
TUGboat, Volume 40 (2019), No. 3 257

Modern Type 3 fonts

Hans Hagen

Support for Type 3 fonts has been on my agenda
for a couple of years now. The reason is that they
might be useful for embedding (for instance) runtime
graphics (such as symbols) in an efficient way. In TEX
systems Type 3 fonts are normally used for bitmap
fonts, the PK output that comes via METAFONT.
Where for instance Type 1 fonts are defined using
a set of font specific rendering operators, a Type 3
font can contain arbitrary code, in PDF files these
are PDF (graphic and text) operators.

A program like LuaTEX supports embedding of
several font formats natively. A quick summary of
relevant formats is the following:1

Type 1: these are outline fonts using cff descrip-
tions, a compact format for storing outlines.
Normally up to 256 characters are accessible
but a font can have many more (as Latin Mod-
ern and TEX Gyre demonstrate).

OpenType: these also use the cff format. As with
Type 1 the outlines are mostly cubic Bezier
curves. Because there is no bounding box data
stored in the format the engine has to pseudo-
render the glyphs to get that information. When
embedding a subset the backend code has to
flatten the subroutine calls, which is another
reason the cff blob has to be disassembled.

TrueType: these use the ttf format which uses
quadratic B-splines. The font can have a sepa-
rate kerning table and stores information about
the bounding box (which is then used by TEX
to get the right heights and depths of glyphs).
Of course those details never make it into the
PDF file as such.

Type 3: as mentioned this format is (traditionally)
used to store bitmap fonts but as we will see it
can do more. It is actually the easiest format to
deal with.

In LuaTEX any font can be a “wide” font, there-
fore in ConTEXt a Type 1 font is not treated differ-
ently than an OpenType font. The LuaTEX backend
can even disguise a Type 1 font as an OpenType font.
In the end, as not that much information ends up in
the PDF file, the differences are not that large for the
first three types. The content of a Type 3 font is less
predictable but even then it can have for instance
a ToUnicode vector so it has no real disadvantages
in, say, accessibility. In ConTEXt LMTX, which uses
LuaMetaTEX without any backend, all is dealt with
in Lua: loading, tweaking, applying and embedding.

1 Technically one can embed anything in the PDF file.

The difference between OpenType and True-
Type is mostly in the kind of curves and specific
data tables. Both formats are nowadays covered
by the OpenType specification. If you Google
for the difference between these formats you can
easily end up with rather bad (or even nonsense)
descriptions. The best references are https://

en.wikipedia.org/wiki/B%C3%A9zier_curve and
the ever-improving https://docs.microsoft.com/

en-us/typography website.
Support for so-called variable fonts is mostly

demanding of the front-end because in the backend
it is just an instance of an OpenType or TrueType
font being embedded. In this case the instance is
generated by the ConTEXt font machinery which
interprets the cff and ttf binary formats in doing so.
This feature is not widely used but has been present
from the moment these fonts showed up.

Type 3 fonts don’t have a particularly good
reputation, which is mainly due to the fact that
viewers pay less attention in displaying them, at
least that was the case in the past. If they describe
outlines, then all is okay, apart from the fact that
there is no anti-aliasing or hinting but on modern
computers that is hardly an issue. For bitmaps the
quality depends on the resolution and traditionally
TEX bitmap fonts are generated for a specific device,
but if you use a decent resolution (say 1200 dpi)
then all should be okay. The main drawback is that
viewers will render such a font and cache the (then
available) bitmap which in some cases can have a
speed penalty.

Using Type 3 fonts in a PDF backend is not
something new. Already in the pdfTEX era we were
playing with so-called PDF glyph containers. In
practice that worked okay but not so much for Meta-
Post output from METAFONT fonts. As a side note:
it might actually work better now that in Meta-
fun we have some extensions for rendering the kind
of paths used in fonts. But glyph containers were
dropped long ago already and Type 3 was limited
to traditional TEX bitmap inclusion. However, in
LuaMetaTEX it is easier to mess around with fonts
because we no longer need to worry about side effects
of patching font related inclusion (embedding) for
other macro packages. All is now under Lua con-
trol: there is no backend included and therefore no
awareness of something built-in as Type 3.

So, as a prelude to the 2019 ConTEXt meeting,
I picked up this thread and turned some earlier ex-
periments into production code. Originally I meant
to provide support for MetaPost graphics but that is
still locked in experiments. I do have an idea for its

Modern Type 3 fonts

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://docs.microsoft.com/en-us/typography
https://docs.microsoft.com/en-us/typography

258 TUGboat, Volume 40 (2019), No. 3

interface, now that we have more control over user
interfaces in Metafun.

In addition to ‘just graphics’ there is another
candidate for Type 3 fonts — extensions to Open-
Type fonts:

1. Color fonts where stacked glyphs are used (a
nice method).

2. Fonts where SVG images are used.

3. Fonts that come with bitmap representations in
PNG format.

It will be no surprise that we’re talking of emoji
fonts here although the second category is now also
used for regular text fonts. When these fonts showed
up support for them was not that hard to implement
and (as often) we could make TEX be among the first
to support them in print (often such fonts are meant
for the web).

For category one, the stacked shapes, the ap-
proach was to define a virtual font where glyphs are
flushed while backtracking over the width in order to
get the overlay. Of course color directives have to be
injected too. The whole lot is wrapped in a container
that tells a PDF handler what character actually is
represented. Due to the way virtual fonts work, every
reference to a character results in the same sequence
of glyph references, (negative) kern operations and
color directives plus the wrapper in the page stream.
This is not really an issue for emoji because these are
seldom used and even then in small quantities. But it
can explode a PDF page stream for a color text font.
All happens at runtime and because we use virtual
fonts, the commands are assembled beforehand for
each glyph.

For the second category, SVG images, we used
a different approach. Each symbol was converted to
PDF using Inkscape and cached for later use. Instead
of injecting a glyph reference, a reference to a so-
called XForm is injected, again with a wrapper to
indicate what character we deal with. Here the
overhead is not that large but still present as we
need the so-called ‘actual text’ wrapper.

The third category is done in a similar way
but this time we use GraphicsMagick to convert the
images beforehand. The drawbacks are the same.

In ConTEXt LMTX a different approach is fol-
lowed. The PDF stream that stacks the glyphs of
category one makes a perfect stream for a Type 3
character. Apart from some juggling to relate a
Type 3 font to an OpenType font, the page stream
just contains references to glyphs (with the proper
related Unicode slot). The overhead is minimal.

For the second category ConTEXt LMTX uses its
built-in SVG converter. The XML code of the shape

is converted to (surprise): MetaPost. We could go
directly to PDF but the MetaPost route is cheap and
we can then get support for color spaces, transfor-
mations, efficient paths and high quality all for free.
It also opens up the possibility for future manipula-
tions. The Type 3 font eventually has a sequence of
drawing operations, mixed with transformations and
color switches, but only once. Most of the embedded
code is shared with the other categories (a plug-in
model is used).

The third category follows a similar route but
this time we use the built-in PNG inclusion code.
Just like the other categories, the page stream only
contains references to glyphs.

It was interesting to find that most of the time
related to the inclusion went into figuring out why
viewers don’t like these fonts. For instance, in Ac-
robat there needs to be a glyph at index zero and
all viewers seem to be able to handle at most 255
additional characters in a font. But once that, and
a few more tricks, had become clear, it worked out
quite well. It also helps to set the font bounding box
to all zero values so that no rendering optimizations
kick in. Also, some dimensions can are best used
consistently. With SVG there were some issues with
reference points and bounding boxes but these could
be dealt with. A later implementation followed a
slightly different route anyway.

The implementation is reasonably efficient be-
cause most work is delayed till a glyph (shape) is
actually injected (and most shapes in these fonts
aren’t used at all). The viewers that I have installed,
Acrobat Reader, Acrobat X, and the mupdf-based
SumatraPDF viewer can all handle the current im-
plementation.

An example of a category one font is Microsoft’s
seguiemj. I have no clue about the result in the
future because some of these emoji fonts change every
now and then, depending also on social developments.
This is a category one font which not only has emoji
symbols but also normal glyphs:

\definefontfeature[colored][default][colr=yes]

\definefont[TestA][file:seguiemj.ttf*colored]

\definesymbol[bug1]

[\getglyphdirect{file:seguiemj.ttf*colored}

{\char"1F41C}]

\definesymbol[bug2]

[\getglyphdirect{file:seguiemj.ttf*colored}

{\char"1F41B}]

The example below demonstrates this by show-
ing the graphic glyph surrounded by the x from the
emoji font, and from a regular text font.

{\TestA x\char"1F41C x\char"1F41B x}\quad

{x\symbol[bug1]x\symbol[bug2]x}\quad

Hans Hagen

TUGboat, Volume 40 (2019), No. 3 259

{\showglyphs x\symbol[bug1]x\symbol[bug2]x}%

x�🐜x�🐛x x�🐜x�🐛x x�🐜x�🐛x
In this mix we don’t use a Type 3 font for the

characters that don’t need stacked (colorful) glyphs,
which is more efficient. So the x characters are
references to a regular (embedded) OpenType font.

The next example comes from a manual and
demonstrates that we can (still) manipulate colors
as we wish.

\definecolor[emoji-red] [r=.4]

\definecolor[emoji-blue] [b=.4]

\definecolor[emoji-green] [g=.4]

\definecolor[emoji-yellow][r=.4,g=.5]

\definecolor[emoji-gray] [s=1,t=.5,a=1]

\definefontcolorpalette[emoji-red]

[emoji-red,emoji-gray]

\definefontcolorpalette[emoji-green]

[emoji-green,emoji-gray]

\definefontcolorpalette[emoji-blue]

[emoji-blue,emoji-gray]

\definefontcolorpalette[emoji-yellow]

[emoji-yellow,emoji-gray]

\definefontfeature[seguiemj-r][default]

[ccmp=yes,dist=yes,colr=emoji-red]

\definefontfeature[seguiemj-g][default]

[ccmp=yes,dist=yes,colr=emoji-green]

\definefontfeature[seguiemj-b][default]

[ccmp=yes,dist=yes,colr=emoji-blue]

\definefontfeature[seguiemj-y][default]

[ccmp=yes,dist=yes,colr=emoji-yellow]

\definefont[MyColoredEmojiR][seguiemj*seguiemj-r]

\definefont[MyColoredEmojiG][seguiemj*seguiemj-g]

\definefont[MyColoredEmojiB][seguiemj*seguiemj-b]

\definefont[MyColoredEmojiY][seguiemj*seguiemj-y]

�👨�👩�👨�👩�👨�👩�👨�👩

Let’s look in more detail at the woman emoji.
On the left we see the default colors, and on the right
we see our own:

�👩�👩

The multi-color variant in ConTEXt MkIV ends
up as follows in the page stream:

/Span << /ActualText <feffD83DDC69> >> BDC

q

0.000 g

BT

/F8 11.955168 Tf

1 0 0 1 0 2.51596 Tm [<045B>]TJ

0.557 0.337 0.180 rg

1 0 0 1 0 2.51596 Tm [<045C>]TJ

1.000 0.784 0.239 rg

1 0 0 1 0 2.51596 Tm [<045D>]TJ

0.000 g

1 0 0 1 0 2.51596 Tm [<045E>]TJ

0.969 0.537 0.290 rg

1 0 0 1 0 2.51596 Tm [<045F>]TJ

0.941 0.227 0.090 rg

1 0 0 1 0 2.51596 Tm [<0460>]TJ

ET

Q

EMC

and the reddish one becomes:

/Span << /ActualText <feffD83DDC69> >> BDC

q

0.400 0 0 rg 0.400 0 0 RG

BT

/F8 11.955168 Tf

1 0 0 1 0 2.51596 Tm [<045B>]TJ

1 g 1 G /Tr1 gs

1 0 0 1 0 2.51596 Tm [<045C>1373<045D>1373

<045E>1373<045F>1373<0460>]TJ

ET

Q

EMC

Each time this shape is typeset these sequences
are injected. In ConTEXt LMTX we get this in the
page stream:

BT

/F2 11.955168 Tf

1 0 0 1 0 2.515956 Tm [<C8>] TJ

ET

This time the composed shape ends up in the
Type 3 character procedure. In the colorful case
(reformatted because it actually is a one-liner):

2812 0 d0

0.000 g BT /V8 1 Tf [<045B>] TJ ET

0.557 0.337 0.180 rg BT /V8 1 Tf [<045C>] TJ ET

1.000 0.784 0.239 rg BT /V8 1 Tf [<045D>] TJ ET

0.000 g BT /V8 1 Tf [<045E>] TJ ET

0.969 0.537 0.290 rg BT /V8 1 Tf [<045F>] TJ ET

0.941 0.227 0.090 rg BT /V8 1 Tf [<0460>] TJ ET

and in the reddish case (where we have a gray trans-
parent color):

2812 0 d0

0.400 0 0 rg 0.400 0 0 RG

BT /V8 1 Tf [<045B>] TJ ET

1 g 1 G /Tr1 gs

BT /V8 1 Tf [<045C>] TJ ET

BT /V8 1 Tf [<045D>] TJ ET

BT /V8 1 Tf [<045E>] TJ ET

BT /V8 1 Tf [<045F>] TJ ET

BT /V8 1 Tf [<0460>] TJ ET

Modern Type 3 fonts

260 TUGboat, Volume 40 (2019), No. 3

but this time we only get these verbose composi-
tions once in the PDF file. We could optimize the
last variant by a sequence of indices and negative
kerns but it hardly pays off. There is no need for
ActualText here because we have an entry in the
ToUnicode vector: <C8> <D83DDC69>.

To be clear, the /V8 is a sort of local reference to
a font which can have an /F8 counterpart elsewhere.
These Type 3 fonts have their own resource references
and I found it more clear to use a different prefix in
that case. If we only use a few characters of this kind,
of course the overhead of extra fonts has a penalty
but as soon we refer to more characters we gain a lot.

When we have SVG fonts, the gain is a bit less.
The PDF resulting from the MetaPost run can of
course be large but they are included only once. In
MkIV these would be (shared) so-called XForms. In
the page stream we then see a simple reference to such
an XForm but again wrapped into an ActualText.
In LMTX we get just a reference to a Type 3 character
plus of course an extra font.

The emojionecolor-svginot font is somewhat
problematic (although maybe in the meantime it has
become obsolete). As usual with new functionality,
specifications are not always available or complete
(especially when they are application specs turned
into standards). This is also true with for instance
SVG fonts. The current documentation on the Micro-
soft website is reasonable and explains how to deal
with the viewport but when I first implemented sup-
port for SVG it was more trial and error. The original
implementation in ConTEXt used Inkscape to gener-
ate PDF files with a tight bounding box and mix that
with information from the font (in MkIV and the
generic loader we still use this method). This results
in a reasonable placement for emoji (that often sit
on top of the baseline) but not for characters. More
accurate treatment, using the origin and bounding
box, fail for graphics with bad viewports and strange
transform attributes. Now one can of course argue
that I read the specs wrong, but inconsistencies are
hard to deal with. Even worse is that successive
versions of a font can demand different hacks. (I
would not be surprised if some programs have built-
in heuristics for some fonts that apply fixes.) Here
is an example:

<svg transform="translate(0 -1788) scale(2.048)"

viewBox="0 0 64 64" ...>

<path d="... all within the viewBox ..." .../>

</svg>

It is no problem to scale up the image to normal
dimensions, often 1000, or 2048 but I’ve also seen
512. The 2.048 suggests a 2048 unit approach, as
does the 1788 shift. Now, we could scale up all

dimensions by 1000/64 and then multiply by 2.048
and eventually shift over 1788, but why not scale
the 1788 by 2.048 or scale 64 by 2.048? Even if we
can read the standard to suit this specification it’s
just a bit too messy for my taste. In fact I tried
all reasonable combinations and didn’t (yet) get the
right result. In that case it’s easier to just discard
the font. If a user complains that it (kind of) worked
in the past, a counter-argument can be that other
(more recent) fonts don’t work otherwise. In the end
we ended up with an option: when the svg feature
value is fixdepth the vertical position will be fixed.

\definefontfeature[whatever][default]

[color=yes,svg=fixdepth]

\definefont[TestB]

[file:emojionecolor-svginot.ttf*whatever]

x�🐜�🐛x
The newer emojionecolor font doesn’t need

this because it has a viewBox of 0 54.4 64 64 which
fixes the baseline.

\definefontfeature[whatever][default]

[color=yes,svg=yes]

\definefont[TestB]

[file:emojionecolor.otf*whatever]

x�🐜�🐛x
Another example of a pitfall is running into

category one glyphs made from several pieces that
all have the same color. If that color is black, one
starts to wonder what is wrong. In the end the Con-
TEXt code was doing the right thing after all, and I
would not be surprised if that glyph gets colors in
an update of the font. For that reason it makes no
sense to include them as examples here. After all, we
can hardly complain about free fonts (and I’m also
guilty of imposing bugs on users). By the way, for
the font referred to here (twemojimozilla), another
pitfall was that all shapes in my copy had a zero
bounding box which means that although a width is
specified, rendering in documents can give weird side
effects. This can be corrected by the dimensions

feature that forces the ascender and descender values
to be used.

\definefontfeature[colored:x][default]

[colr=yes]

\definefontfeature[colored:y][default]

[colr=yes,dimensions={1,max,max}]

\definefont[TestC]

[file:twemojimozilla.ttf*colored:x]

\definefont[TestD]

[file:twemojimozilla.ttf*colored:y]

Hans Hagen

emojionecolor-svginot

TUGboat, Volume 40 (2019), No. 3 261

�🐜 �🐜 �🐜 �🐜

An example of a PNG-enhanced font is the
applecoloremoji font. The bitmaps are relatively
large for the quality they provide and some look like
scans.

\definefontfeature[sbix][default][sbix=yes]

\definefont[TestE]

[file:applecoloremoji.ttc*sbix at 10bp]

#�⏳�⏲
As mentioned above, there are fonts that color

characters other than emoji. We give two exam-
ples (sometimes fonts are mentioned on the ConTEXt
mailing list).

\definefontfeature[whatever]

[default,color:svg][script=latn,language=dflt]

\definefont[TestF]

[file:Abelone-FREE.otf*whatever @13bp]

\definefont[TestG]

[file:Gilbert-ColorBoldPreview5*whatever @13bp]

\definefont[TestH]

[file:ColorTube-Regular*whatever @13bp]

Of course one can wonder about the readability
of these fonts and unless one used random colors
(which bloats the file immensely) it might become
boring, but typically such fonts are only meant for
special purposes.

The previous font is the largest and as a conse-
quence also puts some strain on the viewer, especially
when zooming in. But, because viewers cache Type 3
shapes it’s a one-time penalty.
�C�o�m�i�n�g �b�a�c�k �t�o �t�h�e �u�s�e �o�f �t�y�p�e�f�a�c�e�s �i�n �e�l�e�c�t�r�o�n�i�c �p�u�b�l�i�s�h�i�n�g�: �m�a�n�y �o�f �t�h�e �n�e�w �t�y�-

�p�o�g�r�a�p�h�e�r�s �r�e�c�e�i�v�e �t�h�e�i�r �k�n�o�w�l�e�d�g�e �a�n�d �i�n�f�o�r�m�a�t�i�o�n �a�b�o�u�t �t�h�e �r�u�l�e�s �o�f �t�y�p�o�g�r�a�p�h�y

�f�r�o�m �b�o�o�k�s�, �f�r�o�m �c�o�m�p�u�t�e�r �m�a�g�a�z�i�n�e�s �o�r �t�h�e �i�n�s�t�r�u�c�t�i�o�n �m�a�n�u�a�l�s �w�h�i�c�h �t�h�e�y �g�e�t

�w�i�t�h �t�h�e �p�u�r�c�h�a�s�e �o�f �a �P�C �o�r �s�o�f�t�w�a�r�e�. �T�h�e�r�e �i�s �n�o�t �s�o �m�u�c�h �b�a�s�i�c �i�n�s�t�r�u�c�t�i�o�n�, �a�s

�o�f �n�o�w�, �a�s �t�h�e�r�e �w�a�s �i�n �t�h�e �o�l�d �d�a�y�s�, �s�h�o�w�i�n�g �t�h�e �d�i�f�f�e�r�e�n�c�e�s �b�e�t�w�e�e�n �g�o�o�d �a�n�d

�b�a�d �t�y�p�o�g�r�a�p�h�i�c �d�e�s�i�g�n�. �M�a�n�y �p�e�o�p�l�e �a�r�e �j�u�s�t �f�a�s�c�i�n�a�t�e�d �b�y �t�h�e�i�r �P�C�’�s �t�r�i�c�k�s�, �a�n�d

�t�h�i�n�k �t�h�a�t �a �w�i�d�e�l�y�-�-�p�r�a�i�s�e�d �p�r�o�g�r�a�m�, �c�a�l�l�e�d �u�p �o�n �t�h�e �s�c�r�e�e�n�, �w�i�l�l �m�a�k�e �e�v�e�r�y�t�h�i�n�g

�a�u�t�o�m�a�t�i�c �f�r�o�m �n�o�w �o�n�.

This font is rather lightweight. Contrary to what
one might expect, there is no transparency used (but
of course we do support that when needed).

�C�o�m�i�n�g �b�a�c�k �t�o �t�h�e �u�s�e �o�f �t�y�p�e�f�a�c�e�s

�i�n �e�l�e�c�t�r�o�n�i�c �p�u�b�l�i�s�h�i�n�g �m�a�n�y �o�f �t�h�e

�n�e�w �t�y�p�o�g�r�a�p�h�e�r�s �r�e�c�e�i�v�e �t�h�e�i�r �k�n�o�w�l

�e�d�g�e �a�n�d �i�n�f�o�r�m�a�t�i�o�n �a�b�o�u�t �t�h�e �r�u�l�e�s �o�f

�t�y�p�o�g�r�a�p�h�y �f�r�o�m �b�o�o�k�s �f�r�o�m �c�o�m�p�u�t�e�r

�m�a�g�a�z�i�n�e�s �o�r �t�h�e �i�n�s�t�r�u�c�t�i�o�n �m�a�n�u�a�l�s

�w�h�i�c�h �t�h�e�y �g�e�t �w�i�t�h �t�h�e �p�u�r�c�h�a�s�e �o�f �a

�P�C �o�r �s�o�f�t�w�a�r�e�. �T�h�e�r�e �i�s �n�o�t �s�o �m�u�c�h �b�a

�s�i�c �i�n�s�t�r�u�c�t�i�o�n �a�s �o�f �n�o�w �a�s �t�h�e�r�e �w�a�s �i�n

�t�h�e �o�l�d �d�a�y�s �s�h�o�w�i�n�g �t�h�e �d�i�f�f�e�r�e�n�c�e�s �b�e

�t�w�e�e�n �g�o�o�d �a�n�d �b�a�d �t�y�p�o�g�r�a�p�h�i�c �d�e�s�i�g�n�.

�M�a�n�y �p�e�o�p�l�e �a�r�e �j�u�s�t �f�a�s�c�i�n�a�t�e�d �b�y �t�h�e�i�r

�P�C�s �t�r�i�c�k�s �a�n�d �t�h�i�n�k �t�h�a�t �a �w�i�d�e�l�y�p�r�a�i�s�e�d

�p�r�o�g�r�a�m �c�a�l�l�e�d �u�p �o�n �t�h�e �s�c�r�e�e�n �w�i�l�l

�m�a�k�e �e�v�e�r�y�t�h�i�n�g �a�u�t�o�m�a�t�i�c �f�r�o�m �n�o�w

�o�n�.

This third example is again rather lightweight.
Such fonts normally have a rather limited repertoire
although there are some accented characters included.
But they are not really meant for novels anyway.
If you look closely you will also notice that some
characters are missing and kerning is suboptimal.

I considered testing some more fonts but when
trying to download some interesting looking ones I
got a popup asking me for my email address in order
to subscribe me to something: a definite no-go.

I already mentioned that we have a built-in
converter that goes from SVG to MetaPost. Al-
though this article deals with fonts, the following
code demonstrates that we can also access such graph-
ics in Metafun itself. The nice thing is that because
we get pictures, they can be manipulated.

\startMPcode

picture p ; p :=

lmt_svg [filename="mozilla-svg-001.svg"] ;

numeric w ; w := bbwidth(p) ;

draw p ;

draw p xscaled -1 shifted (2.5*w,0);

draw p rotatedaround(center p,45)

shifted (3.0*w,0) ;

draw image (

for i within p : if filled i :

draw pathpart i withcolor green ;

fi endfor ;

) shifted (4.5*w,0);

draw image (

for i within p : if filled i :

fill pathpart i withcolor red

withtransparency (1,.25) ;

fi endfor ;

) shifted (6*w,0);

\stopMPcode

This graphic is a copy from a glyph from an
emoji font, so we have plenty of such images to play
with. The above manipulations result in:

Modern Type 3 fonts

262 TUGboat, Volume 40 (2019), No. 3

Now that we’re working with MetaPost we may
as well see if we can also load a specific glyph, and
indeed this is possible.

\startMPcode

picture lb, rb ;

lb := lmt_svg

[fontname = "Gilbert-ColorBoldPreview5",

unicode = 123] ;

rb := lmt_svg

[fontname = "Gilbert-ColorBoldPreview5",

unicode = 125] ;

numeric dx ; dx := 1.25 * bbwidth(lb) ;

draw lb ;

draw rb shifted (dx,0) ;

pickup pencircle scaled 2mm ;

for i within lb :

draw lmt_arrow [

path = pathpart i,

pen = "auto",

alternative = "curved",

penscale = 8

]

shifted (3dx,0)

withcolor "darkblue"

withtransparency (1,.5) ;

endfor ;

for i within rb :

draw lmt_arrow [

path = pathpart i,

pen = "auto",

alternative = "curved",

penscale = 8

]

shifted (4dx,0)

withcolor "darkred"

withtransparency (1,.5) ;

endfor ;

\stopMPcode

Here we first load two character shapes from a
font. The Unicode slots (which here are the same as
the ASCII slots) might look familiar: they indicate
the curly brace characters. We get two pictures and
use the within loop to run over the paths within
these shapes. Each shape is made from three curves.
As a bonus a few more characters are shown.

It is not hard to imagine that a collection of
such graphics could be made into a font (at runtime).

One only needs to find the motivation. Of course one
can always use a font editor (or Inkscape) and tweak
there, which probably makes more sense, but some-
times a bit of MetaPost hackery is a nice distraction.
Editing the SVG code directly is not that much fun.
The overall structure often doesn’t look that bad
(apart from often rather redundant grouping):

<svg xmlns="http://www.w3.org/2000/svg">

<path fill="#d87512" d="..."/>

<g fill="#bc600d">

<path d="..."/>

</g>

<g fill="#d87512">

<path d="..."/>

<path d="..."/>

</g>

<g fill="#bc600d">

<path d="..."/>

</g>

...

</svg>

In addition to paths there can be line, circle
and similar elements but often fonts just use the
path element. This element has a d attribute that
holds a sequence of one character commands that
each can be followed by numbers. Here are the start
characters of four such attributes:

M11.585 43.742s.387 1.248.104 3.05c0 0 ...

M53.33 39.37c0-4.484-35.622-4.484-35.622 0 0 ...

M42.645 56.04c1.688 2.02 9.275.043 ...

M54.2 41.496s-.336 4.246-4.657 9.573c0 0 ...

Indeed, numbers can be pasted together, also
with the operators, which doesn’t help with seeing at
a glance what happens. Probably the best reference
can be found at https://developer.mozilla.org/
en-US/docs/Web/SVG where it is explained that a
path can have move, line, curve, arc and other oper-
ators, as well use absolute and relative coordinates.
How that works is for another article.

How would the TEX world look like today if
Don Knuth had made METAFONT support colors?
Of course one can argue that it is a bitmap font
generator, but in our case using high resolution bit-
maps might even work out better. In the example
above the first text fragment uses a font that is very
inefficient: it overlays many circles in different colors
with slight displacements. Here a bitmap font would
not only give similar effects but probably also be
more efficient in terms of storage as well as render-
ing. The MetaPost successor does support color and
with MPlib in LuaTEX we can keep up quite well . . .
as hopefully has been demonstrated here.

� Hans Hagen
http://pragma-ade.com

Hans Hagen

https://developer.mozilla.org/en-US/docs/Web/SVG
https://developer.mozilla.org/en-US/docs/Web/SVG

