ja [13], is avail-
able, this time restricted to support for Japanese
with LuaTEX. Finally, up(LA)TEX [9], another sys-
tem dedicated to Japanese, can also be cited; it is
based on p(LA)TEX, but unlike its predecessor sup-
ports Unicode.

Even if the above are more or less complete solu-
tions to the CJK typesetting issue with TEX, we have
presented in this paper a very simple solution, which
requires neither a separate TEX system such as pTEX
nor advanced TEX capacities such as xtemplate,
LATEX3, etc., unlike, for instance, xeCJK. With only
a few lines of macro code, we have described how to
add basic yet arguably competent support for CJK

to both X ETEX and LuaTEX, without differentiation.
The X ETEX, LuaTEX flexibility has been retained:
no extra layer has been piled on as, for instance,
with xeCJK (e.g., the \setCJKmainfont command).
Moreover, the complexity induced by packages such
as xeCJK is likely to be a threat to compatibility
with other packages, as well as with online compi-
lation systems such as those employed by scientific
publishers.

4 Conclusions

It is well known that the Chinese, Japanese and
Korean writing systems are challenging for typeset-
ting programs such as TEX that were originally de-
signed for Latin text. Various extensions and pack-
ages have been proposed to support CJK in TEX,
with uneven success. Such solutions are in most
cases, if not all, extensive — not to say invasive —
additions to the TEX ecosystem. In this paper, re-
lying on the Unicode-capable X ETEX and LuaTEX
systems, we have presented and pedagogically dis-
cussed a minimalistic solution to this CJK typeset-
ting issue. With only a few lines of macro code, we
have shown that satisfactory CJK support can be
achieved: paragraph management, Latin text min-
gling and sophisticated line-breaking are examples
of the typesetting issues addressed.

As for future work, given its still rather frequent

usage, right-to-left horizontal typesetting would be
a useful addition to this discussion of CJK typeset-
ting. Furthermore, although it is a complex issue
for TEX, right-to-left vertical typesetting is another
meaningful objective as it is ubiquitous for the CJK

writing systems.

Acknowledgments

The author is grateful to Takeyuki Nagao (Chiba
University of Commerce, Japan) and Keiichi Kaneko
(Tokyo University of Agriculture and Technology,
Japan) for their insightful advice. This research
project is partly supported by The Telecommunica-
tions Advancement Foundation (Tokyo, Japan).

References

[1] A. Bossard. Chinese Characters, Deciphered.
Kanagawa University Press, Yokohama, Japan,
2018.

[2] A. Bossard and K. Kaneko. Experimenting
with makeindex and Unicode, and deriving
kameindex. In Proceedings of the GuIT meeting
2018, ArsTEXnica 26, pp. 55–61, Rome, Italy,
October 2018. https://www.guitex.org/home/

images/ArsTeXnica/AT026/kameindex.pdf

[3] S. Checkoway. The everyhook package,
November 2014. Package documentation.
https://ctan.org/pkg/everyhook (last accessed
August 2019).

[4] Google. Google Noto fonts, 2017. https:

//google.com/get/noto (last accessed August
2019).

[5] D. E. Knuth. The TEXbook. Addison-Wesley,
Boston, MA, USA, 1986.

[6] W. Lemberg. CJK, April 2015. Package
documentation. https://ctan.org/pkg/cjk (last
accessed August 2019).

[7] L. Liu and Q. Lee. xeCJK 宏包 (in Chinese),
April 2018. Package documentation. https:

//ctan.org/pkg/xecjk (last accessed August
2019).

[8] K. Nakano, Japanese TEX Development
Community, and TTK. About pLATEX 2ε,
September 2018. Package documentation.
https://ctan.org/pkg/platex (last accessed
August 2019).

[9] K. Nakano, Japanese TEX Development
Community, and TTK. About upLATEX 2ε,
April 2018. Package documentation. https:

//ctan.org/pkg/uplatex (last accessed August
2019).

[10] H. Okumura. pTEX and Japanese typesetting.
The Asian Journal of TEX 2(1):43–51, April 2008.
http://ajt.ktug.org/2008/0201okumura.pdf

Antoine Bossard

TUGboat, Volume 40 (2019), No. 2 201

[11] J. Plaice and Y. Haralambous. The latest
developments in Ω. TUGboat 17(2):181–183,
June 1996. https://tug.org/TUGboat/tb17-2/

tb51plaice.pdf

[12] W. Robertson. The fontspec package — Font
selection for X

E

LATEX and LuaLATEX, July 2018.
Package documentation.
https://ctan.org/pkg/fontspec (last accessed
August 2019).

[13] The LuaTEX-ja project team. The LuaTEX-ja
package, November 2018. Package documentation.
https://ctan.org/pkg/luatexja (last accessed
August 2019).

[14] K. Un. 한글라텍 길참이 (in Korean), April 2005.
Package documentation. https://ctan.org/pkg/

hlatex (last accessed August 2019).

[15] B. Veytsman. Splitting Long Sequences
of Letters (DNA, RNA, Proteins, etc.),
August 2006. Package documentation.
https://ctan.org/pkg/seqsplit (last accessed
August 2019).

[16] T. Yato. BXcjkjatype package, August 2013.
Package documentation. https://ctan.org/pkg/

bxcjkjatype (last accessed August 2019).

Permissions

The placeholder text used in the various illustrations
of this article is in the public domain as detailed
below.

Figure 1: the placeholder text is the two first
paragraphs of Article 8 of the Chinese constitution
(1947), written in traditional Chinese.

Figure 2: the placeholder text is the first para-
graph of the Japanese constitution (1946), followed
by the first few words of the corresponding official
English translation.

Figure 3: the placeholder text is the first sen-
tence of the first paragraph of the Japanese consti-
tution (1946), followed by the corresponding official
English translation.

Figure 4: the placeholder text is the first sen-
tence of the first paragraph of the Japanese consti-
tution (1946), followed by the first paragraph of Ar-
ticle 76 of the South Korean constitution (1988).

Figure 5: the placeholder text is the first sen-
tence of the first paragraph of the Japanese consti-
tution (1946).

⋄ Antoine Bossard
Graduate School of Science
Kanagawa University
2946 Tsuchiya, Hiratsuka
Kanagawa 259-1293
Japan
abossard (at) kanagawa-u dot ac dot jp

A glance at CJK support with X ETEX and LuaTEX

TUG 2019 abstracts

Amine Anane

Arabic typesetting using a Metafont-based

dynamic font

Arabic script is a cursive script where the shape and
width of letters are not fixed but vary depending on
the context and the justification needs. A typesetter
must consider those dynamic properties of letters
to achieve high-quality text comparable to Arabic
calligraphy.

In this talk I will present a parametric font
that has been designed as a first step towards such
high-quality typesetting. The font is based on the
Metafont language which can generate a glyph with
a given width dynamically, respecting the curvilinear
nature of Arabic letters. It uses an extended version
of OpenType to support the varying width of the
glyphs. I will demonstrate a graphical tool which has
been developed specifically to facilitate the design of
such dynamic fonts. As a case study, I will compare
a handwritten Quranic text with one generated with
this dynamic font. I will conclude by highlighting
future work towards a complete high-quality Arabic
typesetting.

Takuto Asakura

A TEX-oriented research topic: Synthetic analysis

on mathematical expressions and natural language

Since mathematical expressions play fundamental
roles in Science, Technology, Engineering and Mathe-
matics (STEM) documents, it is beneficial to extract
meanings from formulae. Such extraction enables
us to construct databases of mathematical knowl-
edge, search for formulae, and develop a system that
generates executable codes automatically.

TEX is widely used to write STEM documents
and provides us with a way to represent meanings of
elements in formulae in TEX by macros. As a simple
example, we can define a macro such as
\def\inverse#1{#1^{-1}}

and use it as \inverse{A} in documents to make
it clear that the expression means “the inverse of
matrix A” rather than “value A to the power of −1”.
Using such meaningful representations is useful in
practice for maintaining document sources, as well as
converting TEX sources to other formal formats such
as first-order logic and content markup in MathML.
However, this manner is optional and not forced by
TEX. As a result, many authors neglect it and write
messy formulae in TEX documents (even with wrong
markup).

To make it possible to associate elements in
formulae and their meanings automatically instead

202 TUGboat, Volume 40 (2019), No. 2

of requiring it of authors, recently I began research
on detecting or disambiguating the meaning for each
element in formulae by conducting synthetic analyses
on mathematical expressions and natural language
text. In this presentation, I will show the goal of my
research, the approach I’m taking, and the current
status of the work.

An extended abstract is available at wtsnjp.

com/talk/cicm2019/dc-abstract.pdf.

Erik Braun

Current state of CTAN

The “Comprehensive TEX Archive Network” is the
authoritative place where TEX-related material is
collected.

Developers can upload their packages, and the
distributions use it to pick up their packages. The
TEX Catalogue’s entries can be accessed via the web-
site, and all the data can be accessed from mirror
servers all over the world.

The talk will give an overview of the current
state of CTAN, recent developments, and most com-
mon problems. In further discussion, feedback from
users and developers is very welcome.

Jennifer Claudio, Sally Ha

A brief exploration of artistic elements in lettering

This non-technical talk explores the stylistic elements
of letter forms as used in arts and culture through an
examination of elongations and decorations with a
focus on the letter E. Samples discussed are derived
from the calligraphy of Don Knuth’s 3 : 16, in samples
of street art, and in typographic branding.

David Fuchs

What six orders of magnitude of space-time buys you

TEX and METAFONT were designed to run accept-
ably fast on computers with less than 1/1000th the
memory and 1/1000th the processing power of mod-
ern devices. Many of the design trade-offs that were
made are no longer required or even appropriate.

Federico Garcia-De Castro

An algorithm for music slurs in METAFONT

This paper describes an algorithm that draws beau-
tiful slurs around given notes (or other points to
avoid). I have been working on such an algorithm on
and off since around 2004 — when commercial music
typesetting software did not provide for automatic,
let alone beautiful, slurs. Along the way I tried
many kinds of approaches, some of them inspired by
METAFONT routines such as superellipse, the flex

macro, and the transform infrastructure (which, for
example, is what slants the \textsl font out of a
vertical design). The usual fate of these attempts was
one of promise followed by interesting development

leading to collapse—there usually were too many
independent variables interacting chaotically.

Earlier this year I finally found a robust, elegant
algorithm. I will present all of the attempts and
describe what makes the final algorithm unique, and
compare it to the way commercial software does slurs
today. This is a graphic presentation, rather than
musical.

Shakthi Kannan

X

E

TEX Book Template

The X ETEX Book Template is a free software frame-
work for authors to publish multilingual books using
X ETEX. You can write the content in GNU Emacs
Org-mode files along with TEX, and the build scripts
will generate the book in PDF. The Org-mode files
are exported to TEX files, and Emacs Lisp post-
processing is done prior to PDF generation. Babel
support with Org-mode TEX blocks allows one to
selectively export content as needed. The framework
separates content from presentation.

A style file exists for specifying customized page
titles, setting margins, font specification, chapter
title and text formatting, page style, spacing etc.
The framework has been used to publish books con-
taining Tamil, Sanskrit and English. It is released
under the MIT license and available at gitlab.com/
shakthimaan/xetex-book-template.

In this talk, I will explain the salient features
of the X ETEX Book Template, and also share my
experience in creating and publishing books using
the framework.

Doug McKenna

An interactive iOS math book using a new TEX

interpreter library

The current TEX ecosystem is geared towards creat-
ing only static PDF or other output files. Using a
re-implementation of a TEX language interpreter as
a library linked into an iOS client program that sim-
ulates a document on a device with a touch screen,
the author will demonstrate a new PDF-free ebook,
Hilbert Curves, that typesets itself each time the ap-
plication launches. The library maintains all TEX
data structures for all pages in memory after the
typesetting job is done, exporting pages as needed
while the user reads the book and interacts with its
dynamic illustrations. This design also allows text-
searching the document’s TEX data structures while
the ebook is “running”.

Frank Mittelbach

Taming UTF-8 in pdfTEX

To understand the concepts in pdflatex for process-
ing UTF-8 encoded files it is helpful to understand

wtsnjp.com/talk/cicm2019/dc-abstract.pdf
wtsnjp.com/talk/cicm2019/dc-abstract.pdf
gitlab.com/shakthimaan/xetex-book-template
gitlab.com/shakthimaan/xetex-book-template

TUGboat, Volume 40 (2019), No. 2 203

the models used by the TEX engine and earlier mod-
els used by LATEX on top of TEX. This talk gives a
short historical review of that area and explains
—how it is possible in a TEX system that only un-

derstands 8-bit input to nevertheless interpret and
process UTF-8 files successfully;

— what the obstacles are that can be and have been
overcome;

— what restrictions remain if one doesn’t switch to a
Unicode-aware engine such as LuaTEX or X ETEX.

The talk will finish with an overview about the im-
provements with respect to UTF-8 that will be acti-
vated in LATEX within 2019 and how they can already
be tested right now.

Ross Moore

LATEX 508—creating accessible PDFs

Authoring documents that are accessible to people
with disabilities is not only the morally correct thing
to be doing, but is now required by law, at least
for U.S. Government offices and agencies, through
the revised Section 508 of the U.S. Disabilities Act
(2017). It is likely to eventually become so also
for any affiliated institutions, such as universities,
colleges and many schools.

For mathematics and related scientific fields, it
thus becomes imperative that we be able to produce
documents using LATEX that conform to the accessible
standard ANSI/AIIM/ISO 14289-1:2016 (PDF/UA-1).
This is far more rigorous than standard PDF, in
terms of capturing document structure, as well as
all content associated with each particular structural
element.

In this talk we show an example of a research
report produced as PDF/UA for the U.S. National
Parks Service. We illustrate several of the difficulties
involved with creating such documents. This is due
partly to the special handling required to encode
the structure of the technical information such as
appears on the title page, and inside-cover pages, as
well as tabular material and images throughout the
body of the document. But there are also difficulties
that are due to the nature of TEX itself, and the
intricacy of LATEX’s internal programming.

Videos of this talk and another talk on accessibil-
ity, by Chris Rowley, are available at web.science.
mq.edu.au/~ross/TaggedPDF/TUG2019-movies.
The basic discussion slide follows:

LATEX 508 — creating accessible PDFs

US Rehabilitation Act, 2017 ruling:

If

and if

US Government
agency

then

else .

Dr Ross Moore, Department of Mathematics & Statistics, Macquarie University

Shreevatsa R

What I learned from trying to read the TEX program

As we know, TEX is written in a system called WEB

that exemplifies the idea of literate programming (or
programs as literature), and has been published as
a book. Indeed, many good and experienced pro-
grammers have read the program with interest. But
what if the reader is neither good nor experienced?
Here we discuss some (more or less superficial) ob-
stacles that stymie the novice modern programmer
trying to make sense of the TEX program, and how
they can be overcome. Further information is at
http://shreevatsa.net/tex/program.

Yusuke Terada

Construction of a digital exam grading system

using TEX

At our school in Japan, large-scale paper exams are
held on a regular basis. The number of examinees is
enormous, and the grading must be finished within
a short period of time. Improving efficiency was
strongly needed. So I developed a digital exam grad-
ing system using TEX. TEX and related software play
a core role in the system, co-operating with iPad and
Apple Pencil.

In this presentation, I would like to present how
TEX can be effectively applied to constructing the
digital exam grading system. I will also mention
the unexpected difficulties that I faced in the actual
large-scale operations and the way I have overcome
them.

web.science.mq.edu.au/~ross/TaggedPDF/TUG2019-movies
web.science.mq.edu.au/~ross/TaggedPDF/TUG2019-movies
http://shreevatsa.net/tex/program

204 TUGboat, Volume 40 (2019), No. 2

MAPS 49 (2019)

MAPS is the publication of NTG, the Dutch language
TEX user group (http://www.ntg.nl).

Ferdy Hanssen, Van de penningmeester [From
the Treasurer]; pp. 1–2

Frans Goddijn, Verslag 57ste NTG bijeenkomst
[Report of the 57th NTG Meeting]; pp. 3–4

Tim van de Kamp, Impressie hackerskamp
SHA2017 [Hackerskamp SHA2017: An impression];
p. 5

Last year there was a large hacker camp on the
Flevopolder. Because TEXnicians are also allowed to
call themselves hackers, there was even a real LATEX
village present at the camp this year. This is a short
report of the camp.

Hans van der Meer, Take Notes—Take Two;
pp. 6–12

Second, revised and extended, version of a Con-
TEXt module for processing of notes. Notes are classi-
fied according to category/subcategory and can con-
tain information about subject, author, date, source,
etc. The typesetting of the notes can be filtered
according to several criteria. Many aspects of the
formatting are easily configurable.

Hans van der Meer, Bits and pieces from
ConTEXt mailing list; pp. 13–26

My Takenotes module for processing notes is
used to present a selection of notes collected mainly
from the ConTEXt users group on the Internet.

Hans Hagen, LuaTEX 1.10, a stable release (in
Dutch); pp. 27–28

A brief history of the LuaTEX project, the re-
lationship with ConTEXt, and the new stability of
LuaTEX, while engine experiments will continue with
a different program.

Hans Hagen, Basic image formats; pp. 29–30
Handling of images as rule nodes in LuaTEX,

and a consideration of each of the basic types JPG,
PDF, PNG.

Hans Hagen, Is TEX really slow?; pp. 31–34
Sometimes you read complaints about the per-

formance of TEX, for instance that a LuaTEX job
runs slower than a pdfTEX job. But what is actually
a run? In the next few pages I will try to explain
what happens when you process some text and why
even a simple TEX job takes about half a second to
process on my laptop.

Dennis van Dok, Dagboek van een Informaticus
[An Informatician’s diary]; pp. 35–36

A recounting of the author’s personal history
with computing and TEX.

Ernst van der Storm, Belangrijke onderdelen
voor een programmaboekje [Important parts for a
program booklet]; pp. 37–38

For many years I have been making program
booklets for the Nieuwegeins Kamerkoor, and al-
ways did so with LATEX or LuaLATEX. This article
describes some macros that I used to make the book-
let. Aligning lyrics on the page—usually A5—and
the translation thereof is usually manual work. The
verse package turned out to be unsuitable; this ar-
ticle includes an alternative.

Taco Hoekwater, MuPDF tools; pp. 39–40
The application MuPDF (http://mupdf.com) is

a very fast, portable, open source PDF previewer and
development toolkit actively supported by Artifex,
the creators of Ghostscript (http://artifex.com).
But MuPDF is not just a very fast, portable, open
source PDF previewer and toolkit. It also comes with
a handy collection of command-line tools that are
easily overlooked. The command-line tools allow you
to annotate, edit, and convert documents to other
formats such as HTML, SVG, PDF, and PNG. You
can also write scripts to manipulate documents using
JavaScript. This small paper gives a quick overview
of the possibilities.

Siep Kroonenberg, Een kleine wegwijzer naar
TEX documentatie [Finding TEX documentation];
pp. 41–42

Finding the information you need can be diffi-
cult, even for TEX and LATEX users. But I hope to
show here that you usually don’t have to search for
long. TEX Live and MiKTEX install almost complete
documentation. There are also very complete and
searchable overviews online.

Ernst van der Storm, Veel pagina’s scannen,
één pdf [Scan many pages, produce one pdf];
pp. 43–48

For a choir or an orchestra it is sometimes nec-
essary to copy parts from a music book resulting in
a number of scanned images—usually JPEG or PDF.
Below I describe a method using a few LATEX macros
to make the margins of all pages straight and sym-
metrical, display the scans on the entire page and
make the result available as a single PDF for printing.
Correcting the trapezoidal shape of a scan, however,
needs more specific software such as DigiKam. Using
an editor with column editing options can be useful.

TUGboat, Volume 40 (2019), No. 2 205

Rens Baardman, Writing my thesis with TEX;
pp. 49–53

The author’s TEX setup, workflow, and tips for
LATEX authoring.

Hans Hagen, Following up on LuaTEX; pp. 54–57
Directional typesetting updates in LuaTEX: sup-

porting right-to-left, and dropping vertical options.

Piet van Oostrum, LATEX on the road; pp. 58–70
This article describes the adventures that I had

while working on a small TEX project without my
beloved laptop at hand. With only an iPad to do the
work and without a local TEX system installed on
it, there were several challenges. I document them
here so that others can enjoy the struggles I had and
can benefit from the solutions when they encounter
similar situations.

[Received from Wybo Dekker.]

ConTEXt Group Journal 2018

The ConTEXt Group publishes proceedings of the

annual ConTEXt meetings.

http://articles.contextgarden.net.

Dayplan; pp. 5–6

Schedule of talks.

Taco Hoekwater, A use case for \valign;

pp. 7–18

The TEX primitive command \halign is the

backbone of traditional macros for predominantly

horizontal tabular material. Its companion primitive

\valign can be used for predominantly vertical ma-

terial, but column-based tabular material is rare so

there is no built-in support for it in ConTEXt. Since

I was required to typeset a table using vertical align-

ment, I wrote a small set of higher-level macros to

allow use of \valign in a ConTEXt-friendly manner.

Taco Hoekwater, Using TEXLua for track plan

graphics; pp. 19–33

TEXLua, combined with some of the Lua library

files from ConTEXt, can easily be used to do parsing

of almost any file format. I plan on using that ap-

proach to generate graphics from my model railroad

track plan that is itself designed in XtrackCAD. The

LPEG library and some helpers are used to parse the

file format and generate MetaPost source that will

be converted into PNG images.

Taco Hoekwater, mtxrun scripts; pp. 34–43
The mtxrun command allows the execution of

separate scripts. Most of these are written by Hans
Hagen, and he occasionally creates new ones. This
article will go through the mtxrun options, the scripts
in the distribution, and show you how to write your
own scripts.

Hans Hagen, From Lua 5.2 to 5.3; pp. 44–49
[Published in TUGboat 39:1.]

Hans Hagen, Executing TEX; pp. 50–56
[Published in TUGboat 39:1.]

Alan Braslau, Nodes; pp. 57–82
[Published in TUGboat 39:1.]

Taco Hoekwater, Font installation example:
IBM Plex; pp. 83–94

Installing and using a new font family for use
with ConTEXt is not all that hard, but it can be
a bit daunting for an inexperienced user. This ar-
ticle shows an example using the free font family
IBM Plex.

Willi Egger, Unifraktur Maguntia; pp. 95–102
For those who grew up (partly) with books type-

set with blackletter, this typesetting still has some
attraction. There are quite a few blackletter fonts
out there, however, not many are complete or offer
the features required for this kind of typesetting.
Unifraktur Maguntia is an example of a fairly com-
plete blackletter font and it comes in OpenType
format as a TTF font. Here I want to present some
of the properties and possibilities of this font.

Doris Behrendt, Henning Hraban Ramm,
ConTEXt Meeting 2018; pp. 103–113

Abstracts without papers; pp. 114–115

CG Secretary, Minutes of members’ meeting,
2018; pp. 116–120

Participant list of the 12th ConTEXt meeting;
p. 121

[Received from Taco Hoekwater.]

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

206 TUGboat, Volume 40 (2019), No. 2

TEXConsultants

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document
conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

TEXtnik

Spain
Email: textnik.typesetting (at) gmail.com

Do you need personalised LATEX class or package
creation? Maybe help to finalise your current
typesetting project? Any problems compiling your
current files or converting from other formats to
LATEX? We offer +15 years of experience as advanced
LATEX user and programmer. Our experience with
other programming languages (scripting, Python
and others) allows building systems for automatic
typesetting, integration with databases, . . . We can
manage scientific projects (Physics, Mathematics, . . .)
in languages such as Spanish, English, German and
Basque.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

TUGboat, Volume 40 (2019), No. 2 207

Warde, Jake

Forest Knolls, CA 94933
650-468-1393
Email: jwarde (at) wardepub.com

Web: http://www.myprojectnotebook.com

I have been in academic publishing for 30+ years. I
was a Linguistics major at Stanford in the mid-1970s,
then started a publishing career. I knew about TEX
from Computer Science editors at Addison-Wesley who
were using it to publish products. Beautiful, I
loved the look. Not until I had immersed myself in
the production side of academic publishing did I
understand the contribution TEX brings to the reader
experience.

Long story short, I started using TEX for
exploratory projects (see the website referenced) and
want to contribute to the community. Having spent a
career evaluating manuscripts from many perspectives,
I am here to help anyone who seeks feedback on their
package documentation. It’s a start while I expand my
TEX skills.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Duke University Press,

Durham, North Carolina

Harris Space and Intelligence

Systems, Melbourne, Florida

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Nagwa Limited, Windsor, UK

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

2019

Sep 4 – 7 Association Typographique Internationale
(ATypI) annual conference,
Tokyo, Japan. atypi2019.dryfta.com

Sep 15 – 20 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 16 – 21 13th International ConTEXt Meeting,
“Dirty tricks & dangerous bends”,
Bassenge, Belgium.
meeting.contextgarden.net/2019

Sep 23 – 26 19th ACM Symposium on Document
Engineering, Berlin, Germany.
www.documentengineering.org/doceng2019

Oct 3 – 6 Ladies of Letterpress
+ STL Print Week #4,
St. Louis, Missouri.
ladiesofletterpress.com/conference

Oct 12 TEXConf 2019, Shibuya, Tokyo, Japan.
texconf2019.peatix.com

Oct 19 DANTE 2019 Herbsttagung
and 61st meeting,
Kirchheim unter Teck, Germany.
www.dante.de/veranstaltungen/

herbst2019

Oct 26 GuIT Meeting 2019,
XVI Annual Conference, Turin, Italy.
www.guitex.org/home/en/meeting

Oct 25 Award Ceremony: The Updike Prize
for Student Type Design,
Providence Public Library,
Providence, Rhode Island.
www.provlib.org/updikeprize

2020

Feb 28 –
Mar 1

Typography Day 2020,
“Typographic Dialogues: Local-Global”.
Beirut, Lebanon. www.typoday.in

208 TUGboat, Volume 40 (2019), No. 2

Calendar

Mar 25 – 27 DANTE 2020 Frühjahrstagung and

62nd meeting, Lübeck, Germany.
www.dante.de/veranstaltungen

Apr 24 – 25 Before & Beyond Typography: Text
in Global & Multimodal Perspective,
Stanford University, Stanford, California.
www.eventbrite.com/e/before-beyond-

typography-text-in-global-multimodal-

perspective-tickets-69068930029

May BachoTEX2020, 28th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex

Jun 4 – 6 Markup UK 2020. A conference about
XML and other markup technologies,
King’s College, London.
markupuk.org

Jul 1 – 3 Eighteenth International Conference
on New Directions in the Humanities,
“Transcultural Humanities in a
Global World”,
Ca’ Foscari University of Venice,
Venice. Italy.
thehumanities.com/2020-conference

Jul 19 – 23 SIGGRAPH 2020, “Think beyond”,
Washington, DC.
s2020.siggraph.org

Jul 22 – 24 Digital Humanities 2020, Alliance of
Digital Humanities Organizations,
Carleton University and the University
of Ottawa, Ottawa, Canada.
adho.org/conference

TUG 2020 Rochester Institute of Technology,

Rochester, New York

Aug The 41st annual meeting of the
TEX Users Group.
tug.org/tug2020

Status as of 15 September 2019

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 40 (2019), No. 2

Introductory

106 Jim Hefferon / What do today’s newcomers want?
• what new TEX users are working on and what hurdles they have

112 Arthur Reutenauer / The state of X ETEX
• comparison with LuaTEX and prospects for the future

Intermediate

136 William Adams / Design into 3D: A system for customizable project designs
• computer-controlled manufacturing using MetaPost and TEX

179 Behrooz Parhami / Evolutionary changes in Persian and Arabic scripts to accommodate the printing press, typewriting,

and computerized word processing
• concise overview of Arabic/Persian typesetting, typewriting, and modern digital display

194 Emily Park, Jennifer Claudio / Improving Hangul to English translation for optical character recognition (OCR)
• investigation of a gray ratio method to distinguish English syllables in Korean from true Korean

150 Aravind Rajendran, Rishikesan Nair T., Rajagopal C.V. / Neptune—a proofing framework for LATEX authors
• features of this web-based proofing and editing program

167 Sree Harsha Ramesh, Dung Thai, Boris Veytsman, Andrew McCallum / BibTEX-based dataset generation
for training citation parsers

• improving citation structure recognition by training with large BibTEX databases

113 Arthur Reutenauer / Hyphenation patterns: Licensing and stability
• compatibility, updates, and licensing for hyphenation patterns

147 Rishikesan Nair T., Rajagopal C.V., Radhakrishnan C.V. / TEXFolio—a framework to typeset XML documents using TEX
• overview of workflow and features of the cloud-based texfolio.org

157 Chris Rowley, Ulrike Fischer, Frank Mittelbach / Accessibility in the LATEX kernel—experiments in Tagged PDF
• the experimental tagpdf package and plans for generation of accessible PDF by LATEX

159 Boris Veytsman / Creating commented editions with LATEX—the commedit package
• making teacher’s and student’s books from one source

163 Uwe Ziegenhagen / Creating and automating exams with LATEX & friends
• customized exams, grading, and variable question generation with Python

Intermediate Plus

115 Richard Koch / MacTEX-2019, notification, and hardened runtimes
• automated signing, notarization, entitlements for MacTEX-related packages

153 Frank Mittelbach / The LATEX release workflow and the LATEX dev formats
• regression testing, user testing, and new pdflatex-dev etc. formats

108 Tomas Rokicki / Type 3 fonts and PDF search in dvips
• encodings for Metafont fonts in dvips output to enable PDF search

143 Martin Ruckert / The design of the HINT file format
• a new TEX output format intended for on-screen reading, including reflowing and repaging on demand

187 Petr Sojka, Ondřej Sojka / The unreasonable effectiveness of pattern generation
• developing a free word list and improved hyphenation patterns for the Czech language

119 Didier Verna / Quickref: Common Lisp reference documentation as a stress test for Texinfo
• automated building of global documentation for the Common Lisp ecosystem

126 Uwe Ziegenhagen / Combining LATEX with Python
• both writing (LA)TEX from Python and running Python from LATEX

Advanced

196 Antoine Bossard / A glance at CJK support with X ETEX and LuaTEX
• reasonable Chinese/Japanese/Korean typesetting with minimal code

170 Jaeyoung Choi, Saima Majeed, Ammar Ul Hassan, Geunho Jeong / FreeType MF Module2: Integration of METAFONT,
GF, and PK inside FreeType

• rendering METAFONT, GF, and PK fonts on demand from within FreeType

129 Henri Menke / Parsing complex data formats in LuaTEX with LPEG
• introduction to parsing expression grammars in LuaTEX, with example of parsing JSON

Reports and notices

98 TUG 2019 conference information

101 Henri Menke / Back to the roots: TUG 2019 in Palo Alto

104 Jennifer Claudio / TEX Users Group 2019 Annual General Meeting notes

207 Institutional members

201 TUG 2019 abstracts (Anane, Asakura, Braun, Claudio & Ha, Fuchs, Garcia-De Castro, Kannan, McKenna, Mittelbach,
Moore, Shreevatsa, Terada)

204 From other TEX journals: MAPS 49 (2019); ConTEXt Group Journal 2018

206 TEX consulting and production services

208 Calendar

