
236 TUGboat, Volume 40 (2019), No. 3

LATEX on the road

Piet van Oostrum

1 The context

In July 2018, my wife Cary and I were travelling in
South America to visit friends in Brazil and Bolivia,
and additionally to have some vacation. We wanted
to travel light, so I had decided not to take my
MacBook with me, saving a little bit more than 2
kgs. of weight. We both had our iPhones and iPads
(mine is an iPad mini), and we hoped that would
do. They were mainly to be used for reading email,
interactions on social media, searching for city and
transport information, and the like.

I did not expect to do any TEX work, maybe
some light programming, for which I had a Python
system (Pythonista1) on my iPad.

While we were travelling in Brazil, on our way to
Bolivia, I got an email from a user of the multirow

package about a possible bug. It came with a solution
which was a very simple substitution, and back home
on the laptop, it would have been a few minutes to
make the change, check it into the version control
system, do some tests, generate a new version of
the documentation, and upload the new version to
CTAN.

Because this person had already made a local
change, and the problem was not urgent anyway, my
first reaction was: I will correct it when I am back
home, which, by the way, would be some two months
later. However, when we arrived in Bolivia, where
we were staying a couple of weeks, the temptation
to solve the problem right there became too large.

First published in MAPS 49 (2019.1), pp. 58–70. Reprinted
with permission.

1 http://omz-software.com/pythonista/

Figure 1: On our way to Brazil

Figure 2: Our trip

But what would have taken at most 10 minutes
at home became a major effort without having a
computer with a TEX system. In the end it took me
more than two days of struggling, but with victory
in the end.

If I distributed the package just as a collection of
.sty files (there are three included), with separate
documentation, the task would have been simple.
I could have downloaded the package from CTAN,
changed the .sty files with a text editor in my iPad,
and uploaded them back to CTAN. It might have
caused some frowning from the CTAN maintainers
if the version number in the documentation would
have been different from the one in the .sty files,
but that would have been temporary anyway.

However, the package is distributed as a .dtx

file, with a corresponding .ins file, and a separate
PDF file containing the documentation which is gen-
erated from the .dtx file. The .sty files are also
generated from the .dtx file with the aid of the .ins
file. This is the standard setup for most CTAN pack-
ages. But this requires the .dtx and .ins files to be
processed by LATEX (or TEX in case of the .ins file).
And I did not have a LATEX distribution on my iPad.

2 What were the options?

There were in practice two solutions:

• Install a LATEX system on my iPad.

• Use an online (cloud-based) LATEX system.

2.1 LATEX apps on the iPad

I found two LATEX apps in the iOS App Store: Tex-
pad and TeX Writer (see figure 3). Both are offline
apps, i.e. you don’t need an Internet connection to
compile your LATEX documents. But, on the other
hand, to limit the size of the application, they don’t

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 237

Figure 3: Texpad and TeX Writer in iOS App Store

have every package from CTAN installed. You can
install additional packages, but as iOS is quite a
closed operating system, you are dependent on the
developers to supply these packages. Of course you
can always add the required files to your project
directory, but there might be some cases (e.g. if you
need additional fonts) where this is not sufficient.

Also it isn’t clear from the documentation of
these packages if they can process something like
.dtx and .ins files to extract the .sty files and the
documentation for the package, which was essential
in my case. I got the impression that they were
mainly meant for the ‘normal’ user to write articles
and reports.

They are also not particularly cheap. At the
time of writing Texpad costs e21.99 and TeX Writer
e16.99. If I remember correctly they were a little bit
cheaper at the time I was travelling. In itself that is
not a very steep price, but I did not expect to use it

very often, and for just this single case I thought it
was too much. And they don’t have a trial version to
see if it suits you, so if you buy one of these, and you
don’t like it, you have effectively lost your money.
And then there is this nagging choice: which of the
two is better? All in all, I decided not to go that way.

For the cloud-based systems, I had heard about
Overleaf (formerly called WriteLatex) and Share-
LaTeX, so I decided to investigate these. It appeared
that at that time, these two systems were in the
process of being merged. The result was Overleaf
version 2 which had the ShareLaTeX interface, but
was still in beta phase. For the simple task that I
had, a free account would be sufficient, so I started to
try that. However, the merging process introduced
some teething troubles. In fact it made editing the
files from the iPad browser almost impossible. It
wasn’t clear if this was a specific problem on the
iPad, or if the browser interface in general was not
yet mature enough. In effect it wasn’t usable at all,
because its behaviour was very erratic.

I also tried the Overleaf version 1 interface, but
I could not get that working either. I have no idea
whether these problems were iPad specific, but any-
way I could not use it. By the way, the Overleaf
editor is now functioning also on the iPad. How-
ever, some functionality is not available without an
external keyboard, because they are invoked with
control keys. For example the search function is in-
voked by Control-F on Windows and Linux, and by
Command-F on MacOS. On an iPad you can’t give
these with the virtual keyboard. With an external
keyboard it is possible. The current Overleaf editor
is reasonable. It has some TEX-specific functional-
ity. For example, if you type \begin{enumerate}

the editor adds \item and \end{enumerate} and
positions the cursor after the \item (see figure 4).

Figure 4: Overleaf editor supplies useful parts

2.2 Cloud-based LATEX systems

Despite the problems that the editor gave at that
time, it seemed to me that this was the best way
to go forward. Figure 5 shows the screen from the
current version of Overleaf on my MacBook. The
default screen has an edit window with the LATEX
source text and a preview window with the resulting
PDF. The preview is not live, you have to hit the
Recompile button to update it. There is also a file

LATEX on the road

238 TUGboat, Volume 40 (2019), No. 3

Figure 5: An early version of this article in Overleaf, with some of the maps.cls documentation still in place

Figure 6: Overleaf screen with virtual keyboard on an iPad

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 239

Figure 7: Overleaf screen with virtual keyboard on an
iPad in portrait mode

Figure 8: iPad mini with external keyboard

list on the left and it has the capability to hide or
show each of these parts and to adjust the sizes of
each part. Especially on the smaller iPad screen
it is advisable to have only the source code part
showing while editing. But even then, the virtual
iPad keyboard takes so much space that hardly any
source code is visible (see figure 6). Also in this case,
the file list at the left would make the edit window
even smaller, but the file list can be hidden, as shown
in the image.

It helps to put the iPad in portrait mode, as
shown in figure 7. But then the keyboard is rather
small. For a setup like this to be workable, it would
be better to use an external keyboard. There are
several keyboards on the market that can be used.
They are generally connected through Bluetooth.
They are light-weight and don’t take much space, so
are ideal for travelling light (see figure 8). I did not
have one at that moment, however.

3 Setting up the project

Setting up the project is easy. You can create a new
project in the Overleaf in the Web interface. You
can upload each file individually, or a zip file with
everything included. Overleaf will unpack the zip
file in your project.

Immediately, it became apparent that there was
a problem with my project. Overleaf wants you
to designate one of your files as the main TEX file,
which for me would have been multirow.dtx, but
it doesn’t accept this. It wants to have a .tex file.
It does not recognise the .dtx file as a valid LATEX
file. Nor does it want to edit the .dtx file, but as
the editor was unusable, this was of a minor concern.
I would have to edit the files locally on my iPad
anyway.

So I had to give it a .tex file extension to make
it (and myself) happy. I tried two ways

• Copy multirow.dtx to multirow.tex

• Make a file multirow.tex that just contains
\include{multirow.dtx}

I had expected that each of these would compile the
.dtx file when the Compile button would be pressed.
However, it didn’t. It took some time to find out
why. My multirow.dtx contains a line

\DocInput{\jobname.dtx}

which is quite usual in .dtx files. After some search-
ing I found out that \jobname wasn’t multirow as
was to be expected, but output. It appears that
Overleaf runs the job in a kind of sandbox where the
jobname of the main file is output.

After some googling I found that Overleaf uses
Latexmk2 to process the job. It provides a standard,
but invisible, latexmkrc file that controls the com-
pilation process. However, you can also supply your
latexmkrc file. This file, and the handling of the
output name, is described in section ‘Latexmk’ on
page 242.

So the challenge was now to upload a correct
latexmkrc file, and to update the multirow.dtx

file. This could be done by uploading these files after

2 https://mg.readthedocs.io/latexmk.html

LATEX on the road

240 TUGboat, Volume 40 (2019), No. 3

each modification, but this might be an error-prone
process, and you don’t have a record of what has
been done. Enter version management.

4 Distributed version management

In any project where you have to make changes more
or less regularly, it is important to keep track of
what you have done. Also, in general it is useful
to have access to previous versions of your project,
for example if you want to go back to a previous
situation. Some people do this by making copies of
their files at regular moments. Sometimes they put
the date and the time in the file names, to keep a kind
of history. But this soon becomes unwieldy. This is
the problem that version management systems (also
called version control systems) offer a solution for.
Any serious developer, whether of software or text,
should consider using a version management system.

For those readers that are unfamiliar with ver-
sion management, here follows a brief description.
You have a working copy or working directory, which
is the collection of files that you work upon in your
project. This is just like when you do not use version
management. Additionally you have a repository,
which is a kind of database containing the history of
your project. It will contain the state of your work-
ing copy at certain moments in the past, together
with information about who made the changes, and
a description of what has changed.

If, at a certain moment, you have a state of your
project that you want to keep, you commit, which
means a copy is stored in the repository, together
with a description that you enter. The opposite
operation (i.e. making a copy from your repository
to your working directory) is called checkout. You
usually have a separate repository for each project.
The repository can be on your local computer, or on
a server. In the latter case it is possible that different
people working on the same project use the same
repository. They would then each have their own
working copy. As they are working independently,
these could be different. A version management
system usually has provisions to resolve conflicting
working copies.

Although these systems can store any type of
file, they work best with plain text files. As our TEX
sources are plain text, they are ideal candidates for
using a version management system.

There are several version management systems
available. One older, well-known system is subversion
(SVN3). It usually has the repositories on a central
server, but you can also have the repository on your

3 http://subversion.apache.org

local computer, if you are working alone. As SVN

has only one repository per project it is called a
centralised version management system.

Centralised version management systems have
some big disadvantages for cooperation in teams:

• If you work together the repository must be on
a central server, which means you cannot use it
when you are offline.

• If you want to keep your changes registered often
in the repository, then this can be confusing for
the other team members. On the other hand, if
you want to keep the repository relatively clean,
that is, only commit major updates, then you
lose the possibility to keep your own history
detailed.

One solution is to have both a central repository
for the team, and a local repository for your own
work, but then synchronising these repositories could
become tedious. However, this is where distributed
version management systems have their strength.

In a distributed version management system you
can have both a local repository on your computer
and a central repository on a server. Or even more
than one of each. Furthermore, these can be easily
synchronised. The usual way to work in a team is to
have a central repository for the team, and a local
repository on each team member’s computer. Each
team member keeps a history in the local repository.
This can be done often, and also offline. When
changes are good enough to be put in the central
repository, a team member pushes the local changes
to the central repository, often after making one set
of changes that do not reflect all the details of the
work done locally. Another team member can then
fetch these changes from the central repository when
they want to be up to date. It is then probable that
the newly-fetched changes are not consistent with
other changes that they have made themselves in
the meantime. The two sets of changes must then
be merged. This is the basic scenario. Much more
complicated workflows are also possible.

Both centralised and distributed version man-
agement systems support the concept of branches.
A branch is a separate line of development in your
project. For example you have a project that you
publicly release from time to time. The development
of this release version would for example take place
on the main branch in your repository. Now after
a release you want to start working on some very
new experimental features for a future release. If you
just continue your development, then when a bug in
your release is detected, your project would be in an
unstable state. So you cannot just apply a bug-fix

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 241

to the current state of your project, but you would
have to go back to the state just after the release. As
the repository has kept the history of your project,
this is easy, but you want also to keep the current
state, so that you can go back there after making
the bug-fix.

Here branches come to the rescue. After your
release you create a new branch for your experimen-
tal work, and continue working there. When you
want to make the bug-fix, you switch back to the
main branch. The repository will remember your
experimental branch, and after releasing the bug-fix
you can switch back to the experimental branch. If
you wish you can then also merge the fix in your
experimental branch. Later when your experiment is
successful and you want to release it, you can merge
it back to the main branch. You can have as many
branches as you want. For example if your bug-fix is
expected to be complicated, you can first try it out
on a separate branch.

A very popular site for central repositories is
Github.4 This site is based on the distributed version
management system Git. Git is probably the most
popular version management system in use today.
For my own projects I use Git exclusively nowadays,
often only locally, but sometimes in combination
with Github.

4.1 Use with Overleaf

To come back to the TEX project I am currently
describing, it appeared that Overleaf also had Git
capabilities. Although these were in beta phase at
that moment, it could be used for my project. Nowa-
days you need a paid account on Overleaf to use the
Git facilities, but because I had started using them
during the beta testing, I have access to them in my
free account.

Git can be used in two ways on Overleaf.

• your Overleaf project can function as a Git
repository;

• your Overleaf project can be synchronised
with a Github repository.

I decided to take the Github route, mainly be-
cause I have experience with Github and I could not
get the direct Git repository on Overleaf working
from the iPad. At this moment it is working, but its
functionality is very limited compared to Github.

In order to use Git on the iPad you need a Git
app. I found Git2Go,5 which is said to be the first
app to use Git on iOS. It worked well for my needs,
but later I tried two others that I found: Working

4 https://www.github.com
5 https://git2go.com

Github

repo

Overleaf

Git

repo

iPad

Git

repo

PushFetch

Overleaf

Working

Copy

iPad

Working

Copy

commitcommit
(automatic)

checkout
(automatic)

LaTeX Edit

Figure 9: Git workflow

Copy6 and TIG.7 In the appendix I give a comparison
of these apps.

My workflow can be seen in figure 9. My editing
took place in the lower right corner, on the working
copy (managed by Git2Go). I could have used the
editor that Git2Go provides, but it is not very so-
phisticated. It does not have syntax highlighting for
LATEX files, and it gives no editing support beyond
the standard iPad keyboard. I also had a much better
text editing program called Textastic.8 It has syntax
highlighting for LATEX, good search facilities and an
extended keyboard (see figure 10) that makes it eas-
ier to enter non-alphanumeric symbols. Also it has a
special provision for easy cursor movement. Git2Go,
and the other Git apps mentioned above, function
as a kind of file system, which means that Textastic
can directly edit their files without copying between
the two apps. So the only extra operation to edit
in Textastic rather than in Git2Go itself is switch-
ing between the apps. This extra effort I deemed
worthwhile for the added comfort of using a good
text editor.

After editing the file(s), I switch to Git2Go,
commit the change, and immediately push it to the
Github repository. Then I switch to Overleaf in the
browser, fetch the changes from Github to Overleaf
in the Overleaf synchronisation menu, and process
the files, hopefully producing a new PDF file. Many

6 https://workingcopyapp.com
7 https://itunes.apple.com/us/app/tig-git-client/

id1161732225
8 https://www.textasticapp.com

LATEX on the road

242 TUGboat, Volume 40 (2019), No. 3

Figure 10: Textastic extended keyboard

times it did not yet work correctly, so I had to go
back to Textastic and start a new cycle.

The problem wasn’t so much in the LATEX code,
as the changes there were very simple. The main
problem was getting the latexmkrc file correct. One
difficulty was that Overleaf did not have good docu-
mentation about the context in which the Latexmk
program was running. Also, running it on their server
did not give as much feedback as running on your
own computer. Several times I had to write extra
information to a text file, and then download that to
the iPad to see what happened. For example, I had
to make directory listings, and write them to a text
file, just to see what files were generated and what
their names were. And the process was a bit tedious
because I had to synchronise the files as described
above before each try. But after some 50 tries, ev-
erything worked perfectly. I will spare you all the
attempts that I made, but in the next section I will
give you the resulting latexmkrc file, and explain
what it does.

5 Latexmk

Latexmk is a program (a Perl script) to process a
LATEX file with all the necessary bibtex, makeindex
and similar calls. It will run LATEX and these other

programs as many times as is necessary to get a
completely processed and stable output.

For the run-of-the-mill LATEX file, Latexmk has
enough knowledge to know what to do. However,
when there are additional requirements, like a non-
standard index, glossaries, etc., you must give La-
texmk a recipe of how to process the various stages.
The recipe is given in the latexmkrc file, which in
fact is also a Perl script. Latexmk has an enormous
number of possibilities, and its manual9 contains 48
pages. So it took some time to get everything right.

Overleaf provides a standard latexmkrc file for
its jobs, but as we have seen above, this is not ad-
equate for processing the .ins and .dtx files. To
make Overleaf happy, we must provide a main .tex

file, but with our latexmkrc file we don’t use it, so
its content is unimportant.

In figure 11 the resulting latexmkrc for this
process is given, annotated with line numbers. In
the remainder of this section I explain what it does.

line 1. This sets the timezone to your local time.
This is so that messages with date and time
will get your local time, and not the time of
Overleaf’s servers, which would be useless in
most cases. As I was in Bolivia at the time, the
timezone was ‘America/La Paz’. Now at home
it would be ‘Europe/Amsterdam’.

line 3-6. In a .dtx file the extension .glo, which
is normally used for glossaries, is used for the
list of changes. And the sorted version, to be
created by makeindex, will be .gls. These lines
give a recipe how to create the .gls file from
the .glo file using makeindex.

line 8. For processing the normal index in a .dtx

file makeindex needs the additional argument
-s gind.ist.

line 10. This defines which extra file extensions we
need in the process. Besides the already men-
tioned .glo and .gls, there is also .glg which
is the log output of the makeindex command
from line 5. And the .txt extension is used for
debugging.

line 12. Here comes the trick to let Overleaf do
our work. Normally it will run pdflatex on
the main TEX file in the project, which in our
case is multirow.tex. But you can define the
$pdflatex variable to let it use another com-
mand. In our case we let it run the internal
function mylatex that follows. In this function
we do all the preparatory work before we run
the actual pdflatex command.

9 http://mirrors.ctan.org/support/latexmk/latexmk.

pdf

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 243

Latexmkrc file:

1 $ENV{’TZ’} = ’America/La Paz’;

2

3 add_cus_dep(’glo’, ’gls’, 0, ’makeglo2gls’);

4 sub makeglo2gls {

5 system("makeindex -s gglo.ist -o \"$_[0].gls\" \"$_[0].glo\"");

6 }

7

8 $makeindex = ’makeindex -s gind.ist -o %D %S’;

9

10 push @generated_exts, ’glo’, ’gls’, ’glg’, ’sty’, ’txt’;

11

12 $pdflatex = ’internal mylatex’;

13 sub mylatex {

14 my @args = @_;

15 (my $base = $$Psource) =~ s/\.[^.]+$//;

16 system("tex $base.ins");

17 # backslashes are interpreted by (1) perl string (2) shell (3) sed regexp

18 # therefore we need 8 backslashes to match a single one

19 system("sed -e s/\\\\\\\\jobname/$base/g $base.dtx > $base.tex");

20 return system("pdflatex @args");

21 }

Figure 11: The final latexmkrc file. The line numbers are not part of the file.

line 14. Pick up the arguments from the call to
mylatex in the variable @args. This is standard
Perl prose.

line 15. Latexmk puts the name of the main TEX
file in $$Psource (see page 45 in the Latexmk
manual). This line is actually a shorthand for
two statements:

my $base = $$Psource;

$base =~ s/\.[^.]+$//;

The first line copies $$Psource to a local vari-
able $base. The second line strips off any-
thing after (and including) the last dot. So
the string ‘multirow.tex’ will be transformed
to just ‘multirow’. I use $$Psource rather than
just using multirow so that now the latexmkrc
file is also usable for other .dtx files.

line 16. First we run tex on our .ins file, which
would be multirow.ins in our case. This gen-
erates the required .sty files. This is to ensure
that we use the new versions of our .sty files,
rather than an outdated version in Overleaf’s
TEX system.

line 19. From our .dtx file we generate a .tex

file where the text \jobname is replaced by
the actual base name of our file (in our case
multirow). This is necessary as Overleaf de-
fines a \jobname of output. So in this case
we generate multirow.tex from multirow.dtx.

This .tex file will input multirow.dtx during
its processing.

We do the replacement by calling the Unix
program sed. The \jobname is inside a regular
expression in sed, therefore the backslash must
be doubled. But then, this command is pro-
cessed by the Unix shell, which also interprets
backslashes. Therefore we must double all the
backslashes again. And then this command is
inside a Perl string where backslashes are also
interpreted. So we must double them again, and
we end up with 8 backslashes to represent a
single one.

line 20. Finally we run the real pdflatex command
with the original arguments. Note that we pro-
cess the new multirow.tex file, because that
is what Overleaf expects to do. Also, because
this is run in a sandbox (i.e. on a copy of the
original files in a separate directory), this does
not affect our original file.

Finally, we also show a modified latexmkrc file
with debugging statements included in figure 12, and
the corresponding output in figure 13. You see the
values of $$Psource and $base, the arguments to
the pdflatex call, and the directory listing at the
end of the process. Note that in the directory listing
there is a file multirow.log; this is the result of
the call tex multirow.ins. Note also the generated

LATEX on the road

244 TUGboat, Volume 40 (2019), No. 3

Latexmkrc with debugging:

$ENV{’TZ’} = ’America/La Paz’;

add_cus_dep(’glo’, ’gls’, 0, ’makeglo2gls’);

sub makeglo2gls {

system("makeindex -s gglo.ist -o \"$_[0].gls\" \"$_[0].glo\"");

}

$makeindex = ’makeindex -s gind.ist -o %D %S’;

push @generated_exts, ’glo’, ’gls’, ’glg’, ’sty’, ’txt’;

$pdflatex = ’internal mylatex’;

sub mylatex {

my @args = @_;

Run_subst("echo \"%%B=%B %%R=%R %%S=%S %%T=%T\" > debugout.txt"); ## DEBUG ##

system("echo ’\@args’ = \"@args\" >> debugout.txt"); ## DEBUG ##

system("echo ’\$\$Psource’ = \"$$Psource\" >> debugout.txt"); ## DEBUG ##

(my $base = $$Psource) =~ s/\.[^.]+$//;

system("echo ’\$base’ = \"$base\" >> debugout.txt"); ## DEBUG ##

system("tex $base.ins");

backslashes are interpreted by (1) perl string (2) shell (3) sed regexp

therefore we need 8 backslashes to match a single one

system("sed -e s/\\\\\\\\jobname/$base/g $base.dtx > $base.tex");

$status = system("pdflatex @args");

system("ls -l >> debugout.txt"); ## DEBUG ##

return $status;

}

Figure 12: latexmkrc file with debug statements

Debug output:
%B=output %R=output %S=multirow.tex %T=multirow.tex
@args = -synctex=1 -interaction=batchmode -recorder

-output-directory=/compile --jobname=output
multirow.tex

$$Psource = multirow.tex
$base = multirow
total 1176
-rw-r--r-- 1 tex tex 3871 Mar 4 14:12 README
-rw-r--r-- 1 tex tex 49 Mar 4 14:12 README.md
-rw-r--r-- 1 tex tex 1417 Mar 4 14:12 bigdelim.sty
-rw-r--r-- 1 tex tex 1234 Mar 4 14:12 bigstrut.sty
-rw-r--r-- 1 tex tex 203 Mar 4 14:12 debugout.txt
-rw-r--r-- 1 tex tex 1054 Mar 4 14:12 latexmkrc
-rw-r--r-- 1 tex tex 80398 Mar 4 14:12 multirow.dtx
-rw-r--r-- 1 tex tex 2182 Mar 4 14:12 multirow.ins
-rw-r--r-- 1 tex tex 3719 Mar 4 14:12 multirow.log
-rw-r--r-- 1 tex tex 5022 Mar 4 14:12 multirow.sty
-rw-r--r-- 1 tex tex 80398 Mar 4 14:12 multirow.tex
-rw-r--r-- 1 tex tex 3487 Mar 4 14:12 output.aux
-rw-r--r-- 1 tex tex 0 Mar 4 14:12 output.chktex
-rw-r--r-- 1 tex tex 25207 Mar 4 13:10 output.fdb_latexmk
-rw-r--r-- 1 tex tex 20593 Mar 4 14:12 output.fls
-rw-r--r-- 1 tex tex 3281 Mar 4 14:12 output.glo
-rw-r--r-- 1 tex tex 3578 Mar 4 08:13 output.gls
-rw-r--r-- 1 tex tex 3270 Mar 4 14:12 output.idx
-rw-r--r-- 1 tex tex 891 Mar 4 08:13 output.ilg
-rw-r--r-- 1 tex tex 2655 Mar 4 08:13 output.ind
-rw-r--r-- 1 tex tex 34086 Mar 4 14:12 output.log
-rw-r--r-- 1 tex tex 610336 Mar 4 14:12 output.pdf
-rw-r--r-- 1 tex tex 262970 Mar 4 14:12 output.synctex.gz
-rw-r--r-- 1 tex tex 1467 Mar 4 14:12 output.toc

Figure 13: latexmkrc debug output (the @args line
has been broken into several lines for print)

.sty files. The files resulting from the pdflatex call
on multirow.tex/dtx are all called output.*. So
makeindex must also act on these files. In figure 11,
line 5, this is accomplished because the file name is
given as an argument to the function makeglo2gls.
In line 8 it is accomplished because the patterns %S

and %D are replaced by the source and destination

of the command, respectively, i.e. output.idx and
output.ind.

6 Conclusion

Although working at home on my MacBook is much
more comfortable, it is possible to do some serious
LATEX work on your iPad while you are travelling.
It takes some effort to find the proper way to do it,
however. I hope this article helps you to get started
if you need this work flow.

A Appendix — iOS Git apps compared

In this section I compare the three Git apps on iOS

that I tried. I did all the production work in Git2Go,
but after it was finished I also tried Working Copy
and TIG.

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 245

Git2Go has a limitation that it only cannot work
with Git repositories on all servers. It works with
a limited number of services, namely Github,
Bitbucket10 and Gitlab11. Other remote repos-
itories can be used if they offer access by the
SSH protocol. SSH is one of the two main proto-
cols used to connect to Git servers. The other
is HTTPS. Overleaf only offers HTTPS, which
Git2Go does not support.

To create a repository on your iPad you must
clone (i.e. copy) an existing repository on one
of the supported servers. You cannot create a
local-only repository on the iPad. Once you
have the repository on your iPad, you can edit
the files in the repository, commit the changes,
create new branches. It can fetch from and
push to the remote repository, but these are
not separate operations. It always does a fetch
(which may be empty), followed by a push. It
can also merge different branches. It is a lim-
ited set of operations compared to the full Git
functionality, but it is sufficient for a normal
workflow as described above. Also cooperation
with other people would be possible as long as
the more esoteric Git functionality is not re-
quired. Git2Go’s editor has syntax highlighting
for a limited number of programming languages.

Git2Go is free, as long as you only access
public repositories (i.e. repositories that every-
body can see). To access private repositories
you would have to buy an upgrade.

For the push operation you will have to login,
and Git2Go will remember your username and
password, until you explicitly logout.

And occasionally it crashes.
Last minute note: I later tried to re-install

Git2Go on my iPhone, and got the message that
it was no longer available on the App Store. Also
a search in the App Store did not come up with
Git2Go. I have no idea if this is a permanent
situation, or if it might be in the process of
updating.

Working Copy is the nicest of the three apps. It
has a very elaborate set of functions. It can con-
nect to all kinds of servers, including Overleaf.
However, to use the push functionality you have
to pay. The price is quite steep (e17.99 at the
time of writing), but you can get a free 10 day
trial. I used this for writing this article to see
how it worked.

10 https://bitbucket.org
11 https://gitlab.com

Working Copy can clone from existing reposi-
tories, including through SSH and HTTPS, and
also create local repositories. It can also create
a local repository from a .zip file. Once you
have a repository it can connect your reposi-
tory to more than one remote repository, which
sometimes can be quite handy. For example in
the current example, the repository on the iPad
could have been connected both to the Overleaf
repository and to the Github repository. Of
course you will have to be careful not to mess
up your workflow.

If your iPad is connected to a Mac or PC with
iTunes, you can drag and drop a repository on
your computer through iTunes, and it will be
copied to the iPad.

Working Copy’s editor has syntax highlight-
ing for more than 50 different languages. It
can show nice graphical representations of your
branches and your commit history (see figure 14).
Besides the merge functionality it also has the
rebase functionality, which is an alternative for
merge. For cooperating in large projects this
functionality is sometimes necessary.

There is more than fits in this limited space,
but Working Copy is by far the best of the three
apps. It is expensive, but if you do a lot of work
with Git on your iPad, it is worth the price.
Working Copy operates in a small market, so
the price is understandable.

TIG is the third app I tried. It takes more or less
a middle ground between Git2Go and Working
Copy. Like Working Copy it can connect to all
kinds of repositories, including Overleaf, and it
has push functionality. And it is free. It can
clone existing repositories, and create local ones.
It can also connect repositories to more than
one remote repository.

Its editor has syntax highlighting support for
166 languages.

However, although the functionality is great
for a free app, I found its user interface some-
times confusing. And to fetch/push to your
remote repositories you have to enter your user-
name and password every time. I did not find a
way in which it could remember these. This is
very annoying. And it crashed quite often.

As I mentioned above, all these apps have the
facility that you can open their files in an external ed-
itor. Figure 15 shows how to open files from Git2Go
in Textastic. This is done inside Textastic with the

LATEX on the road

246 TUGboat, Volume 40 (2019), No. 3

Figure 14: Graphical commit history in Working Copy

Figure 15: Opening a Git2Go file or repository in
Textastic

“Open. . . ” button, then selecting “Git2Go”. It is
then possible to choose “Open” down in the pop-up,
which will open the whole directory in Textastic, or
select one filename, which will open that file.

Summary:

• If you only need access to repositories hosted
by Github, Bitbucket or Gitlab, or repositories
that can be accessed by the SSH protocol, and
your requirements are modest, you can choose
Git2Go (if still available).

• If you need access to repositories that do not
fall in the previous categories (such as Overleaf),
and you can live with a not so optimal user
interface, and your requirements are modest,
you can choose TIG. It may be a good choice
when you want to connect to a repository that
Git2Go does not support, and when you find
Working Copy too expensive.

• If you want the top Git app on your iPad (or
iPhone) and are willing to pay the price, I would
recommend Working Copy. If you want to do
serious work with Git, this is the choice and it
would be worth the price.

There are nowadays some other Git apps available,
but it seems that they are roughly comparable to
one of the above. Some of them only support just
Github, Bitbucket or Gitlab. I have not found any
free app that comes with the functionality of Git2Go
or TIG. Other paid apps may be slightly cheaper than
Working Copy, but they also have less functionality.

� Piet van Oostrum
http://piet.vanoostrum.org

piet (at) vanoostrum dot org

Piet van Oostrum

