
TUGboat, Volume 40 (2019), No. 2 187

The unreasonable effectiveness
of pattern generation

Petr Sojka, Ondřej Sojka

Abstract
Languages are constantly evolving, and so are their
hyphenation rules and needs. The effectiveness and
utility of TEX’s hyphenation have been proven by
its usage in almost all typesetting systems in use
today. The current Czech hyphenation patterns were
generated in 1995, and no hyphenated word database
was freely available.

We have developed a new Czech word database
and have used the patgen program to generate new
effective Czech hyphenation patterns efficiently and
evaluated their generalization qualities. We have
achieved full coverage on the training dataset of
3,000,000 words and developed a validation proce-
dure of new patterns for Czech based on the testing
database of 105,000 words approved by the Czech
Academy of Science linguists.

Our pattern generation case study exemplifies
a practical solution to the widespread dictionary
problem. The study has proved the versatility, ef-
fectiveness, and extensibility of Liang’s approach to
hyphenation developed for TEX. The unreasonable
effectiveness of pattern technology has led to appli-
cations that are and will be used, even more widely
now, nearly 40 years after its inception.

. . . the best approach appears to be to embrace the
complexity of the domain and address it by harnessing

the power of data: if other humans engage in the
tasks and generate large amounts of unlabeled, noisy

data, new algorithms can be used to build high-quality
models from the data. (Peter Norvig, [7])

1 Introduction
In their famous essays, Wigner [19], Hamming [1] and
Norvig [7] consider mathematical and data-driven
approaches to be miraculously, unreasonably effec-
tive. One of the very first mathematically founded
approaches that harnessed the power of data was
Franklin Liang’s language-independent solution for
TEX’s hyphenation algorithm [6] and his program
patgen for a generation of hyphenation patterns from
a word list.
Dictionary problem The task at hand was a
dictionary problem. A dictionary is a database of
records; in each record, we distinguish the key part
(the word) and the data part (its division). Given
an already hyphenated word list of a language, a
set of patterns is magically generated. Hyphenation
patterns are much smaller than the original word list

and typically encode almost all hyphenation points
in the input list without mistakes. Liang’s pattern
approach thus could be viewed as an efficient lossy,
ideally lossless, compression of the hyphenated dic-
tionary with a compression ratio of several orders of
magnitude.

It has been proved [16, chapter 2] that the opti-
mization problem of exact lossless pattern minimiza-
tion is non-polynomial by reduction to the minimum
set cover problem.

Generated patterns have minimal length, e.g.,
shortest context possible, which results in their gener-
alization properties. Patterns could hyphenate words
not seen during learning: yet another miracle of the
generated patterns.
Pattern preparation In the 36 years of patgen
use, there have been hundreds of hyphenation pat-
terns created, either by hand or generated by the
program patgen, or by the combination of both meth-
ods [8]. The advantage of pattern generation is that
one can fine-tune pattern qualities for specific us-
age. Having an open-source and maintained word
list adds another layer of flexibility and usability to
the deployment of patterns. This approach is al-
ready set up for German variants and spellings [5]
and was an inspiration for doing the same for the
Czech language.

In this paper, we report on the development
of the new Czech word list with a free license and
complementary sets of hyphenation patterns. We
describe the iterative process of initial word list prepa-
ration, word form collection, estimation of pattern
generation parameters, and novel applications of the
technology.

Hyphenation is neither anarchy nor the sole
province of pedants and pedagogues. Used in

moderation, it can make a printed page more visually
pleasing. If used indiscriminately, it can have the

opposite effect, either putting the reader off or
causing unnecessary distraction. (Major Keary)

2 Initial word list preparation
As a rule of thumb, the development of a large new
hyphenated word list starts with a small dataset.
The experience and outputs from this initial phase,
e.g., hyphenation patterns, are then applied to the
larger and larger lists.
Bootstrapping idea As word lists of a well-estab-
lished language are sizeable, and manual creation
of a huge hyphenated word list is tedious work, we
used the bootstrapping technique. We illustrate the
process of initial word list preparation in the dia-
gram in Figure 1 on the following page. We have

The unreasonable effectiveness of pattern generation

https://web.archive.org/web/20050310054738/http://www.melbpc.org.au/pcupdate/9100/9112article4.htm


188 TUGboat, Volume 40 (2019), No. 2

cs-lemma-ujc-orig.wl
 (105 k hyphenated words)

patgen
 (as hyphenator)

cs-lemma-ujc-[1-4].wlh

patgen
 (as hyphenator)

czhyphen.pat
 (levels 1-4)

cs-sojka-correctoptimized.par
 (levels 1-4)

pattmp.8
 (created by patterns from 8 levels)

cs-init-[1-3].par
 (levels 5-8)

human + vim
(fixes bad hyphens)

Figure 1: Life cycle of initial word list preparation, illustrated with the development
of 105 k Czech consistently hyphenated words. czhyphen.pat represents the original
Czech hyphenation patterns from [17] and cs-sojka-correctoptimized.par are
correct optimized patgen parameters from the same paper. cs-init-[1-3].par are
custom parameters that trade off bad hyphens (which have to be manually checked)
for missed hyphens. Information on which hyphenations patgen missed, and where it
wrongly inserted a hyphen is sourced from pattmp.

obtained a hyphenated word list with 105,244 words
from the Czech Academy of Sciences, Institute of the
Czech Language (ÚJČ). Upon closer inspection, we
discovered many problems with the data, probably
stemming from the facts that it has been crafted
by multiple linguists and over many years. The few
hyphenation rules [2] that are in the Czech language
are not applied consistently. The borderline cases
were typically between syllabic (ro-zum) and etymo-
logical variants (roz-um) of hyphenation, or the way
to handle words borrowed from German or English
into Czech. There are sporadic examples of words
where correct syllabification depends on the seman-
tics of the word: narval and oblít are two examples
of them in Czech. These are preferably not to be
hyphenated, to stay on the safe side.

It is impractical to try to manually find incon-
sistencies and systemic errors, even in a relatively
short word list like this. We slightly modified and
extended the process suggested in [15, page 242]:
We used patgen and the current Czech patterns to
hyphenate the word list and manually checked only

the 25,813 words where the proposed hyphenation
points differed from the official (were bad or missed),
creating a new word list cs-lemma-ujc-1.wlh [13]
in the process.

However, we are erroneous humans making mis-
takes. To find these, we have used patgen to generate
the four additional levels of hyphenation patterns
on top of the current patterns from the checked
word list. We have also adjusted the parameters
(see cs-init-[1-3].par [13]) used for generation of
the four additional levels to trade off bad hyphens
(which have to be manually checked) for missed ones.
We have then used these patterns, with eight lev-
els in total, to hyphenate the checked word list and
manually rechecked the wrongly hyphenated points
(dots in patgen output), with missed hyphenation
points (implicitly marked as the hyphen sign in hy-
phenated word list). We have repeated this process
three times, iterating on cs-lemma-ujc-[2-4].wlh.
Word list number four is used for the generation of
bootstrapping patterns and final pattern validation.

Petr Sojka, Ondřej Sojka



TUGboat, Volume 40 (2019), No. 2 189

3 Word list preparation and design
Any live language continually changes, and Czech is
no exception. Many new Czech words now come from
other languages, mostly from English. It presents a
challenge for the patterns; they must not only cor-
rectly hyphenate Czech words according to Czech
syllabic boundaries, but foreign words must be hy-
phenated correctly too, according to their new Czech
syllabic pronunciation [14]. To have the patterns
keep up with language evolution, we must maintain
not only the patterns but also a hyphenation word
list. In this section, we detail how we have built such
a word list.

csTenTen corpus We have first obtained a word
list with frequencies, generated from the Czech Web
Corpus of TenTen family (csTenTen) [3]. We then
filtered this word list to include only words that
appear more than ten times in two crawls [18] made
in years 2012 and 2017. We ended up with a word list
containing 922,216 words, a non-negligible fraction
of which are misspellings and jargon.

Word list cleanup We have then cleaned this
word list by using the Czech morphological analyzer
majka [12] to remove all words not known to it. We
removed 370,291 typos, misspellings, and similar
atypical lexemes and kept only 551,925 frequently
occurring valid words in the dataset.

Word list expansion The morphological analyzer
majka [12] also allows us to expand words into all
their inflected forms. We chose not to use the expan-
sion feature of majka because the word list would
grow to 3,779,379 (almost a fourfold increase) and
csTenTen already contains most of the commonly
used types of inflections. It would also distort which
hyphenation patgen gives the most weight to. We
tried supplying logarithms of word frequencies from
csTenTen to the word list, so more weight could be
given to patterns that cover the most common words.
It did not significantly improve validation scores in
our case, as one can see in Table 2 on page 191. We
think that this is partly because patgen is limited to
one digit of frequency per word and partly because
the validation score (computed from error rate on
ujc word list) does not capture real-world usage.

We expanded the word list with majka by adding
54,569 lemmas (base forms) that were present in the
word list, but not in their base form. It increased
the word list size to 606,494 words.

We list the word list statistics that we used for
pattern generation in Figure 2.

shortcut word list description count

ujc checked word list for
validation

105,244

all all frequent word forms
from web known to
majka plus all lemmas
known to majka

606,494

allflex previous plus all word
forms generated by
majka

2,100,581

allflexjargon previous plus all
non-standard and jargon
word forms

3,779,379

biggest tokens that are present
in the csTenTen more
than 10 times

3,918,054

Figure 2: Czech word lists’ shortcut names and
statistics

Maintenance The German wortliste [5] project
served as inspiration for our open word list format,
detailed in the README.md [13].

One must regard the hyphen as a blemish to be
avoided wherever possible. (Winston Churchill)

4 Bootstrapping— iterative development
of hyphens in the big word list

It would be tedious to hyphenate such a big word
list by hand manually, so we train patterns on a
small list and apply them to the big word list, as
illustrated in Figure 3 on the next page. Then, we
train patterns on the (now hyphenated) big word list
and have patgen show what it would have hyphen-
ated differently. With this approach, we cherry-pick
inconsistencies in the word list.

Since the big word list contains not only lemmas
of words, but also characteristic inflections, we use
regular expressions to add hyphens around them and
fix inconsistencies. We keep iterating on this, as
shown in Figure 3 on the following page, until the
patterns, generated with cs-init-[1-3].par [13],
achieve nearly perfect coverage.

The resulting patterns hyphenate according to
the standard Czech hyphenation rule: hyphenation
is allowed everywhere where it does not change the
pronunciation of the word. Thanks to the effective-
ness of pattern generation, this works not only in
Czech words but also foreign (Latin, French, German,
English) ones.

The unreasonable effectiveness of pattern generation



190 TUGboat, Volume 40 (2019), No. 2

cs-lemma-ujc-4.wlh
(105 k correctly hyphenated word lemmata)

patgen
 (as pattern generator)

cs-sojka-boot.pat

patgen
 (as hyphenator)

cs-all-cstenten-[1-n].wlh

patgen
 (as hyphenator)

pattmp.4

 human + vim + regex
(fixes inflections)

cs-sojka-boot.par

cs-all-cstenten.wls
(606 k words with common inflections)

Figure 3: How we bootstrapped hyphenation of the big word list by training patterns
(cs-sojka-boot.pat) on the small word list and applying them on the big one.
cs-sojka-boot.par are patgen parameters that are designed to generate many
patterns but still retain their generalization properties. pattmp highlights which
hyphenation points in the source file the new pattern level missed, which were
correctly covered and where they wrongly put a hyphen.

Hyphens, like cats, are capable of arousing
tenderness or shudders. (Pamela Frankau)

5 Pattern generation
The last Czech hyphenation patterns were generated
in 1995 [17], and are in use not only in TEX but
also in other widespread typesetting systems. For
conservative users, there is no strong incentive for
change, because the error rate is relatively low (the
first version of the validation set measured an error
rate around 4%), and coverage is relatively high (the
first version of the validation set measured around
7% missed hyphenation points).

Pattern generation from 3,000,000 words does
not take hours as it did two decades ago, but seconds,
even on commodity hardware, which allows for rapid
development of “home-made” patterns.

We have developed a Python wrapper for patgen
that we use in Jupyter notebooks. It allows rapid
iteration, and easy sharing of results—see Table 1
on the next page and demo.ipynb [13].

Had Liang in 1983 had the same ease of chang-
ing patgen parameters, run it, and see the results
in 60 seconds, he would inevitably have generated
higher than 89% coverage while staying within the
limit of 5,000 patterns [6, page 37].

It has also become common to use a validation
dataset to ensure generalization abilities. Our usage
of a validation dataset has proved useful. Table 2
shows that if we were to use the correct optimized
parameters from [17] that have been in use for Czech,
we would overfit the training dataset and perform
worse than their size optimized counterparts. The

Petr Sojka, Ondřej Sojka



TUGboat, Volume 40 (2019), No. 2 191

Table 1: Outputs from running patgen in our Jupyter notebook with two different
parameter sets. The first parameter set is from the German Trennmuster project [5]
and generates 7,291 patterns, 40 kB. The second one from [17] generates shorter and
smaller patterns—4,774 patterns, 25 kB.

Level Patterns Good Bad Missed Lengths Params
1 750 1,683,529 525,670 0 1 5 1 1 1
2 3,178 1,628,874 38 54,655 2 6 1 2 1
3 2,548 1,683,528 9,931 1 3 7 1 1 1
4 1,382 1,683,287 0 242 4 8 1 4 1
5 92 1,683,528 0 1 5 9 1 1 1
6 0 1,683,528 0 1 6 10 1 6 1
7 1 1,683,529 0 0 7 11 1 4 1

Level Patterns Good Bad Missed Lengths Params
1 1,608 1,655,968 131,481 27,561 1 3 1 5 1
2 1,562 1,651,840 2,533 31,689 1 3 1 5 1
3 2,102 1,683,528 2,584 1 2 5 1 3 1
4 166 1,683,135 6 394 2 5 1 3 1

Table 2: Effectiveness and effectivity of pattern generation on Czech word lists.
Comparison of validation scores of patterns trained on various word list and
parameter combinations.

Word list Params Good% Bad% Missed% Size Patterns Time (s)
all correctopt [17] 99.76 2.94 0.24 30 kB 5,593 58.13

sizeopt [17] 98.95 2.80 1.05 19 kB 3,816 59.46
german [5] 99.74 2.21 0.26 51 kB 8,991 201.9

weighted all correctopt [17] 99.76 2.94 0.24 30 kB 5,590 59.23
sizeopt [17] 98.95 2.80 1.05 20 kB 3,821 58.74
german [5] 99.74 2.21 0.26 51 kB 8,978 207.35

allflex correctopt [17] 99.46 4.02 0.54 28 kB 5,387 212.55
sizeopt [17] 99.26 3.72 0.74 29 kB 5,537 212.59
german [5] 99.42 3.35 0.58 49 kB 8,663 1,035.16

allflexjargon correctopt [17] 99.47 4.08 0.53 29 kB 5,612 365.96
sizeopt [17] 99.31 3.78 0.69 31 kB 5,938 369.92
german [5] 99.43 3.36 0.57 53 kB 9,308 1,786.4

validation word list has to be carefully checked with
linguists from UJČ for consistency to minimize the
generalization error. Most of the current errors stem
from foreign words used in the Czech texts.

When the validation word list is added to train-
ing, then patterns could be developed to serve as a
lossless compression of word list dataset, thus maxi-
mize the effectiveness of pattern technology.

Life is the hyphen between matter and spirit.
(Augustus William Hare)

6 The unreasonable effectiveness
We were able to solve the dictionary problem for
Czech hyphenation effectively.
Space effectiveness From 3,000,000+ hyphen-
ated words stored in approximately 30,000,000 bytes
we have produced patterns of size 30,000 bytes,
achieving roughly 1000× space lossless compression.
Time effectiveness Using the trie data structure
for patterns makes the time complexity of accessing
the record related to the word, e.g., hyphenation

The unreasonable effectiveness of pattern generation



192 TUGboat, Volume 40 (2019), No. 2

point, in very low constant time. The constant is
related to the depth of the pattern trie data structure,
e.g., 5 or 6 in the case of Czech. If the entire pattern
trie resides in RAM, the time for finding the patterns
for a word is on the scale of tens, at most hundreds,
of single processor instructions. Word hyphenation
throughput is then about 1,000,000 words per second
on a modern CPU.
Optimality Even though finding exact space and
time-optimal solutions is not feasible, finding an
approximate solution close to optimum is possible.
Heuristics and insight expressed above, together with
interactive fine-tuning of patgen parameter options,
in our case on a Jupyter notebook, allows for rapid
pattern development.
Automation A close-to-optimal solution to the
dictionary problem could be useful not only for Czech
hyphenation, but for all other languages [8, 9], and
more generally, for other instances of the dictio-
nary problem. Developing heuristics for threshold-
ing of patgen pattern generation parameters could
be based on a statistical analysis of large input
datasets. It could allow the deployment of presented
approaches on a much broader problem set and scale.
We believe that parameters could be approximated
automatically from the statistics of the input data.

Pattern generation— in Wigner’s words—“has
proved accurate beyond all reasonable expectations”.
Let us paraphrase another one of his quotes:

The miracle of the appropriateness of the lan-
guage of mathematics patterns for the formula-
tion of the laws of physics data is a wonderful
gift which we neither understand nor deserve.
We should be grateful for it and hope that
it will remain valid in future research and
that it will extend, for better or for worse, to
our pleasure, even though perhaps also to our
bafflement, to wide branches of learning.

“We should stop acting as if our goal is
to author extremely elegant theories, and
instead embrace complexity and make use
of the best ally we have: the unreasonable
effectiveness of data.” (Peter Norvig, [7])

7 Conclusion
We have developed a flexible open language–inde-
pendent system [13] for hyphenation pattern gener-
ation. We have demonstrated the effectiveness of
this system by updating the old Czech hyphenation
patterns [17] and achieving record accuracy. We
have also applied recent data and computer science
advancements, like the usage of interactive Jupyter

notebooks and a validation dataset to prevent over-
fitting, to the more than three decades old problem
of pattern generation.

Future work
Word lists for other languages The logical next
steps will be applying developed techniques for dif-
ferent languages: for Slovak and virtually all others
that do not yet have word list–based hyphenation
patterns, and a word list either in Sketch Engine or
elsewhere is available.
Stratification Pattern generation could be further
sped up by several techniques, such as stratification
of word lists on the level of input, or on the level
of counting pro and con examples to include a new
pattern or not.
Pattern-encoded spellchecker We have a big
dictionary of frequent spelling errors from the csTen-
Ten word list. Nothing prevents us from encoding
these into specific patterns or pattern layers with
extra levels and use that information during typeset-
ting, e.g., to typeset those words with red underlining
in LuaTEX. LuaTEX allows dynamic pattern loading
and Lua programming that can enable the imple-
mentation of this feature, which people are used to
having in editors.
Word segmentations Recent progress in machine-
learned natural language processing and machine
translation builds on subword representations and
various types of semantically coherent sentence or
word segmentations. As tokenization and segmen-
tation are at the beginning of every natural lan-
guage processing pipeline, there is a demand for ef-
fective and efficient universal segmentation [11]. New
neural machine translation systems are capable of
open-vocabulary translation by representing rare and
unseen words as a sequence of subword units [10, Ta-
ble 1]. Segmentation is crucial, especially for compo-
sitional languages like German, where there are many
compounds (mostly out of vocabulary words) and
for morphologically rich languages like Hebrew [20]
or Arabic, that need to be segmented, represented,
and translated.
Pattern-based learnable key memories Solu-
tions to versions of the dictionary problem are a hot
topic of leading-edge research to design memory data
architectures like those used in machine learning of
language [4]. Pattern-based memory network archi-
tectures could speed up language data access in huge
memory neural networks considerably.
Multilingual hyphenation patterns Given that
there are close languages with syllabic-based rules
like Czech and Slovak, generating patterns from

Petr Sojka, Ondřej Sojka



TUGboat, Volume 40 (2019), No. 2 193

merged word lists is straightforward. It would save
energy on low-resource devices like e-book readers
by having them load fewer patterns at a time.
Acknowledgments The authors thank the TEX
Users Group and CSTUG for financial support to
present the project at TUG 2019. We owe our grat-
itude also to Vít Suchomel of Lexical Computing
for word lists from Sketch Engine, to Pavel Šmerk,
Frank Liang and Don Knuth for majka, patgen and
TEX, respectively. Thanks go to Vít Novotný and
Pavel Šmerk for valuable comments to the paper.

References
[1] R. W. Hamming. The unreasonable effectiveness of

mathematics. The American Mathematical Monthly
87(2):81–90, 1980.
http://www.jstor.org/stable/2321982

[2] Internetová jazyková příručka (Internet Language
Reference Book). Institute of Czech language,
Czech Academy of Sciences.
http://prirucka.ujc.cas.cz/?id=135

[3] M. Jakubíček, A. Kilgarriff, et al. The TenTen
Corpus Family. In Proc. of 7th International
Corpus Linguistics Conference (CL), pp. 125–127,
Lancaster, July 2013.

[4] G. Lample, A. Sablayrolles, et al. Large memory
layers with product keys, 2019.
https://arxiv.org/pdf/1907.05242

[5] W. Lemberg. A database of German words
with hyphenation information.
https://repo.or.cz/wortliste.git

[6] F. M. Liang. Word Hy-phen-a-tion by
Com-put-er. PhD thesis, Department of
Computer Science, Stanford University, Aug. 1983.
tug.org/docs/liang

[7] F. Pereira, P. Norvig, and A. Halevy.
The unreasonable effectiveness of data.
IEEE Intelligent Systems 24(02):8–12, Mar. 2009.
doi:10.1109/MIS.2009.36

[8] A. Reutenauer and M. Miklavec. TEX hyphenation
patterns. tug.org/tex-hyphen

[9] K. P. Scannell. Hyphenation patterns for
minority languages. TUGboat 24(2):236–239, 2003.
tug.org/TUGboat/tb24-2/tb77scannell.pdf

[10] R. Sennrich, B. Haddow, and A. Birch.
Neural machine translation of rare words
with subword units. In Proceedings of the
54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pp. 1715–1725, Berlin, Germany, Aug.
2016. Association for Computational Linguistics.
doi:10.18653/v1/P16-1162

[11] Y. Shao, C. Hardmeier, and J. Nivre. Universal
word segmentation: Implementation and
interpretation. Transactions of the Association for
Computational Linguistics 6:421–435, 2018.
doi:10.1162/tacl_a_00033

[12] P. Šmerk. Fast morphological analysis of Czech. In
P. Sojka and A. Horák, eds., Proceedings of Recent
Advances in Slavonic Natural Language Processing,
RASLAN 2009, pp. 13–16, Karlova Studánka,
Czech Republic, Dec. 2009. Masaryk University.
http://nlp.fi.muni.cz/raslan/2009/

[13] O. Sojka and P. Sojka. cshyphen repository.
https://github.com/tensojka/cshyphen

[14] P. Sojka. Notes on compound word hyphenation
in TEX. TUGboat 16(3):290–297, 1995.
tug.org/TUGboat/tb16-3/tb48soj2.pdf

[15] P. Sojka. Hyphenation on demand.
TUGboat 20(3):241–247, 1999.
tug.org/TUGboat/tb20-3/tb64sojka.pdf

[16] P. Sojka. Competing Patterns in Language
Engineering and Computer Typesetting. PhD thesis,
Masaryk University, Brno, Jan. 2005.

[17] P. Sojka and P. Ševeček. Hyphenation in TEX—
Quo Vadis? TUGboat 16(3):280–289, 1995.
tug.org/TUGboat/tb16-3/tb48soj1.pdf

[18] V. Suchomel and J. Pomikálek. Efficient web
crawling for large text corpora. In A. Kilgarriff
and S. Sharoff, eds., Proc. of the Seventh Web as
Corpus Workshop (WAC), pp. 39–43, Lyon, 2012.
http://sigwac.org.uk/raw-attachment/wiki/
WAC7/wac7-proc.pdf

[19] E. P. Wigner. The Unreasonable Effectiveness
of Mathematics in the Natural Sciences.
Richard Courant Lecture in Mathematical
Sciences delivered at New York University,
May 11, 1959. Communications on Pure and
Applied Mathematics 13(1):1–14, 1960.
doi:10.1002/cpa.3160130102

[20] A. Zeldes. A characterwise windowed approach
to Hebrew morphological segmentation. In Proc.
of the Fifteenth Workshop on Computational
Research in Phonetics, Phonology, and
Morphology, pp. 101–110, Brussels, Belgium, Oct.
2018. Association for Computational Linguistics.
doi:10.18653/v1/W18-5811

� Petr Sojka
Faculty of Informatics, Masaryk University
Brno, Czech Republic and CSTUG
sojka (at) fi dot muni dot cz
https://www.fi.muni.cz/usr/sojka/

� Ondřej Sojka
CSTUG, Brno, Czech Republic
ondrej.sojka (at) gmail dot com

The unreasonable effectiveness of pattern generation

http://www.jstor.org/stable/2321982
http://prirucka.ujc.cas.cz/?id=135
https://arxiv.org/pdf/1907.05242
https://repo.or.cz/wortliste.git
tug.org/docs/liang
http://dx.doi.org/10.1109/MIS.2009.36
tug.org/tex-hyphen
tug.org/TUGboat/tb24-2/tb77scannell.pdf
http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.1162/tacl_a_00033
http://nlp.fi.muni.cz/raslan/2009/
https://github.com/tensojka/cshyphen
tug.org/TUGboat/tb16-3/tb48soj2.pdf
tug.org/TUGboat/tb20-3/tb64sojka.pdf
tug.org/TUGboat/tb16-3/tb48soj1.pdf
http://sigwac.org.uk/raw-attachment/wiki/WAC7/wac7-proc.pdf
http://sigwac.org.uk/raw-attachment/wiki/WAC7/wac7-proc.pdf
http://dx.doi.org/10.1002/cpa.3160130102
http://dx.doi.org/10.18653/v1/W18-5811

	Introduction
	Initial word list preparation
	Word list preparation and design
	Bootstrapping - iterative development of hyphens in the big word list
	Pattern generation
	The unreasonable effectiveness
	Conclusion

