
TUGBOAT

Volume 41, Number 1 / 2020

General Delivery 3 From the president / Boris Veytsman

4 Editorial comments / Barbara Beeton

Our plague year;

Updike Award for Student Type Design;

Resources—finding things: Identifying a font, (LA)TEX Q&A—TopTeX;

Thoughts on asking questions in a public forum

7 Reporting bugs for Don Knuth (as soon as possible) / Karl Berry

Software & Tools 8 Beyond Trip and Trap: Testing the urtext WEB sources / David Fuchs

Humanities 12 Grapholinguistics, TEX, and a June 2020 conference / Yannis Haralambous

Tutorials 20 The DuckBoat—Beginners’ Pond: You do not need to be Neo

to cope with a TikZ matrix / Carla Maggi

Accessibility 26 Creating accessible pdfs with LATEX / Ulrike Fischer

LATEX 29 LATEX3 news, issue 11, February 2018 / LATEX Project Team

31 LATEX3 news, issue 12, January 2020 / LATEX Project Team

34 LATEX news, issue 31, February 2020 / LATEX Project Team

39 Case changing: From TEX primitives to the Unicode algorithm / Joseph Wright

43 TEX, LATEX and math / Enrico Gregorio

54 The fewerfloatpages package / Frank Mittelbach

Multilingual

Document Processing

69 Typesetting the Bangla script with LuaLATEX / Ulrike Fischer, Marcel Krüger

Typography 71 Typographers’ Inn / Peter Flynn

Methods 73 An attempt at ragged-right typesetting / Udo Wermuth

95 Webnotes: Practical approaches / David Walden

Questions 97 Reading 29,000 COVID-19 papers / Jonathan Fine

Book Reviews 98 About The Art of Computer Programming, Volume 4, Fascicle 5 / David Walden

102 Book review: History of Desktop Publishing, by Frank Romano / David Walden

Abstracts 106 ArsTEXnica: Contents of issues 27–28 (April and October 2019)

108 Zpravodaj : Contents of issue 2019/1–4

109 Die TEXnische Komödie: Contents of issue 4/2019

Hints & Tricks 110 The treasure chest / Karl Berry

Cartoon 112 Comic: Typographic map Hyphe-nation / John Atkinson

TUG Business 2 TUGboat editorial information

2 TUG institutional members

113 TUG financial statements for 2019 / Karl Berry

Advertisements 114 TEX consulting and production services

News 115 TEX Live 2020 news / Karl Berry

116 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships

2020 dues for individual members are as follows:
Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions

TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2020 is $110.

Institutional memberships

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: April 2020]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President

Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Jim Hefferon
Taco Hoekwater
Frank Mittelbach
Ross Moore
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and

present board members, and other official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,

membership, subscriptions:

office@tug.org

Submissions to TUGboat,

letters to the Editor:

TUGboat@tug.org

Technical support for

TEX users:

support@tug.org

Contact the

Board of Directors:

board@tug.org

Copyright c© 2020 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

Stay tuned for The TEX Tuneup of 2021!

Donald Knuth, “The TEX tuneup of 2014”,
TUGboat 35:1 (2014)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 41, NUMBER 1, 2020

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 41, No. 1) is the first issue of the
2020 volume year. The deadline for the second issue in
Vol. 41 is August 3, 2020.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

2 TUGboat, Volume 41 (2020), No. 1

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Duke University Press,

Durham, North Carolina

Harris Space and Intelligence

Systems, Melbourne, Florida

Hindawi Foundation, London, UK

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Nagwa Limited, Windsor, UK

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 41 (2020), No. 1 3

From the president

Boris Veytsman

I am writing this letter in March 2020 amid the
preparation for the coming coronavirus outbreak.
Here in the San Francisco Bay Area schools are
closed, theaters, museums and libraries are shuttered,
sporting events and conferences are canceled. Some
people, including me, are privileged to be able to
work from home. Unfortunately many are not. We
are recommended to practice social distancing: to
minimize our gatherings and avoid others.

A friend of mine chose this moment to re-read
the Decameron by Boccaccio; a very appropriate
reading. Let me remind you of the plot of the book:
in the wake of plague epidemics in Florence, seven
young women and three young men practice social
distancing. They escape to the countryside and en-
tertain themselves with stories for ten days of the
two weeks they quarantine themselves. Ten narra-
tors times ten days produce one hundred stories, a
veritable feast.

Written in the middle of the 14th century, the
Decameron was initially distributed as handwritten
manuscripts. Rhiannon Daniels in her Boccaccio and

the Book Production and Reading in Italy 1340–1520

(Legenda, 2009) mentions 14 extant manuscripts
dated to the 14th century, 46 manuscripts dated
to the 15th century and seven manuscripts dated to
the 16th century, when printed editions became more
popular. The wide readership of the Decameron led
to democratic editions: most of the extant manu-
scripts were done on paper rather than parchment.
The first printed edition of the Decameron, according
to Daniels, is dated to 1470, just a decade and a half
after Gutenberg’s Bible. Afterwards the book was
reprinted many times during the 15th and 16th cen-
turies. Unlike Gutenberg’s Bible, the early editions of
the Decameron were typeset in Roman type, as befits
a humanist book. Daniels writes about the tendency
of early printers to make the book widely available by
lowering the price: the move from the single column
design to the two column one to decrease the page
count, the introduction of woodcut illustration in-
stead of manual ones, etc. This tendency mirrors the
tendency of the handwritten editions to democratize
the book, making it accessible to a wide readership.

An important feature of the Decameron is its
beauty. Each story is interesting in itself (many
later writers including Chaucer borrowed from them),
but their subtle interplay with each other and the
personalities of their narrators are superb.

Of course, not many Florence inhabitants had
the means to practice social distancing in the way

Boccaccio’s protagonists did. John Henderson’s Flo-
rence Under Siege: Surviving Plague in an Early

Modern City (Yale, 2019), recently reviewed by Erin
Maglaque in the London Review of Books (42:4,
2020), is a good companion to the Decameron. While
the science of the 13th century did not provide much
knowledge about the plague (the role of fleas was
discovered much later), the steps taken by the city
health board Sanitá are impressive and very rational.
By cordoning the city, Sanitá got time to prepare for
the inevitable outbreak. The board studied the re-
sponse of other cities hit before Florence and learned
their lessons. It quarantined the families of sick and
dead in their homes. The churches were closed. In-
stead, portable altars were erected on street corners:
priests conducted Mass from there, and the people
said Amen from behind the doors. Confessions were
also taken through doors or windows, with priests
covering their mouths and noses with waxed cloth.
While the medieval medicine (theriac, ground pearls,
crushed scorpions, etc.) was probably not very effec-
tive, another idea of Sanitá likely was. Assuming that
poor nutrition might provoke the disease, the health
board spent enormous sums of money (partially from
the draconian fines for quarantine violations) to feed
the quarantined people. While some rich Florentines
complained that many city’s poor never ate as well as
during the plague, this measure doubtlessly helped
to reduce the number of violations and to increase
the immunity of well fed people. The death rate in
Florence was 12% of the population; for comparison
for Venice it was 33%, in Milan 46%, in Verona 61%.

I am impressed by three features of these sto-
ries. First, the beauty, which persisted in the plague
infested years. Second, the science and rationality
of the response. Third, the solidarity: we overcome
infection when we understand that we all are in the
same boat. I think they deeply resonate with us, TEX
people. TEX was born from the striving for beauty
and rationality. Following Knuth, we use rational
methods to create beautiful pages in service of pre-
sentation of beautiful thoughts. Our software is free
and available to all, which stresses our solidarity as
humans. In our small community we try to embody
the ideals that helped us to overcome the travails of
the past.

And a last word. When I read papers on COVID,
I habitually check how they are typeset. When I see
TEX I feel a pride that somehow our efforts con-
tributed to the common task.

⋄ Boris Veytsman

president (at) tug dot org

4 TUGboat, Volume 41 (2020), No. 1

Editorial comments

Barbara Beeton

Our plague year

As I write this, all activity and commerce are shut
down over much of the world. Schools are closed,
students have been sent home, and I’ve just eaten my
last restaurant meal until who knows when. More
relevant to this audience, the DANTE and BachoTEX
meetings have been cancelled, to the great disap-
pointment of many eager participants. We shall have
to wait, to find out what the next few months will
bring, before we’ll know whether this catastrophe
will affect TUG 2020 in Rochester as well.

Elsewhere in these pages are some items that
deserve mention.

• The announcement of the Grapholinguistics con-
ference, scheduled for June, will be held electron-
ically rather than in Paris. Watch the linked
website for further announcements.

• The general shutdown has extended to my lo-
cal libraries. Since the published hyphenation
authority exists only on paper (Webster’s Third

International Dictionary), and I don’t own a
copy, it hasn’t been possible to verify some of the
proposed additions to the hyphenation excep-
tion list. The current addendum is less complete
than intended, but this is somewhat balanced by
the update of the cumulative version on CTAN.
When resources are once again available, both
an additional update and cumulative list will be
released.

• The history of the differential “d”, promised in
the last issue, also requires library access. Like
the hyphens, completion of this item depends
on the return of normal access.

Not triggered by the virus but nonetheless important
for their own sakes, and in the first case, timely, these
articles deserve attention.

• The next review by Don Knuth of the TEX/
METAFONT complex is scheduled for 2021. To
help prepare, David Fuchs invites (see his article
in this issue, pp. 8–11) users of plain TEX and
METAFONT to search their archives for docu-
ments making use of unusual TEXniques that
can in turn be used to exercise nooks and cran-
nies of the Knuthian engines that might have
slipped through the cracks explored by the trip
and trap tests.

• This issue’s “DuckBoat” has a new subtitle, “Be-
ginner’s Pond”, and a comment that the “articles
may appear too trivial for a serious journal like

the TUGboat.” I call your attention to this
item in the TUGboat Editor’s wish list:1 “More
tutorials and expository material, particularly
for new users and users who aren’t intending
to become TeX wizards.” So, Prof. van Duck,
don’t apologize!

Updike Award for Student Type Design

For several years now, a challenge has been made to
typographic design students to develop a typeface
influenced by materials in the Updike Collection on
the History of Printing, one of the Special Collections
at the Providence Public Library. The most recent
award ceremony, the fifth, was held on 25 October
2019, accompanied by a panel discussion, “Revival
Meeting”, featuring type designers who have created
digital types based on historical types from the ear-
liest days of European printing up to the demise of
the general use of metal type.

Awards were presented to three students:

• Malika Nanda (first place), for Mojaris, a deco-
rative face inspired by models she encountered
in her native Bombay.

One inspiration was a slipper with an upturned
pointed toe. The influence can be seen in the
shape of the curvy serifs.

• Benjamin Tuttle, for No Gothic, a bold sans
serif face, with alternate shapes for the capital
“G” and both the upper- and lowercase “S”.

1 https://tug.org/tugboat/wish.html

https://tug.org/tugboat/wish.html

TUGboat, Volume 41 (2020), No. 1 5

• Liam Spradlin, for Girassol, a sans serif display
face, inspired by street signs seen in Portuguese
cities.

Presentation of the awards was followed by ques-
tions to the three finalists, asking why they chose
the particular styles, and what inspired them to un-
dertake font design. Two of the responses cited an
attraction to graphical objects observed in the stu-
dent’s surroundings; the third noted the desire to
have a unique and idiosyncratic medium to be used
in personal communication. These goals are met
admirably.

Of the four participants in the panel discussion,
three are active designers: Paul Barnes (Commercial
Type), Marie Otsuka (Occupant Fonts), and David
Jonathan Ross (Font of the Month Club). The fourth,
Elizabeth Carey Smith (Creative Director at the
Bank of New York) acted as moderator.

One discussion topic was the reason for revivals.
From an educational point of view, it teaches an
understanding of the structure of a font, and experi-
ence in how to get a feeling for what looks correct.
Besides, it’s hard work.

Another reason is that a revival might be com-
missioned. When undertaking a commission, an
important aspect of the work is to determine what
it is that the person making the commission really
likes about the font. Often this is the look of the
printed specimen, in which case strict adherence to
the actual type matrix is probably not advisable.

Questions from the audience included a request
for recommendations for making a successful career
of font design. A logical response was to develop
families rather than single fonts; when more options
are available, if a client likes one after using it, there
are more that can be acquired.

The next award will be presented in 2021, and
will thereafter be scheduled every two years. Details,
including the guidelines for entering the competition,
are given on the library’s website.2

Questions for Paul Barnes: Nature, revivals
After the presentation, I got a chance to talk briefly
with Paul Barnes. His firm has designed the new
type for the journal Nature,3 and he observed that all
the symbols drove them crazy. (Christian Schwartz,
Barnes’ collaborator in the foundry, was responsible
for the symbols.) The font, like most custom de-

2 https://www.provlib.org/research-collections/

special-collections/updike/updike-prize-student-

type-design/
3 https://www.nature.com/articles/d41586-019-

03083-5

signs, is under exclusive license to the commissioning
organization, through 2024.

I asked whether Nature accepted LATEX as an
input medium. Yes, but the production flow goes
through several conversions. The final archival files
are held in a standardized form of XML, and for the
print version, the material is flowed into InDesign.

On the subject of revivals, an online video of
an interesting lecture Barnes gave last summer at
Cooper Union4 further illuminates the topic of the
evening’s discussion.

Resources —finding things

Identifying a font Earlier this year, I was sent on
a quest by Mike Spivak to determine the fonts used
to typeset one of his books on differential equations.
The results of this search were equivocal; I was able
to identify the main text and math fonts (Monotype
Baskerville, with digits from some version of Times
used in math and text, but curiously the Baskerville
digits used for page numbers), but failed to identify
the large digits used for the chapter numbers. (I
later learned that it may have been a custom cre-
ation.) However, I did learn about some resources
for identifying fonts.

• WhatTheFont!5 will search a database to match
the image of a character presented on a smart
phone or other online device. (It works well for
letters and digits; I recognized the symbols as
what was available for Monotype at that period,
so didn’t test any, but will have to try that
sometime.)

• Identifont6 presents several questions that nar-
row down the possibilities and then shows po-
tential matches to be examined. Unfortunately,
“italic” is considered to be script or calligraphic,
so this was unsatisfactory for the topic of my
quest, where matching the italic “N” was essen-
tial to the identification.

• fonts.com7 has a very extensive collection of
fonts, although when I rechecked, no “identifier”
tools. However, if the name of the basic roman
style is known or suspected, the corresponding
bold and italic are likely to be there for checking;
a sample text can be input to match against the
subject example.

4 https://coopertype.org/event/the_past_is_the_

present
5 https://www.myfonts.com/WhatTheFont/
6 http://www.identifont.com/
7 https://www.fonts.com/

https://www.provlib.org/research-collections/special-collections/updike/updike-prize-student-type-design/
https://www.provlib.org/research-collections/special-collections/updike/updike-prize-student-type-design/
https://www.provlib.org/research-collections/special-collections/updike/updike-prize-student-type-design/
https://www.nature.com/articles/d41586-019-03083-5
https://www.nature.com/articles/d41586-019-03083-5
https://coopertype.org/event/the_past_is_the_present
https://coopertype.org/event/the_past_is_the_present
https://www.myfonts.com/WhatTheFont/
http://www.identifont.com/
https://www.fonts.com/

6 TUGboat, Volume 41 (2020), No. 1

(LA)TEX Q&A —TopTeX A new Question and
Answer website has appeared.8 Describing itself as
“a friendly community for TeX questions and an-
swers”, it is part of the open source and not-for-profit
platform topanswers.xyz.

The scope is similar to tex.stackexchange.

com, but there are differences. As an “independent”
site, its direction depends more on the needs and
wishes of its participants than on any corporate pol-
icy. One feature mentioned for possible future adop-
tion is that general, encyclopedic, articles will be
welcome; these are explicitly discouraged on Stack-
Exchange. This is still a work in progress, one that
will be controlled by the members.

When the site is opened in a browser, the imme-
diate reaction is one of surprise at the bright color.
(My view might be influenced by a very old browser
on a laptop with an out-of-support operating system;
new hardware is on order.) The screen real estate
is split in two, with a wider panel on the left; this
is devoted to the list of questions. The right side
is a narrower column holding the main chat. To
access an item on either column it is necessary to
scroll, using either a mouse or touch pad; I haven’t
yet found a way to scroll from the keyboard, but I
haven’t asked either.

As with any new site, navigation takes a bit
of getting used to, but nothing is too deeply hid-
den. One feature that seems to be absent is a profile
area where a participant can share some personal
background; it can take a newcomer a while to deter-
mine the strengths and interests of other participants.
Most participants identify themselves by nicknames,
but this isn’t any different from other forums or dis-
cussion lists. I’ve learned that enhancing the profile
features is on the to-do list, but other improvements
have higher priority.

An attractive enhancement, appearing just be-
fore this TUGboat issue is sent to the printer, is the
addition of a non-English “sister community”. The
language is Marathi, and it will be presented in the
Devanagari script. (The announcement illustrates
the “blog” category of posted items.)

This is still a work in progress, and will grow
in directions still unknown, but responsive to its
participants. It will be refreshing to not be surprised
by the kinds of changes that have appeared with
little warning on the StackExchange complex. One
inquiry I made, about a feature that I thought was
suboptimal, was quickly accepted as a bug by a
member of the support group. Give it a try.

8 https://topanswers.xyz/tex

Thoughts on asking questions in
a public forum

Anyone using TEX is going to have questions. Long-
time users have often developed their own personal
networks, but even so, it is sometimes helpful to reach
out to a public forum. There are several such forums
available to TEX users — managed online Q & A sites
like StackExchange and the new TopTeX, older mail-
ing lists like texhax, and public “notice boards” like
comp.text.tex. Each of these has its own advan-
tages and audience. But some things are common,
if one wants to get a quick, accurate, and useful
answer.

• A small compilable file that gives the result or
illustrates the question as described. This was
the primary topic of the first DuckBoat column.9

• The context in which the answer is needed. For
example, is it to be submitted for publication
in a particular journal, is it for a thesis, is it for
some personal use, something else?

• What is the subject area: (pure) mathematics,
physics (theoretical or experimental), linguistics,
. . . . The notations and conventions may be
different for seemingly similar circumstances.

• What is your deadline? Please don’t leave this
until the last minute! Plan ahead!

The goal of a question is to get an accurate, useful
answer. The more precise the question, the more
likely it is to attract potential helpers.

Even if a problem is interesting, and someone
looking at it is familiar with the area and thinks they
know the answer, it’s a real drag to have to guess
the document class, only to be told later that it isn’t
the one being used. After being contradicted in this
manner, a helper will be less likely to react favorably
the next time.

Value the time that the helper will invest in
answering your question. That will increase the
likelihood that your next question will be met with
respect.

⋄ Barbara Beeton

https://tug.org/TUGboat

tugboat (at) tug dot org

9 https://tug.org/TUGboat/tb38-3/tb120duck.pdf

topanswers.xyz
tex.stackexchange.com
tex.stackexchange.com
https://topanswers.xyz/tex
https://tug.org/TUGboat/tb38-3/tb120duck.pdf

TUGboat, Volume 41 (2020), No. 1 7

Reporting bugs for Don Knuth (as soon as
possible)

Karl Berry

Abstract

Please report TEX system bugs intended for Don
Knuth as soon as possible.

1 The next TEX tuneup

At the end of the last TEX tuneup report [3], Don
Knuth mentioned that the next tuneup will be re-
leased in 2021. He asks for the collected submissions
towards the end of the previous year [1], that is, 2020,
that is, this year! I am the one collecting bugs this
time, having been passed the TEX entomologist’s mi-
croscope from the inestimable Barbara Beeton. I do
not have an exact cut-off date, but it would be rea-
sonable for you to assume that anything submitted
after November 1 will not be warmly welcomed.

To reduce the number of reports at the deadline,
I ask that they be submitted as soon as possible.
Handling them takes time, since colleagues and I
review each and every one before putting it in Don’s
pile. There are two ways to submit reports:

1. Send email to the public mailing list, tex-k@tug.
org (https://lists.tug.org/tex-k). This is
preferred, since then many people, not just me,
can review the report (and often reply faster).

2. Send email to me, karl@freefriends.org, if
you want your report (name, email, contents)
to be private. It is fine to do this if you prefer;
much better than not reporting the bug at all.

2 Research before sending

Please do a general web search on your report before
you send it in, choosing the relevant search terms,
etc., to the best of your ability.

If the web doesn’t have anything, please check
Don’s detailed errata listings, available at https:

//ctan.org/pkg/knuth-errata or, in TEX Live, in
texmf-dist/source/generic/knuth/errata. Just
try searching (e.g., grep) for keywords; it may not
be easy to make your way through the errata files,
but do the best you can.

In all cases, what’s of interest is true bugs in
the code, typos or other outright errors in the text,
etc. Requests for enhancements, new features, etc.,
are not going to be reviewed by Don. However, if a
report is in the gray area between bug and feature,
please go ahead and send it, and we will review it.

Some enhancements, including but not limited
to increasing array sizes and other configuration is-
sues, can be (and have been) made in TEX Live and

other implementations. It’s fine to also send such
requests to tex-k@tug.org or my address.

3 Software for which to send reports

Of course the most important programs for which
I’m collecting bug reports are TEX and Metafont
themselves: The contents of Volumes A–E of Com-

puters & Typesetting. (Volume A is equivalent to
The TEXbook in softcover; Volume C is equivalent to
The METAFONTbook in softcover. Volume B con-
tains the source code for TEX and the prose that
explains each part; Volume D contains the analogous
code and prose for METAFONT. Volume E contains
complete METAFONT code for the original Computer
Modern fonts.)

The other WEB programs still maintained by Don
are also fair game. The complete list:

dvitype gftodvi gftopk gftype mf mft pltotf

pooltype tangle tex tftopl vftovp vptovf weave

The main exception is BibTEX; reports for that
should be sent to the public list biblio@tug.org

(https://lists.tug.org/biblio); Oren Patashnik,
the BibTEX author, will see them there. Or you can
send them to me. (No particular deadlines or tuneup
release dates for BibTEX.) Reports for other Stanford
WEB programs can also be sent to tex-k or me.

4 CWEB(bin)

Don also still maintains the original CWEB programs
written by him and Silvio Levy, and will accept bug
reports for them, at the usual low priority; TAOCP

must take precedence.
With Don’s agreement, in 2019 we changed

the CWEB distributed in TEX Live to come from
the cwebbin package, developed by Andreas Scherer
at https://github.com/ascherer/cwebbin. It is
compatible with the original CWEB, and supports
more C and C++ language variants, has enhanced in-
ternationalization, etc. Reports for cwebbin should
go to tex-k@tug.org or the github project above.

Thanks, and let the bug reports flow.

References

[1] D. Knuth. Computers & Typesetting.
https://www-cs-faculty.stanford.edu/~knuth/abcde.

html

[2] D. Knuth. The TEX tuneup of 2008.
TUGboat 29(2):233–238, 2008.
https://tug.org/TUGboat/tb29-2/tb92knut.pdf

[3] D. Knuth. The TEX tuneup of 2014.
TUGboat 35(1):5–8, 2014.
https://tug.org/TUGboat/tb35-1/tb109knut.pdf

⋄ Karl Berry

karl (at) freefriends dot org

https://tug.org/texmfbug

Reporting bugs for Don Knuth (as soon as possible)

8 TUGboat, Volume 41 (2020), No. 1

Beyond Trip and Trap: Testing the urtext

WEB sources

David Fuchs

Abstract

Finding some undefined behavior and other tricky
bugs in Donald Knuth’s original WEB sources of TEX,
METAFONT, &c, and a request for plain TEX and
METAFONT input files.

1 Preparing for the next TEX tuneup

In anticipation of TEX and METAFONT approaching
versions π and e, respectively, I’ve been working on
some tools to help find any remaining “undefined
behavior” bugs in the core code, so they can be
addressed for posterity.

In the remainder of this note, I’ll mostly re-
fer to TEX for brevity, but everything said here ap-
plies to the set of principal Stanford WEB programs:
Tangle, Weave, TEX, METAFONT, TFtoPL, PLtoTF,
DVItype, and GFtype.

2 Range checks

As usual with this sort of tool, the first kind of “un-
defined behavior” to watch for at runtime is any
attempt to read from an uninitialized variable. (One
caveat, however: TEX and METAFONT do this inten-
tionally at one place, with the ready already variable.)
This is straightforward to handle using an auxiliary
bit per variable that indicates whether it has been
written to yet. Each field in a record (C struct) gets
its own bit, as they can be assigned to individually.

Next, each array has a declared range of valid
index values, so each access to an array should check
that the index is properly in range. Also, each read
of an array element should check that that indi-
vidual element has been initialized, as per the first
item. C programmers may be unaware that Pascal
allows each individual array to be non-zero-based
(e.g., weight: array [1957..2020] of pounds), but this
doesn’t add any significant complication.

Additionally, Pascal is somewhat unusual in that
it allows the programmer to specify that a scalar vari-
able will store only a certain range of values. C has
somewhat similar functionality with “bitfields” in
records, where each integer field can be specified
as taking a given number of bits, but Pascal com-
pletely generalizes this to ranges, exactly like array
subscripts; for instance, year of interest: 1957..2020
declares a variable that may contain values only in
the given range. As TEX and METAFONT make lib-
eral use of this feature, it’s also worth checking at

runtime that each assignment to such a variable is
within its declared range of valid values.

Similarly, if a procedure has a formal param-
eter with a limited range, at runtime each actual
parameter of each call should be checked for validity.
Checking that returned values from functions also
match their signatures rounds out the list of range
checks. It’s also worth checking for overflow on each
addition, subtraction, and multiplication operation
(leaving the hardware to watch for division by zero).

3 Toolchain background and an edge case:

empty change files

To do this checking, I wrote a purpose-built transpiler
that inputs Knuthian Pascal and outputs very vanilla
C code that implements all these runtime checks.
The transpiler is about 7,600 lines of C and the
runtime library about 2,500 lines.

TEX and METAFONT come with their own test
input files, trip.tex and trap.mf, with instructions
on how to use each to verify ports. These test files
are designed to execute every line of code (with
minor exceptions such as fatal error messages), and
thus provide one good way to try out the transpiler
output. Of course, generating the code involves
running Tangle on all of the above WEB files, which
tests it; and doing the complete trip and trap test
regimens runs the rest of the programs; except for
Weave, which I tested separately on all the above
WEB files as well. Finally, I also ran a number of large
documents that require only original (traditional?
ur? un-enhanced? Knuthian?) TEX.

All of the Pascal files are generated directly
from Tangle using empty change files, so everything
is tested exactly as in DEK’s master sources, un-
modified, with two exceptions: First, ready already,
as mentioned above, gets specially tagged as being
“unmemchecked”, so it won’t trigger a failure when
it’s read before being written. Second, the line of
“dirty Pascal” code in the tex.web module 〈Display
the value of glue set(p)〉 that tries to detect invalid
floating-point values that a bug may have caused
to be stored in a floating point field, has been re-
moved, as this attempt itself would be detected as
trying to access the wrong variant (discussed be-
low). Of course, as this later module is indexed
under “system dependencies” and “dirty Pascal” in
DEK’s sources, this is an expected spot for a platform-
specific change.

And one bug was found, manifested in both Tan-
gle and Weave: they share a bunch of code that deals
with text file reading, which is where the bug ap-
peared. The module 〈Read from web file and maybe
turn on changing〉 contains this code:

David Fuchs

TUGboat, Volume 41 (2020), No. 1 9

. . .

else if limit= change limit then

if buffer[0] = change buffer[0] then

if change limit> 0 then check change;

. . .

to see if the current line from the WEB file matches
the first line after an @x in the change file. First it
tests that the line lengths match, then that the first
characters match, and only then does it go to all the
expense of actually calling a function (check change)
that sees if the lines fully match. (Computers used to
be slow, so one could argue that this was a reasonable
optimization, rather than paying the price of just
calling check change every time.) The bug occurs
when the change file is completely empty, in which
case change buffer[0] is uninitialized when this code
tries to read it. It’s interesting to note that I would
not have bumped into this bug if not for the fact
that the transpiler handles DEK’s code directly, and
thus most of my change files are in fact empty.

However, rather to my dismay, in normal, non-
undefined-behavior-checking-mode, no matter what
junk might happen to be in change buffer[0], Tangle
and Weave still operate properly (since change limit

will be zero in this case, so check change won’t be
called anyway). So no one will ever be affected by this
bug, leaving the philosophical question as to whether
it’s actually a bug or not. A redeeming aspect is
that to fix this quasi-bug, one can simply remove
the middle line of the code shown! (Since, happily,
lines dont match ultimately checks the first charac-
ter as appropriate anyway.) This may be the first
bug I’ve ever encountered where simply removing
code fixes it. In fact, the if limit= change limit then

check can be removed, too!
A few cases of fetching uninitialized variables

were also detected in METAFONT. But in all these
cases, the value fetched doesn’t ever get looked at
as METAFONT continues to execute. For the record:
The procedure recycle value starts with

if t< dependent then v := value(p)
and then uses v in some of the subsequent cases in
its switch statement. It turns out that in some of
the cases where v is not used, value(p) hadn’t ever
been assigned to. Note that the existing code tries to
avoid the fetch when it’s not going to use the value,
but the condition t<dependent isn’t correct. The
other cases are in copy path, its mirror htap ypoc,
and scan expression, all of which copy right/left x/y
values, some of which may not have been previously
written to (when the source record came from, say,
new knot). Again, these copied, uninitialized values
are not subsequently used.

4 Variant records and homegrown memory

management

Another potential case of “undefined behavior” con-
cerns “variant records” (known as “unions” to C
programmers). Every time a member field of a union
is read from, we must check that the most recent
write to that variable was to that same member. This
is very important for TEX and METAFONT, as they
make extensive use of variant records; see particularly
the definition of memory word.

TEX and METAFONT never allocate dynamic
memory or deal with pointers, so we needn’t worry
about checking pointer dereference validity. But they
do their own form of memory management within
the big mem array; see get node and free node for
how a linked-list of free blocks is maintained. Note
that this whole scheme uses indexes into the mem

array as “pointers”, so they can be stored in 2 bytes.
(Or, for larger capacity TEXs, 4 bytes, which used to
make it harder to explain why “real” pointers weren’t
used, but recently many platforms have switched to
using 8-byte pointers exclusively, so TEX’s 4-byte
pseudo-pointers are again a space-saver.)

Of course, this approach to memory manage-
ment is not typical. In addition to pointers being
smaller, TEX implements a zero-overhead allocation
scheme: as compared with most implementations
of malloc in C libraries, where each allocated item
takes 8 or more extra bytes of storage beyond what
the caller requested, in TEX there are no extra bytes
per allocation. Recall that TEX was developed on a
machine with a data address space of only about half
a megabyte, so it’s a tight squeeze to fit in an entire
macro package, hyphenation rules, font metrics, etc.,
while leaving enough room to store a whole page’s
worth of boxes and glue, etc. Every byte counted,
and it’s fair to say that things are packed to the
gills (this can also be seen in Weave, which makes
two passes over the input file rather than try to fit
everything into memory).

As mentioned above, the mechanism for catching
uninitialized variables involves keeping an extra bit of
information per variable to indicate if it’s “readable”
or not. It’s fairly straightforward to add another ex-
tra bit to control variables’ “writable” status. Then,
by augmenting the code in get node and free node

to make special calls that turn the “writable” bits
on and off, respectively, for the entire node being
allocated or freed, access-after-free errors get caught
automatically. Additionally, we can arrange by using
a huge mem array that no freed slot is ever reused
later as part a subsequent allocation, thereby en-
suring that there’s no chance of an illicit read ever

Beyond Trip and Trap: Testing the urtext WEB sources

10 TUGboat, Volume 41 (2020), No. 1

getting lucky and going undetected. This requires
about 200 lines in TEX’s change file, including more
specific safeties, such as setting the static glue specs
zero glue, fil glue, . . . , fil neg glue to be not writable
(and all tests of TEX were run with and without this
change, just to be sure that no bugs get hidden by
it; ditto for subsequent changes mentioned herein).

The entire suite of programs pass all these checks,
as one might expect, given their robustness in the
field. Also, if I recall correctly, in the 1980s there
was an especially good Pascal compiler from DEC for
their VAX/VMS systems that was able to detect these
sorts of errors, and someone in the TEX user commu-
nity reported a few bugs of this sort that it found.

But there’s yet another, more subtle, type of
problem left to consider. The issue with keeping track
of which member of a union is “active” has already
been mentioned. But TEX goes a step further, and
re-uses members for different purposes in different
contexts. For instance, the in state record is how
TEX keeps track of the current line of input from
a file, with member fields that tell where the line
begins and ends, and where the next character to
read is within those limits. But when the current
input is instead from a macro, these same fields get
used to now keep track of the start of the macro’s
token list, and where along the way the next token is
to be fetched from, etc. Some of the fields are given
new names with a simple WEB macro that redirects
to the old name; other fields just get reused with the
same name (such as start, which is a fine name to
indicate either the start of a token list or start of a
line, even though in one case it’s a pointer into mem,
and in the other an index into the input buffer of
characters). But either way, how do we make sure
that a value stored with one meaning isn’t attempted
to be interpreted with the other meaning?

The answer is to manually introduce new mem-
ber fields in separate variants to distinguish the two
contexts, thus reducing the problem to one that’s al-
ready been addressed. This takes some manual labor
to examine every use of each symbol, and assign it
to one of the two variants, but it’s not too onerous,
resulting in fewer than 200 lines in the change file.

Quite a bit more extreme are the memory words

in mem; they have more than three dozen differ-
ent possible interpretations: height, width, depth,
glue stretch, glue shrink, penalty, etc., etc. The in-
teresting twist here is that multiple node types share
various fields under a common name and offset; both
boxes and rules have width, height, and depth, but
only a box has a shift amount; and a kern also has
a width, but no height or depth. The trick here is to
put each of these field types into its own variant in

memory word, so they get checked individually. So
the width of a box is the same sort of thing as the
width of a rule, but different than the other sorts of
things that other node types have at offset 1.

While separating out all the different uses of
memory word, we get an additional opportunity for
checking ranges. For example, consider TEX’s “delim-
iter fields”, which hold family and character values.
These normally get stored in byte-sized fields in a
memory word record, but the fam is always supposed
to be in the range 0..15. So, the newly introduced
variant can actually specify that its fam field is of
this range type, with the result that all the checking
logic will get kicked off by the transpiler. TEX has
other similar cases, including some where the permis-
sible values are more like an enumeration, and are in
fact turned into one; for instance the stretch order

and shrink order fields of a glue specification take
values of the enumerated type glue ord.

Quite a bit of manual effort was involved with
this set of alterations, requiring over 1100 lines in
TEX’s change file, but with satisfactory results.

5 An edgier case: unbalanced braces at

end of file

And, again, all this additional checking finds a bug,
this time in TEX. It’s in the use of the input state
(discussed above). If the module 〈Input the next line
of read file[m] 〉 encounters an end-of-file at a time
when braces haven’t been balanced, a call to the
error reporting routine is made. But this happens
before the formalities of setting up the input state
to properly represent the input line have happened.
So, an uninitialized field of the in state record gets
read, leading to the failure.

In fact, the Trip test hits this very situation (not
surprisingly, since it attempts to hit every line of code
in TEX, including each error message). It was never
noticed because of a happy coincidence in which
the junk values happen to produce a reasonable re-
sult, and TEX continues uninjured. Results could be
more disastrous with non-Trip inputs. The same bug
can occur with the fatal error “*** (cannot \read

from terminal in nonstop modes)” occurs, but
that’s even more of an edge case, and isn’t tested for
(as all fatal errors are not).

�� In particular, 〈Input and store tokens from
the next line of the file〉 hasn’t yet fallen through to
the code that sets loc and limit when the error call
happens. When error does 〈Pseudoprint the line〉,
we’re in trouble, since it thinks that loc and limit tell
where the contents of the problematic line are.

�� When a non-checking TEX gets to line 415 of
trip.tex, where the “File ended within \read” case is

David Fuchs

TUGboat, Volume 41 (2020), No. 1 11

tested, it kind of lucks out: limit happens to be a left-
over zero (from a left-over param start, no doubt),
while loc is a big number (similarly representing
a left-over token location), and start is actually a
correct pointer into buffer. So 〈Pseudoprint the line〉
randomly checks buffer[0] for end line char, then in
any case skips its for loop, and happily shows the two
empty context lines (lines 6167–68 in trip.log):

l.6167 <read 0>

l.6168

To see this bug in action, we can create a file
unbal.tex containing a single “{” character, and
create a second file readbug.tex containing:

\catcode‘{=1 \catcode‘}=2 \catcode‘#=6

\openin1 unbal

\def\A#1#2#3#4#5#6#7#8#9{\read1to \x}

\def\B#1#2#3#4#5#6#7#8#9{\A#1#2#3#4#5#6#7#8#9 \relax}

\def\C#1#2#3#4#5#6#7#8#9{\B#1#2#3#4#5#6#7#8#9 \relax}

\def\D#1#2#3#4#5#6#7#8#9{\C#1#2#3#4#5#6#7#8#9 \relax}

\def\E#1#2#3#4#5#6#7#8#9{\D#1#2#3#4#5#6#7#8#9 \relax}

\E123456789

Then, running virtex readbug results in a non-
sense <read 1> context:

! File ended within \read.

<read 1> {^^M#5#6#7#8#9{\D#

The trick here is that all those parameters cause
param start to be 36, which then gets used as a
bogus value for limit when show context is called,
resulting in unrelated stuff in buffer being shown as
the context.

6 More stress: checking constants

Thus far, all of the testing has used as input only
files which are part of the basic TEX distribution as it
came from Stanford. So, Tangle andWeave get tested
with all of the WEB sources; TEX and METAFONT

have their Trip and Trap test files, but TEX also runs
all the Weave output, as well as The TEXbook and
The METAFONTbook, while METAFONT runs all of
Computer Modern at various resolutions, and so on.

This represents a lot of stress, but doesn’t hit
everything. One additional direction I have tried
pushing was to see that the 〈Check the “constant”
values for consistency〉 checks were complete and
accurate. Nothing of much importance showed up,
other than there being no check that buf size is at
least big enough to hold the longest built-in prim-
itive name (which happens to be a tie, at 21 char-
acters each, between “abovedisplayshortskip” and
“belowdisplayshortskip”).

Finally, the only deeply-embedded constant in
TEX that can’t be changed at all (as far as I have
noticed, anyway) is that the hyphenation routines
only work on words of length up to 64. Or is it 63?

Or is it only on the first 64 letters of a word? And
does that mean only 63 possible hyphenation points,
or would it include a possible hyphen after the 64th
letter of a longer word? And where is this specified in
The TEXbook? Trying to figure this out by reading
the code is a challenge, as there are various 63’s, 64’s,
and 65’s scattered about (the latter having to do
with adding sentinels to the word being hyphenated
so that the pattern matching has something to match
for beginning- and ending-of-word; and/or adding
a byte that indicates the “current language” when
looking up hyphenation exceptions).

So, I created a test file containing the four lines
(abridged here):

\lefthyphenmin=0 \righthyphenmin=0

\hyphenation{-a-b-...-y-z-a-b-...-y-z-a-b-...-y-z}

\showhyphens{ab...yzab...yzab...yz}

\end

and tried it out. Sure enough, a bug occurs: the
code tries to store a value that’s not in the declared
range of the receiving variable. In particular, in
the hyphenate function, when 〈Look for the word
hc[1..hn] in the exception table, and goto found

(with hyf containing the hyphens) if an entry is found〉
is called, hn can already be 63, but then this module
increments it to 64 for a while (to fit the cur lang

byte), which puts hn out of range for a small number.
On common architectures, this bug probably

won’t actually change TEX’s behavior, since hn will
no doubt be stored in a full byte, which means it
will be able to actually store the value 64 properly.
By the way, I’d guess this bug got introduced when
multiple-language support was added to the hyphen-
ation code; the arrays grew by one to be able to
append the language byte, but the declaration of
hn got overlooked (easy to do, as it didn’t show an
explicit 0..63 range).

7 Need more \input

A big limitation in all this is the small number of
plain TEX and METAFONT files I’ve been able to use
as test input. The issue is that this is absolutely
plain, original TEX and METAFONT, as created by
DEK, without any of the added features of pdfTEX,
MetaPost, etc. So, I’m on the lookout for TEX doc-
uments that use only macro packages that work on
unmodified TEX. Any help in this regard would be
appreciated, and I’m happy to share credit for find-
ing any bugs that your devious macros or lengthy
tome might turn up!

⋄ David Fuchs
plain-tex-tests (at) tug dot org

https://tug.org/texmfbug/

Beyond Trip and Trap: Testing the urtext WEB sources

12 TUGboat, Volume 41 (2020), No. 1

Grapholinguistics, TEX, and a June 2020
conference

Yannis Haralambous

Abstract

This paper presents the conference Grapholinguistics
in the 21st Century that was to take place in Paris,
in June 2020. With the global health situation, it
will now be held as a video conference (https://

grafematik2020.sciencesconf.org). We give an
introduction to the discipline of grapholinguistics,
the history and the topics of the conference, and we
close with the fundamental question: why should a
TEX user join the conference?

1 What is Grapholinguistics?

Grapholinguistics is the discipline dealing with the
study of the written modality of language.

At this point, the reader may ask some very per-
tinent questions:“Why have I never heard of grapho-
linguistics?” “If this is a subfield of linguistics, like
psycholinguistics or sociolinguistics, why isn’t it
taught in Universities?” “And why libraries do not
abound of books about it?” To answer these ques-
tions we have to go back to the period 1906–1911,
when the Swiss linguist Ferdinand de Saussure was
lecturing in room B105 of the University of Geneva.
His lectures set the foundations of modern linguistics.
They were published posthumously in 1916, as the
notorious Cours de linguistique générale (translated
as Course in General Linguistics, or CLG for the
initiated [33]).

In his work, Saussure violently attacked writing:

Language and writing are two distinct systems
of signs; the second exists for the sole purpose
of representing the first. The linguistic object
is not both the written and the spoken forms
of words; the spoken forms alone constitute
the object. But the spoken word is so inti-
mately bound to its written image that the
latter manages to usurp the main role. [. . .]
The preceding discussion boils down to this:
writing obscures language; it is not a guise for
language but a disguise. [33, p. 23–24, 30]

For him, language is oral, period. Writing is just
an accidental secondary representation of language,
one that betrays it and hides its true nature. His
arguments were that (a) all human cultures have spo-
ken languages, while only a small number of them
write, (b) writing appeared much later than speech in

Originally written for MAPS 50 (2020). Reprinted with per-
mission.

human history. These are historical facts, but chrono-
logical precedence is less important than the unde-
niable fact that writing was the spark that ignited
culture and technology as we currently experience it.

Saussure being the founder of modern linguistics,
his ideas were followed by generations of allegiant
linguists. In every current Linguistics textbook the
two lowest-level subdisciplines of this science are Pho-
netics and Phonology. Phonetics studies all sounds
humans can produce in order to communicate (these
sounds are called phones), and phonology studies
systems of distinct equivalence classes of sounds used
by languages (these equivalence classes are called
phonemes).

The next level after phonology is morphology,
the study of minimal units of meaning (called mor-
phemes), such as [table] and [s] in the word “tables”
(the morpheme [s] being the suffix of plural number).
No linguist ever bothered to ask “are spoken and
written morphemes different?” This would be hereti-
cal behavior: according to Saussure, morphemes
are built out of phonemes, the only “true” building
blocks of language, and writing them on paper is only
a convention, a necessary evil, a curse in our civi-
lization that would be in better health if it stopped
using writing in the first place (as in Bradbury’s
Fahrenheit 451).

Thus, linguists have inherited Saussure’s dis-
dain of the written word and this resulted in an
ideology that French linguist Jacques Anis [2] calls
phonocentrism. Phonocentrism argues, among other
things, that the ideal writing system would be a
phonetic one: /D@ m"o:ô D@ ô"ItPtn

"
ôEpôIzEnteIS@n 2v

l"æNgwIdZ Iz kl"oUs t@ D@ sp"oUk@n w"2n D@ b"ERÄ ænd

m"o:ô If"IS@nt It "Iz/.1 Once this argument is taken for
granted, the next step is very naturally the simplifi-
cation of writing systems: why bother with complex
correspondences between graphemes (the elementary
units of writing) and phonemes? Why not write
a language as it is pronounced? For example, to
pronounce Japanese you need only 32 phonemes (27
consonants and 5 vowels), why then learn tens of
thousands of kanji characters?

The road to hell is paved with good intentions,
and phonocentrism has caused a lot of misery, such as
the 1982 monotonic reform in Greece, where accents
and breathings were abandoned because, according
to phonocentric dogma, they were inactive on the
phonemic level [16]. In China and Japan there are
regular initiatives to abandon the sinographic writing
system; fortunately, none of them have been taken

1 = the more the written representation of language is
close to the spoken one, the better and more efficient it is.

https://grafematik2020.sciencesconf.org
https://grafematik2020.sciencesconf.org

TUGboat, Volume 41 (2020), No. 1 13

seriously [18]. There is even a Simplified Spelling
Society (founded in 1908, in London), that publishes
a journal. Even if most linguists today do not nec-
essarily share Saussure’s scornful position vis-à-vis
writing, he did succeed in moving writing outside the
scope of scientific study for more than half a century.

Linguists in France, Germany, Japan, started
to escape the phonocentric ideology only as late
as the 1980s [2, 8, 10, 12]. Using again Anis’s ter-
minology [2], some linguists have adopted the “au-
tonomistic” principle, that states that writing is as
important as speech, and that we can study the for-
mer without necessarily referring to the latter; others
have adopted a less radical position, called “phono-
graphism”, which states that writing is important
but to study it we necessarily need to consider its
interaction with speech.

The difference between the two approaches be-
comes clear when we look at the way these two
currents define the minimal unit of the writing sys-
tem, called grapheme. For autonomists, a grapheme
is defined analogously to phonemes: we start by
considering drawings created for communication pur-
poses, called graphs [24], and then we build equiv-
alence classes of graphs needed to build a system
for a specific language, and we call them graphemes.
For phonographists [5], graphemes are defined as
merely written representations of phonemes or of mor-
phemes; in the French word chats, pronounced /S"a/,
〈ch〉 is a grapheme since it represents the phoneme
/S/ and 〈s〉 is a grapheme since it represents the
(mute) morpheme [s] of plural number.

In analogy to phonology the new discipline that
studies writing from a systemic point of view should
be called “graphology”, but unfortunately that name
was already taken by a pseudo-science. Many names
have been proposed (“graphemics”, “graphematics”,
“grammatology”, “graphonomics”, etc.). In this pa-
per we will keep the name “graphemics” for the
discipline that stands at the same level as “phonol-
ogy”, and “graphetics” [24] for the discipline that
stands at the same level as “phonetics”.

The discipline of grapholinguistics goes a step
further: it aims to study aspects of language that are
particular to its written representation, at all levels
of linguistics, starting with graphetics, graphemics,
and continuing with morphology, syntax, semantics,

2 The conference Grapholinguistics in the

21st Century

2.1 The 2018 conference and proceedings

In August 2016 the author began to contact re-
searchers in the domain of grapholinguistics, advanc-
ing the idea of a conference in the field, and more

specifically a conference that would be interdisci-
plinary and bring together people from linguistics,
computer science, typography and other areas. Their
reactions were immediately very positive and encour-
aging. There was consensus in favor of such an event.

The 2018 conference took place in Brest, from
June 14 to June 15. It lasted only two days, but
these days were very intense: the keynote speakers
were Florian Coulmas (The Best Writing System of
the World, a provocative title for a very insightful
talk [9]) and Christa Dürscheid (Image, Writing,
Unicode, a talk involving emojis and Unicode as the
guardian of the future of writing [11]). Both Florian
and Christa are leading researchers in the field, and
they both have written seminal books ([8] and [10]).
Besides the keynote talks, we had 20 regular talks,
from scientists and scholars coming from all around
the world (Europe,2 the US, India, Japan, China).

All talks were recorded. The interested reader
can find the recordings on YouTube via the confer-
ence Web site.3

After the conference the author was in search
for a publisher for the proceedings. This turned out
to be a nightmare: one notorious scientific publisher
would accept and publish only the technical papers;
another famous publisher specializing in linguistics
considered the topic of graphemics to be unworthy of
his publication goals; then there was a third notorious
publisher who accepted immediately but asked a
ridiculously high amount of money to “cover the
editorial fees”. Others would publish a book with
chapters but not proceedings. . . It became clear that
the only way of publishing decently the proceedings
of a conference in such a topic would be to build
one’s own infrastructure.

And this is what has been done. The author’s
wife Tereza founded a publishing house, called Fluxus
Editions and based in Brest. During the spring of
2019, conference participants expanded their talks
into research papers and the proceedings were pub-
lished in November 2019, as the first volume of the
Grapholinguistics and Its Applications Series (ISSN

2534–5192).
The cover of the book displays a beautiful and

enormous work of calligraphy by the Japanese artist
Yuichi Inoue, discovered in the summer of 2019 in a
beautiful museum in the Japanese town Niigata. To
best appreciate this kind of calligraphy, the reader
is encouraged to watch the YouTube video https:

2 We do not mention the UK separately because at that
time it was still part of Europe, but yes, there were attendees
from the UK.

3 http://conferences.telecom-bretagne.eu/

grafematik/

https://www.youtube.com/watch?v=Fnhg5hKp4WY
https://www.youtube.com/watch?v=Fnhg5hKp4WY
https://www.youtube.com/watch?v=Fnhg5hKp4WY
https://www.youtube.com/watch?v=Fnhg5hKp4WY
https://www.youtube.com/watch?v=Fnhg5hKp4WY
http://conferences.telecom-bretagne.eu/grafematik/
https://www.youtube.com/watch?v=Fnhg5hKp4WY
http://conferences.telecom-bretagne.eu/grafematik/

14 TUGboat, Volume 41 (2020), No. 1

Figure 1: The cover of the 2018 Proceedings

//www.youtube.com/watch?v=Fnhg5hKp4WY where
e4 will realize the effort and suffering it takes to
move a brush probably weighing over 20 kg in order
to paint a 1.5 meter tall Chinese character. That
calligraphy was chosen for the cover of the book
because it is an artifact at the limits of writing, big,
sublimely clumsy, hard to decipher, deeply human.

The book is published in OpenEdition mode, i.e.,
the PDF of the book is freely available on the pub-
lisher’s Web site5 and paper copies of the book can
be bought on Amazon, printed on demand. Other
books will follow, such as an important manifesto
of grapholinguistics by Dimitrios Meletis (The Na-
ture of Writing: A Theory of Grapholinguistics, [25])
and a major classic of the field: Gérard Blanchard’s
Sémiologie de la typographie [4]. Incidentally, both
of these books started as PhD theses: the latter as
a 1980 thesis at the Sorbonne in 1980, with Roland
Barthes (and others) as advisor(s), and the former as

4 We use Spivak gender-neutral pronouns: e = he/she,
eir = his/her, cf. https://en.wikipedia.org/wiki/Spivak_

pronoun.
5 http://www.fluxus-editions.fr/

2019 thesis at the University of Graz, with Christa
Dürscheid (and Bernhard Hurch).

2.2 The 2020 Conference

The 2018 conference being a success, except perhaps
from a geographical point of view (Brest is 600 km
away from Paris), it was originally decided to or-
ganize the next edition of the conference in Paris,
but now via video due to the global health situation,
from June 17 to June 19. It seems that this was
a wise decision because at the moment this text is
written, more than thrice as many submissions have
been received than for Brest in 2018.

To give the reader a better idea of what the
conference is about, here is an annotated list of
topics:

2.2.1 Epistemology of grapholinguistics:
history, onomastics, topics,
interaction with other disciplines

What should we call this discipline? (As strange as
it may seem, the issue of naming the discipline is a
hot one, as can be seen by the following anecdote:
a very famous grapholinguist emphatically left the
program committee of the 2018 conference because
the program committee was not inclined to use a
different term than “graphemics”, as e suggested. . .)
How is grapholinguistics located vs. other disciplines?
Meletis [24, p. 12] notes that in contrast to phonol-
ogy, phonetics is often considered as being a natural
science — should we consider that graphetics is a
natural science as well?

2.2.2 Foundations of grapholinguistics,
graphemics and graphetics

The first works on the foundations of grapholinguis-
tics appeared in the eighties ([2] in France, [21] in
Germany). This makes grapholinguistics a young
discipline and there is still a lot to explore even on
the foundational level.

2.2.3 History and typology of writing
systems, comparative
graphemics/graphetics

Exploring writing systems gives one an Indiana-
Jones-like feeling; they can be as exotic as the Ron-
gorongo script of Easter Island, and as common and
universal as the Latin script and its ramifications; it
is always a thrill to gain insight and to compare. Not
to mention marginal cases: what about sign writing?
(We all agree sign language is a language, but what
about writing it down? [13].) Or air writing of kanji
characters? (“Air writing” is making a spontaneous

https://www.youtube.com/watch?v=Fnhg5hKp4WY
https://en.wikipedia.org/wiki/Spivak_pronoun
https://en.wikipedia.org/wiki/Spivak_pronoun
http://www.fluxus-editions.fr/

TUGboat, Volume 41 (2020), No. 1 15

abstract gesture with the fingers to describe a kanji
character [37].)

2.2.4 Semiotics of writing and of writing
systems

How is meaning produced through writing? What
are the main ways, and what are the alternatives of
meaning production through this activity? As an
example, the very interesting study [36] mentions a
French flag with a circumflex accent in the middle.
If you wonder what that is, it is actually two things:
first transforming the circumflex accent as a sym-
bol of the loss of values (after a spelling reform in
2016) and second using it as a graphical reminder
of Petain’s flag of Vichy (remember the Vichy water
bottle Rick throws away after having killed Major
Strasser in Casablanca?). The circumflex accent
becomes an instrument of French nationalist propa-
ganda.

2.2.5 Computational/formal
graphemics/graphetics

Starting with Montague [26] and Chomsky [6, 7] in
the late fifties and sixties, there have been many
approaches to model language through mathemat-
ical structures. A first step in the formalization of
graphemics in similar ways has been undertaken in
2001 by Richard Sproat [35]. This is a topic where
much remains to be done.

2.2.6 Grapholinguistic theory of Unicode
encoding

Whenever writing becomes digital, Unicode is in-
volved. Browsing the Unicode charts one may have
the impression that everything has been taken care
of, and that one has the luxury of being able to write
in any script of the world, whether current or extinct.
But with great power comes great responsibility, and
Unicode has made choices that will definitely affect
writing systems for centuries to come. Therefore
Unicode has to be studied as an agent in the grapho-
linguistics arena (e.g., [17]).

2.2.7 Orthographic reforms, theory
and practice

Orthographic reforms are in the core of grapho-
linguistics since they change the way language is
written (supposedly leaving oral language untouched
but this ends up not being true6). Insisting on the
fact that some spelling reforms (like the Greek mono-
tonic reform [16]) have been disasters is pointless.

6 Moschonas in [27, p. 265] argues that the current ten-
dency of pronouncing ντ as /d/ rather than as /nt/, in the
Greek language, may come partly from the fact that according
to reformed hyphenation rules, this digraph is not broken.

But the story of how some populations managed to
resist a reform and to return to the previous state
of a writing system (cf. [22] for Malayalam) can be
empowering. Studying the impact of a reform can
prevent errors in future reforms.

2.2.8 Writing and art / Writing in art

Everybody knows Magritte’s “Ceci n’est pas une
pipe”, a sentence written inside his painting “La
Trahison des images” [the betrayal of images], un-
derneath the image of a pipe. Writing inside paint-
ing is not new: Byzantine icons have done it for
centuries. But writing also appears in comics, in
movies, in sculpture (like the man-made-of-letters
sculptures by the Catalan artist Jaume Plensa). And
there is the use of typography in literature, as in
the Dada or De Stijl movements, in Mallarmé’s “Un
coup de dès”, Apollinaire’s “Calligrammes” and in
many other works. An endless source of knowledge
and excitement.

2.2.9 Sinographemics

All about the Chinese script and its extended family:
Japanese kanji, Korean hancha, Vietnamese chữ nôm
and chữ hán. Sinographemics is an important topic
of the conference because there is so much to say
about the nature, structure and usage of Chinese
characters, a script used by 1.3 billion people.

2.2.10 Typographemics, typographetics

The study of the printed representation of language.
Typography is only half a millennium old, but it
is in part responsible for the fabulous technologi-
cal and social advances of this period. Typography
has developed its own codes and, before creating
TEX and METAFONT, Donald E. Knuth has studied
typographe[mt]ics in depth [19, 20]. As a subdisci-
pline of graphe[mt]ics, typographe[mt]ics becomes
a subdiscipline of linguistics: the creative power of
typography, scrutinized with scientific methods.

2.2.11 Texting, latinization, new forms of
written language

Technology always carries the cultural signature of
its creator(s). Computer science has evolved in Latin-
alphabet-language countries, programming languages
use it, and hence the Latin alphabet has become a
trademark of modernity (and some will say, glob-
alization). No wonder that people (and especially
young people) using modern technologies, modern
communication media, social networks, etc., have a
tendency to use the Latin alphabet to express their
vision of the world, even though their native language
uses some other script. This behavior is interesting

16 TUGboat, Volume 41 (2020), No. 1

per se and raises the question of what will happen
in the future.

2.2.12 ASCII art, emoticons and other
pictorial uses of graphemes

Long before ASCII art, writing was used pictorially;
see, for example, the wonderful anthology of type-
writer art, by Barrie Tullett [38]. But there is also the
opposite trend: instead of combining graphemes to
form shapes (and graphical meaning), one can create
new graphemes that encompass pictorial meaning;
that is the case of emoticons and emojis. Are they
graphemes? They sure are Unicode characters, and
their emergence was very beneficial to the Unicode
Consortium since they made it known to the masses.

2.2.13 The future of writing, of writing
systems and styles

Futurology is a very exciting field because in the
last decades its predictions have repeatedly been
proven wrong. Will the future will be bright like
in the movie Bicentennial Man, or post-apocalyptic
like in Mad Max? And what about writing? Will
our descendants, in a century or so, use only emojis,
like Xu Bing in his book [3]? Or will Unicode make
ours the best possible world, where every minority
will safely preserve and nourish its own language and
writing system, while English and the Latin alphabet
become the de facto communication tool?

2.2.14 Graphemics/graphetics of science
fiction and astrolinguistics

How did science-fiction authors imagine alien com-
munication, or human communication in the future?
What about signals from extraterrestrials, as in the
movie Contact? Science fiction is just fiction, but
there is a scientific discipline, namely astrolinguis-
tics,7 that takes the issue seriously: the reader can
consult the book [29], which describes a logical ap-
proach to communication with other living entities.
After all, we had better be ready before they arrive.

2.2.15 Graphemics/graphetics and
font technologies

We now enter into more technical issues. Font tech-
nologies have always interested TEX users, since TEX
has survived them all: GF, PK, PFB, TTF, OTF, . . .
(see [14] for more).8 Fonts are bridges between char-

7 Not to be confused with astroarcheology, which is an-
other pseudo-science. A fascinating one, but nevertheless not
obeying scientific rules.

8 But we shouldn’t forget that a lion needs a lioness, and
that the Great Master created TEX to work in a binary system:
TEX and METAFONT. The lioness’s genes flow in our blood

acters and glyphs, between graphemes and graphs.
They deserve a careful grapholinguistic study.

2.2.16 Graphemics/graphetics in
steganography and computer
security

Steganography is a cryptographic method whereby
the very existence of a hidden message in a text is
hidden: the goal is to transmit the message “un-
der the nose” of a third person. Graphetic methods
have been used for this, for example by adding sup-
plementary line segments between connected letters
in Arabic text, by moving around dots [34] or by
varying keshideh widths [1], etc. Phishing can occur
on the Unicode level, when homographic characters
are used (characters with identical glyphs, such as
Cyrillic 〈a〉 or Greek 〈o〉).

2.2.17 Graphemics/graphetics in
experimental psychology and
cognitive sciences

You probably have heard of dyslexia — there are
special fonts for people suffering from it. How are
they created, evaluated, used? [32] More generally,
what can reading/writing and its deficiencies teach
us about the way our brain works? [23] Can you
imagine the pathology where a patient can draw
Chinese characters without problem, but is unable
to read them once written? And besides patholo-
gies, there are many question about education: how
should reading/writing be taught? Syllable-wise or
letter-wise? Does the Joyo Kanji progression of kanji
characters taught in school make sense? [31] And
how does it affect the knowledge of Japanese lan-
guage by the hundreds of millions of Japanese people
who learned it that way?

2.2.18 Grapholinguistic applications in
natural language processing and
text mining

Last but not least comes computer science and the
way it processes language. Until now, Natural Lan-
guage Processing has paid very little attention to
graphemes. It considers that data have an atomic
level, namely the (Unicode) character. Glyphs do
not matter, neither do styles (bold, italic, underline)
or font sizes. This attitude will not last: texts are
written by humans and artificial intelligence aspires
to extract as much information as possible from them.
Humans use glyphs and styles and font sizes. A text

and even though we use modern font technologies we aspire
to more, and METAFONT is definitely more, an ideal still to
be reached.

TUGboat, Volume 41 (2020), No. 1 17

written in Comic Sans does not carry the same in-
formation as a text written in Monotype Ehrhardt.
Sooner or later NLP will acknowledge this fact, and
the conference may help to make this happen.

3 What has Grapholinguistics to do
with TEX?

In his infinite creativity and productivity, Donald E.
Knuth has not created, in TEX, simply a program for
typesetting. He modeled the whole process of writ-
ten document production. In grapholinguistic terms,
he modeled graphs and graphemes (called “glyphs”
and “characters” in TEX jargon), one-dimensional
graphemic sequences (called “character strings” or
“glyph strings”) which he placed into abstract recipi-
ents called “hboxes”, and two-dimensional graphemic
sequences (“vboxes”). He also modeled grapho-
linguistic processes such as kerning, hyphenation,
line breaking, page breaking, and so on.

Thus, besides being a programming language
and a program, TEX is also an abstract model of the
graphemic level of language. It is no wonder that
the community of TEX aficionados has contributed
much to the study of written language, even if the
terminology used was not the one of grapholinguistics
as it has emerged in the last thirty years.

Adapting TEX to various languages and writing
systems has led to grapholinguistic studies of these
languages and writing systems. As a simple example:
the fact that ligatures between components of Ger-
man words have to be broken (as in “Auflage”) has
been known in the TEX community at least since the
1980s [30] (and maybe even earlier). In grapholin-
guistic lingo, this becomes a principle: “ligatures are
an intergraphemic but intramorphemic phenomenon”
[17]. It should come as no surprise that grapholinguis-
tic studies such as [28] cite TEX-related publications
(such as the French Cahiers GUTenberg) among their
references.

TEX is at the forefront of studies on the writ-
ten language, and some day its contribution to the
emerging discipline of grapholinguistics will be duly
examined and acknowledged.

4 Why should TEX users attend the
Grapholinguistics in the 21st Century

conference?

TEX conferences are great places to meet people
and exchange information. They are unforgettable
events attracting pilgrims from all over the world.
TEX conferences have a great advantage which is also
their disadvantage: they deal mainly with TEX, its
descendants and its applications. Linguists, histori-
ans, psychologists, educators, artists will occasionally

visit TEX conferences, but mostly because they are
themselves TEX users or developers. The Grapho-
linguistics in the 21st Century conference has a goal
that goes beyond TEX meetings, namely to attract
scientists and practitioners from various horizons, to
discuss writing.

Of course, Grapholinguistics in the 21st Cen-
tury also gathers people we are used to seeing in
TEX meetings: typographers, font designers, Uni-
code aficionados. All in all, this conference aims
to use grapholinguistics as the common ground for
all kinds of people interested in the written word to
exchange ideas. It is an interdisciplinary conference
(and this is both a gift and a curse, as Mr. Monk
would say) based on the principle that somebody
interested in writing will be interested in writing in
eir own domain but also in other domains, and there-
fore will be interested in meeting people dealing with
writing in different ways. How many places on Earth
are there where an historian of writing will meet a
font designer, a linguist specializing in punctuation
will meet a psychologist studying second-language
learning in a different writing system, or an artist
having invented a writing system and engraved it on
the roof of the library of the Sidgwick campus of the
University of Cambridge? None, in fact.

And speaking of places on Earth, the Grapholin-
guistics in the 21st Century goes a step farther and
also considers writing outside our good old planet:
Jessica Coon, one of the three keynote speakers of
the conference, has been the linguistic advisor of
the well-known science-fiction blockbuster Arrival
by Denis Villeneuve, a $47M budget and $203M box
office movie that was the first one in history to have
a linguist in the leading role. This is a nice revenge
on Saussure since the movie shows aliens commu-
nicating with humans through a dynamic writing
system. (Aliens are heptapods throwing ink to a
glass barrier between their liquid environment and a
human-friendly environment, ink forms moving pat-
terns that are analyzed by the linguist — the excep-
tional Amy Adams — who manages to communicate
with them.) Unlike SF movies of the sixties where the
whole universe is unsurprisingly speaking English,
here a sophisticated writing system is used by aliens
and we witness Amy Adams’ efforts to decipher it.
Jessica Coon is the (real-world) linguist who made
this movie scientifically sound, and she will share
her thoughts about The Linguistics of Arrival: What
an alien writing system can teach us about human
language with us.

Therefore the answer to the question “Why
should TEX users attend the Grapholinguistics in
the 21st Century conference?” is simply: “for the fun

18 TUGboat, Volume 41 (2020), No. 1

of it”. Because TEX users9 share an intimate love
and care for the written word, and the conference
will gather exactly this kind of people, now from all
horizons.

Obviously, love and care for the written word
is not restricted to TEX users. Therefore, oh gentle
reader of this text, whether a TEX user or not, join us!

References

[1] A. Al-Azawi and M. Fadhil. Arabic text
steganography using kashida extensions with
Huffman code. Journal of Applied Sciences
10:436–439, 2010.

[2] J. Anis. L’écriture, théories et descriptions.
De Boeck, 1988.

[3] X. Bing. Book from the Ground: from point to
point. MIT Press, Cambridge, 2014.

[4] G. Blanchard. Sémiologie de la typographie.
Fluxus Editions, Brest, to appear.

[5] N. Catach. L’écriture en tant que plurisystème,
ou théorie de L prime. In Pour une théorie
de la langue écrite, pp. 243–256, Paris, 1988.
Éditions du CNRS.

[6] N. Chomsky. Syntactic structures. Mouton,
1957.

[7] N. Chomsky and M. Halle. The Sound Pattern
of English. Harper & Row, 1968.

[8] F. Coulmas. Writing Systems. Cambridge
University Press, 2003.

[9] F. Coulmas. „Die Buchstabenschrift ist an
und für sich die intelligentere.“ Überlegungen
zur Bewertung von Schriftsystemen. In
Y. Haralambous, ed., Proceedings of
Graphemics in the 21st Century, Brest 2018,
pp. 1–16, Brest, 2019. Fluxus Editions. https:

//doi.org/10.36824/2018-graf-coul

[10] C. Dührscheid. Einführung in die
Schriftlinguistik. Vandenhoeck & Ruprecht,
2016.

[11] C. Dürscheid and D. Meletis. Emojis:
A Grapholinguistic Approach. In
Y. Haralambous, ed., Proceedings of
Graphemics in the 21st Century, Brest
2018, pp. 167–183, Brest, 2019. Fluxus
Editions. https://doi.org/10.36824/

2018-graf-duer

[12] H. Glück. Schrift und Schriftlichkeit. J.B.
Metzler, Stuttgart, 1987.

9 See [15] for a description of the way TEX acts on people
using it.

[13] D. A. Grushkin. Writing signed languages:
What for? What form? American Annals
of the Deaf 161(5):509–527, 2017. https:

//doi.org/10.1353/aad.2017.0001

[14] Y. Haralambous. Fonts & Encodings.
From Advanced Typography to Unicode and
Everything in Between. O’Reilly, Sebastopol,
CA, 2007.

[15] Y. Haralambous. TEX as a path, a talk
given at Donald Knuth’s 80th birthday
celebration symposium. TUGboat 39(1):8–15,
2018. https://tug.org/TUGboat/tb39-1/

tb121haralambous-knuth80.pdf

[16] Y. Haralambous. Phonocentrism in Greece:
Side effects of two centuries of diglossia.
poster presented at AWLL12, Cambridge,
UK, https://hal.archives-ouvertes.fr/

hal-02480230, 2019.

[17] Y. Haralambous and M. Dürst. Unicode from
a linguistic point of view. In Y. Haralambous,
ed., Proceedings of Graphemics in the
21st Century, Brest 2018, pp. 167–183,
Brest, 2019. Fluxus Editions. https:

//doi.org/10.36824/2018-graf-hara1

[18] C. Holcombe. A History of East-Asia.
Cambridge University Press, 2011.

[19] D. E. Knuth. The letter S. The Mathematical
Intelligencer 2:114–122, 1980.

[20] D. E. Knuth and M. F. Plass. Breaking
paragraphs into lines. Software—Practice and
Experience 11:1119–1184, 1981.

[21] M. Kohrt. Problemgeschichte des
Graphembegriffs und des frühen Phonembegriffs.
Niemeyer, Tübingen, 1985.

[22] K. Manohar and S. Thottingal. Malayalam
Orthographic Reforms. Impact on Language
and Popular Culture. In Y. Haralambous,
ed., Proceedings of Graphemics in the
21st Century, Brest 2018, pp. 329–351,
Brest, 2019. Fluxus Editions. https:

//doi.org/10.36824/2018-graf-mano

[23] D. Martin, ed. Researching Dyslexia in
Multilingual Settings. Multilingual Matters,
Bristol, Buffalo, Toronto, 2013.

[24] D. Meletis. Graphetik. Form und Materialität
von Schrift. Verlag Werner Hülsbusch,
Glückstadt, 2015.

[25] D. Meletis. The Nature of Writing: A Theory
of Grapholinguistics. Fluxus Editions, Brest, to
appear.

https://doi.org/10.36824/2018-graf-coul
https://doi.org/10.36824/2018-graf-coul
https://doi.org/10.36824/2018-graf-duer
https://doi.org/10.36824/2018-graf-duer
https://doi.org/10.1353/aad.2017.0001
https://doi.org/10.1353/aad.2017.0001
https://tug.org/TUGboat/tb39-1/tb121haralambous-knuth80.pdf
https://tug.org/TUGboat/tb39-1/tb121haralambous-knuth80.pdf
https://hal.archives-ouvertes.fr/hal-02480230
https://hal.archives-ouvertes.fr/hal-02480230
https://doi.org/10.36824/2018-graf-hara1
https://doi.org/10.36824/2018-graf-hara1
https://doi.org/10.36824/2018-graf-mano
https://doi.org/10.36824/2018-graf-mano

TUGboat, Volume 41 (2020), No. 1 19

[26] R. Montague. English as a formal language.
In B. Visentini et al., eds., Linguaggi nella
Società et nella Tecnica, pp. 188–211.
Edizioni di Comunità, 1970.

[27] S. Moschonas. Ideology and Language. Patakis,
Athens, 2005. (In Greek).

[28] T. Nehrlich. Phänomenologie der Ligatur.
Theorie und Praxis eines Schriftelements
zwischen Letter und Lücke. In M. Giertier and
R. Köppel, eds., Von Lettern und Lücken: zur
Ordnung der Schrift im Bleisatz, pp. 13–38,
Paderborn, 2012. Wilhelm Fink.

[29] A. Ollongren. Astrolinguistics. Design
of a Linguistic System for Interstellar
Communication Based on Logic. Springer,
2013.

[30] H. Partl. German TEX. TUGboat 9(1):70–72,
Apr. 1988. https://tug.org/TUGboat/

tb09-1/tb20partl.pdf

[31] S. R. Paxton. Tackling the Kanji hurdle.
An investigation of Kanji order and its role
in facilitating the Kanji learning process.
Ph.D. thesis, Macquarie University, Sydney,
Australia, 2015.

[32] L. Rello and R. Baeza-Yates. Good fonts
for dyslexia. In Proceedings of the 15th
International ACM SIGACCESS Conference
on Computers and Accessibility, pp. 14:1–14:8,
2013. https://doi.org/10.1145/2513383.

2513447

[33] F. d. Saussure. Course in General Linguistics.
McGraw-Hill, New York, 1966. C. Bally,
A. Secehahye, A. Riedlinger, eds. B. Wade, tr.

[34] M. Shirali-Shahreza and M. Shirali-Shahreza.
A new approach to Persian/Arabic text
steganography. In 5th IEEE/ACIS
International Conference on Computer and
Information Science and 1st IEEE/ACIS
International Workshop on Component-Based
Software Engineering, Software Architecture
and Reuse (ICIS-COMSAR’06), pp. 310–315,
July 2006. https://doi.org/10.1109/

ICIS-COMSAR.2006.10

[35] R. Sproat. A Computational Theory of
Writing Systems. Cambridge University Press,
Cambridge, 2000.

[36] C. Tebaldi. From #Je Suis Circonflex to
#Je Suis Cornflakes: Racialization and
Resemiotization in French Nationalist Twitter.
In AAA, 2017. https://umass.academia.

edu/CatherineTebaldi.

[37] M. Thomas. “Air Writing” and Second
Language Learners’ Knowledge of Japanese
Kanji. Japanese Language and Literature
47(1):23–58, 2013.

[38] B. Tullett. Typewriter Art: A Modern
Anthology. Laurence King Publishing, London,
2014.

⋄ Yannis Haralambous

IMT Atlantique & CNRS UMR 6285

Lab-STICC

Technopôle Brest-Iroise CS 83818

29238 Brest Cedex 3

France

yannis.haralambous (at) imt-atlantique.fr

https://grafematik2020.sciencesconf.org/

https://tug.org/TUGboat/tb09-1/tb20partl.pdf
https://tug.org/TUGboat/tb09-1/tb20partl.pdf
https://doi.org/10.1145/2513383.2513447
https://doi.org/10.1145/2513383.2513447
https://doi.org/10.1109/ICIS-COMSAR.2006.10
https://doi.org/10.1109/ICIS-COMSAR.2006.10
https://umass.academia.edu/CatherineTebaldi
https://umass.academia.edu/CatherineTebaldi

20 TUGboat, Volume 41 (2020), No. 1

The DuckBoat—Beginners’ Pond:
You do not need to be Neo to cope with a
TikZ matrix

Herr Professor Paulinho van Duck

Abstract

In this installment, Prof. van Duck will show you
some tips & tricks about the useful TikZ library
matrix.

1 I am back!

Hi, (LA)TEX friends!
Did you miss me? Don’t worry; I am back as

quacky as usual!
Lately, I have been very busy at work. Moreover,

I am helping my friend Carla with her thesis. Hence,
I haven’t much time to dedicate to the DuckBoats,
so I decided to write only one article a year.

I have also changed the title of my column; now
it is “Beginners’ Pond,” to better highlight the tar-
geted audience.

Indeed, my articles may appear too trivial for a
serious journal like the TUGboat, but, as the volley-
ball coach Julio Velasco once said, “there are no easy

or difficult, but things someone can do or cannot!”
The name changing is also a way not to be linked

only to TEX.SE, since new Q&A sites are emerging.
For example, as Barbara announced in her col-

umn, I would call your attention to Top Answers
(https://topanswers.xyz/tex). The platform it-
self is open source, developed with the community
in mind and totally non-profit. The TEX community
there is still small, but eager to answer your ques-
tions, and would be more than happy to see new
users. So if this sounds interesting to you, just drop
by and have a look yourself.

My commitments did not prevent me from at-
tending the guItmeeting2019 , where I had the occa-
sion to meet Bär once again, together with many
other friends like Ulrike Fischer, her husband Gert,
and prof. Enrico Gregorio.

It was a very special event because we cele-
brated prof. Claudio Beccari, who will retire from
the group’s official positions due to age limits, but
he surely will not give up helping everyone on the
Forum.

This time, I will show you a useful TikZ library,
matrix. It allows building matrices of TikZ objects.
It could be a convenient alternative for node posi-
tioning, and it is also useful, for example, to create
math matrices with some graphical adding.

Before getting to the heart of the matter, I would
like to highlight a handy post on TEX.SE Meta, which
collects the most often referenced questions: https:
//tex.meta.stackexchange.com/questions/2419/

often-referenced-questions.
They are grouped by topic, so it is straight-

forward to find what you are looking for; most of
the posts listed should be a “must-read” for any
beginner.

Hence, take a look at the Often referenced ques-

tions post on Meta before asking, maybe you will
find a solution at once.

Last but not least, both newbies and experts
are invited to contribute to keeping it up-to-date!

2 Quack Guide No. 5
The (TikZ) Matrix

A TikZ matrix is analogous to an ordinary tabular,
but its elements are TikZ objects.

For example, you can build a table with nodes,
paths, whatever you prefer:

A B

C D

\documentclass{standalone}

\usepackage{tikz}

\usetikzlibrary{matrix}

\begin{document}

\begin{tikzpicture}

\matrix[

draw, thick,

column sep=.2cm, row sep=.1cm

] {

\node {A}; &

\draw (0,0) circle (.3cm) node {B};\\

\node[fill=gray!30, circle] {C}; &

\node[draw, dashed] {D};\\

};

\end{tikzpicture}

\end{document}

Like any other TikZ library, the first thing is to
load it with \usetikzlibrary{matrix}, after hav-
ing loaded the package TikZ itself.

Then, in your tikzpicture environments, you
will be able to use the command:
\matrix[〈options〉] (〈name〉) at (〈coords〉)

{〈content〉};
As usual, you have some 〈options〉 in square

brackets. For example, column sep and row sep

set the space between the columns/rows. Since the
matrix itself is a node, you may use other node
options, such as draw or thick.

Herr Professor Paulinho van Duck

https://topanswers.xyz/tex
https://tex.meta.stackexchange.com/questions/2419/often-referenced-questions
https://tex.meta.stackexchange.com/questions/2419/often-referenced-questions
https://tex.meta.stackexchange.com/questions/2419/often-referenced-questions

TUGboat, Volume 41 (2020), No. 1 21

Note that here they refer to the matrix, they are
not always inherited by the nodes it contains. For
instance, the option thick has effect both on the
matrix and its elements (see B and D in the previous
image); whereas the draw only draws the border of
the matrix and the path (B), but not the borders of
the \nodes A and C. You can use node={〈options〉}
to make some styles apply to every node of a matrix
(or, in general, of a tikzpicture).

You may also give your matrix a 〈name〉, if
needed, or position it at desired coordinates, 〈coords〉.

In the 〈content〉, there are the cells of your ma-
trix, separated by &, and with \\ for ending the
rows, as in a usual table. But pay attention: the \\
is mandatory also for the last row.

Another difference with respect to a tabular

is that you do not have to state in advance the
number of columns; you can add or remove as many
columns you like, without the need to change any
specification.

If the elements of your matrix are all nodes, you
may use the option matrix of nodes, and put only
the text of the nodes in the cells.

Indeed, it would be annoying to write
\node{...};

in every cell, but LATEX is fun, quack! Boring activi-
ties are avoided as much as cats avoid water!

Matrices of nodes are by far the most popular;
I will show you some examples in the following.

2.1 A convenient way for positioning

In the DuckBoat “The Morse code of TikZ” [1],
I used the positioning library to place a node
above/below/left/right to another.

It can be done very easily also with a TikZ
matrix. The advantage of using a matrix is that, if
you have to add a node between other existing nodes,
you do not have to change the positioning option of
the other nodes.

Let me explain better with an example. Suppose
you are using right = of ... to position two nodes
in the following way:

A B

\documentclass{standalone}

\usepackage{tikz}

\usetikzlibrary{positioning}

\begin{document}

\begin{tikzpicture}[nodes={draw}]

\node (A) {A};

\node[right= of A] {B};

\end{tikzpicture}

\end{document}

The same result can be achieved also with a
TikZ matrix:1

\usetikzlibrary{matrix} % <-- in preamble

...

\begin{tikzpicture}

\matrix[

matrix of nodes,

nodes={draw},

column sep=1cm

] {

A & B\\

};

\end{tikzpicture}

Now, if you would like to add a node in the
middle, with the positioning library you have to
change the reference node of B:

A Middle B

\usetikzlibrary{positioning} % <-- in preamble

...

\begin{tikzpicture}[nodes={draw}]

\node (A) {A};

\node[right= of A] (midnode) {Middle};

\node[right= of midnode] {B};

\end{tikzpicture}

Of course, with only two nodes, it is not a big
effort, but imagine to have a more complex picture,
with many nodes linked together, it could become
complicated, and tedious.

With a TikZ matrix you can simply add the
new node as a new element of the matrix:

\usetikzlibrary{matrix} % <-- in preamble

...

\begin{tikzpicture}

\matrix[

matrix of nodes,

nodes={draw},

column sep=1cm

]{

A & Middle & B\\

};

\end{tikzpicture}

It is convenient, is it not?

As I said earlier, with column/rows sep you
can set the width between columns/rows, the same
value for all the columns/rows of your matrix.

If you would like to increase or decrease the
distance between two specific rows, use [〈height〉]
after \\, as in an ordinary table.

There is a little difference, instead, in the way to
set the distance between two specific columns. In a

1 Hereinafter, for convenience, I will show only the

tikzpicture environments, unless something more is

needed.

The DuckBoat—Beginners’ Pond: You do not need to be Neo to cope with a TikZ matrix

22 TUGboat, Volume 41 (2020), No. 1

TikZ matrix, you cannot use the @-expression from
array package (e.g., @{\hspace{〈width〉}}), because
the parameter for table specification is not present.

You can achieve the same result by adding, in
the first row, the option [〈width〉] after the & which
separates the two columns involved. If the first row
has fewer elements of the other rows, you have to
add the necessary empty elements to use this feature.

An example is worth a thousand words:

A B

C
D E F G

\begin{tikzpicture}

\matrix[matrix of nodes,

nodes={draw,circle}]{

A &[-1mm] B & &[2mm] \\[1.5mm]

& C \\[-3.1mm]

D & & E & F & G\\};

\end{tikzpicture}

Since there is no table specification, you cannot
set the column alignment with l, c, or r as usual,
but you may use anchors or give a dimension to the
nodes and align the text inside. Let’s draw the nodes
to see the difference between the two approaches:

L C R L C R

LL CC RR LL CC RR

LLL CCC RRR LLL CCC RRR

\begin{tikzpicture}

\matrix[

matrix of nodes,

nodes={draw},

column sep=2pt, row sep=2pt,

column 1/.style={nodes={anchor=base west}},

column 2/.style={nodes={anchor=base}},

column 3/.style={nodes={anchor=base east}},

column 4/.style={

nodes={text width=width("LLL"),

align=left}},

column 5/.style={

nodes={text width=width("CCC"),

align=center}},

column 6/.style={

nodes={text width=width("RRR"),

align=right}},]{

L & C & R & L & C & R\\

LL & CC & RR & LL & CC & RR\\

LLL & CCC & RRR & LLL & CCC & RRR\\

};

\end{tikzpicture}

Please note that the option
column 〈m〉/.style={〈options〉}
sets a style for all the nodes in column 〈m〉, and the
expression width("〈string〉") is the TikZ equivalent
of calc’s \widthof to get the width of the box con-
taining 〈string〉. There are also the analogous func-
tions height("〈string〉") and depth("〈string〉").

2.2 Formatting columns, rows, single cells

In the previous examples, we have already encoun-
tered nodes={〈options〉}, an abbreviation for
every node/.append style=〈options〉
(the append means that the style is added to the
already existing options). We have also seen how to
format the nodes of a column.

There are similar features for formatting a row or
a specific cell. There are also options for formatting
every even or odd column/row.

In the case of matrices of nodes, there is also an
alternative way to set the options of a single node:
putting |[〈options〉]| just before the node text.

An example:

P a u l i n h o

V a n

D u c k

\begin{tikzpicture}

\matrix[

matrix of nodes,

column 1/.style={nodes={draw}},

row 2/.style={nodes={circle}},

row 2 column 2/.style={

nodes={draw, dashed}

},

every odd column/.style={

nodes={fill=gray!30}

},

every even row/.style={

nodes={font=\Large}

},

]{

P&a&u&l&i&n&|[fill=gray!70]|h&o\\

V&a&n\\

D&u&c&|[draw, dotted, thick]|k\\

};

\end{tikzpicture}

If you have many matrices with the same for-
matting, you can create a style for the whole matrix
and use it whenever you need it, or set a style for
all your matrices with
every matrix/.style={〈options〉}.

As usual, you may set the style with \tikzset,
if you’d like to use it in several of your TikZ pictures
throughout your document, or as an option of the

Herr Professor Paulinho van Duck

TUGboat, Volume 41 (2020), No. 1 23

specific tikzpicture environment where the style is
needed.

D u

c k
L i

o n

L i
o n

D u

c k

...

\tikzset{

% styles applied throughout the document

every matrix/.style={

matrix of nodes, draw

},

matrdoc/.style={

row 1 column 1/.style={

nodes={font=\bfseries}

}

},

}

...

\begin{document}

\begin{tikzpicture}[

% style applied throughout this tikzpicture

matrpic/.style={

row 1 column 1/.style={

nodes={draw, circle}}

}

]

\matrix[matrdoc] {

D&u\\c&k\\

};

\matrix[matrpic] at (2,0) {

L&i\\o&n\\

};

\end{tikzpicture}

\begin{tikzpicture}[

% style applied throughout this tikzpicture

matrpic/.style={

row 1 column 1/.style={

nodes={fill=gray!30}

}

}

]

\matrix[matrdoc] {

L&i\\o&n\\

};

\matrix[matrpic] at (2,0) {

D&u\\c&k\\

};

\end{tikzpicture}

\end{document}

2.3 Naming matrix elements

Once you give a 〈name〉 to your matrix, adding it in
round brackets or with the option name=〈name〉, you

can reference any cell with 〈name〉-〈n〉-〈m〉, where
〈n〉 is the row number of the cell and 〈m〉 the column
number.

This notation is very convenient if you need to
perform a repeated action on your cells:

D

u c k

\begin{tikzpicture}

\matrix[

matrix of nodes,

text height=height("k")

] (mymatr) {

&D\\[3mm]

u&c&k\\

};

\foreach \myind in {1,2,3}

\draw[->] (mymatr-1-2) --

(mymatr-2-\myind);

\end{tikzpicture}

In addition, sometimes it is useful to give a
mnemonic name to a node; you can do this by putting
|[name=〈name〉]|
before the node text:

A

B C

\begin{tikzpicture}

\matrix[

matrix of nodes, nodes=draw

]{

&[-1mm] |[name=start]|A &[-1mm]\\[1mm]

|[name=nodeb]|B & & |[name=nodec]|C\\

};

\draw (start) -| (nodeb);

\draw (start) -| (nodec);

\end{tikzpicture}

2.4 Tips & tricks about cell dimensions
and borders

When the nodes are drawn, you would expect to
have cells with homogeneous dimension, but the
result could seem strange:

p v d

p d l q

\begin{tikzpicture}

\matrix[matrix of nodes, nodes={draw}]{

p&&v&d\\p&d&l&q\\

};

\end{tikzpicture}

It happens because TikZ builds the bounding
box according to the node content.

The DuckBoat—Beginners’ Pond: You do not need to be Neo to cope with a TikZ matrix

24 TUGboat, Volume 41 (2020), No. 1

Explicitly setting the node minimum width or
text width solves the problem for that dimension,
but you cannot do the same for the height.

Well, if you read “The Morse code of TikZ”,
you already know the solution: use text depth and
text height.

Another thing that, at first sight, may seem
strange is that the empty cells have no border. It
happens because TikZ considers the empty cells. . .
empty!

If you would like to have borders everywhere,
you can use the option nodes in empty cells.

p v d

p d l q

\begin{tikzpicture}

\matrix[

matrix of nodes,

nodes in empty cells,

nodes={draw,

text depth=.14cm,

text height=.3cm,

minimum width=.7cm}

]{

p&&v&d\\

p&d&l&q\\

};

\end{tikzpicture}

You can also fill the empty cell with a default
value, using execute at empty cell=〈code〉.

However, there is still a little problem; the inner
borders are drawn “twice”, so they are thicker than
the contour.

There is a little trick to solve this situation,
using -\pgflinewidth as column/row separation.

Indeed, the border’s width is stored in the PGF

macro \pgflinewidth; if you decrease the column
and row separators by it, you will have only one line
drawn, not two.

p · v d

p d l q

\begin{tikzpicture}

\matrix[

matrix of nodes,

column sep=-\pgflinewidth,

row sep=-\pgflinewidth,

execute at empty cell={\node{\cdot};},

nodes={draw,

text depth=.14cm,

text height=.3cm,

minimum width=.7cm}

]{

p&&v&d\\

p&d&l&q\\

};

\end{tikzpicture}

2.5 Mysterious errors

When you put a TikZ matrix in a \newcommand, an
error appears which leaves newbies a bit astonished:

! Package pgf Error: Single ampersand used

with wrong catcode.

You may also get something like:

! Extra alignment tab has been changed to \cr.

when the text in a matrix node is a tabular.
These problems happen because TikZ does not

actually use & to separate cells, even if it seems so,
but the command \pgfmatrixnextcell.

I will not explain (it is too difficult for me!) how
TikZ substitutes the macro \pgfmatrixnextcell

with &, but sometimes it fails. If you are interested,
see Section 20.5 Considerations Concerning Active

Characters of [2] for further details.
Well, don’t panic, quack! There is a simple

solution for it, just use the option
ampersand replacement=〈macro name〉.

For instance, you can set
ampersand replacement=\&

and then use \& instead of & as column separator for
the TikZ matrix, or \pgfmatrixnextcell directly.

An example of a \matrix in a macro follows.
Note that if you put the ampersand replacement

as an option of the tikzpicture, it is valid for any
matrix in the picture.2

A B X C D X

% The % signs present in the following macro

% definition are mandatory to avoid

% spurious spaces

\newcommand{\mymatrix}[3][]{%

\begin{tikzpicture}[

ampersand replacement=\&,

nodes={draw},

baseline=0pt

]

\matrix[matrix of nodes, nodes={#1},

text width=1em, text centered,

] {

{#2} \& {#3} \& X\\

};

\end{tikzpicture}%

2 When you define a new command, as prof. Enrico Gre-

gorio always says, do not forget putting the %’s where needed,

to avoid spurious spaces!

I take the occasion to thank him for suggesting the previous

example and for his proofreading. Of course, all remaining

errors are mine.

Herr Professor Paulinho van Duck

TUGboat, Volume 41 (2020), No. 1 25

}

...

\begin{document}

\mymatrix{A}{B} \mymatrix[circle]{C}{D}

\end{document}

And here is an example of a tabular in a cell:

A
D u

c k

B C

\begin{tikzpicture}

\matrix [

nodes=draw,

matrix of nodes,

ampersand replacement=\&,

row sep=4pt,

column sep=4pt,

]{

A \& \begin{tabular}{cc}

D & u \\

c & k

\end{tabular}\\

B \pgfmatrixnextcell C \\

};

\end{tikzpicture}

2.6 Matrices of math nodes

A peculiar case of matrices of nodes are matrices
of math nodes; we could compare them to array

environments.
Indeed, the option matrix of math nodes al-

lows you to avoid putting $...$ or \(...\) in every
cell. As you know, LATEX hates repetitive boring
actions, quack!

If you would like to have some delimiters around
your matrix (or, in general, around any node), you
can use the
left/right/above/below delimiter = 〈delimiter〉
option.

The 〈delimiter〉 can be anything acceptable to
the ordinary \left command.

Of course, we do not need a TikZ matrix for a
simple math matrix; there are already many math
environments to create it without TikZ.

On the other hand, a TikZ matrix is useful if
you would like to add some graphical accessories to it.
In the following example, the first row and column
are highlighted using fit, and the main diagonal
with a \draw:

a11 a12 a11

a21 a22 a11

a31 a32 a11

\documentclass{standalone}

\usepackage{tikz}

\usetikzlibrary{matrix, fit}

\begin{document}

\begin{tikzpicture}[

every matrix/.style={

matrix of math nodes,

column sep =1mm,

row sep =1mm,

left delimiter={[},

right delimiter={]},

}

]

\matrix (mymat) {

a_{11} & a_{12} & a_{11}\\

a_{21} & a_{22} & a_{11}\\

a_{31} & a_{32} & a_{11}\\

};

\node[fit=(mymat-1-1)(mymat-1-3), draw,

inner sep=0pt, rounded corners=6pt] {};

\node[fit=(mymat-1-1)(mymat-3-1), draw,

inner sep=0pt, rounded corners=6pt,

dashed] {};

\draw[rounded corners=5pt, dotted, thick]

([yshift=-2pt]mymat-1-1.west) |-

([xshift=2pt]mymat-1-1.north) --

([yshift=2pt]mymat-3-3.east) |-

([xshift=-2pt]mymat-3-3.south) --

cycle;

\end{tikzpicture}

\end{document}

3 Conclusion

I hope you enjoyed my explanation, and if you are
searching for The One, remember:

A duck can fly!
(Humans cannot)

References

[1] C. Maggi. The DuckBoat—news from TeX.SE:
The Morse code of TikZ. TUGboat 39(1):21–26,
2018. https://tug.org/TUGboat/tb39-

1/tb121duck-tikz.pdf

[2] T. Tantau. The TikZ and PGF packages.
http://mirrors.ctan.org/graphics/pgf/

base/doc/pgfmanual.pdf. Package page:
https://ctan.org/pkg/pgf.

⋄ Herr Professor Paulinho van Duck

Quack University Campus

Sempione Park Pond

Milano, Italy

paulinho dot vanduck (at) gmail

dot com

The DuckBoat—Beginners’ Pond: You do not need to be Neo to cope with a TikZ matrix

https://tug.org/TUGboat/tb39-1/tb121duck-tikz.pdf
https://tug.org/TUGboat/tb39-1/tb121duck-tikz.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/pgf

26 TUGboat, Volume 41 (2020), No. 1

Creating accessible pdfs with LATEX

Ulrike Fischer

Abstract

This article describes the current state and planned
actions to improve accessibility of pdfs created with
LATEX, as currently undertaken by the LATEX Team.

1 Accessibility of pdf

The pdf language is at its core a page description

programming language. It describes very accurately
how text and graphical elements look and where they
are placed on a page. But it doesn’t describe the
semantic meaning of the elements and the reading
order; by looking at the code there is no way to
know if a text is a section heading or some water-
mark or a footnote or if it belongs to a tabular. You
can’t know where a sentence has its continuation on
another page or how many words a text contains,
and sometimes it is even impossible to identify the
characters; you only see some glyph index number
and copy & paste can give gibberish.

All this is not a problem as long as the pdf is
merely meant for printing or viewing but it restricts
its use for digital processing like copy & paste, auto-
matic extraction of billing data, reflowing, or using
the pdf with a screen reader. For such uses you need
accessible, structured, extractable content.

“Accessibility” as a standard is specified in PDF/

UA. It is also included in other standards, notably
PDF/A-1a and PDF/A-2a (the “a” stands for acces-
sible). The standards contain a number of require-
ments to help in retrieving the content for further
processing; for example, that every character has a
Unicode representation (no gibberish when copy &
pasting), that word spaces are correctly marked up
(so that reflowing works), that the language of the
document and the text is declared (so a screen reader
can guess the pronunciation), that pictures have sen-
sible alternative descriptions. And most importantly:
that the document is tagged. This last requirement
is responsible for adding structure information to the
content. It marks up content as section or tabular
cell or list item. This improves navigation in the
document with, for example, a screen reader, but
also exporting to other formats like XML.

TUG maintains a web page with links to relevant
standards, articles and packages [3].

First published in ArsTEXnica 28 (Oct 2019), pp. 135–139.
Reprinted with permission.

2 Creating a tagged pdf

Tagging consists of two main tasks. First, in the
stream object of a page every bit of content must be
marked and labelled with a number MCID n.

The following listing shows a small example.
The BDC and the EMC lines are the start and end
markers needed for tagging. The /H1 indicates that
the content is part of a sectioning element.

stream

/H1 <<MCID 0>> BDC

BT

/F17 14.3462 Tf 124.802 706.129

Td [(0.1)-1100(Section)]TJ

ET

EMC

In the second step a number of pdf objects must
be created to describe the structure tree. Every
object contains references to the parent /P and to
one or more kid elements /K. The leaf nodes are the
MCID n created in the first step. A typical object
looks roughly like this:

5 0 obj

<<

/Type /StructElem

/S /H1

/P 4 0 R

/K <</Type /MCR /MCID 0>>

>>

endobj

This is a structure element of the type /H1 (and
so a sectioning element) and it has one kid element,
the text of the section marked above.

Beside this a number of additional settings and
objects must be added to the pdf for cross-referencing
and “administration”.

3 Changing LATEX

Measured in computer time, LATEX is quite old. LATEX
is not only a format; it was always meant to be ex-
tended by packages and classes, and over time, many
people have contributed to LATEX. It has a quite
large user base with very varied demands regarding
stability, features and development. LATEX is still
used with a variety of engines: pdfTEX, X ETEX, Lua-
TEX, (u)pTEX and backends (dvips, dvipdfmx). One
could compare LATEX to an old city; lots of houses
built at different times in different styles by various
people, some modern, some older, some are in a good
state, others are falling apart but nevertheless home
to someone.

This means that changing LATEX is not easy;
we can’t break lots of packages and old documents
even if the reward is accessible pdfs. And we have to
consider that documents must be compilable in TEX

Ulrike Fischer

TUGboat, Volume 41 (2020), No. 1 27

systems of varying age, for example when uploading
them to a journal.

Thus, a very important aspect of the project is
to develop a long term change strategy and manage
integration of core support across the LATEX universe.

4 First steps towards tagging

Tagging pdf with LATEX has been on the agenda
for quite some time. Babett Schalitz wrote a thesis
about it in 2007, and Ross Moore has given a number
of talks and articles at TUG conferences since then.
When I considered working on the topic some time
ago I got code from both, and decided rather quickly
that first some work on the basics was needed.

Tagging should, in my opinion, not be done by
creating a package that patches all sorts of com-
mands in other packages; this is much too fragile. It
needs proper support in the LATEX kernel and proper
support in the main classes and packages. I also
thought that to identify the needed support and to
test implementations and interfaces, concrete code
was needed. So I wrote the package tagpdf. The
package offers core commands to tag a document and
to activate some of the other requirements needed to
make a pdf accessible. The low-level code to mark
up a text as a section looks roughly like this:

\tagstructbegin{tag=H1}

\tagmcbegin{tag=H1}

Section

\tagmcend

\tagstructend

The \tagstructXX commands create the struc-
ture, while the \tagmcXX commands add the MCID

marks to the page stream.
At present, the tagpdf package works with

pdfLATEX and LuaLATEX, and LuaLATEX gives the
best results, as one doesn’t have to worry about the
behaviour at page breaks. However, with the help
of the work on the pdfresources project described
below, it should be possible to extend it to other
engines and backends.

5 LATEX-dev

Another important step towards accessible pdfs was
the implementation of the latex-dev format by the
LATEX team and the maintainers of TEX Live and
MiKTEX; latex-dev is a pre-release of LATEX from
the development branch and made available through
CTAN. It allows users of a current TEX distribu-
tion to test their documents and code against an
upcoming LATEX release by simply using their pre-
ferred latex with the suffix -dev; pdflatex-dev,
lualatex-dev, xelatex-dev, etc. (For more infor-
mation, see [1].)

latex-dev has not been created solely with tag-
ging in mind, but it will help us to coordinate and
test changes with package and class authors, so it is
an important part of the project.

6 PDF resource management

When tagging a pdf one has to add a number of
settings to pdf dictionaries which can be described
as “global resources”. As already mentioned in an
answer [2], LATEX has no interfaces for this:

Unhappily, the LATEX format has overslept
PDF development quite entirely. Managing
global resources is the prime task for an
OS, format in TEX speak. Because of the
missing resource manager, both [tikz
and transparent] packages do what most
packages do, they think they are alone and
add their stuff to the resource, . . .

With tagging entering the scene it was clear that
something needed to be done to remedy this problem
and so the pdfresources project in the LATEX github
was created; it contains a (still quite experimental)
expl3-style interface which offers commands to add
contents to pdf resources in a controlled way. It also
offers backend-independent interfaces to a number of
core commands needed when writing objects to a pdf.
The package works with the main engines (pdfTEX,
LuaTEX and X ETEX) and backends (dvipdfmx and—
more or less—dvips).

The main task for the next months is to test
the code, to integrate it into the kernel and to adapt
existing packages to use it. The number of packages
which should use the pdf resource manager is not
very large but includes important packages such as
hyperref, tikz, media9, pdfx.

7 Adapting the engines

Another open issue that emerged during the last year
was missing functionality in engines and backends.
For example pdfTEX was not ready for pdf 2.0; it
has no command to set a major pdf version. (This
will be remedied in TEX Live 2020.) As pdf 2.0 adds
important features needed for accessibility (the con-
cept of associated files) this is clearly something that
should be changed. It would be also useful if pdfTEX
could execute code at shipout time as can be done
with luatex with \latelua. The dvipdfmx backend
and dvips are missing additional color stacks.

8 Adding hooks

As already shown in sections 2 and 4, tagging a pdf
requires adding quite a number of commands. Obvi-
ously, all the standard structures should if possible
add the needed code automatically. For this, hooks

Creating accessible pdfs with LATEX

28 TUGboat, Volume 41 (2020), No. 1

are needed at the right places. The “right place”
has firstly a technical meaning; with the exception
of LuaTEX, the tagging code inserts whatsits; this
means it can change the output if used in the wrong
place (as sometimes anchors set by hyperref do).

But more importantly the “right place” means
that we need to identify the owner of the code which
should insert the tagging code. For example, sections
are generally created with \@startsection. So this
kernel command looks like a natural place to insert
hooks for tagging commands. On the other hand,
chapters and parts have special commands created
by the classes. Does it make sense if the kernel han-
dles the one part and the classes the other? Other
examples are bibliographies and glossaries; packages
like biblatex and glossaries look like the natural
owner here—and both packages already have lots
of hooks which make it easy to implement tagging—
but both also use standard structures like lists or
tabulars and additions to these generic environments
could clash with their needs.

This means that besides a pdf resource manager
we also need a hook management. And we need
lots of real use cases and examples to be able to
investigate the various dependencies.

9 Mathematics

How to tag maths is still an open problem. There are
quite a number of possibilities to make it accessible.

• One is to attach the LATEX source code, ei-
ther as file or verbatim, with /ActualText to
the math structure. For a number of environ-
ments this can be automated quite well as the
axessibility package demonstrates (but it is
difficult for inline math input with $...$). The
usability with a screen reader is not bad—even
if not every word was correctly read aloud in my
tests—but it requires that the user understands
LATEX input syntax, and with large equations
and complicated grouping it can be quite diffi-
cult to follow and to navigate through subequa-
tions. Usability can be improved if one invests
the time to manually split the math and add
explaining words.

• Another possibility is to mark all the maths bits
with MathML structure names. At least with
LuaTEX this can probably be done more or less
automatically—proofs of concept are the Con-
TEXt format and TEX4ht. But it is unknown
whether screen readers or other applications can
actually use the information.

• A third possibility is to convert the equation
to MathML, for example with MathJax, and
attach it as an associated file to the structure.

But here too it is unclear how such MathML

can be processed by the pdf consumer. It is also
unknown whether the presentation or content
flavour of MathML should be used in this case.

The pdf standard requires that glyphs and sym-
bols are mapped to Unicode. Here too variants
are possible; for example, a could be mapped to
U+1D44E (Mathematical Italic Small A) or U+0061

(Latin Small Letter A);
∫

could mapped to U+222B

(Integral) or to \int (as is done by the package mmap).
The first alternative sounds more Unicode-like but
actually the screen readers don’t seem to know what
to do with the symbols.

The main task here is to get more information
to be able to decide about which route to follow.

10 Contacts

Quite a number of questions and projects circle
around the pdf specification, the needs of users and
of pdf consumer applications. To get tagging work-
ing it is not enough to know how TEX works. So one
important part of the tagging project is to get in
contact with people having inside knowledge about
pdf and pdf consumer applications in various pdf
related organizations and to promote the project in
the TEX world to get user feedback.

11 Summary

Adding tagging facilities to LATEX is a large project
with many aspects. Happily it doesn’t have to be
done in one large jump; with the tagpdf package it
is already possible for adventurous users with a bit
of knowledge in TEX programming to tag quite large
documents. Despite the clear warning in the docu-
mentation that it isn’t meant for production, I have
already received feedback about several successful
uses. This gives hope that it can evolve to a stable
and usable system.

References

[1] LATEX. LATEX development formats are now
available, 2019. https://latex-project.org/
news/2019/09/01/LaTeX-dev-format/

[2] H. Oberdiek. TikZ and transparent

incompatibility, 2015. https://tex.

stackexchange.com/a/253417/2388

[3] TUG. PDF accessibility and PDF standards,
2019. https://tug.org/twg/accessibility/

⋄ Ulrike Fischer
LATEX Project
Mönchengladbach, Germany
ulrike.fischer (at) latex-project.org

Ulrike Fischer

TUGboat, Volume 41 (2020), No. 1 29

LATEX3 News
Issue 11, February 2018

Contents

Move of sources from Subversion to Git 1

Version identifiers 1

expl3 updates and extensions 1

l3sort moves to the kernel 1

Boolean functions 1

Revision of l3file 1

Detection of \cs_generate_variant:Nn errors 1

Accessing random data 2

More powerful debugging 2

Mark-up changes in l3doc 2

l3build updates 2

Move of sources from Subversion to Git

The LATEX team have used a variety of version control
systems over the life of the LATEX3 sources. For a long
time we maintained the LATEX3 sources in Subversion
(svn) but also provided a read-only clone of them
on GitHub using SubGit from TMate Software [1]
to synchronize the two repositories—a solution that
worked very well.

We have now retired the Subversion repository
and completely moved over to Git, with the master
LATEX3 repository hosted on GitHub: https://github.
com/latex3/latex3. This new approach means
we are (slowly) adopting some new approaches to
development, for example branches and accepting pull
requests.

Version identifiers

Following this change, we have removed Subversion $Id

lines from the LATEX3 sources. At present, we will be
retaining \GetIdInfo as there are several possible use
cases. The LATEX3 sources now have only release date
strings as identifiers. However, the team recommend
that package authors include version information
directly in \ProvidesExplPackage (or similar) lines.

expl3 updates and extensions

Work has continued on the codebase over the last year,
with both small changes/fixes and more substantial
changes taking place. The following sections summarise
some of the more notable changes.

l3sort moves to the kernel

Sorting is an important ability, and for some time the
team have provided a stand-alone l3sort to support this.
The functionality has seen wide take up, and so has
now been integrated directly into the kernel. This took
place in parallel with some interface changes to “round
out” the code.

Boolean functions

For some time, the team have been aware that boolean
expressions can fail in certain circumstances, leading
to low-level errors. This is linked to two features of the
long-standing \bool_if:n(TF) function: expandable
operation and short-circuit evaluation.
Addressing that has meant two changes: altering

\bool_if:n(TF) to always evaluate each part of the
expression, and introducing new short-circuit functions
without the issue. The latter are lazy in expl3 terms:

• \bool_lazy_all:n(TF)

• \bool_lazy_and:nn(TF)

• \bool_lazy_any:n(TF)

• \bool_lazy_or:nn(TF)

These new, stable functions are now the recommended
way of handling boolean evaluations. Package authors
are encouraged to employ these new functions as
appropriate.

Revision of l3file

Large parts of l3file have been revised to give a better
separation of path/file/extension. This has resulted in
the addition of a number of new support functions and
variables.
At the same time, new experimental functions have

been added to utilise a number of useful primitives in
pdfTEX: \file_get_mdfive_hash:nN, \file_get_
size:nN and \file_get_timestamp:nN. Currently,
X ETEX does not support getting file size/timestamp
information: this is available in other engines.

Paralleling these changes, we have added
(experimental) support for shell escape to the l3sys

module, most notably \sys_shell_now:n. A range of
test booleans are also available to check whether shell
escape is enabled.

Detection of \cs_generate_variant:Nn errors

The ability to generate variants is an important feature
of expl3. At the same time, there are crucial aspects

LATEX3 News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2018, all rights reserved.

LATEX3 News #11

30 TUGboat, Volume 41 (2020), No. 1

of this approach that can be misunderstood by users.
In particular, the requirement that variants map
correctly to an underlying N- or n-type base function
is sometimes misunderstood.
To help detect and correct these cases, \cs_

generate_variant:Nn now carries out error checking
on its arguments, and raises a warning where it is
mis-applied. At present, the team have avoided making
this an error as it is likely to be seen by end users
rather than directly by package developers. In time,
we are likely to revisit this and tighten up further on
this key requirement.

Accessing random data

To support randomised data selection, we have
introduced a family of experimental functions which
use underlying engine support for random values, and
provide one entry at random from the data type.
At the same time, we have addressed some issues

with uniformity stemming from the random number
function used by pdfTEX and inherited by other
engines. This means that expl3’s FPU will generate
pseudo-random values across the range of possible
outputs.

More powerful debugging

A new set of debugging functions have been added
to the kernel. These allow debug code to be enabled
locally using the new option enable-debug along
with functions \debug_on:n and \debug_off:n.
Accompanying this change, we have improved the
handling of global/local consistency in variable setting.

Mark-up changes in l3doc

Since the introduction of the __ syntax to mark
internal functions, the need for explicit markup of
internal material in sources has been negated. As
such, we have now dropped the requirement to mark
internal material with [aux] when using l3doc. Instead,
the status of functions and variables is auto-detected
from the presence of __. For cases where non-standard
names are used for internal code, the mark-up [int] is
retained, e.g.

\begin{macro}[int]{\l@expl@enable@debug@bool}

l3build updates

Work on l3build has continued in parallel with expl3

work, in particular continuing to develop features to
allow wider use of the tool.

Paralleling the move of the LATEX3 codebase to Git,
l3build now has its own separate Git repository: https:
//github.com/latex3/l3build. This will enable us
to involve other developers in the Lua code required
for the build system. At the same time, we have split
the code into a number of small source files, again to
ease development both for the team ourselves and for
potential collaborators.

Another major change is that l3build can now retain
the structure of source repositories when creating a
CTAN archive. Whilst the team favor ‘flat’ source
setups, other users prefer structured approaches. Most
notably, this new l3build functionality means that it is
now used to carry out beamer releases.

The other major new feature is a new approach
to multiple test setups, which replaces the older
--testfiledir option. In the new approach, separate
configuration files are listed in the main build.lua

script, and can be selected manually using a new
--config switch. This new approach allows complex
test setups to be run in a totally automated fashion,
which is important for kernel testing.

Some changes to the normalisation routines have
been carried out, some to deal with upcoming LuaTEX
changes, others to address aspects which show up only
in some tests. This has required .tlg updates in some
cases: as far as possible, we strive to avoid requiring
changes to the reference files.

References

[1] SubGit, TMate Software, https://subgit.com

[2] Links to various publications by members of the
LATEX Project Team.
https://www.latex-project.org/publications

LATEX3 News #11

TUGboat, Volume 41 (2020), No. 1 31

LATEX3 News
Issue 12, January 2020

Contents

Introduction 1

New features in expl3 1
A new argument specifier: e-type 1
New functions 1
String conversion moves to expl3 1
Case changing of text 2

Notable fixes and changes 2
File name parsing 2
Message formatting 2
Key inheritance 2
Floating point juxtaposition 2
Changing box dimensions 2
More functions moved to stable 2
Deprecations 2

Internal improvements 2
Cross-module functions 2
The backend 2

Better support for (u)pTEX 2

Options 3

Engine requirements 3

Documentation 3
News . 3
ChangeLog . 3

Changes in xparse 3

New experimental modules 3

l3build changes 3

Introduction

There has been quite a gap since the last LATEX3 News

(Issue 11, February 2018), and so there is quite a bit to
cover here. Luckily, one of the things there is to cover
is that we are using a more formalised approach for
logging changes, so writing up what has happened is
a bit easier. (By mistake LATEX3 News 11 itself did not
get published when written, but is now available: we
have kept the information it contains separate as it is a
good summary of the work that had happened in 2017.)
Work has continued apace across the LATEX3

codebase in the last (nearly) two years. A lot of this
is ultimately focussed on making the core of expl3 even

more stable: squeezing out more experimental ideas,
refining ones we have and making it a serious option for
core LATEX programming.
As a result of these activities, the LATEX3

programming layer will be available as part of the
kernel of LATEX2ε from 2020-02-02 onwards, i.e., can
be used without explicitly loading expl3. See LATEX

News 31 [2] for more details on this.

New features in expl3

A new argument specifier: e-type

During 2018, the team worked with the TEX Live,
X ETEX and (u)pTEX developers to add the \expanded
primitive to pdfTEX, X ETEX and (u)pTEX. This
primitive was originally suggested for pdfTEX v1.50
(never released), and was present in LuaTEX from the
start of that project.

Adding \expanded lets us create a new argument
specifier: e-type expansion. This is almost the same as
x-type, but is itself expandable. (It also doesn’t need
doubled # tokens.) That’s incredibly useful for creating
function-like macros: you can ensure that everything is
expanded in an argument before you go near it, with
not an \expandafter in sight.

New functions

New programming tools have appeared in various
places across expl3. The highlights are

• Shuffling of sequences to allow randomization
• Arrays of integers and floating point values; these
have constant-time access

• Functions to return values after system shell usage
• Expandable access to file information, including file
size, MD5 hash and modification date

For the latter, we have revised handling of file names
considerably. There is now support for finding files
in expansion contexts (by using the \(pdf)filesize
primitive). Spaces and quotes in file names are now
fully normalised, in a similar manner to the approach
used by the latest LATEX2ε kernel.

String conversion moves to expl3

In addition to entirely new functions, the team have
moved the l3str-convert module from the l3experimental

bundle into the expl3 core. This module is essential for
dealing with the need to produce UTF-16 and UTF-32
strings in some contexts, and also offers built-in escape
for url and PDF strings.

LATEX3 News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2020, all rights reserved.

LATEX3 News #12

32 TUGboat, Volume 41 (2020), No. 1

Case changing of text

Within expl3, the team have renamed and reworked the
ideas from \tl_upper_case:n and so on, creating a
new module l3text. This is a “final” home for functions
to manipulate text ; token lists that can reasonably be
expected to expand to plain text plus limited markup,
for example emphasis and labels/references. Moving
these functions, we have also made a small number of
changes in other modules to give consistent names to
functions: see the change log for full details.
Over time, we anticipate that functions for other

textual manipulation will be added to this module.

Notable fixes and changes

File name parsing

The functions for parsing file names have been entirely
rewritten, partly as this is required for the expandable
access to file information mentioned above. The new
code correctly deals with spaces and quote marks in file
names and splits the path/name/extension.

Message formatting

The format of messages in expl3 was originally quite
text-heavy, the idea being that they would stand out
in the .log file. However, this made them hard to find
by a regular expression search, and was very different
from the LATEX2ε message approach. The formatting
of expl3 messages has been aligned with that from the
LATEX2ε kernel, such that IDE scripts and similar will
be able to find and extract them directly.

Key inheritance

A number of changes have been made to the
inheritance code for keys, to allow inheritance to work
“as expected” in (almost) all cases.

Floating point juxtaposition

Implicit multiplication by juxtaposition, such as 2pi,
is now handled separately from parenthetic values.
Thus for example 1in/1cm is treated as equal to
(1in)/(1cm) and thus yields 2.54, and 1/2(pi+pi)

is equal to pi.

Changing box dimensions

TEX’s handling of boxes is subtly different from other
registers, and this shows up in particular when you
want to resize a box. To bring treatment of boxes, or
rather the grouping behavior of boxes, into line with
other registers, we have made some internal changes to
how functions such as \box_set_wd:N are implemented.
This will be transparent for “well-behaved” use cases of
these functions.

More functions moved to stable

A large number of functions which were introduced as
candidates have been evaluated and moved to stable
status. The team hopes to move all functions in expl3

to stable status, or move them out of the core, over the
coming months.

Deprecations

There have been two notable sets of deprecations
over the past 18 months. First, we have rationalised
all of the “raw” primitive names to the form \tex_

<name>:D. This means that the older names, starting
\pdftex_..., \xetex_..., etc., have been removed.

Secondly, the use of integer constants, which dates
back to the earliest days of expl3, is today more likely
to make the code harder to read than anything else.
Speed improvements in engines mean that the tiny
enhancements in reading such constants are no longer
required. Thus for example \c_two is deprecated in
favour of simply using 2.

In parallel with this, a number of older .sty files
have been removed. These older files provided legacy
stubs for files which have now been integrated in the
expl3 core. They have now had sufficient time to allow
users to update their code.

Internal improvements

Cross-module functions

The team introduced the idea of internal module
functions some time ago. Within the kernel, there are
places where functions need to be used in multiple
modules. To make the nature of the kernel interactions
clearer, we have worked on several aspects

• Reducing as far as possible cross-module functions
• Making more generally-useful functions public, for
example scan marks

• Creating an explicit cross-kernel naming
convention for functions which are internal but are
essential to use in multiple kernel modules

The backend

Creating graphics, working with color, setting up
hyperlinks and so on require backend-specific code.
Here, backends are for example dvips, xdvipdfmx and
the direct PDF mode in pdfTEX and LuaTEX. These
functions are needed across the LATEX3 codebase and
have to be updated separately from the expl3 core.
To facilitate that, we have split those sources into a
separate bundle, which can be updated as required.

At the same time, the code these files contain is
very low-level and is best described as internal. We
have re-structured how the entire set of functions are
referred to such that they are now internal for the area
they implement, for example image inclusion, box affine
transformations, etc.

Better support for (u)pTEX

The developers behind (u)pTEX (Japanese TEX) have
recently enhanced their English documentation (see

LATEX3 News #12

TUGboat, Volume 41 (2020), No. 1 33

https://github.com/texjporg/ptex-manual). Using
this new information, we have been able to make
internal adjustments to expl3 to better support these
engines.

Options

A new option undo-recent-deprecations is now
available for cases where a document (or package)
requires some expl3 functions that have been formally
removed after deprecation. This is to allow temporary

work-arounds for documents to be compiled whilst code
is begin updated.
The “classical” options for selecting backends (dvips,

pdftex, etc.) are now recognised in addition to the
native key–value versions. This should make it much
easier to use the expl3 image and color support as it is
brought up to fully-workable standards.

Engine requirements

The minimum engine versions needed to use expl3 have
been incremented a little:

• pdfTEX v1.40
• X ETEX v0.99992
• LuaTEX v0.95
• ε-(u)pTEX mid-2012

The team have also worked with the X ETEX
and (u)pTEX developers to standardise the set of
post-ε-TEX utility primitives that are available: the
so-called “pdfTEX utilities”. These are now available in
all supported engines, and in time will all be required.
This primarily impacts X ETEX, which gained most of
these primitives in the 2019 TEX Live cycle. (Examples
are the random number primitives and expandable file
data provision.) See LATEX News 31 [2] for more.

Documentation

News

The LATEX3 News files were until recently only used to
create PDF files on the team website [1]. We have now
integrated those into the l3kernel (expl3 core) bundle.
The news files cover all of LATEX3 files, as the core files
are always available.

ChangeLog

Since the start of 2018, the team have commenced a
comprehensive change log for each of the bundles which
make up the LATEX3 code. These are simple Markdown
text files, which means that they can be displayed
formatted in web views.

Changes in xparse

A number of new features have been added to xparse.
To allow handling of the fact that skipping spaces
may be required only in some cases when searching

for optional arguments, a new modifier ! is available
in argument specifiers. This causes xparse to require

that an optional argument follows immediately with no
intervening spaces.

There is a new argument type purely for
environments: b-type for collecting a \begin...\end

pair, i.e., collecting the body of an environment. This
is similar in concept to the environ package, but is
integrated directly into xparse.

Finally, it is now possible to refer to one argument as
the default for another optional one, for example

\NewDocumentCommand{\caption}{O{#2} m} ...

New experimental modules

A number of new experimental modules have been
added within the l3experimental bundle:

l3benchmark Performance-testing system using the
timing function in modern TEX engines

l3cctab Category code tables for all engines, not just
LuaTEX

l3color Color support, similar in interface to xcolor

l3draw Creation of drawings, inspired by pgf, but using
the LATEX3 FPU for calculations

l3pdf Support for PDF features such as compression,
hyperlinks, etc.

l3sys-shell Shell escape functions for file manipulation

l3build changes

The l3build tool for testing and releasing TEX packages
has seen a number of incremental improvements. It
is now available directly as a script in TEX Live and
MiKTEX, meaning you can call it simply as

l3build target

Accompanying this, we have added support for
installing scripts and script man files.

There is a new upload target that can take a zip file
and send it to CTAN: you just have to fill in release
information for this upload at the prompts.

Testing using PDF files rather than logs has been
heavily revised: this is vital for work on PDF tagging.

There is also better support for complex directory
structures, including the ability to manually
specify TDS location for all installed files. This is
particularly targeted at packages with both generic and
format-specific files to install.

References

[1] LATEX Project Website.
https://latex-project.org/

[2] LATEX2ε release newsletters on the LATEX Project

Website. https://latex-project.org/news/
latex2e-news/

LATEX3 News #12

34 TUGboat, Volume 41 (2020), No. 1

LATEX News
Issue 31, February 2020

Contents

Experiences with the LATEX -dev formats 1

Concerning this release . . . (LuaLATEX engine) 1

Improved load-times for expl3 1

Improvements to LATEX font selection: NFSS 2
Extending the shape management in NFSS . . 2
Extending the font series management in NFSS 2
Font series defaults per document family 3
Handling of nested emphasis 3
Providing font family substitutions 3
Providing all text companion symbols by default 3
New alias size function for use in .fd files . . 4
Suppress unnecessary font substitution warnings 4

Other changes to the LATEX kernel 4
UTF-8 characters in package descriptions . . . 4
Fix inconsistent hook setting when

loading packages 4
Avoid spurious warning if LY1 is made the

default encoding 4
Ensure that \\ remains robust 4
Make math delimiters robust in a different way 4
Allow more write streams with filecontents

in LuaTEX 4

Changes to packages in the graphics category 4
Make color/graphics user-level commands robust 4

Changes to packages in the tools category 5
Fixed column depth in boxed multicols 5
Ensure that multicols does not lose text . . . 5
Allow spaces in \hhline arguments 5

LATEX requirements on engine primitives 5

Experiences with the LATEX -dev formats

As reported in the previous LATEX News, we have made
a pre-release version of the LATEX kernel available as
LATEX-dev. Overall, the approach of having an explicit
testing release has been positive: it is now readily
available in TEX systems and is getting real use
beyond the team.

The current release has been tested by a number of
people, and we have had valuable feedback on a range

of the new ideas. This has allowed us to fix issues in
several of the new features, as described below.

We wish to thank all the dedicated users who have
been trying out the development formats, and we
encourage others to do so. Pre-testing in this way does
mean that, for the vast majority of users, problems are
solved before they even appear!

Concerning this release . . . (LuaLATEX engine)

The new LuaHBTEX engine is LuaTEX with an
embedded HarfBuzz library. HarfBuzz can be used by
setting a suitable renderer in the font declaration. A
basic interface for that is provided by fontspec. This
additional font renderer will greatly improve the shaping
of various scripts when using LuaLATEX, many of which
are currently handled correctly only by X ETEX, which
always uses HarfBuzz.

To simplify testing of the new engine, binaries have
already been added to MiKTEX and TEX Live 2019
and both distributions have already now changed the
LuaLATEX-dev format to use it.

Going forward, LuaLATEX (and LuaLATEX-dev) will
both use the LuaHBTEX engine. The timing of the
switch to the LuaHBTEX engine depends on the
distribution you use (for TEX Live this will be with
TEX Live 2020).

Improved load-times for expl3

The LATEX3 programming layer, expl3, has over the
past decade moved from being largely experimental to
broadly stable. It is now used in a significant number of
third-party packages, most notably xparse, for defining
interfaces in cases where no expl3 code is “visible”. In
addition, most LATEX documents compiled using X ETEX
or LuaTEX load fontspec, which is written using expl3.

The expl3 layer contains a non-trivial number of
macros, and when used with the X ETEX and LuaTEX
engines, it also loads a large body of Unicode data. This
means that even on a fast computer, there is a relatively
large load time when using expl3.

For this release, the team have made adjustments in
the LATEX 2ε kernel to pre-load a significant portion of
expl3 when the format is built. This is transparent to
the user, other than the significant decrease in document
processing time: there will be no “pause” whilst loading
the Unicode data files. Loading expl3 in documents and

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2020, all rights reserved.

LATEX News #31

TUGboat, Volume 41 (2020), No. 1 35

packages can continue to be done as usual; eventually, it
will be possible to omit

\RequirePackage{expl3}

entirely but, to support older formats, this is still
recommended at present.

Improvements to LATEX’s font selection
mechanism (NFSS)

Extending the shape management in NFSS

Over time, more and more fonts have become available
for use with LATEX. Many such font families offer
additional shapes such as small caps italic (scit), small
caps slanted (scsl) or swash (sw). By using \fontshape

those shapes can be explicitly selected. For the swash
shapes there is also \swshape and \textsw available.

In the original font selection implementation a request
to select a new shape always overrode the current shape.
With the 2020 release of LATEX this has changed and
\fontshape can now be used to combine small capitals
with italic, slanted or swash letters, either by explicitly
asking for scit, etc., or by asking for italics when
typesetting already in small caps, and so forth.

Using \upshape will still change italics or slanted
back to an upright shape but will not any longer alter
the small caps setting. To change small capitals back
to upper/lower case you can now use \ulcshape (or
\textulc) which in turn will not change the font
with respect to italics, slanted or swash. There is one
exception: for compatibility reasons \upshape will
change small capitals back to upright (n shape), if the
current shape is sc. This is done so that something like
\scshape...\upshape continues to work as before, but
we suggest that you don’t use that deprecated method
in new documents.

Finally, if you want to reset the shape back to normal
you can use \normalshape which is a shorthand for
\upshape\ulcshape.

The way that shapes combine with each other is not
hardwired; it is customizable and extensible if there is
ever a need for this. The mappings are defined through
\DeclareFontShapeChangeRule and the details for
developers are documented in source2e.pdf.

The ideas for this interface extension have been
pioneered in fontspec by Will Robertson for Unicode
engines, and in fontaxes by Andreas Bühmann and
Michael Ummels for pdfTEX; they are by now used in
many font support packages.

Extending the font series management in NFSS

Many of the newer font families also come provided
with additional weights (thin, semi-bold, ultra-bold,
etc.) or several running widths, such as condensed or
extra-condensed. In some cases the number of different
values for series (weight plus width) is really impressive:

for example, Noto Sans offers 36 fonts, from ultra-light
extra condensed to ultra-bold medium width.

Already in its original design, NFSS supported 9
weight levels, from ultra-light (ul) to ultra-bold (ub),
and also 9 width levels, from ultra-condensed (uc) to
ultra-expanded (ux): more than enough, even for a font
family like Noto Sans. Unfortunately, some font support
packages nevertheless invented their own names, so in
recent years you have been able to find all kinds of
non-standard series names (k, i, j and others), making
it impossible to combine different fonts successfully
using the standard NFSS mechanisms.

Over the course of the last year a small number
of individuals, notably, Bob Tennent, Michael Sharpe
and Marc Penninga, have worked hard to bring this
unsatisfactory situation back under control; so today
we are happy to report that the internal font support
files for more than a hundred font families are all
back to following the standard NFSS conventions.
Combining them is now again rather nice and easy, and
from a technical perspective they can now be easily
matched; but, of course, there is still the task of choosing
combinations that visually work well together.

In the original font selection implementation, a request
to select a new series always overrode the current one.
This was reasonable because there were nearly no fonts
available that offered anything other than a medium or
a bold series. Now that this has changed and families
such as Noto Sans are available, combining weight and
width into a single attribute is no longer appropriate.
With the 2020 release of LATEX, the management of
series therefore changed to allow independent settings of
the weight and the width attributes of the series.

For most users this change will be largely transparent
as LATEX offers only \textbf or \bfseries to select
a bolder face (and \textmd and \mdseries to return
to a medium series): there is no high-level command
for selecting a condensed face, etc. However, using the
NFSS low-level interface it is now possible to ask for, say,
\fontseries{c}\selectfont to get a condensed face
(suitable for a marginal note) and that would still allow
the use of \textbf inside the note, which would select
a bold-condensed face (and not a rather odd-looking
bold-extended face in the middle of condensed type).

The expectation is that this functionality will be
used largely by class and package designers but, given
that the low-level NFSS commands are usable on the
document level and that they are not really difficult to
apply, there are probably also a number of users who
will enjoy using these new possibilities that bring LATEX
back into the premier league for font usage.

The ways in which the different series values
combine with each other is not hardwired but is again
customizable and extensible. The mappings are defined

LATEX News #31

36 TUGboat, Volume 41 (2020), No. 1

through \DeclareFontSeriesChangeRule and the
details for developers are documented in source2e.pdf.

Font series defaults per document family

With additional weights and widths now being available
in many font families, it is more likely that somebody
will want to match, say, a medium weight serif family
with a semi-light sans serif family, or that with one
family one wants to use the bold-extended face when
\textbf is used, while with another it should be bold
(not extended) or semibold, etc.

In the past this kind of extension was provided
by Bob Tennent’s mweights package, which has been
used in many font support packages. With the 2020
release of LATEX this feature is now available out of
the box. In addition we also offer a document-level
interface to adjust the behavior of the high-level series
commands \textbf, \textmd, and of their declaration
forms \bfseries and \mdseries, so that they can have
different effects for the serif, sans serif and typewriter
families used in a document.

For example, specifying

\DeclareFontSeriesDefault[rm]{bf}{sb}

\DeclareFontSeriesDefault[tt]{md}{lc}

in the document preamble would result in \textbf

producing semi-bold (sb) when typesetting in a roman
typeface. The second line says that the typewriter
default face (i.e., the medium series md) should be a
light-condensed face. The optional argument here can be
either rm, sf or tt to indicate one of the three main font
families in a document; if omitted you will change the
overall document default instead. In the first mandatory
argument you specify either md or bf and the second
mandatory argument then gives the desired series value
in NFSS nomenclature.

Handling of nested emphasis

In previous releases of LATEX, nested \emph commands
automatically alternated between italics and upright.
This mechanism has now been generalised so that you
can now specify for arbitrary nesting levels how emphasis
should be handled.

The declaration \DeclareEmphSequence expects a
comma separated list of font declarations corresponding
to increasing levels of emphasis. For example,

\DeclareEmphSequence{\itshape,%

\upshape\scshape,\itshape}

uses italics for the first, small capitals for the second,
and italic small capitals for the third level (provided you
use a font that supports these shapes). If there are more
nesting levels than provided, LATEX uses the declarations
stored in \emreset (by default \ulcshape\upshape) for
the next level and then restarts the list.

The mechanism tries to be “smart” by verifying
that the given declarations actually alter the current
font. If not, it continues and tries the next level—the
assumption being that there was already a manual font
change in the document to the font that is now supposed
to be used for emphasis. Of course, this only works if the
declarations in the list’s entries actually change the font
and not, for example, just the color. In such a scenario
one has to add \emforce to the entry, which directs the
mechanism to use the entry, even if the font attributes
appear to be unchanged.

Providing font family substitutions

Given that pdfTEX can only handle fonts with up to
256 glyphs, a single font encoding can only support
a few languages. The T1 encoding, for example, does
support many Latin-based scripts, but if you want
to write in Greek or Cyrillic then you will need to
switch encodings to LGR or T2A. Given that not every
font family offers glyphs in such encodings, you may
end up with some default family (e.g., Computer
Modern) that doesn’t blend in well with the chosen
document font. For such cases NFSS now offers
\DeclareFontFamilySubstitution, for example:

\DeclareFontFamilySubstitution{LGR}

{Montserrat-LF}{IBMPlexSans-TLF}

tells LATEX that if you are typesetting in the sans serif
font Montserrat-LF and the Greek encoding LGR is
asked for, then LATEX should use IBMPlexSans-TLF to
fulfill the encoding request.

The code is based on ideas from the substitutefont

package by Günter Milde, but the implementation is
different.

Providing all text companion symbols by default

The text companion encoding TS1 was originally not
available by default, but only when the textcomp

package was loaded. The main reason for this was
limited availability of fonts with this encoding other
than Computer Modern; another was the memory
restrictions back in the nineties. These days neither
limitation remains, so with the 2020 release all the
symbols provided with the textcomp package are
available out of the box.

Furthermore, an intelligent substitution mechanism
has been implemented so that glyphs missing in some
fonts are automatically substituted with default glyphs
that are sans serif if you typeset in \textsf and
monospaced if you typeset using \texttt. In the past
they were always taken from Computer Modern Roman
if substitution was necessary.

This is most noticeable with \oldstylenums which are

now taken from TS1 so that you no longer get 1234 but

1234 when typesetting in sans serif fonts and 1234 when

using typewriter fonts.

LATEX News #31

TUGboat, Volume 41 (2020), No. 1 37

If there ever is a need to use the original (in-
ferior) definition, then that remains available as
\legacyoldstylenums; and to fully revert to the old
behavior there is also \UseLegacyTextSymbols. The
latter declaration reverts \oldstylenums and also
changes the footnote symbols, such as \textdagger,
\textparagraph, etc., to pick up their glyphs from the
math fonts instead of the current text font (this means
they always keep the same shape and do not nicely blend
in with the text font).

With the text companion symbols as part of the
kernel, it is normally no longer necessary to load the
textcomp package, but for backwards compatibility this
package will remain available. There is, however, one
use case where it remains useful: if you load the package
with the option error or warn then substitutions will
change their behavior and result in a LATEX error or a
LATEX warning (on the terminal), respectively. Without
the package the substitution information only appears
in the .log file. If you use the option quiet, then even
the information in the transcript is suppressed (which is
not really recommended).

New alias size function for use in .fd files

Most of the newer fonts supported in TEX have been
set up with the autoinst tool by Marc Penninga. In
the past, this program set up each font using the face
name chosen by that font’s designer, e.g., “regular”,
“bold”, etc. These face names were then mapped by
substitution to the standard NFSS series names, i.e.,
“m” or “b”. As a result one got unnecessary substitution
warnings such as “Font T1/abc/bold/n not found,

using T1/abc/b/n instead”.

We now provide a new NFSS size function, alias,
that can and will be used by autoinst in the future. It
provides the same functionality as the subst function
but is less vocal about its actions, so that only significant
font substitutions show up as warnings.

Suppress unnecessary font substitution warnings

Many sans serif fonts do not have real italics but usually
only oblique/slanted shapes, so the substitution of
slanted for italics is natural and in fact many designers
talk about italic sans serif faces even if in reality they
are oblique.

With nearly all sans serif font families, the LATEX
support files therefore silently substitute slanted if you
ask for \itshape or \textit. This is also true for
Computer Modern in T1 encoding but in OT1 you got a
warning on the terminal even though there is nothing
you can do about it. This has now been changed to
an information message only, written to the .log file.

(github issue 172)

Other changes to the LATEX kernel

UTF-8 characters in package descriptions

In 2018 we made UTF-8 the default input encoding
for LATEX but we overlooked the case of non-ASCII
characters in the short package descriptions used
in declarations, e.g., in the optional argument to
\ProvidesPackage. They worked (sometimes) before,
but the switch to UTF-8 made them always generate an
error. This has been corrected. (github issue 52)

Fix inconsistent hook setting when loading packages

As part of loading a package, the command
\package.sty-h@@k gets defined. However, attempting
to load a package a second time resulted in this hook
becoming undefined again. Now the hook remains
defined so that extra loading attempts do not change
the state of LATEX (relevant only to package developers).

(github issue 198)

Avoid spurious warning if LY1 is made the default encoding

Making LY1 the default encoding, as is done by some
font support packages, gave a spurious warning even
if \rmdefault was changed first. This was corrected.

(github issue 199)

Ensure that \\ remains robust

In the last release we made most document-level
commands robust, but \\ became fragile again
whenever \raggedright or similar typesetting
was used. This has been fixed. (github issue 203)

Make math delimiters robust in a different way

Making math delimiters robust caused an issue in some
situations. This has been corrected. This also involved
a correction to amsmath. (github issue 251)

Allow more write streams with filecontents in LuaTEX

Most TEX engines only support a maximum of sixteen
concurrently open write streams, and when those have
been used up, then filecontents or any other code
trying to open one will fail. In LuaTEX more write
streams are available and those can also now be utilised.

(github issue 238)

Allow spaces in filecontents option list

Leaving spaces or newlines in the option list prevented
the options from being correctly recognized. This
has been corrected. (github issue 256)

New reverselist Lua callback type

A new callback type, reverselist, was added:
post_mlist_to_hlist_filter and
post_linebreak_filter are now of this type.

LATEX News #31

38 TUGboat, Volume 41 (2020), No. 1

Changes to packages in the graphics category

Make color & graphics user-level commands robust

Some of the user-level commands in color, graphics and
graphicx, such as \textcolor or \includegraphics,
were still fragile so didn’t work in moving arguments.
All of these are now robust. (github issue 208)

Changes to packages in the tools category

Fixed column depth in boxed multicols

The multicols environment was setting \maxdepth

when splitting boxes; but, due to the way the internal
interfaces of LATEX are designed, it should have
used \@maxdepth instead. As a result, balanced
boxed multicols sometimes ended up having different
heights even if they had exactly the same content.

(github issue 190)

Ensure that multicols does not lose text

The multicols environment needs a set of consecutively
numbered boxes to collect column material. The way
those got allocated could result in disaster if other
packages allocated most boxes below box 255 (which
TEX always uses for the output page). In the original
implementation that problem was avoided because
one could only allocate box numbers below 255, but
nowadays the LATEX allocation routine allows allocating
box numbers both below and above 255. So the
assumption that when asking for, say, 20 boxes you
always get a consecutive sequence of 20 box register
numbers became no longer true: some of the column
material could end up in box 255, where it would get
overwritten. This has now been corrected by allocating
all necessary boxes with numbers above 255 whenever
there aren’t enough lower-numbered registers available.

(github issue 237)

Allow spaces in \hhline arguments

The \hhline command, which allows the specification
of rule segments in tabular environments, now
allows (but ignores) spaces between its tokens: so
\hhline{: = : =} is now allowed and is equivalent to
\hhline{:=:=}. This matches similar token arguments
in LATEX such as the [h t p] argument on floats. A
similar change has been made to the extended \hhline

command in the colortbl package. (github issue 242)

LATEX requirements on engine primitives

Since the finalization of ε-TEX in 1999, a number
of additional ‘utility’ primitives have been added to
pdfTEX. Several of these are broadly useful and have
been required by expl3 for some time, most notably
\pdfstrcmp. Over time, a common set of these ‘post-ε-
TEX’ primitives have been incorporated into X ETEX and
(u)p-TEX; they were already available in LuaTEX.

A number of these additional primitives are needed to
support new or improved functionality in LATEX. This is
seen for example in the improved UTF-8 handling, which
uses \ifincsname. The following primitive functionality
(which in LuaTEX may be achieved using Lua code) will
therefore be required by the LATEX kernel and core
packages from the start of 2021:

• \expanded

• \ifincsname

• \ifpdfprimitive

• \pdfcreationdate

• \pdfelapsedtime

• \pdffiledump

• \pdffilemoddate

• \pdffilesize

• \pdflastxpos

• \pdflastypos

• \pdfmdfivesum

• \pdfnormaldeviate

• \pdfpageheight

• \pdfpagewidth

• \pdfprimitive

• \pdfrandomseed

• \pdfresettimer

• \pdfsavepos

• \pdfsetrandomseed

• \pdfshellescape

• \pdfstrcmp

• \pdfuniformdeviate

For ease of reference, these primitives will be referred
to as the ‘pdfTEX utilities’. With the exception of
\expanded, these have been present in pdfTEX since
the release of version 1.40.0 in 2007; \expanded was
added for TEX Live 2019. Similarly, the full set of these
utility primitives has been available in X ETEX from the
2019 TEX Live release, and has always been available in
LuaTEX (some by Lua emulation). The Japanese pTEX
and upTEX gained all of the above (except \ifincsname)
for TEX Live 2019 and will both have that primitive also
from the 2020 release onward.

At the same time, engines which are fully Unicode-
capable must provide the following three primitives:

• \Uchar • \Ucharcat • \Umathcode

Note that it has become standard practice to check
for Unicode-aware engines by using the existence of
the \Umathcode primitive. As such, this is already a
requirement: engines lacking these primitives cannot use
Unicode features of the LATEX 2ε kernel or expl3. Note
also that upTEX can handle Unicode but it is not classed
as a Unicode engine by the base LATEX code.

References

[1] Frank Mittelbach: The LATEX release workflow and the

LATEX dev formats. In: TUGboat, 40#2, 2019.
https://latex-project.org/publications/

[2] LATEX Project Team: LATEX 2ε font selection.
https://latex-project.org/help/documentation/

fntguide.pdf

[3] LATEX documentation on the LATEX Project Website.
https://latex-project.org/help/documentation/

LATEX News #31

TUGboat, Volume 41 (2020), No. 1 39

Case changing: From TEX primitives to the
Unicode algorithm

Joseph Wright

1 Introduction

The concept of letter case is well established for
several alphabet-based scripts, most notably Latin,
Greek and Cyrillic. Upper- and lowercase1 are so
widely used that it may not be obvious that there are
several subtleties in converting case. However, those
subtleties are important in supporting a wide range
of users, and getting all of them right is non-trivial.

Whilst the English alphabet has simple case-
changing rules, when we look beyond English and
(possibly) beyond the Latin alphabet, tracking the
requirements becomes more complicated. Many of
these have been codified by the Unicode Consortium,
and following these guidelines means that different
pieces of software can give consistent outcomes.

Here, I want to look at how case changing can
be set up in TEX, primarily focussing on tools that
the LATEX Project have provided, but in the wider
context of the TEX ecosystem.

2 Different kinds of case operation

To understand what functionality is needed for case
changing, we first have to know what types of input
we might be dealing with. Broadly, there are two:

• Text: material that we will want to typeset or
similar, and which contains natural language
content. This material might also have some
formatting, and may be marked up as being in
a particular language.

• Strings: material used in code, for example as
identifiers, to construct control sequences or to
find files. This material will never have format-
ting, and should always give the same outcome,
irrespective of the language in which a document
is written.

Unsurprisingly, case changing strings is a lot
more straight-forward than case changing text: there
is no context to worry about. However, neither text
nor string case changing is reversible, and that leads
us to the different types of case changing operations
that are needed.

The Unicode Consortium describe four case op-
erations, three case mappings and one case folding:

• Uppercasing
• Lowercasing
1 The spelling of these concepts is somewhat variable: ‘upper

case’, ‘upper-case’ and ‘uppercase’ are all valid. The LATEX Project
have chosen the latter form as it makes creating clearly-named
code functions easier!

• Titlecasing: changing the first character to up-
percase and the remaining characters to lower-
case—we will see later how a small number of
situations need special handling

• Case folding: removing case information from
the input to allow ‘caseless’ operations

(I strongly recommend the Unicode Consortium’s
FAQ at https://unicode.org/faq/casemap_charprop.
html for more on the concepts here.)

Upper-, lower- and titlecasing material is about
text: material to be read by people and which can
have context- and language-dependence. In contrast,
case folding is about computers: doing things mech-
anically for comparing internal information. Com-
monly, programmers use all-lowercase for that, but
there are places where that would be wrong: again,
we’ll see some examples below. We’ll also see that
for TEX use, there are places we need ‘programmer’s
upper- and lowercase (a.k.a. CamelCase) for strings.

3 Changing tokens or changing output

Before we look at the methods we can use in TEX to
change case, it’s worth bearing in mind that for type-
setting, there’s the possibility of leaving any change
in appearance to the font mechanisms. Whilst this
is complicated in classical TEX, LuaTEX offers the
potential to delegate the task to well after character
tokens have been handed to the paragraph-builder.

However, it’s quite natural in many program-
ming languages to change the case of text (referred
to in many languages as strings). As such, I will
focus on methods that can alter the characters in
the TEX input stream.

4 Built-in TEX mechanisms

In the TEX world, the primitives \lowercase and
\uppercase are the obvious starting point for case
changing. These primitives use data stored in TEX
using the \lccode and \uccode primitives, respect-
ively, and only ever perform context-independent
conversion. Whilst there are important uses for this
behaviour well beyond ‘normal’ case changing, I am
going to focus here only on their utility (or otherwise)
for application to text.

The most obvious limitation of the primitives is
that they assume a single mapping for all characters.
Whilst there are a large number of simple relation-
ships, there are exceptions: see the Unicode data
file SpecialCasing.txt for the full list! The simple
approach taken by the primitives means that there
is no chance of handling context-dependence: this
is most obvious with Greek, where there are two
forms of lowercase sigma, one used only at the end
of words (ς).

40 TUGboat, Volume 41 (2020), No. 1

At the TEX level, the other issue with the prim-
itives is that they work by execution not expansion.
I think almost every trainee TEX programmer will
at some stage have tried

\edef\foo{\lowercase{STUFF}}

and been very surprised that it fails, and that they
need to use

\lowercase{\edef\foo{STUFF}}

instead. This shows up when you want to change
case inside a \csname construct too: you can’t use
\lowercase within the construction, but rather have
to use it around the entire thing.

\lowercase{\csname FooBar\endcsname}

There’s also one other very important consider-
ation: the primitives convert character tokens only,
but do not know the meaning of these tokens. This
leads to a few issues:

• They do not convert text hidden in macros: re-
latively easily remedied by applying \edef (or
\protected@edef) prior to using the primitive.

• They cannot handle letter-like control sequences
such as \aa or \l.

• They cannot handle multi-byte ‘letters’ in 8-bit
engines (so for example \uppercase{é} fails).

• They provide no mechanism for excluding char-
acters from case changing, most critically those
inside math mode.

5 The LATEX2ε kernel mechanism

The LATEX2ε kernel builds on the primitives to ad-
dress some of the issues above. First off, these com-
mands include an internal \protected@edef, which
ensures that input is expanded first, then the case
change is applied. They also provide definitions for a
set of letter-like commands to allow them to be case-
changed, stored as \@uclclist. This for example
allows \aa to be uppercased to \AA.

6 The textcase mechanism

Case changing is fundamentally something that ap-
plies to text, and never to mathematics. In LATEX, it
is pretty clear which content is mathematical, and
David Carlisle’s textcase package makes it possible
to case change text containing math mode content
without ‘breaking’ the latter. Thus for example

\MakeTextUppercase

{A simple formula:

$y = mx + c$}

yields

A SIMPLE FORMULA: y = mx+ c

The package also allows text to be marked as not to
be altered during case changing, using the marker
command \NoCaseChange.

It’s possible to load textcase such that it replaces
the LATEX2ε kernel case-changing commands with
its own. That gives away that it works in a fun-
damentally similar way: it’s a more sophisticated
wrapper around the TEX primitives. That means it
still has the core issues of not knowing the meaning
or context of its argument tokens, and not being
usable in an expansion context.

7 The expl3 mechanisms

7.1 The core concepts

At the core of the expl3 case changing mechanisms is
the idea that the implementation should provide, as
far as possible, the full set of Unicode Consortium
functionality. The code is also written to work purely
by expansion, meaning that it can be used inside
\csname construction or inside an \edef.

To support all this, the input must be examined
on a token-by-token basis and converted ‘manually’.
It also means that \lowercase and \uppercase can-
not be used. Instead, for single-token conversion,
expandable functions which can convert single tokens
are defined: \char_lowercase:N, \char_uppercase:N,
\char_titlecase:N and \char_foldcase:N. Almost al-
ways, those are too low-level. Thus we will not look
further at the ‘back end’, but will rather concentrate
on functions which can be used for longer pieces of
input.

7.2 Strings

In TEX terms, a string is a series of characters which
are all treated as ‘other’ tokens (except spaces, which
are still spaces). That’s important here because it
means strings won’t contain any control sequences,
and because with pdfTEX there can’t be any (useful)
accented characters.

The most obvious need to handle case in pro-
gramming strings is when comparing in a caseless
manner: ‘removing’ the case. Programmers often
do that by lowercasing text, but there are places
where that’s not right. For example, as mentioned
above, Greek has two forms of the lowercase sigma
(σ and ς), and these should be treated as the same for
a caseless test. Unicode defines the correct operation:
case folding. In expl3, that’s called \str_foldcase:n:

\str_foldcase:n { AbC }

gives

abc

whilst the slightly more challenging

\str_foldcase:n { ὈΔΥΣΣΕΎΣ }

TUGboat, Volume 41 (2020), No. 1 41

gives

ὀδυσσεύσ

Much more rare is the need to upper- or lower-
case a string. Unicode does not mention this at all,
but in TEX we might want to construct a control
sequence dynamically. To do that, we might want
to uppercase the first character of some user input
string, and lowercase the rest. We can do that by
combining \str_uppercase:n and \str_lowercase:n

with the \str_head:n and \str_tail:n functions:

\str_uppercase:f { \str_head:n { someThing } }

\str_lowercase:f { \str_tail:n { someThing } }

which produces

Something

(We could also split off the first token and use the
single-character \char_uppercase:N here.)

7.3 Text: basics

Case changing text is much more complicated be-
cause it has to deal with control sequences, accents,
math mode and context. The first step of case chan-
ging here is to expand the input as far as possible:
that’s done using a function called \text_expand:n

which works very similarly to the LATEX2ε command
\protected@edef, but is expandable. We don’t really
need to worry too much about this: it’s built into
the case changing system anyway.

Upper- and lowercasing is straight-forward: the
functions have the natural names \text_uppercase:n
and \text_lowercase:n. These deal correctly with
things like the Greek final-sigma rule and (with Lua-
TEX and XƎTEX) cover the full Unicode range. Thus
we can have examples such as the following. (Recall
that spaces are ignored in expl3 input, and ~ is used
to produce a space.)

\text_lowercase:n { Some~simple~English }

\newline

\text_uppercase:n { Ragıp~Hulûsi~Özdem }

\newline

\text_lowercase:n { ὈΔΥΣΣΕΎΣ }

some simple english
RAGIP HULÛSI ÖZDEM
ὀδυσσεύς

A variety of standard LATEX accents and letter-
like commands are set up for correct case changing
with no user intervention required.

\text_uppercase:n { \aa{}ngstr\"{o}m ~ caf\'{e} }

produces the token list

\AA{}NGSTR\"{O}M CAF\'{E}

7.4 Case changing exceptions

There are places that case changing should not apply,
most obviously to math mode material. There are
a set of exceptions built-in to the case changer, and
that list can be extended: it’s easy to add the equi-
valent of \NoCaseChange from the textcase package.
First, create and activate the command, excluding
it from expansion and excluding its argument from
case-changing:

\cs_new_protected:Npn \NoCaseChange #1 {#1}

\tl_put_right:Nn

\l_text_case_exclude_arg_tl

{ \NoCaseChange }

then we can use it

\text_uppercase:n

{ Hello ~ $y = max + c$ }

\newline

\text_lowercase:n

{ \NoCaseChange { iPhone } ~ iPhone }

which gives us the desired results

HELLO y = max + c

iPhone iphone

without having to worry further. Note that case
changing does take place within braces (in contrast
to BIBTEX’s approach):

\text_uppercase:n { { Text } ~ More }

gives

TEXT MORE

The reason is simple: braces are difficult to control
and to remove, and can lead to undesirable impact
on kerning and so on. (It is likely that a dedicated
conversion function to approximate BIBTEX case pro-
tection by expl3 protection will be added; the biblatex

maintainers are keen to have this ability.)

7.5 Titlecasing

Commonly, people think about uppercasing the first
character of some text then lowercasing the rest, for
example to use it at the start of a sentence. Unicode
describes this operation as titlecasing, as there are
some situations where the ‘first character’ is handled
in a non-standard way. Perhaps the best example is
IJ in Dutch: it’s treated as a single ‘letter’, so both
letters have to be uppercase at the start of a sentence.
There are also a small set of codepoints that look
like two letters, and have special forms when they
appear as the titlecase first-character of a word.

Depending on the exact nature of the input, we
might want to uppercase the first ‘character’ and then
lowercase everything else, or we might want to upper-
case the first ‘character’ and then leave everything

42 TUGboat, Volume 41 (2020), No. 1

else unchanged. These are called \text_titlecase:n

and \text_titlecase_first:n, respectively. Most of
the time, things look pretty simple:

\text_titlecase:n { some~text } \newline

\text_titlecase:n { SOME~TEXT } \newline

\text_titlecase_first:n { some~text } \newline

\text_titlecase_first:n { SOME~TEXT }

gives

Some text
Some text
Some text
SOME TEXT

To see titlecasing in action, let’s stick with Dutch
(we’ll see how the language argument works shortly):

\text_titlecase:nn { nl } { IJSSELMEER }

should be

IJsselmeer

and not what most English speakers might expect

Ijsselmeer

As we are not simply grabbing the first token of
the input, non-letters are ignored and the first real
text character is case-changed. So when we say

\text_titlecase:n { `some~text' }

we of course want the result to be

‘Some text’

without needing to worry about that first character.

7.6 Language-dependent functions

One important context for case changing text is the
language the text is written in: there are special con-
siderations for Dutch, Lithuanian, Turkic languages
and Greek. That’s all handled by using versions of
the case-changing functions that take a second argu-
ment: a BCP 47 string which can determine the path
taken. We’ve already seen Dutch, so let’s examine
the other special situations.

We’ve seen Greek for handling the final-sigma
rule, but we also need to remove accents when up-
percasing (but not when titlecasing). Sticking with
the hero of myth

\text_uppercase:n { Ὀδυσσεύς } \newline

\text_titlecase:n { Ὀδυσσεύς } \newline

\text_uppercase:nn { el } { Ὀδυσσεύς } \newline

\text_titlecase:nn { el } { Ὀδυσσεύς }

gives us the expected

ὈΔΥΣΣΕΎΣ
Ὀδυσσεύς
ΟΔΥΣΣΕΥΣ
Ὀδυσσεύς

For Turkish, it’s all about the dot over an i:
that’s a different letter from the dotless ı, and so

\text_uppercase:n { Ragıp~Hulûsi~Özdem }

\newline

\text_uppercase:nn { tr } { Ragıp~Hulûsi~Özdem }

produces

RAGIP HULÛSI ÖZDEM
RAGIP HULÛSİ ÖZDEM

Finally, Lithuanian needs us to retain dots on i

and j when we add certain accents

\text_lowercase:n

{ ÌÍĨÌÍĨJ̀J́J̃Į̀Į́Į̃ }

\newline

\text_lowercase:nn { lt }

{ ÌÍĨÌÍĨJ̀J́J̃Į̀Į́Į̃ }

produces (in \large for better visibility)

ìíĩìíĩ j̀j́j̃į̀į́į̃
i̇i̇̀ĩ̇́ i̇i̇̀ĩ̇́ j̇j̀̇j́̇̃ į̇į̀̇į́̇̃

with explicit ‘more above’ dot accents (and yes, it
does look odd here, but that’s a font shaper decision).

There’s one more special case: the capital Eszett
in German. Normally, capitalisation of ß (U+00DF)
yields simply SS (two characters), but there is now a
Unicode codepoint (U+1E9E) for the capital form, ẞ
(that’s a capital Eszett in the Courier Narrow font
we’re using in this article; it looks nearly the same as
the lowercase). There is currently no official BCP 47
name for this (that I know of), so one needs to use

\text_uppercase:nn { de-alt } { ß }

8 The Lua route

There is another way to do case changing in expan-
sion contexts: using Lua.

\directlua{tex.print(unicode.utf8.lower

("A string"))}

That works, but it leaves us with a few issues. For
a start, anything that depends on TEX tokens, like
math mode, needs more work. Secondly, it doesn’t
deal with things like Greek final-sigma. That’s all
solvable with enough Lua, but it’s not (yet) an out-
of-the-box solution.

9 Conclusions

Implementing all of the subtleties of case-changing
following the Unicode Consortium requires effort,
but is accessible and can be done by pure expansion.
Case-changing functions in expl3 are now mature and
stable, and ready for wider use.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at) morningstar2.co.uk

TUGboat, Volume 41 (2020), No. 1 43

TEX, LATEX and math

Enrico Gregorio

Abstract

We discuss some aspects of mathematical typeset-
ting: choice of symbols, code abstraction, fine details.
Relationships between math typesetting and inter-
national standards are examined. A final section on
typesetting of numbers and units reports on some
recent developments in the field.

1 Introduction

Readers may well know that TEX was born out of
Knuth’s discomfort after having seen the proofs of
the new edition of the first volume of his magnum

opus “The Art of Computer Programming”.
Many papers have been written by Knuth him-

self and by others on the topic of math typesetting.
Here I’d like to present some personal ideas on the
subject, coming from almost thirty years of experi-
ence in mathematical typesetting. I’ll also present
some recent developments and new tricks made avail-
able with expl3.

2 A very short lead-in to math in TEX

Every TEX guru knows that TEX is (almost) always
in one of three modes:

• horizontal mode,

• vertical mode,

• math mode.

Except for circumstances when TEX is in no mode at
all (when writing to external files, for the curious).

Each mode comes into two flavors, but here we
are interested only in math mode. Knuth calls the
two flavors ‘math mode’ and ‘display math mode’.
In order to better distinguish between them, I’ll call
the former ‘inline math mode’, so the unadorned
‘math mode’ will denote both.

There are subtle, well, not so much so, differ-
ences between the two flavors; beginners are most
impressed by

∑n

k=1
k2 = 1

3
n

(

n+ 1

2

)

(n + 1) that
suddenly becomes

n
∑

k=1

k2 =
1

3
n

(

n+
1

2

)

(n+ 1)

when displayed and a very common question is ‘how
do I get the limits above and below the summation
symbol and real fractions, not that smallish replace-
ment symbol?’

Like all of us, I’ve been a beginner myself; I
discovered \limits and abused it. Penitenziagite,

First published in ArsTEXnica 28 (Oct 2019), pp. 47–57.
Reprinted with permission.

would have said Salvatore in “Il nome della rosa”
(Umberto Eco’s novel; the English title is “The name
of the Rose”). Now I’m no longer a beginner and
know why \limits should not be used; and let’s
not talk about the dreaded \displaystyle that is
sometimes suggested to newbies. The proper way is
just \sum.

To the contrary, beginners are usually much less
impressed by the wrong typesetting in

A\B = {x|x ∈ A, x /∈ B}
but they are likely to shrug and move on, if they ever
note it. Sometimes they see something’s wrong and
‘fix’ the vertical bar by using \,|\, that’s still wrong.
Why is it wrong? The spacing is too small, of course,
but there’s more to the problem: two appearances
of such a construction in the same document is a
sin similar to what I describe to young basketball
referees: “whoever calls a double foul during their
career has called one too many”. The correct answer
is: first of all define a macro for the object, for
instance,

\newcommand{\suchthat}{\,|\,}

(I’m talking LATEX, plain TEX users can translate).
In case one asks, if a+b appears twice or more in a
document there’s no need to make a macro out of it;
the separator in the set builder notation is a single
conceptual object and so it must be typed by a single
command.

About the spacing, one should realize that the
reverse bar is a binary operation symbol and the
vertical bar is a relation symbol. Both are already
defined in all flavors of TEX and they are, respectively,
\setminus and \mid, but it’s still convenient and
logically sound to define \suchthat, because \mid

is a ‘generic’ name:

\newcommand{\suchthat}{\mid}

...

A \setminus B=\{x \suchthat

x\in A, x\notin B\}

will typeset as

A \B = {x | x ∈ A, x /∈ B}
while this is the version with the thin spaces:

A \B = {x |x ∈ A, x /∈ B}
Compare closely the spaces around the vertical bar.

I’m not saying the last realization should be
rejected as awfully wrong: personal judgment is al-
ways welcome when typography is concerned, after
having studied the alternatives and common practice.
Above all, consistency throughout a document is a
must. I had to edit a paper where the separator was
a bar or a colon or a semicolon, depending on which

TEX, LATEX and math

44 TUGboat, Volume 41 (2020), No. 1

of the three authors had typed the formula. Defining
\suchthat allows for delaying any decision about
what symbol to use until the last minute. More on
set builder notation later.

The TEXbook lists several symbol names, some
have semantics attached to them, like \setminus,
and others don’t, like \mid or \otimes.1 Why is
that? Some symbols have essentially a single use case,
others appear in different branches of mathematics
with different meanings. Everybody loves \lhd and
\unlhd, right? The symbols typeset as ⊳ and E

respectively. I believe to have seen once what the
names should suggest, but I forgot it. The symbols
are common in group theory, where they denote
‘normal subgroup’: it’s heartily recommended to
group theorists to define a meaningful command for
them. Oh, I was almost forgetting! Those are not
defined as relation symbols in LATEX, so a savvy
group theorist will type in the document preamble

% normal subgroup

\newcommand{\ns}{\mathrel\lhd}

\newcommand{\nseq}{\mathrel\unlhd}

% subnormal subgroup

\newcommand{\sns}{\ns\ns}

The symbols are not among the core ones designed
by Knuth. They first appeared in a symbol font
distributed along with LATEX; possibly Lamport used
them for his own papers as binary operators and
the classification stuck. They were later included in
amssymb (\vartriangleleft, which is a relation).

What should an author do? The case of normal
subgroups is clear: I surely wouldn’t litter my pa-
per with \mathrel\lhd each time I want to mention
normal subgroups. However, suppose a paper fre-
quently uses Euler’s totient function, which has the
well established tradition of being denoted by ϕ (the
open version of phi). Is it better to use \varphi or
to define \euphi? The latter. Imagine that upon re-
ceiving proofs, the author realizes that all instances
of \varphi print out φ, because the publisher uses a
font that lacks the proper symbol. With \euphi it is
a matter of doing a redefinition, probably borrowing
the open phi from another font. We don’t know when
the instruction \let\varphi=\phi is performed, but
using \euphi makes this irrelevant.

An important exception: in the abstract there
should be no use of personal macros. It should be
able to typeset with a ‘naked’ version of LATEX: it’s
very common nowadays that the abstract is fed to
some web page that maybe uses MathML, MathJax
or similar device for handing the text to browsers.

1 Generally LATEX kept the same names.

Going back to the normal subgroup symbol, one
should know that every math symbol belongs to a
class and there are seven of them:

• class 0, ordinary symbols;

• class 1, operators;

• class 2, binary operations;

• class 3, binary relations;

• class 4, opening symbols;

• class 5, closing symbols;

• class 6, punctuation.

TEX will set the spacing between symbols according
to well defined rules. This is not the place to discuss
them fully, see [4]. Any object, as long as it is legal
in math mode, can be defined to behave as if it
belongs in one of the above classes by typing it as
the argument to

\mathord \mathop \mathbin \mathrel

\mathopen \mathclose \mathpunct

For instance, the symbol for the determinant is in-
ternally carried out (in LATEX) by something like

\mathop{\operator@font det}\nolimits

but there is a higher level interface available for
declaring new symbols like this; for instance, one
does

\DeclareMathOperator{\adj}{adj}

in order to introduce a symbol for the adjugate ma-
trix. A one-shot operator can be typeset in the
document by

\operatorname{adj}

The *-version of both commands makes for a symbol
that carries limits above and below in display math
mode, on the side when inline.

The unfortunately common perversion of denot-
ing open intervals like]a, b[needs input such as

\mathopen]a,b\mathclose[

One can easily spot that something is wrong when
just using]a,b[by looking at the difference between
the two instances below

x ∈]a, b[x ∈]a, b[

In my calculus notes I type \interval[o]{a,b}, so
I can decide to be a perv by just changing a few lines
in the definition. An open interval will be typeset as
(a . . b), but I’m not bound in any way: I can go back
to the comma again by just changing a line. Also, I
like to write upper unbounded intervals like (a . . →),
but I use \pinf for the arrow, so I can make it to be
typeset ∞ by acting on a single line, should I change
my mind.

Upon entering math mode, TEX will construct
a math list consisting of math atoms, each of which

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 1 45

a6 + 2a3b3 + b6 = q2

4a3b3 = −

4

27
p3

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

{

a6 + 2a3b3 + b6 = q2

4a3b3 = −

4

27
p3

{

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

{

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

a6 + 2a3b3 + b6 = q2

4a3b3 = −

4

27
p3

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

Figure 1: Three ways of laying out the derivation of Cardano’s formula

{

a6 + 2a3b3 + b6 = q2

4a3b3 = −

4

27
p3

{

a3 + b3 = −q

a6 − 2a3b3 + b6 = q2 +
4

27
p3

{

a3 + b3 = −q

(a3 − b3)2 = q2 +
4

27
p3

a3 + b3 = −q

a3 − b3 =

√

q2 +
4

27
p3

Figure 2: One of the worst alignments I can conceive

has a nucleus, a subscript field and a superscript

field. When exiting from math mode, the math list
will be transformed into a horizontal list according
to the (complex) rules described in Appendix G
of The TEXbook. These rules add spaces, as said
before, but also take care of the bidimensionality of
math formulas: superscripts, subscripts, fractions,
accents, radicals, extensible delimiters and many
more aspects.

Had Knuth been into theoretical physics, he
probably would have added also “prescripts” for iso-
topes and staggered multiple subscripts and super-
scripts for tensors. Unfortunately he hasn’t. See
later for more on this topic.

3 Fine points of mathematics typing

The title is the same as chapter 18 in The TEXbook.
Of course I won’t go through Knuth’s words. Since
I’m talking LATEX and math, I assume that amsmath

is loaded: no serious math typesetting can be done
without it.

A point that’s not touched upon in the TEXbook
is ‘when, really, consecutive equations should be
aligned and where’. Browsing TEX.StackExchange
reveals several examples of bad alignments.

A prominent example is a derivation of Car-
dano’s formula2 which I won’t give the code for, but
just three realizations that you can see in figure 1.

I often use the style “the good, the bad, and the
ugly”. There is actually an even uglier way, which is
what the questioner was asking for, see figure 2.

What’s the problem? The equals signs are not
really related to one another. The pairs of formulas

are related, but the fact that they are equations is al-
most irrelevant. Mixing ragged right and ragged left
in one and the same paragraph (or display) makes
for very hard reading. I’d instead be more generous
with vertical spacing between the various braces and
I have no doubt whatsoever that the leftmost real-
ization is our Clint Eastwood. Look for holes in the
typeset output and remove them.

Another example can be seen in figure 3.3 You
can judge for yourself which is the best way to present
the display. My opinion is that the equals signs in
the second column pair are not related to each other,
so they’re not to be aligned.

Linear systems are an exception, because their
matrix-like structure is more important than holes. I
recommend the wonderful systeme package by Chris-
tian Tellechea [11]. No doubt there are other excep-
tions: typography, and mathematical typography in
particular, is a craft that doesn’t obey mechanical
rules. A thin space may open up symbols and make
them easier to read, adding a pair of parentheses
may clear up an ambiguity, removing unnecessary

2 https://tex.stackexchange.com/questions/193581
3 https://tex.stackexchange.com/questions/500472

TEX, LATEX and math

46 TUGboat, Volume 41 (2020), No. 1

(

Aµ
ρ∗

µ

)

→
(

cos θ − sin θ
sin θ cos θ

) (

Aµ
ρ∗

µ

)

, tan θ =
gel
g∗

(1)

(

ψL
χL

)

→
(

cosϕψL
− sinϕψL

sinϕψL
cosϕψL

) (

ψL
χL

)

, tanϕψL
=

∆

m
(2)

(

ψ̃R
χ̃R

)

→
(

cosϕψ̃R
− sinϕψ̃R

sinϕψ̃R
cosϕψ̃R

) (

ψ̃R
χ̃R

)

, tanϕψ̃R
=

∆̃

m̃
(3)

(

Aµ
ρ∗

µ

)

→
(

cos θ − sin θ
sin θ cos θ

) (

Aµ
ρ∗

µ

)

, tan θ =
gel
g∗

(4)

(

ψL
χL

)

→
(

cosϕψL
− sinϕψL

sinϕψL
cosϕψL

) (

ψL
χL

)

, tanϕψL
=

∆

m
(5)

(

ψ̃R
χ̃R

)

→
(

cosϕψ̃R
− sinϕψ̃R

sinϕψ̃R
cosϕψ̃R

) (

ψ̃R
χ̃R

)

, tanϕψ̃R
=

∆̃

m̃
(6)

Figure 3: Two similar alignments

parentheses may improve the quality of a formula.
Compare top and bottom line

a
f(x+ h) − f(x)

h
+ b

g(x+ h) − g(x)

h

a
f(x+ h) − f(x)

h
+ b

g(x+ h) − g(x)

h

and decide which one looks better. In my notes I used
the bottom one when working the proof of linearity of
the derivative. If I talk about “the function g(z) =√
z − 1 ”, I add a thin space before ending inline

math mode:

‘‘the function $g(z)=\sqrt{z-1}\,$’’

in order to avoid the clash between the vinculum
and the quotes in “the function g(z) =

√
z − 1”. Try

with a parenthesis after the radical to see another
case: (1 +

√
2)−1 versus (1 +

√
2)−1. In the latter

case a thin space has been added.
Going to very fine details: does anybody notice

the differences below? Consider the formulas

log |x| 6= log|x| (7)

| sin x| 6= |sin x| (8)

‖ adjA‖ 6= ‖adjA‖ (9)

where the questionable typesetting is on the left.
While the top left could be a typographic choice (so
long as it is consistent), the other formulas in the
left-hand sides are definitely wrong.

The mathtools package provides a very good
facility for handling these cases, namely

\DeclarePairedDelimiter{\abs}{|}{|}

that allows to type \abs{\sin x} and forget about
the dreaded thin space, which can also be avoided
by

\lvert\sin x\rvert

Which style to choose is a matter of personal pref-
erence and habit. I recommend not to abuse the
facility: reserve it for functions such as absolute val-
ues, norms and similar objects. Don’t exploit it for
parenthesized expressions: something like

\paren{a+b}\paren{a-b}=aˆ2-bˆ2

hinders input reading and would print the same as
(a+b)(a-b)=aˆ2-bˆ2. True, one could do

\paren[\big]{a\paren{b+c}}

but is this really more legible than

\bigl(a (b + c) \bigr)

that keeps the usual mathematical structure? That
is, assuming \big size is really necessary, which it
isn’t in the particular case.

Since I mentioned trigonometric functions, look
at √

sin x+
√

cosx+
√

tan x

and explain what’s going wrong. Yes, the tittle makes
the difference! It makes ‘sin’ higher than ‘cos’ and
moves up the radical sign; similarly with ‘tan’. In
my trigonometry notes I have

\let\cos\undefined

\DeclareMathOperator{\cos}

{cos\vphantom{i}}

\let\tan\undefined

\DeclareMathOperator{\tan}

{tan\vphantom{i}}

with which the above formula would become√
sin x+

√
cosx+

√
tan x

Radicals often need fine control in order to get them
aligned with each other. Some appropriate trick
involving \vphantom or \smash can fix things up:

√
x+

√
y 6=

√
x+

√
y

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 1 47

Again, left is the questionable output; the formula
on the right has been input as

\sqrt{x}+\sqrt{\smash[b]{y}}

The alternative

\sqrt{\mathstrut x}+\sqrt{\mathstrut y}

doesn’t seem as attractive:
√

x +
√

y. Radicals
would need a full chapter, so I’ll stop here, except
for one last thing: add a thin space when a radical
is followed by a fence; similarly, add a thin space
when a big operator (summation, product, integral)
in display math mode is preceded by a fence and its
limits are wide. Example:

(n
∑

k=1

ak

)

6=
(n

∑

k=1

ak

)

4 Upright or italic?

Rivers of (electronic) ink have been spilled trying
to answer the question. Actually it cannot be an-
swered: mathematicians and engineers agree to dis-
agree. Physicists disagree with each other.

Part of the question is: should constants be
typeset in an upright font or not? The ISO 80000-
2:2009 standard prescribes upright; adhering to this
standard is mandatory in some technology and com-
mercial fields. This is a good thing: people reading a
technical report or manual will have no doubt about
the meaning of a symbol.4 While I strongly disagree
with several decisions of the ISO standard, on mathe-
matical grounds, I accept the underlying philosophy
towards uniformity in the technical fields. Surely
I appreciate its ban on the mathematically wrong
sin−1 and similar: the standard has disputable as-
pects, but it’s never wrong from a mathematical
point of view.

On the other hand, many mathematicians are
traditionalists and prefer italics for constants such
as e (the Euler number) and i (the imaginary unit).
Euler and Gauss used italics for the latter, and I’m
among those who don’t dare to challenge their author-
ity. Of course, I know that mathematical notation
has changed along time. I’d not use Cayley’s original
notation for matrices5 because a better notation has
developed. I follow the practice of setting standard
function names in upright type (sine, cosine, loga-
rithm and so on) even when ancient mathematicians
didn’t.

However, such decrees as ‘symbols for vectors
should be bold italic serif lowercase, for matrices
should be bold italic serif uppercase, for tensors

4 A problem with ISO standards is that they have to be
bought; the one we’re talking about prices 158 CHF, about
143e or $160 at the current exchange rate.

5 https://tex.stackexchange.com/q/487643

should be bold italic sans serif uppercase’ make me
smile: as a mathematician, I know that vectors,
matrices and tensors are not different objects from
a mathematical point of view. Matrices admit an
easier two-dimensional representation: this is the
‘big’ difference.

For pedagogical reasons, I might use distinctive
typesetting for vectors and matrices in a students’
textbook. In a research paper or graduate level
book I’d probably not make any distinction, if not
mandated by clarity. In this case I’d explain the
notation choices at the beginning of the paper or
book.

A very fine book by J. Dieudonné [2], in the
English edition by Academic Press, uses

• R or C for number sets,

• X for manifolds, E for vector bundles,

• A for vector space operators,

• Tx(X) or Tx(f) for the tangent space or linear
mapping,

• dxf or dxf for the differential at x of a mapping
(vector valued or scalar valued),

• Z for tensor fields,

and several other conventions that are consistently
followed across the book and the series. The book
starts off with a nine page long notation section. The
same notation is used in the original French version.

However, it happens that book translations use
different conventions from the original. It is the
case for W. Rudin’s ‘Real and Complex Analysis’ [9]
where the differential ‘d’ is in italics, whereas it’s
upright in the Italian translation published by Bollati-
Boringhieri [10]. I disagree with the publisher: maybe
the editorial preference is for the upright ‘d’, but the
author’s style should be preserved as much as possi-
ble.

Not a big deal, one could think. No, this reflects
on the meaning of the differential ‘d‘. There are sev-
eral arguments in favor or against italics; my feeling
is that most pure mathematicians prefer italics.

By the way, how to input the symbol in such
a way that the convention can be changed at will?
The simplest and more effective way is to define

\newcommand{\diff}{\mathop{}\!d}

(or \mathrm{d} if one must have the abomination).
I believe I learned this from Claudio Beccari

through a comp.text.tex post. The code was cred-
ited to him in the paper [5],6 but I’m not sure about
the real source of this code pearl. Claudio Beccari
had earlier proposed much more complicated code [1],
namely

6 The paper is also available in English [6].

TEX, LATEX and math

48 TUGboat, Volume 41 (2020), No. 1

\makeatletter

\providecommand*{\diff}{%

\@ifnextcharˆ{\DIfF}{\DIfFˆ{}}%

}

\makeatother

\def\DIfFˆ#1{%

\mathop{\mathrm{\mathstrut d}}%

\nolimitsˆ{#1}%

\gobblespace

}

\def\gobblespace{%

\futurelet\diffarg\opspace

}

\def\opspace{%

\let\DiffSpace\!%

\ifx\diffarg(%

\let\DiffSpace\relax

\else

\ifx\diffarg[%

\let\DiffSpace\relax

\else

\ifx\diffarg\{%

\let\DiffSpace\relax

\fi

\fi

\fi

\DiffSpace

}

What’s the idea in the complicated definition? Look
whether a superscript follows; if it doesn’t, add a
dummy one. Well, this is already wrong, because it
adds \scriptspace unconditionally. After that, the
next token is examined: if it is a fence, then don’t
add \!, because a \mathop is followed by a fence with
no thin space; in case an ordinary symbol follows, the
\mathop would add a thin space, which is removed
by \!. Well, try it with \diff\bigl(x+y\bigr).
Next try the simpler definition and see! Where’s the
trick? The empty \mathop is followed by an ordinary
symbol, the ‘d’; we just need to remove the excess
thin space! The thin space preceding the empty
\mathop is inserted automatically by TEX following
the rules. Thus we can define

\newcommand{\tder}[2]

{\frac{\diff #1}{\diff #2}}

without worrying that spurious spaces may creep in.
Instead

\iint\limits_{D} f(x,y) \diff x \diff y

will typeset as needed
∫∫

D

f(x, y) dx dy

For differential forms

f(x, y) dx ∧ dy

the spacing will be automatically right.
The same paper by Claudio [1] proposes com-

mands for the constants, namely

% The number ‘e’

\providecommand*{\eu}

{\ensuremath{\mathrm{e}}}

% The imaginary unit

\providecommand*{\iu}

{\ensuremath{\mathrm{j}}}

I strongly disagree with proposing \ensuremath; re-
ferring in the text to the Euler’s number by

We use \eu\ to denote...

is by no means easier and clearer than

We use \eu to denote...

One keystroke more? So what? That’s a mathemat-
ical symbol so it ought to be typed in math mode,
just like when we talk about the variable x. My

definition would be

\newcommand{\eu}{\mathord{e}}

so typing \eu outside of math mode would raise an
error. Change to \mathrm if you prefer upright type.

During the preparation of this paper, I examined
the toptesi bundle, to find

\providecommand{\eu}{%

\ensuremath{%

{\mathop{\mathrm{e}}\nolimits}%

}%

}

This is disputable in several respects:

• \ensuremath serves no real purpose;

• \nolimits can be safely omitted, because the
\mathop{...} bit is followed by }, so surely
there are no limits to take into account;

• \mathop itself is redundant, because the whole
thing is braced, so it is treated as an ordinary
symbol.

Oh, wait! No, \mathop is actually wrong! Consider
the following code:

\documentclass{standalone}

\usepackage{amsmath}

\newcommand{\euA}{\mathrm{e}}

\newcommand{\euB}{%

\ensuremath{%

{\mathop{\mathrm{e}}\nolimits}%

}%

}

\begin{document}

$2\euA\euB$

\end{document}

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 1 49

The output is shown in figure 4. Do you see the
problem? A single character in the argument to
\mathop is raised or lowered so that it extends the
same distance above and below the math axis.

2ee
Figure 4: Magnified output for the Euler’s constant
problem

Now that we’re on the spot, how to define a
better \tder macro also supporting higher order
derivatives? The first attempt,

\newcommand{\tder}[3][]{%

\frac{\diffˆ{#1}#2}{\diff #3ˆ{#1}}%

}

has a flaw: it unconditionally adds \scriptspace to
both the numerator and denominator. If I measure
the width of \tder{f}{t} in display math mode,
with the standard fonts and document class, I get
14.07712pt; the version without the dummy expo-
nents has width 11.91045pt. More than two points!
With the upright ‘d’, the difference would be half a
point. And the visual result shows more:

df

dt
6= df

dt

df

dt
6= df

dt
Yes, we need to avoid the dummy superscript, also
with the upright ‘d’, although the difference is less
noticeable: we want perfect output, don’t we? And
we want macros that allow users to choose their own
preferred ‘d’. One could test whether the argument
is empty, but there’s a better way with xparse:

\NewDocumentCommand{\tder}{s o m m}{%

\IfBooleanTF{#1}{\dfrac}{\frac}%

{\diff\IfValueT{#2}{ˆ{#2}}#3}% num

{\diff #4\IfValueT{#2}{ˆ{#2}}}% den

}

The *-version delivers \dfrac (just in case one needs
it), otherwise \frac is used. The numerator and the
denominator add the exponent only if the optional
argument is specifically used. Thus \tder{f}{t}

will not add a dummy exponent.

5 Sets, bras and kets

A short note on the title. Physicists have a sense of
humor: a well-established notation for inner products
is 〈x | y〉, called a “bracket”. A mathematician would
denote the linear or semilinear forms induced by the
bracket as 〈x | −〉 and 〈− | y〉. Physicists, instead,
use 〈x| for the former and |y〉 for the latter, calling
them “bra” and “ket”.

For several years, LATEX has been requiring e-
TEX extensions, among which \middle is a very

useful one. For instance, we can typeset
{

x ∈ R

∣

∣

∣

∣

−1

2
≤ x ≤ 8

5

}

with no phantom and no null delimiter. On the other
hand, the code

\left\{x\in\mathbf{R} \;\middle|\;

-\frac{1}{2}\le x\le \frac{8}{5}\right\}

is still really ugly and something like

\set*{x\in\mathbf{R}\suchthat

-\frac{1}{2}\le x\le \frac{8}{5}}

would be much nicer. We call xparse and expl3 to
the rescue!

\documentclass[varwidth]{standalone}

\usepackage{amsmath}

\usepackage{xparse}

\ExplSyntaxOn

\NewDocumentCommand{\set}{som}

{

% limit the scope for \suchthat

\group_begin:

\cs_set_protected:Npn \suchthat

{

\tl_use:N \l__egreg_set_st_tl

}

\IfBooleanTF{#1}

{

\egreg_set_auto:n { #3 }

}

{

\egreg_set_fixed:nn { #2 } { #3 }

}

\group_end:

}

\tl_new:N \l__egreg_set_st_tl

\cs_new_protected:Nn __egreg_set_st:n

{

\tl_set:Nn \l__egreg_set_st_tl { #1 }

}

\cs_new_protected:Nn \egreg_set_auto:n

{

__egreg_set_st:n

{

\nonscript\;

\middle\vert

\nonscript\;

}

\left\{ #1 \right\}

}

\cs_new_protected:Nn \egreg_set_fixed:nn

{

\tl_if_novalue:nTF { #1 }

TEX, LATEX and math

50 TUGboat, Volume 41 (2020), No. 1

{

__egreg_set_st:n { \mid }

\lbrace #2 \rbrace

}

{

__egreg_set_st:n

{ \mathrel{#1\vert} }

\mathopen{#1\lbrace}

#2

\mathclose{#1\rbrace}

}

}

\ExplSyntaxOff

\begin{document}

$\set{a,b,c}\cup\set[\big]{a,b,c}$

$\set{x\suchthat a<x<b}$

$\set[\Big]{x\suchthat a<x<b}$

$\set*{x\suchthat \dfrac{1}{2}<x<3}$

\end{document}

The idea is to use a syntax familiar from mathtools’
\DeclarePairedDelimiter. The output is in fig-
ure 5.

{a, b, c} ∪
{

a, b, c
}

{x | a < x < b}
{

x

∣

∣

∣
a < x < b

}

{

x

∣

∣

∣

∣

1

2
< x < 3

}

Figure 5: Examples of set notation

In The TEXbook, Knuth recommends to add
thin spaces when the set builder notation contains a
bar, that is, it is not just a list of elements. I disagree,
but how could it be implemented? It’s possible to
look for the presence of \suchthat at the outer level
and, in this case, to add the thin spaces at either
end; nested sets would examine their own contents
for the presence at the outer level.

A full implementation would also feature the
choice for the delimiter as a preamble setting. I
leave this as an exercise for whoever wants to make
a package out of this code.

There is some duplication in the code below,
but it’s unavoidable. The reason is that using an
O{} specifier for the optional argument would al-
low \mathclose{#2\rbrace} and no case distinc-
tion. However, one can see the difference if a sub-
script is added

\rbrace_{1} \mathclose{\rbrace}_{1}

}1 }
1

Different coding is possible, though. It would not be
difficult to allow | instead of \suchthat. Look at
how the macros for bras and kets can be defined.

\documentclass[varwidth]{standalone}

\usepackage{amsmath}

\usepackage{xparse}

\NewDocumentCommand{\bra}{som}{%

\IfBooleanTF{#1}

{\left\langle #3 \right|}

{%

\IfNoValueTF{#2}

{\langle#3\mathclose|}

{\mathopen{#2\langle}#3\mathclose{#2|}}%

}

}

\NewDocumentCommand{\ket}{som}{%

\IfBooleanTF{#1}

{\left| #3 \right\rangle}

, {%

\IfNoValueTF{#2}

{\mathopen|#3\rangle}

{\mathopen{#2|}#3\mathclose{#2\rangle}}%

}

}

\NewDocumentCommand{\braket}{som}{%

\IfBooleanTF{#1}

{\extensiblebraket{#3}}

{\fixedbraket{#2}{#3}}%

}

\ExplSyntaxOn

\NewDocumentCommand{\extensiblebraket}{m}

{

\group_begin:

\char_set_active_eq:nN { ‘| } \egreg_bar_auto:

\mathcode‘|="8000 \scan_stop:

\left\langle

#1

\right\rangle

\group_end:

}

\NewDocumentCommand{\fixedbraket}{mm}

{

\group_begin:

\char_set_active_eq:nN

{ ‘| } % active char is |

\egreg_bar_fixed: % equal to

\mathcode‘|="8000 \scan_stop:

\IfNoValueTF{#1}

{ \egreg_braket:n { #2 } }

{ \egreg_braket:nn { #1 } { #2 } }

\group_end:

}

\cs_new_protected:Nn \egreg_bar_auto:

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 1 51

{

\nonscript\,\middle\vert\nonscript\,

}

\cs_new_protected:Nn \egreg_bar_fixed:

{

\mathinner{\egreg_size: \vert}

}

\cs_new_protected:Nn \egreg_braket:n

{

\cs_set_protected:Nn \egreg_size: { }

\langle #1 \rangle

}

\cs_new_protected:Nn \egreg_braket:nn

{

\cs_set_protected:Nn \egreg_size: { #1 }

\mathopen{\egreg_size: \langle}

#2

\mathclose{\egreg_size: \rangle}

}

\ExplSyntaxOff

\begin{document}

$\bra{x}\quad\ket{x}$

$\braket{x|y}$

$\braket[\Big]{x|y|z}$

$\braket*{a|b}$

$\braket[\Big]{a|b|\dfrac{c}{d}}$

$\braket*{a|b|\dfrac{c}{d}}$

\end{document}

I’ll not comment the code, except for mentioning
how easy is to define the value of a character when
it will be made active (math active, in this case).

〈x| |x〉
〈x | y〉
〈

x

∣

∣

∣
y

∣

∣

∣
z
〉

〈a | b〉
〈

a

∣

∣

∣
b

∣

∣

∣

c

d

〉

〈

a

∣

∣

∣
b

∣

∣

∣

c

d

〉

Figure 6: Examples of bras and kets

6 Numbers and units

How should numbers be typed in the LATEX docu-
ment? Knuth himself once acknowledged that his
usual practice is not very good and realized it when
writing “Concrete Mathematics” [3], were numbers
are typeset with the Euler font when they’re used in

their mathematical meaning (and not, say, as page
markers).

When a number appears in text and is men-
tioned as a mathematical object is should be input
inside a math formula:

a vector space of dimension˜5

But what about large numbers that need to be split
in smaller units for readability? For instance, can you
spell out 7400043022221 without first counting how
many digits the number has? Isn’t 7 400 043 022 221
easier to parse? Possibly not for an American who’s
more accustomed to 7,400,043,022,221 (and probably
would be at stake when people talks about meters
and liters).

Now let’s suppose your scientific paper has sev-
eral tables with numeric data and you’re not sure
about the editorial policy of the journal to which
you’re submitting it. Will the journal require Ameri-
can style or prefer thin spaces for grouping digits?

Table 1: Tables with different formatting options
for numbers (Source: Mr Leporello, private
communication)

Nation Number

Italy 640 375
Germany 231 803
France 100 002
Turkey 91 329
Spain 1 003 000

Nation Number

Italy 640,375
Germany 231,803
France 100,002
Turkey 91,329
Spain 1,003,000

Let’s consider the two tables in table 1. They
are typeset with exactly the same input, namely

\begin{tabular}{

@{}

l

S[table-format=7.0]

@{}

}

\toprule

Nation & {Number} \\

\midrule

Italy & 640375 \\

Germany & 231803 \\

France & 100002 \\

Turkey & 91329 \\

Spain & 1003000 \\

\bottomrule

\end{tabular}

and it’s siunitx [12] doing all the magic. Of course
there is a catch: just before the second copy of the
table I added

\sisetup{group-separator={,}}

TEX, LATEX and math

52 TUGboat, Volume 41 (2020), No. 1

I could have added the option also in the bracketed
argument to the S column, which is one of the fa-
cilities made available by the package. Similarly,
the big number above has been typeset first with
\num{7400043022221} and then with

\num[group-separator={,}]{7400043022221}

The default for the package is to use a thin space
as a group separator between digits. An S column
basically applies \num to every entry, but also aligns
them at the decimal separator. In the case of our
Leporello table, all entries are integers, so they’re
right aligned.

If an entry belonging to an S column is braced,
it will be ignored as far as number alignment is
concerned and centered on the total width of the col-
umn (options are available for left or right alignment).
This is obviously needed in the header.

With another option we can easily scale down
the figures:

Nation Number

Italy 640 × 103

Germany 232 × 103

France 100 × 103

Turkey 91.3 × 103

Spain 1.00 × 106

This is achieved with the options

\sisetup{

round-mode=figures,

round-precision=3,

scientific-notation=engineering

}

and by changing the column specifier to

S[table-format=3.2e1]

which directs to reserve space for three digits in
the integer part, two in the mantissa and one in
the exponent. The table body in the input has not
changed in any way.

One might write an entire large chapter of The

LATEX Companion about siunitx. Some time ago,
Joseph Wright took up the job of making a successor
package to SIunit adding some features along the
way. For version 2 he had the idea of exploiting expl3

which not only allowed for many more features and
facilities, but made him enter the LATEX team.7 He’s
into chemistry, and tables with numeric data are his
staple food.

The main purpose of the package is of course
typesetting numbers with their SI unit according to
the guidelines of the Bureau International des Poids

7 It seems that understanding and propagating expl3 opens
a straight way to the team.

et Mesures (BIPM). This is also part of the ISO

standard mentioned before:

\SI{1}{\newton} is defined as

\SI{1}{\kilogram\meter\per\second\squared}

will typeset “1 N is defined as 1 kg m s−2”. However,
if we prefer slashes instead of negative exponents, we
can add to the preamble

\sisetup{per-mode=symbol}

and the same text will now typeset as “1 N is defined
as 1 kg m/s2”. The mode can also be changed on a
local basis with an optional argument to \SI.

All SI units and prefixes are supported:

\SI{5}{\tera\meter} \SI{2}{\pico\farad}

yields 5 Tm and 2 pF. One can also print just a unit
with \si: the unit for energy is the J which is the
same as kg m2 s−2.

Going on with our fictional scientist who’s uncer-
tain where her breakthrough paper will be published,
decimal numbers might require the period as separa-
tor, or the comma; in scientific notation, there could
be the×10n part or En might be asked for. How to
do it? Not to mention uncertainty! Let’s take as an
example the rest mass of the electron

9.109 383 701 5(28) × 10−31 kg

9.1093837015(28) × 10−31 kg

9,109 383 701 5(28) × 10−31 kg

(9.109 383 701 5 ± 0.000 000 002 8) × 10−31 kg

9.109 383 701 5 × 10−31 kg

9.109 383 701 5(28)E−31 kg

The first line has been input with

\SI{9.1093837015(28)E-31}{\kilogram}

and the following lines by adding an option

\SI[〈option〉]{9.1093837015(28)E-31}

{\kilogram}

The used options are, in order,

output-decimal-marker={,}

group-digits=integer

separate-uncertainty

omit-uncertainty

output-exponent-marker=\mathrm{E}

and they can be combined to get the desired effect
without changing the code in the document if the
settings are done with \sisetup in the document
preamble. When inputting numbers, one can use
spaces and either a decimal period or decimal comma.
The first mandatory argument to \SI behaves the
same as the mandatory argument to \num, so I’ll use
the latter:

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 1 53

\num{12345.678}

\num{12345,678}

\num{12 345.678}

will print the same

12 345.678 12 345.678 12 345.678

Very few things are hardwired in siunitx: one can
instruct it to ignore something, for instance. Suppose
you have a set of numbers with comma separators
for groups: the big number already used might oc-
cur in the source file as 7,400,043,022,221. Set
(globally or locally) the input-ignore option and
we can remove the comma from the possible decimal
separators:

\num[

input-ignore={,},

input-decimal-markers={.}

]{7,400,043,022,221}

and you’ll get

7 400 043 022 221

The package is not limited to ‘standard numbers’: it
also copes with angles, time and complex numbers.
For instance, we can type

\ang{30.24}

\ang{30;12;44.375}

\num{3-4i}

to get

30.24°, 30°12′44.375′′, 3 − 4i

Oh, dear! An upright ‘i’! Let’s fix it with

\sisetup{

output-complex-root=\mathnormal{i}

}

(one could also tell it to use ‘j‘, of course) and get

3 − 4i

Phew! Yes, the package obviously adheres to the
ISO standard, but it’s very customizable.

7 Further reading

Twenty-two years have passed from the seminal pa-
per by Claudio Beccari: we have seen great progress
in the field of math typesetting, in particular to-
wards the uniformity that’s necessary in technical
and commercial reports.

There are other packages that can be tried
for the purpose of compliance to the ISO 80000-
2:2009 standard. I would mention isomath by Günter
Milde [7] and also unicode-math by Will Robertson [8]
that provided facilities to the purpose; the former
is for legacy pdflatex, the latter for X ELATEX and
LuaLATEX.

References

[1] C. Beccari. Typesetting mathematics
for science and technology according to
ISO 31/XI. TUGboat 18(1), 1997. https:

//tug.org/TUGboat/tb18-1/tb54becc.pdf

[2] J. Dieudonné. Treatise on Analysis.

Vol. III. Academic Press, New York-London,
1972. Translated from the French by I. G.
MacDonald, Pure and Applied Mathematics,
Vol. 10-III.

[3] R. L. Graham, D. E. Knuth, and
O. Patashnik. Concrete Mathematics.
Addison-Wesley Publishing Company,
Advanced Book Program, Reading, MA, 1989.
A foundation for computer science.

[4] E. Gregorio. Simboli matematici in TEX e
LATEX. ArsTEXnica 8:7–24, Ottobre 2009.
https://www.guitex.org/home/numero-8

[5] M. Guiggiani and L. F. Mori. Consigli
su come non maltrattare le formule
matematiche. ArsTEXnica 5:5–14, Aprile 2008.
https://www.guitex.org/home/numero-5

[6] M. Guiggiani and L. F. Mori. Suggestions on
how not to mishandle mathematical formulae.
TUGboat 29(2), 2008. https://tug.org/

TUGboat/tb29-2/tb92guiggiani.pdf

[7] G. Milde. isomath — mathematical style for
science and technology, 2012. Version 0.6.1.
https://ctan.org/pkg/isomath

[8] W. Robertson. Experimental Unicode
mathematical typesetting: The unicode-math

package, 2019. Version 0.8o.
https://ctan.org/pkg/unicode-math

[9] W. Rudin. Real and Complex Analysis.
McGraw-Hill Book Co., New York–Toronto,
Ont.–London, 1966.

[10] W. Rudin. Analisi Reale e Complessa.
Bollati Boringhieri, 1974.

[11] C. Tellechea. L’extension pour TEX
et LATEX systeme, 2019. Version 0.32.
https://ctan.org/pkg/systeme

[12] J. Wright. siunitx — A comprehensive
(SI) units package, 2018. Version 2.7.
https://ctan.org/pkg/siunitx

⋄ Enrico Gregorio
Dipartimento di Informatica,

Università di Verona
enrico dot gregorio at univr dot it

TEX, LATEX and math

54 TUGboat, Volume 41 (2020), No. 1

The fewerfloatpages package∗

Frank Mittelbach

Abstract

LATEX’s float algorithm has the tendency to produce fairly empty float pages, i.e., pages
containing only floats but with a lot of free space remaining that could easily be filled
with nearby text. There are good reasons for this behavior; nevertheless, the results
look unappealing and in many cases documents are unnecessarily enlarged.

The fewerfloatpages package provides an extended algorithm that improves on this
behavior without the need for manual intervention by the user.

Contents

1 Introduction 54

1.1 A quick overview of LATEX’s float algorithm 54

1.2 The typical float page and its problems 55

2 Improvements to the float page algorithm 55

2.1 Details on the extended algorithm 56

2.2 Possible pitfalls and how to avoid them 57

2.3 Tracing the algorithm . 58

2.4 Local (manual) adjustments . 60

3 The implementation 60

3.1 Option handling . 60

3.2 Tracing code . 61

3.3 User-level interfaces . 61

3.4 Patching the LATEX kernel commands 62

3.5 Internal helper commands and parameters 66

1 Introduction

We start by giving a quick overview of LATEX’s float algorithm and the problems that
result from the approach used.

We then look in some detail into possible alterations and improvements to that algorithm
and discuss possible issues that need to be resolved. In this section we also describe all
configuration possibilities of the extended algorithm.

The final section then documents the code changes that are necessary to LATEX kernel
macros to implement the extension.

1.1 A quick overview of LATEX’s float algorithm

LATEX’s output routine uses a greedy algorithm to place floats near to their call-outs
in the source document. The decision of how to place a float is made when the float is
first encountered. If possible it is placed onto the current page, either in mid-text, on
top or into the bottom area, depending on what is allowed for the float and how many
floats are already placed into those areas.

If the float can’t be placed immediately, it goes into a defer list, and in order to not
accumulate too many unplaced floats LATEX tries to empty that list whenever there is
a chance. This chance comes after the next page break: LATEX then starts a special
“float page” algorithm in which it examines the defer list and from it forms float pages
(i.e., pages that contain only floats). If necessary, it generates several float pages and
only stops if there are no floats waiting to be placed, or there are too few floats to

∗ The current package version is v1.0a dated 2020/02/14.

Frank Mittelbach

TUGboat, Volume 41 (2020), No. 1 55

form a float page, or there are only floats left that are for one or another reason not
allowed to be placed in this way.

Finally LATEX looks at the remaining floats and tries to place as many of them as
possible into the top and bottom area of the next page. Then it continues to process
further text to fill the text part of that page. Details on the exact behavior of the
algorithm are discussed in [1].

1.2 The typical float page and its problems

LATEX considers a float page to be successfully built if its floats take up more than
\floatpagefraction of the whole page. By default this parameter is set to .5 which
means that such float pages may end up being half empty.

Many users think that this is not a good value and try to improve on it by enforcing a
higher percentage (such as 80%) only to find that this prevents LATEX in many cases
from successfully generating any float page, with the effect that all floats are suddenly
piling up at the end of the document.

Why is this the case? In a nutshell, because a higher percentage makes it much more
likely that a float can’t be placed, because it is not big enough to be used on its own
and no other nearby floats can be combined with it, because their combination violates
some other restriction, e.g., together they are bigger than a page, not all of them
are allowed to go on float pages, etc. The moment that happens this float prevents
the placement of all later floats of the same class too (i.e., all figures) and disaster is
ensured. In most cases these floats will then never get placed, because they need a
float of the right size from a different class to appear, which may in theory happen but
is, unfortunately, unlikely.

Thus, while tempting, tinkering with this parameter by making it larger is usually notTinkering with the
parameter settings

will usually produce
unwanted effects

a good idea, unless you are prepared to place most if not all of your floats manually,
by overwriting the placement algorithm on the level of individual floats (e.g., using !

syntax and/or shifting its position in the source document).

Why does the current algorithm have these problems? To some extent, because it
offers only global parameters that need to fit different scenarios and thus settings that
are suitable when many floats need to be placed result in sub-optimal paginations in
document parts that contain only a few floats, and vice versa. To overcome this problem,
either one can try to develop algorithms with many more configurable parameters that
act differently in different scenarios or one can let the algorithm follow a main strategy,
configurable with only a few parameters (like today), but monitor the process and
make more local adjustments and corrections depending on the actual outcome of that
base strategy and additional knowledge of the actual situation in a given document
part. This is the approach taken by the extension implemented in this package.

2 Improvements to the float page algorithm

A simple way to improve on the existing algorithm, without compromising its main
goal of placing the floats as fast as possible and as close as possible to their call-outs,
is the following: as long as there are many floats waiting to be placed, generate float
pages as necessary to get them placed (using the current algorithm and its parameters).

Once we are unable to build further float pages, do some level of backtracking by
checking if we have actually succeeded in placing all floats. If there are still floats
waiting to be placed then assume that what has been done so far is the best possible
way to place as many floats as possible (which it probably is). However, if we have been
able to place all floats onto float pages then check if the last float page is sufficiently
full; if not, undo that float page and instead redistribute its floats into the top and
bottom area of the next upcoming page. This way the floats will be combined with
further text and we avoid a possible half-empty float page.

The fewerfloatpages package

56 TUGboat, Volume 41 (2020), No. 1

This approach will not resolve all the problematic scenarios where we find that LATEX
has decided to favor fairly empty float pages over some tighter type of placement. It
will, however, help to improve typical cases that do not involve too many floats. ForA typical case where

we don’t really
want LATEX to

make a float page

a example, if a single (larger) float appears near the end of a page, then using the
standard algorithm it can’t be immediately placed (because there isn’t enough free
space on the current page). It is therefore moved to the defer list and at the page
break it is then placed onto a float page (possibly by itself, if it is large enough to allow
for that) even though it could perfectly well go into the top or bottom area of the next
page and thus be combined with textual material on that page.

With the new algorithm this float page is reexamined and unless it is pretty much filled
up already, it is unraveled and its floats are redistributed into the top and bottom
areas of the next page. If, however, we have many floats waiting on the defer list, the
normal float page algorithm will first place as many of them as possible into float pages
and only the last of these pages will be subject to a closer inspection and a possible
unraveling.

An extension of this idea (and the one that we actually implement) is to monitor the
whole float page generation process and instead of just considering the last float page
in the sequence for unraveling, we look at each prospective float page in turn and
based on the current situation (e.g., number of floats still being unplaced, free space
on the float page, etc.) decide whether this float page should be produced or whether
we should stop making float pages and instead place the pending floats into top and
bottom areas of the upcoming page.

2.1 Details on the extended algorithm

The main idea of the extended algorithm is to avoid unnecessary cases of float pages
especially if those float pages are fairly empty. Natural candidates are single floatDon’t unravel a

float page if there
are too many floats

on the defer list

pages, but even in cases where the current LATEX algorithm produces several sequential
float pages the extended algorithm may decide to replace them by normal pages under
certain conditions. However, the main goal is and should remain to place as many
floats as soon as possible and so generating float pages when many floats are waiting is
usually essential.

\setcounter{floatpagedeferlimit}{〈number〉}

Whether or not unraveling for a float page is considered at all is guided by the counter
floatpagedeferlimit. As long as there are more floats waiting on the defer list than
this number, float pages are not considered for unraveling. The default is 3 which
corresponds to the default value for totalnumber, i.e., with that setting the unraveling
of a floating page has a fighting chance to place all floats into the top and bottom
areas on the current page. It would also resolve cases for up to three floats, each larger
than \floatpagefraction, where the standard LATEX algorithm would produce three
individual float pages.

floatpagedeferlimit

If you set the counter to 1 then only the last float page in a sequence is considered,
and only if it contains only a single float and if there are no other floats that are still
waiting to be placed. If you set it to 0, then the extension is disabled, because float
pages are produced only if there was at least one float on the defer list.

Even if we set floatpagedeferlimit to a fairly high value, we may not want toDon’t unravel
if the float page

contains many floats
unravel float pages that contain many floats. To support this case there is a second
counter that guides the algorithm in this respect.

Frank Mittelbach

TUGboat, Volume 41 (2020), No. 1 57

\setcounter{floatpagekeeplimit}{〈number〉}

Whenever the float page contains at least floatpagekeeplimit floats it will not be
unraveled. The default is also 3 so that float pages with three or more floats are not
touched. Obviously the counter can have any effect only if it has a value less than or
equal to floatpagedeferlimit because this is tested first.

floatpagekeeplimit

There are, however, a number of other situations in which we shouldn’t unravel a float
page even if the above checks for the size of the defer list were passed successfully. TheDon’t unravel if the

float page contains
at least one [p] float

most important one is the case when the float page contains at least one float that
is allowed only on float pages (i.e., has a [p] argument). Such a float would not be
placeable in a top/bottom area on any page and thus would be repeatedly sent back
to the defer list (possibly forever).

The other case where unraveling would normally be counterproductive is when the
particular float page is nearly or completely filled up with floats. If we unravel it, thenDon’t unravel

if the float page
is nearly filled

it is certain that we can place only some of the floats into the top or bottom area of
the next page, while some would end up on the defer list. That in turn means that
these deferred floats float even further away from their call-out positions than need be.

\renewcommand\floatpagekeepfraction{〈decimal〉}\floatpagekeepfraction

So what is a good way to determine if a float page is “full enough”? A possible answer
is that if the remaining free space on that page is less than \textfraction we consider
it full enough to stay. \textfraction defines the minimum amount of space that has
to be occupied by text on a normal page, thus if all floats together need so much space
that this amount of text could not fit, then trying to place all floats onto a normal
page can’t succeed and some of them would get deferred for sure. To allow for further
flexibility the algorithm uses the variable \floatpagekeepfraction (defaulting to
\textfraction) so if desired a lower (or even a higher) boundary can be set.

The above parameters give some reasonable configuration possibilities to guide the
algorithm as to when and when not to unravel a possible float page and instead produce
further normal pages. It should be noted, however, that except for the case of setting
floatpagedeferlimit to 1, there is always a chance that floats drift further away
from their call-outs, because they may not be immediately placeable due to other
parameter settings of the float algorithm. For example, the counter topnumber (default
value 2) limits the number of floats that can be placed in the top area on a normal
page and if more remain after unraveling only two can immediately go in this area.

2.2 Possible pitfalls and how to avoid them

The algorithm detects if a float is allowed only on float pages (i.e., is given in the source
as [p]) and it will ensure that float pages containing such floats are not unraveled.

However, if you have a float with the default specifier [tbp] whose size is larger
than the allowed size of the top or bottom area (e.g., larger than \topfraction ×

\textheight), then this effectively means it can only be placed on a float page.

However, according to the specifier the float is allowed to go into the top or bottom
area, so the algorithm, as explained so far, would be allowed to unravel and when that
float later is considered for top or bottom placement it will get again deferred and thus
move from one page to the next, most likely messing up the whole float placement.

There are two possible ways to improve the algorithm to avoid this disaster. Onechecktb (option)
way would be to check the float size when it is initially encountered and remove any
specifier that is technically not possible because of the parameter settings and the float
size. A possible disadvantage is that this determination will be done once and any
later (temporary) change to the float parameters will have no effect. This is currently
the package default. It can be explicitly selected by specifying the option checktb. In
this case you might see warnings like

The fewerfloatpages package

58 TUGboat, Volume 41 (2020), No. 1

LaTeX Warning: Float too large for top area: t changed to p on line ...

Another possibility is that we automatically add a ! specifier to all floats duringaddbang (option)
unraveling, i.e., when we send them back for reevaluation. This way such floats become
placeable into top and bottom areas regardless of their size. This may result in fewer
pages at the cost of violating the area size restrictions once in a while. It is specified
with the option addbang.

If you prefer no automatic adjustment of the specifiers, add the option nocheck. Innocheck (option)
this case you might find that floats of certain sizes are unplaceable and thus get delayed
to the end of the document. If that happens, the remedy is either to explicitly specify
[p] or [hp] for such a float (to ensure that they aren’t subject to unraveling) or to
manually add an exclamation specifier, e.g., [!tp] so that LATEX doesn’t use the size
restrictions in its algorithm.

2.3 Tracing the algorithm

The package offers the option trace, which if used, will result in messages such astrace (option)

[1]

fewerfloatpages: PAGE: trying to make a float page

fewerfloatpages: ----- \@deferlist: \bx@B \bx@D

fewerfloatpages: starting with \bx@B

fewerfloatpages: --> success: \bx@B \bx@D

fewerfloatpages: ----- current float page unraveled

(free space 192.50336pt > 109.99832pt)

[2]

which means that the algorithm is trying to make a float page from the defer list
which at that point contained two floats (the float boxes \bx@B and \bx@D), that it was
able to produce a float page containing just \bx@B and \bx@D, and that the extended
algorithm then decided to unravel that float page, because it has an unused space of
192.5pt, i.e., roughly 16 text lines. With the current \floatpagekeepfraction that
is too much empty space on the page.

Or it might say

fewerfloatpages: PAGE: trying to make a float page

fewerfloatpages: ----- \@deferlist: \bx@D \bx@F \bx@G \bx@H \bx@I

fewerfloatpages: starting with \bx@D

fewerfloatpages: --> success: \bx@D \bx@F

fewerfloatpages: ----- too many deferred floats for unraveling (5 > 3)

[3]

which means that the algorithm made a float page out of the first two floats from
the defer list (i.e., 3 remained). That page was kept regardless of the amount of free
space it contained because we have a total of 5 floats on the defer list and the counter
floatpagedeferlimit has its default value of 3.

The above tracing messages are both from the same test document. What they also
(implicitly) show is that the unraveling that happened after page 1 resulted in only
one float (\bx@B) being placed on page 2, because we see the second one (\bx@D)
reappearing in the defer list after page 2 got finished. In other words it was moved one
page further away from its call-out: the price for getting a nicely filled page 2 instead
of a fairly empty float page with roughly 200 points left empty. The final part of that
test document then exhibits another type of message:

fewerfloatpages: PAGE: trying to make a float page

fewerfloatpages: ----- \@deferlist: \bx@G \bx@H \bx@I

fewerfloatpages: starting with \bx@G

fewerfloatpages: --> success: \bx@G \bx@H \bx@I

Frank Mittelbach

TUGboat, Volume 41 (2020), No. 1 59

fewerfloatpages: ----- all floats placed on float page(s)

fewerfloatpages: ----- current float page kept, full enough

(free space 38.99496pt < 109.99832pt)

[4]

This means that the remaining floats (that were left unplaced after float page 3 got
constructed) formed a float page and that float page was the last in sequence (i.e., all
floats have been placed). However, this time the algorithm decided not to unravel it,
because it is nicely full: there are only 39 points of free space left on that page.

Three other possible messages are shown in this sequence of tracing lines from a second
test document (which is using some uncommon settings: floatpagedeferlimit is 10

and floatpagekeeplimit is 5):

[1]

fewerfloatpages: PAGE: trying to make a float page

fewerfloatpages: ----- \@deferlist: \bx@B \bx@C \bx@D \bx@E \bx@F \bx@G \bx@H

fewerfloatpages: starting with \bx@B

fewerfloatpages: --> success: \bx@B \bx@C \bx@D \bx@E \bx@F \bx@G \bx@H

fewerfloatpages: ----- current float page kept (contains at least 5 floats)

[2] [3]

In this case 7 floats have been waiting on the defer list and the algorithm was able to
construct a float page using all of them. The algorithm then keeps that page because
it has 5 or more floats in it (the value of the floatpagekeeplimit counter).

The next message in that test document shows what happens when there are not enough
floats waiting or they are simply too small (to even get past the \floatpagefraction

limit):

fewerfloatpages: PAGE: trying to make a float page

fewerfloatpages: ----- \@deferlist: \bx@I \bx@J

fewerfloatpages: starting with \bx@I

fewerfloatpages: --> fail

fewerfloatpages: starting with \bx@J

fewerfloatpages: --> fail

fewerfloatpages: --> fail: no float page made

[4]

So no float page was made, but for some reason (that becomes clear later) the two
floats also didn’t got distributed into the top or bottom area of the next page. Instead
they remained on the defer list and during processing of page 4 one more float was
found so that after that page the defer list had grown to length 3:

fewerfloatpages: PAGE: trying to make a float page

fewerfloatpages: ----- \@deferlist: \bx@I \bx@J \bx@K

fewerfloatpages: starting with \bx@I

fewerfloatpages: --> success: \bx@I \bx@J \bx@K

fewerfloatpages: ----- current float page kept, contains a float

fewerfloatpages: with p but no t or b specifier

[5]

This time all floats could be placed, but again the float page wasn’t unraveled (even
though in the test document it contained a lot of white space) because of the fact
that one of its floats (in fact the first though that can only be deduced implicitly) was
specified as a “float page only” float. This explains why on page 4 \bx@I couldn’t be
placed into the top or bottom area and then all following floats of the same class (the
test document contained only figure floats) couldn’t be placed either.

If you want detailed tracing of the complete algorithm, also load the fltrace packageDetailed tracing
of the complete

algorithm
and enable the tracing with \tracefloats anywhere in your document. Note, however,
that the resulting output is very detailed but rather low-level and unpolished.

The fewerfloatpages package

60 TUGboat, Volume 41 (2020), No. 1

2.4 Local (manual) adjustments

If the extended algorithm is used you will get fewer float pages that contain a noticeable
amount of white space. By adjusting \floatpagekeepfraction and the counters
floatpagekeeplimit and floatpagedeferlimit you can direct the algorithm to
unravel more or fewer of the otherwise generated float pages. However, in some cases
it might happen that redistribution of the floats into the top and bottom areas of the
next page(s) may result in some of them drifting too far away from their call-outs. If
that happens, you can either try to change the general parameters or you could help
the algorithm along by using the optional argument of individual float environments.
The two main tools at your disposal are

• using the [!..] notation to allow the float to go into the top or bottom area even
if it would be normally prevented by other restrictions;

• using [p] to force a float into a float page as that prevents the algorithm from
unravelling the float page which contains that float.

As an alternative you can, of course, temporarily alter the definition of the command
\floatpagekeepfraction or the values of two counters in mid-document, but remem-
ber that they are not looked at when a float is encountered in the source but when we
are at a page break and LATEX attempts to empty the defer list, which is usually later
and unfortunately somewhat asynchronous, i.e., not easy to predict.

3 The implementation

We start off with the package announcement. Requiring a fairly new LATEX kernel is
not absolutely necessary but it will help to ensure that we patch what we think we
patch and in the future it means that will can be assured that the rollback functionality
of the kernel is available in case will need to support several releases of the package.

1 〈*package〉
2 \NeedsTeXFormat{LaTeX2e}[2018-04-01]

3 \ProvidesPackage{fewerfloatpages}

4 [\fewerfloatpagesdate\space \fewerfloatpagesversion\space

5 improve float page generation (FMi)]

3.1 Option handling

This release of the package has four options: trace for tracing the algorithm, addbang

and checktb to handle cases where the float size in combination with the float specifiers
makes it difficult if not impossible to place the floats, and nocheck to not make
adjustments for that case.

The option trace enables tracing of the algorithm and is implemented by giving the
command \fl@trace (which is also used by the fltrace package) a suitable definition.

To handle the case that the fltrace package is loaded first, we use \providecommand, so
that its definition is not overwritten, but used if it is already available. If the package
is loaded later everything works fine because it unconditionally defines \fl@trace, i.e.,
overwrites whatever fewerfloatpages has defined.

6 \DeclareOption{trace}

7 {\providecommand\fl@trace[1]%

8 {{\let\@elt\@empty\typeout{fewerfloatpages: #1}}}}

The other three options are mutually exclusive so we number them 0 to 2 in the
command \fp@strategy to ensure that only one is ever active. Option nocheck does
nothing, with the cost that some floats may float to the end of the document. Option
addbang adds a ! to floats that are sent back for reevaluation when a float page gets
unraveled. Option checktb implements a different approach to handling problematic
floats: the vertical size of a float is checked, and if it is too large to be allowed into

Frank Mittelbach

TUGboat, Volume 41 (2020), No. 1 61

the top or the bottom area, any t or b specifier is replaced by p (or dropped if p is
already specified).

9 \def\fp@strategy{0}%

10 \DeclareOption{nocheck}{\def\fp@strategy{0}} % better name?

11 \DeclareOption{addbang}{\def\fp@strategy{1}}

12 \DeclareOption{checktb}{\def\fp@strategy{2}}

The actual implementation is done later. The default is currently checktb but this
may change to addbang based on user feedback.

13 \ExecuteOptions{checktb}

14 \ProcessOptions

3.2 Tracing code

\fl@trace The command \fl@trace is used to output tracing information. By default the tracing
of the algorithm is turned off, so \fl@trace will simply swallow its argument. But if
fltrace is loaded or the option trace is given then the command already has a definition
so we don’t change it here.

15 \providecommand\fl@trace[1]{}

(End definition for \fl@trace.)

3.3 User-level interfaces

For the most part the packages provides internal code that extends the float algorithm
of LATEX. There are, however, also three new parameters that guide this algorithm;
they are defined in this section.

\floatpagekeepfraction The fraction that the algorithm uses to decide whether a given float page is so full
that it would be pointless to unravel it for the reasons outlined above. The default is
whatever fraction has been chosen as the minimum amount of text that needs to be on
a normal page (i.e., \textfraction).

16 \newcommand\floatpagekeepfraction{\textfraction}

(End definition for \floatpagekeepfraction. This variable is documented on page 57.)

floatpagedeferlimit

\c@floatpagedeferlimit

The algorithm will only consider unraveling float pages if there are not too many
floats on the defer list. The definition of “too many” is provided through the counter
floatpagedeferlimit if there are more floats waiting to be placed; float pages are
generated until their number falls below this level. Thus, a value of 0 will disable the
whole algorithm and a value of 1 means that only float pages with a single float might
get unraveled and only if there aren’t others still waiting to be placed.

17 \newcounter{floatpagedeferlimit} \setcounter{floatpagedeferlimit}{3}

(End definition for floatpagedeferlimit and \c@floatpagedeferlimit. These variables are docu-

mented on page 56.)

floatpagekeeplimit

\c@floatpagekeeplimit

A float page that contains at least this number of floats will also be kept. The default
is 3 but if you have a lot of small floats it might be better to set this to a higher value.

18 \newcounter{floatpagekeeplimit} \setcounter{floatpagekeeplimit}{3}

(End definition for floatpagekeeplimit and \c@floatpagekeeplimit. These variables are documented

on page 57.)

The fewerfloatpages package

62 TUGboat, Volume 41 (2020), No. 1

3.4 Patching the LATEX kernel commands

\@tryfcolumn The main macro we have to patch to extend LATEX’s algorithm is \@tryfcolumn. That
command is changed when fltrace gets loaded, so we make our definition as late as
possible to ensure that it will survive.

19 \AtBeginDocument{%

20 \def \@tryfcolumn #1{%

21 \global \@fcolmadefalse

22 \ifx #1\@empty

23 \else

24 \fl@trace{PAGE: trying to make a float

25 \if@twocolumn column/page\else page\fi}%

26 \fl@trace{----- \string #1: #1}%

27 \xdef\@trylist{#1}%

28 \global \let \@failedlist \@empty

29 \begingroup

30 \let \@elt \@xtryfc \@trylist

31 \endgroup

Up to this point the definition is the same as in the original algorithm. At this point
the switch \if@fcolmade tells us if making a float page was successful and the original
algorithm then called \@vtryfc and removed the floats used for this float page from
the defer list.

In the extended algorithm this is the place where things start to differ as we may not
want that float page to actually come into existence.

32 \if@fcolmade

As a first step we count the number of floats in the defer list and save the result in
\fp@candidates.

33 \fp@candidates\z@

34 \def\@elt##1{\advance\fp@candidates\@ne}%

35 #1%

36 \let\@elt\relax

Now we compare this number with the values of the counter floatpagedeferlimit

and if it is higher we definitely want to keep the float page. The rationale is that if we
unravel now, then all floats from the defer list need to go into the top/bottom areas
(or get deferred again but to a later page) and so a high number means the defer list
will not get shortened very much and too many floats will get delayed further.

37 \ifnum \fp@candidates >\c@floatpagedeferlimit

38 \fl@trace{----- too many deferred floats for unraveling

39 (\the\fp@candidates\space> \the\c@floatpagedeferlimit)}%

40 \else

Otherwise we do a bit more testing. First we set \if@fcolmade back to false; after all
our goal is to not keep the float page. If during the tests we decide otherwise we set it
back to true, which then signals that it should stay.

We also count the floats on the float page, reusing \fp@candidates for that, which is
why we initialize it to zero.

41 \global\@fcolmadefalse

42 \fp@candidates\z@

The actual checking is done with \fp@analyse@floats@for@unraveling and it loops
over \@flsucceed, i.e., the floats for that float page. This checks if any float for that
page has only a [p] specifier and if so it sets \if@fcolmade back to true and as a
side effect it also does the counting for us. Furthermore, it also changes the switch to
true if it finds at least floatpagekeeplimit floats on that page.

Frank Mittelbach

TUGboat, Volume 41 (2020), No. 1 63

43 \let\@elt\fp@analyse@floats@for@unraveling

44 \@flsucceed

45 \let\@elt\relax

Now we recheck the state of the switch and if it still says false, all tests so far indicate
that we don’t want the float page.

46 \if@fcolmade \else

But we aren’t done yet: the float page might be nicely filled, in which case it would be
a shame to unravel it. During the above loop we also measured the free space on the
float page and stored it in \fp@unused@space (see \@xtryfc below). We now compare
that to the maximum free space that we consider to be still okay and if there is more
we finally do the unraveling.

47 \@tempdima\floatpagekeepfraction\@colht

48 \ifdim \fp@unused@space >\@tempdima

49 \fl@trace{----- current float page unraveled^^J%

50 \@spaces\@spaces\@spaces\space\space\space

51 (free space \fp@unused@space\space > \the\@tempdima)}%

For this we basically return all floats back to the defer list. The switch is still false

so it doesn’t need changing.

52 \xdef #1{\@failedlist\@flsucceed\@flfail}%

However, we may also want to add a ! specifier to each of the floats (if the addbang

option was given) so we loop over all the floats once more to get this done.1

53 \let\@elt\fp@maybe@add@bang

54 \@flsucceed

55 \let\@elt\relax

56 \else

But if we want to keep the float page after all, we have to set the switch back to true

so that the rest of the algorithm proceeds correctly.

57 \global \@fcolmadetrue

58 \fl@trace{----- current float page kept, full enough^^J%

59 \@spaces\@spaces\@spaces\space\space\space

60 (free space \fp@unused@space\space < \the\@tempdima)}%

61 \fi

62 \fi

63 \fi

The next \else matches the first \if@fcolmade, i.e., the case that the algorithm
wasn’t able to make any float page. If we are tracing the algorithm, we want to tell
the user about this.

64 \else

65 \fl@trace{ --> fail: no float page made}%

66 \fi

Finally, at this point we are back in the original algorithm. Now the switch tells the
truth about whether or not we want to make a float page, and if so, we go ahead and
produce it.

67 \if@fcolmade

68 \@vtryfc #1%

69 \fi

70 \fi}%

71 }% -- END of \AtBeginDocument

(End definition for \@tryfcolumn.)

1 This could have been integrated with \fp@analyse@floats@for@unraveling but there is not
much gain if any and by keeping it separate the processing logic seems clearer to me.

The fewerfloatpages package

64 TUGboat, Volume 41 (2020), No. 1

\@makefcolumn In contrast to \@tryfcolumn this macro will always make float pages out of the deferred
floats. It is used by \clearpage when we really need the floats to get out because
there is no further text coming up. Thus, in that case we should not unravel the float
pages. That would happen with the kernel definition of \@makefcolumn as that calls
\@tryfcolumn which we just changed above. We therefore modify its definition to
include the original code for \@tryfcolumn instead of calling our updated version.

Again this change is made at \begin{document} so that it is not overwritten in case
fltrace is loaded afterwards.

72 \AtBeginDocument{%

73 \def\@makefcolumn #1{%

74 \begingroup

75 \@fpmin -\maxdimen

76 \let \@testfp \@gobble

At this point the original definition called \@tryfcolumn and the lines above ensured
that it was always succeeding in making a float page. However, since we have changed
that command to do unraveling we had better not use it any more. Instead we replace
it by its original definition (with the addition of two tracing lines).

77 \global \@fcolmadefalse

78 \ifx #1\@empty

79 \else

80 \fl@trace{PAGE: trying to make a float

81 \if@twocolumn column/page\else page\fi}%

82 \fl@trace{----- \string #1: #1}%

83 \xdef\@trylist{#1}%

84 \global \let \@failedlist \@empty

85 \begingroup

86 \let \@elt \@xtryfc \@trylist

87 \endgroup

88 \if@fcolmade

89 \@vtryfc #1%

90 \fi

91 \fi

92 \endgroup

93 }%

94 }% -- END of \AtBeginDocument

(End definition for \@makefcolumn.)

\@xtryfc The only change to \@xtryfc is the addition of the \fl@trace calls. But this extra
tracing info is generally useful and should also be done in the fltrace package.

The macro initiates a float page trial starting with the first float in \@trylist. More
detailed explanations can be found in the documented sources of the LATEX kernel [2].

95 \def\@xtryfc #1{%

96 \fl@trace{ starting with \string#1}%

97 \@next\reserved@a\@trylist{}{}%

98 \@currtype \count #1%

99 \divide\@currtype\@xxxii

100 \multiply\@currtype\@xxxii

101 \@bitor \@currtype \@failedlist

102 \@testfp #1%

103 \@testwrongwidth #1%

104 \ifdim \ht #1>\@colht

105 \@testtrue

106 \fi

107 \if@test

108 \@cons\@failedlist #1%

Frank Mittelbach

TUGboat, Volume 41 (2020), No. 1 65

109 \fl@trace{ --> fail}%

110 \else

111 \@ytryfc #1%

112 \fi

113 }%

(End definition for \@xtryfc.)

\@ytryfc The command \@ytryfc, which is also part of the code in the kernel, loops through
the defer list and tries to build a float page starting with the float passed to it in
#1. If it succeeds, the floats that are part of the float page are listed in \@flsucceed

and the switch \if@fcolmade is set to true. Also of interest to us is that inside the
code \@tempdima holds the size taken up by the floats, so we can use this to calculate
the unused space on the float page and store it in \fp@unused@space for use in our
extended algorithm.

114 \def\@ytryfc #1{%

115 \begingroup

116 \gdef\@flsucceed{\@elt #1}%

117 \global\let\@flfail\@empty

118 \@tempdima\ht #1%

119 \let\@elt\@ztryfc

120 \@trylist

121 \ifdim \@tempdima >\@fpmin

122 \global\@fcolmadetrue

This branch is executed when the floats together are big enough to form a float page.
Thus, this is the right place to calculate the free space by subtracting the used space
from the column height (which may not be the full height if there are spanning floats
in two column mode).

123 \@tempdimb\@colht

124 \advance\@tempdimb-\@tempdima

125 \xdef\fp@unused@space{\the\@tempdimb}%

The remaining code is again unchanged except that we added two additional tracing
lines (though those should be added to the fltrace package too one of these days).

126 \else

127 \@cons\@failedlist #1%

128 \fl@trace{ --> fail}%

129 \fi

130 \endgroup

131 \if@fcolmade

132 \let\@elt\@gobble

133 \fl@trace{ --> success: \@flsucceed}%

134 \fi}

(End definition for \@ytryfc.)

\@largefloatcheck The final kernel macro we need to patch is \@largefloatcheck. This is called when
a float box is constructed and it checks if that box is larger than the available
\textheight, which would mean it could never be placed anywhere, not even on a
float page. The code therefore reduces the box size as necessary and issues a warning.

This macro is therefore a natural candidate to also check if the float size is too large
for the float to go into top or bottom areas (if the option checktb is used).

135 \def \@largefloatcheck{%

136 \ifdim \ht\@currbox>\textheight

137 \@tempdima -\textheight

138 \advance \@tempdima \ht\@currbox

The fewerfloatpages package

66 TUGboat, Volume 41 (2020), No. 1

139 \@latex@warning {Float too large for page by \the\@tempdima}%

140 \ht\@currbox \textheight

141 \fi

The \fp@maybe@check@tb does the checking (or nothing if the option is not given).

142 \fp@maybe@check@tb

143 }

(End definition for \@largefloatcheck.)

3.5 Internal helper commands and parameters

\fp@candidates We use an internal counter to count the number of floats in the defer list and on a
float page under construction.

144 \newcount\fp@candidates

(End definition for \fp@candidates.)

\fp@unused@space In \fp@unused@space we store the amount of free space on the current float page.

145 \def\fp@unused@space{}

(End definition for \fp@unused@space.)

\fp@analyse@floats@for@unraveling With \fp@analyse@floats@for@unraveling we loop over the floats on the float page,
i.e., #1 will be one such float.

One of its tasks is to count the floats (in \fp@candidates) and check if there are at
least floatpagekeeplimit of them (which means the float page should definitely be
kept).

Its most important task, however, is to check if one of the floats has only a p specifier
but no other. In that case it is essential that we not unravel the float page because
such a float would then only go back onto the defer list as it has no place to go except
a float page.

146 \def\fp@analyse@floats@for@unraveling#1{%

147 \advance\fp@candidates\@ne

148 \ifnum \fp@candidates <\c@floatpagekeeplimit

So far we haven’t got enough floats to know that this float page should be kept so we
check the given float specifiers.

The test may look a little weird,2 but what we want to know is this: is there a p (third
bit) but neither a b (second bit) nor a t (first bit). We don’t care about h or ! which
are the next two bits in the float counter nor any of its higher bits (which encode
the type of float). So we divide the integer number by 8, which drops the two least
significant bits (think of the integer represented in binary format), and then multiply
it again by 8. As a result the first two bits are zeroed out. We then compare the result
with the original value and if the two values are the same then the b and t bits must
both have been zero from the start. And since the float was on a float page we also
know that it had a p specifier.

149 \@tempcntb\count#1%

150 \divide\@tempcntb 8\relax

151 \multiply\@tempcntb 8\relax

152 \ifnum \count#1=\@tempcntb

2 “Little” might be an understatement. Encoding a lot of information in individual bits of the
counter value associated with a float was a great way in the early days of LATEX to preserve macro
space (and absolutely essential back then), but these days . . . Anyway, it is the way it is and that
part can’t really be changed without breaking a lot of packages.

Frank Mittelbach

TUGboat, Volume 41 (2020), No. 1 67

In that case we set \if@fcolmade to true to signal that this float page should be kept,
generate a tracing message and change \@elt to become \@gobble to quickly jump
over any remaining floats in the loop without doing further tests or generate further
tracing messages.

153 \global \@fcolmadetrue

154 \fl@trace{----- current float page kept, contains a float}%

155 \fl@trace{\@spaces\space\space with p but no t or b specifier}%

156 \let\@elt\@gobble

157 \fi

On the other hand, if we have seen enough floats we also know that the float page
should be kept, so change the switch, give some tracing info and stop checking:

158 \else

159 \global \@fcolmadetrue

160 \fl@trace{----- current float page kept

161 (contains at least \the\fp@candidates\space floats)}%

162 \let\@elt\@gobble

163 \fi

164 }

(End definition for \fp@analyse@floats@for@unraveling.)

\fp@maybe@add@bang The helper \fp@maybe@add@bang is used to loop through all of the floats of a float
page (receiving each as #1 in turn) and add a ! specifier if there wasn’t one before.

However, we only define it if we implement strategy 1 which is option addbang.

165 \ifnum\fp@strategy=1

166 \def\fp@maybe@add@bang#1{%

Find out if the fourth bit is set (which means no !) and if so subtract 16 from the float
counter which means setting it to zero.

167 \@boxfpsbit #1\sixt@@n

168 \ifodd \@tempcnta

169 \global\advance\count#1-\sixt@@n

170 \fi

171 }

172 \else

173 \let\fp@maybe@add@bang\@gobble

174 \fi

(End definition for \fp@maybe@add@bang.)

\fp@maybe@check@tb The code in \fp@maybe@check@tb is used in \@largefloatcheck to test if the float
has a t or b specifier but is too large to fit into the respective area. This test is not
made by default but only if the option checktb is used, i.e., strategy 2.

175 \ifnum\fp@strategy=2

176 \def\fp@maybe@check@tb{%

Again this is a case of looking at various bits in the float counter value in binary
notation. If the specifier contained a ! we are ok and it would be wrong to change the
specifier, because in that case size restrictions for areas do not apply. For this we have
to test the fourth bit which means dividing by 16 and then checking if the result is
odd or even (odd means there was no !).3 The kernel \@getfpsbit does this for us
and stores the result in \@tempcnta so we can test this with \ifodd to see if the bit
was set.

3 I’m sure we had good reasons to implement it this way in 1992 — we probably saved a few bytes
which was important back then. But it is certainly odd that for ! a value of zero means that it was
specified on the float while for all other specifiers a value of 1 indicates that the specifier was given.

The fewerfloatpages package

68 TUGboat, Volume 41 (2020), No. 1

177 \@getfpsbit \sixt@@n

178 \ifodd \@tempcnta

If there was no ! we check if the height of the float is too large to fit into the top area.

179 \ifdim \ht\@currbox>\topfraction\textheight

If that is the case we also check the first bit of the float counter to see if a t was
specified. For this we use \@getfpsbit again but this time with 2 as the argument
since we test the first bit.

180 \@getfpsbit \tw@

181 \ifodd \@tempcnta

If t was specified we need to remove it (next line) and add (if not already present) a p

instead. This is done by \fp@add@p@bit. Finally we add a warning for the user about
the change.

182 \global\advance\count\@currbox -\tw@

183 \fp@add@p@bit

184 \@latex@warning {Float too large for top area: t changed to p}%

185 \fi

186 \fi

A similar test and action is needed for bottom floats; here we need to look at and zero
out the second bit (i.e., using 4 as a value).

187 \ifdim \ht\@currbox>\bottomfraction\textheight

188 \@getfpsbit 4\relax

189 \ifodd \@tempcnta

190 \global\advance\count\@currbox -4\relax

191 \fp@add@p@bit

192 \@latex@warning {Float too large for bottom area:

193 b changed to p}%

194 \fi

195 \fi

196 \fi

197 }

In all other cases \fp@maybe@check@tb does nothing.

198 \else \let\fp@maybe@check@tb\relax \fi

(End definition for \fp@maybe@check@tb.)

\fp@add@p@bit The command \fp@add@p@bit adds the p specifier which means checking the third bit
and if not set, adding 8 to the float counter.

199 \def\fp@add@p@bit{%

200 \@getfpsbit 8\relax

201 \ifodd \@tempcnta \else \global\advance\count\@currbox 8\relax \fi}

(End definition for \fp@add@p@bit.)

202 〈*package〉

References

[1] Frank Mittelbach. How to influence the position of float environments like figure
and table in LATEX? TUGboat 35:3, 2014.
https://www.latex-project.org/publications/indexbytopic/2e-floats/

[2] LATEX Project Team. The LATEX 2ε Sources (660+ pages), 2020.
https://www.latex-project.org/help/documentation

⋄ Frank Mittelbach

Mainz, Germany

https://www.latex-project.org

https://ctan.org/pkg/fewerfloatpages

Frank Mittelbach

https://www.latex-project.org/publications/indexbytopic/2e-floats/
https://www.latex-project.org/help/documentation

TUGboat, Volume 41 (2020), No. 1 69

Typesetting Bangla script with LuaLATEX

Ulrike Fischer, Marcel Krüger

In [2], Md Qutub Uddin Sajib describes some expe-
riences and insights concerning typesetting Bangla.

While we don’t know Bangla, we want to share
some additional information about the LuaLATEX
side, especially about how to use the possibilities of
the new HarfBuzz library.

1 HarfBuzz in LuaLATEX — the engine choice

Typesetting a script is more than placing glyphs side
by side. Even in the rather simple western scripts
there are already ligatures, kerning and accents to
handle and many scripts have much more complex
rules. Up to now LuaLATEX wasn’t very good with
such scripts. This wasn’t due to a fundamental
deficiency, but a lack of manpower: To implement
the shaping rules one needs people knowing the script,
knowing Lua and having the time and the will to put
both together. The experience with xetex was much
better as this engine relied on an external library
from the start — these days on HarfBuzz [3]. For
quite some time there has been a wish for luatex to
also support use of HarfBuzz.

In 2019, this became possible: with harftex [1]
and luahbtex, two engines with built-in HarfBuzz

support were available. After some discussion the
LATEX team decided to base LuaLATEX in TEX Live
2020 on luahbtex and integrated in fall 2019 the
necessary Lua code into luaotfload. As an engine
change is a major step the two TEX distributions
TEX Live and MiKTEX added the new engine already
in November 2019 and the LuaLATEX-dev format has
been mapped to it. This allowed beginning “real
world” tests.

So, from the various LuaLATEX variants men-
tioned by Sajib, only the following should be consid-
ered if HarfBuzz is wanted:

TEX Live 2019 / before April 2020
lualatex-dev = luahbtex + LATEX-dev

TEX Live 2020 / after April 2020
lualatex = luahbtex + LATEX
lualatex-dev = luahbtex + LATEX-dev

To make the best use of the new HarfBuzz inte-
gration it is important to keep one’s TEX distribution,
notably including luaotfload, up to date to benefit
from the development and corrections of bugs.

2 Using HarfBuzz in LuaLATEX

With X ELATEX HarfBuzz is always used to shape a
font (with the exception of legacy TEX fonts). This
doesn’t hold for LuaLATEX. Here one can choose on

Table 1: Example rendering with the various modes

base কণ্যা এখন কি করিবে?
node কণ্যা এখন িক কিরেব?
harf কণ্যা এখন �ক ক����?

a font-by-font basis between the base mode (mostly
used for math fonts), node mode (used for text) and
the new harf mode (which has a number of sub-
modes). HarfBuzz is an addition to, not a replace-
ment for, the existing font shapers. If the library
isn’t used the new engine behaves like luatex.

Table 1 shows the rendering of an example text
in the three modes. In comparing the output one
can see — even if one doesn’t understand the script —
that base mode doesn’t know much, node mode a
bit and harf mode a lot about the script. E.g., the
third word is U+0995 U+09BF (corresponding to the
Bengali letters “KA”: ক and “I”: ি). While the
simpler base mode just prints these letters next to
each other, the more advanced modes node and harf

reverse the order. The first word in the examples
shows that node mode is still missing some shaping
rules that harf mode applies.

When using the fontspec package the mode
can be chosen with the Renderer option. It is also
important to specify the correct script. The harf

mode in table 1, for example, can be done with this
font declaration:

\setmainfont{Noto Sans Bengali}

[Renderer=HarfBuzz,Script=Bengali]

3 The “dotted circle” mystery

In [2], Sajib also discusses how to typeset a glyph
without getting an unwanted dotted circle as a base
character. With X ELATEX it isn’t easy to overrule
the rendering that the HarfBuzz library considers to
be correct (though \XeTeXglyph can be used). But
in LuaLATEX it can be done by switching to another
mode of typesetting. Compare the output of e.g.
\char"90BE:

harf mode: �া base/node mode: া

4 Coloring glyphs

The standard LATEX color commands insert specials
or literals. This interrupts the input and so can
disturb the font shaping. Figure 1 shows an example
where the color commands inhibit the reordering of
the glyphs.

With LuaLATEX one can use attributes instead
by loading the luacolor package. With it, the code
in figure 1 gives this output: �ক �ক

At first glance this looks okay but the coloring
is actually odd. The code asks to color the KA red

Typesetting Bangla script with LuaLATEX

70 TUGboat, Volume 41 (2020), No. 1

\char"0995\char"09BF \quad

\color{red}\char"0995

\color{green}\char"09BF

িক কি◌
Figure 1: Wrong shaping due to color commands

(ক) and the I green (ি) but in the output the colors
are reversed. This shows a general problem with this
approach: the attributes are attached to the input

chars. When getting back the shaped output from
HarfBuzz (in this case in reversed order) luaotfload

doesn’t always know how the input and the output
relate and has to guess how to reattach the attributes.
Switching to node mode solves the problem for this
specific case as in this mode luaotfload has full
control over the shaping and so can make a better
decision how to set the color.

But the core of the problem lies deeper: font
shaping takes a cluster of n input chars and outputs
m glyphs and there is not always a clear mapping
between attributes of an input char to the attributes
of the output glyphs. As an example, take the in-
put \color{red}f\color{green}f\color{blue}i:
what color should the output ffi-ligature glyph be?

5 Coloring the output glyphs

We’ve seen that adding color commands to the in-
put does not always lead to satisfactory results.
What about color instructions that target the out-

put glyphs? The code in figure 2 (which requires
luaotfload 3.12) shows that this is possible. The
code defines a color scheme that maps colors to out-
put glyphs and uses it in the font declaration.

The difficulty with this method is to correctly
reference the desired output glyphs. The code shows
two different methods: by name (“ivowelsignbeng”)
and by index, the GID, of the glyph. Both methods
have drawbacks.

Glyph names can fail as not every font uses the
same names for the same glyphs, and some fonts
don’t contain them at all. The name “t” for example
works fine with TEX Gyre Heros but not with Arial.
The handling of glyph names also differs between the
modes: With the HarfBuzz renderer glyph names
currently work only with ttf fonts (this will probably
change with the next HarfBuzz version).

Index numbers are more reliable but they are
different for every font (and can change if a font is
updated). The GID of “t” is 87 in Arial and 106 in
TEX Gyre Heros.

A third possibility, more difficult to implement,
is to use the ToUnicode mapping of the glyph. The
problems here are several: different glyphs can have
the same ToUnicode, some glyphs (e.g., accented

\directlua{

luaotfload.add_colorscheme("my_scheme",

{ ["FF0000"] = {"kabeng"},

["00FF00"] = {"ivowelsignbeng"},

["0000FF"] = {369} % GID of "nadarabeng"

})}

\newfontface\colorbengali{Noto Sans Bengali}

[Renderer=Harfbuzz,

Script=Bengali,

RawFeature={color=my_scheme}]

{\colorbengali

\char"0995 \char"09BF

\char"09A8 \char"09CD \char"09A6

\char"09CD \char"09B0}

�কন্দ্র
Figure 2: Coloring glyphs in a font

characters) can have more than one ToUnicode value
(and which one is used in a document cannot always
be easily predicted), some glyphs are clusters and
so have quite long values, and finally, some have no
ToUnicode mapping at all.

So while the results of coloring output glyphs
can be quite good, this clearly requires some skill
and the right fonts.

6 Coloring parts of a glyph

The methods mentioned above don’t help to color
the parts of a single glyph, e.g., ন্দ্র. While the input

consists of five chars (ন্দ্র) the output is one glyph
in the font and coloring parts of a glyph can only
be done if the font has special support for it. Here
the only option is to enhance the font with color
support or to draw the glyph with TikZ or some
graphic application and color it manually.

References

[1] K. Hosny. Bringing world scripts to LuaTEX:
The HarfBuzz experiment. TUGboat 40(1):38–43,
2019. https://tug.org/TUGboat/tb40-1/

tb124hosny-harfbuzz.pdf

[2] M. Q. U. Sajib. Typesetting the Bangla script in
Unicode TEX engines — experiences and insights.
TUGboat 40(3):263–269, 2019. https://tug.org/

TUGboat/tb40-3/tb126sajib-bangla.pdf

[3] The FreeType Project. HarfBuzz, a text shaping
library. https://harfbuzz.org

⋄ Ulrike Fischer
Mönchengladbach
ulrike.fischer (at) latex-project.org

⋄ Marcel Krüger
Hamburg
marcel.krueger (at) latex-project.org

Ulrike Fischer, Marcel Krüger

TUGboat, Volume 41 (2020), No. 1 71

Typographers’ Inn

Peter Flynn

No time for copyright

For several years I have used a locally-developed
LATEX Tips document as an extension to the Very
Short Guide which I maintain as the veryshortguide

package. The document lists 10 tips distilled from my
support time which I suppose constitute a personal
FAQ. It’s one of the very few documents which
I actually wrote from scratch in LATEX, because I
wanted it to work as an example of how you can
produce a 4pp folder FAQ by hand (normally I write
in another system entirely, and transform to LATEX
only for formatting).

All of which is a long way round to saying that
the reason it’s not included in the veryshortguide

package is that the first thing it says is not to rein-
vent the wheel, for which I (illegally) use a cartoon
without permission. It shows a caveman offering a
round wheel to two friends hauling a cart with square
wheels, only to have his offer refused because the
friends were ‘too busy’ trying to make the square-
wheeled cart work. In extenuation, I did try to find
who the artist was, in order to get permission, but a
Google image search shows it used on hundreds of
sites without permission, and no evidence of whose it
originally was, and searches on several image-library
sites we subscribe to also turned up nothing.

I was therefore delighted when I saw a live-tweet
from a Project Jupyter session at Lund University
of a guest lecture on Python tools by Ben Krikler of
Bristol University, showing a drawing making exactly
the same point. Dr Krikler has kindly given me
permission to use the drawing, so I will now be able
to add the document to the package, and use it here.

Figure 1: No time [Ben Krikler, University of Bristol]

If you’re setting type for someone, it’s conven-
tional to assume that they have permission to use
all the images that are not their own. In a formal

contractual situation, you simply make it a condition,
so that if there is a problem later, it’s their problem,
not yours. However, when you’re under time pres-
sure as an author or editor, especially if you don’t
have an amanuensis to take care of administrivia,
it’s easy to forget, or to assume it’ll be OK ‘because
it’s on the web and everyone does it’. Please don’t.

No time to learn

Back to where I left off: the principal problem with
documentation is that no-one wants to read it, no
matter how prettily formatted or useful (� the item
‘Be useful.’ in the list on p. 72). This applies just
as much to the documentation for LATEX packages
as to the articles in TUGboat and all the books on
TEX. Tobias Oetiker’s comprehensive and wonderful
The [Not So] Short Guide to LATEX2ε [3] and other
guides on the TEX Users Group’s list at https://

tug.org/begin.html should be on every new user’s
reading list, as of course should my own Formatting
Information [1] but if the users believe there’s no
time to read them, they risk ending up ‘learning’
about LATEX from word of mouth and obsolete web
sites, along with all the bad practices inherited from
decades of ‘sitting by Nellie’.1

Figure 2: No time [@fiveminutedoodles]

So what can we do, typographically, to help
make our documentation more attractive? As it
turns out, quite a lot, if you have the freedom to
influence the layout.

Avoid Computer Modern. There isn’t anything
wrong with it; in fact I quite like it for classical
book or journal work, but it helps to perpet-
uate the myth that LATEX only has one font.

1 The term comes from the learning-by-watching train-

ing methodology used in mid-20th century British industry,

and adopted by The PracTEX Journal, https://tug.org/

pracjourn, for their Q&A column.

Typographers’ Inn

72 TUGboat, Volume 41 (2020), No. 1

Use X ELATEX and the fontspec package to make
use of all your typefaces, or any of the myr-
iad fonts that come in TEX distributions, many
supported by all engines (https://tug.org/
fontcatalogue).

Reset the margins. The defaults in the standard
document classes are designed for printing on
smaller paper sizes than Letter or A4, and don’t
let you make use of the space effectively. Use
the geometry package to change this.

Look at the line-spacing. If you use lines of full
width with margins less than 3cm (2¼") on A4
or Letter paper, you may need to widen the line-
spacing a little (unless you use 12pt or larger)
otherwise it becomes harder for the eye to flip
back to the start of the next line. Alternatively,
use a two-column layout with multicol.

Use color. Unless you are going to print big quanti-
ties, for which color becomes expensive, look at
introducing spot color like colored section heads
with the xcolor and sectsty packages, or add a
light background color on figures or tables.

Make code interesting. If you’re documenting a
program or language or markup with blocks
of code examples, use the listings package to
provide syntactically-colored or fontified listings.

“ ...it just makes you look better
Lady Bird Johnson
(out of context, but
nevertheless. . .) to have a little color.”
Break up the text. Try not to have whole pages

of text without a break. You may be able to
introduce pull quotes (as above) or add marginal
highlights. Talk to the author or editor about
using deeper sectioning to deal with subtopics
instead of lists.

� Be useful. Indexes, glossaries, and heralded cross-
references all add to the usefulness of a docu-
ment, but sometimes fail to add to its usability
by being non-obvious or too complex.

Alas, if you’re presented with a fixed layout, you have
to work within it, but there is usually some scope for
adding visual interest without changing the style.

Afterthought: proofing the unproofable

When you get asked to typeset something for some-
body, you are in a sense making yourself partly re-
sponsible for the content. Most of the time this
isn’t a problem, but it’s not just what they say, it’s
how they say it. Quite apart from the ‘greengrocer’s
apostrophe’, as in ‘Fresh Orange’s’ and the cognitive
problems I have referred to before of line-breaks in

Figure 3: Misplaced referent [Author’s collection]

centered displays, there’s a perennial difficulty with
dangling misplacement.

In the case of Figure 3 it’s the awkward expres-
sion of whom it applies to, and the fact that it’s
the registration which has to take place at the hotel
reception, not the teeing-off (I checked: the first tee
is a long way from reception).

Here, it’s a trivial case which causes a smile and
harms no-one. If you typeset it, no-one is going to
come running with complaints, although you might
get some good-natured flak from pedants.

• All golfers, members or not, must register at

reception before teeing off.

In more serious circumstances, though (thinking of
signs, posters, forms, or other critical documents
relating to disease control), it could direct people to
the wrong place, or exclude people for whom it is
intended, or vice versa.

If you’re asked to typeset material during a
period of difficulty and pressure, it’s important to
take the time to read and understand what you’re
being asked to set, and suggest changes if you think
they’re likely to be misunderstood. Charles Fyffe, in
Basic Copyfitting, has an important comment:

It is true, of course, that the copy should be
correct when it comes to you, but it rarely is:
and few people have the head for detail of a
good typographer. In general, if you don’t,
no one else will correct the copy, and probably
no one else has the ability. [2, pp. 59–60]

References

[1] P. Flynn. Formatting Information: A beginner’s

guide to formatting documents with LATEX. Silmaril,
Cork, Ireland, Nov 2018.
ctan.org/pkg/beginlatex

[2] C. Fyffe. Basic Copyfitting. Studio Vista, London,
1969.

[3] T. Oetiker, H. Partl, et al. The Not So Short Guide
to LATEX2ε: Or LATEX2ε in 139 minutes, Feb 2018.
ctan.org/pkg/lshort

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

blogs.silmaril.ie/peter

Peter Flynn

An attempt at ragged-right typesetting

Udo Wermuth

Abstract

Plain TEX (as well as LATEX) provides the command
\raggedright to typeset text unjustified, that is,
only the left margin is straight, the right margin
varies in its length and looks ragged. The command
gives good results for narrow columns, for exam-
ple, when it is applied in marginal notes and short
quotations. However, its output addresses only the
English tradition. For wider measures it produces
the ragged-right output that is called “Rauhsatz” in
German and not the more demanding “Flattersatz”.
In this article we examine what recommendations
are formulated by a German typographer to typeset
text in “Flattersatz” and then make an attempt to
capture these recommendations in TEX macros.

1 Introduction

By default, plain TEX produces paragraphs that are
justified. In most cases it is able to produce decent
output if the measure allows that at least 60 char-
acters, punctuation marks, and blank spaces fit into
one line. With some care the length of the line might
be reduced to only 40 symbols and blank spaces and
acceptable output can still be created. Smaller line
widths should use unjustified text [3, p. 27]. (Most of
the time this article uses in its experiments a mea-
sure of 150 pt which allows an average of ≈ 32 char-
acters per line in cmr10 whose lowercase alphabet
length is 127.5837 pt; see [3, p. 28].)

For languages that are written from left-to-right
unjustified text usually means that the left-hand
side has a straight margin as for justified text and
the right-hand margin is ragged as line breaks occur
at the end of the line when the line is sufficiently
filled. There are several phrases to describe this sit-
uation: flush-left typesetting, ragged-right typeset-

ting, unjustified; all have the same meaning.

In the world of TEX, unjustified is often called
ragged-right typesetting as plain TEX defines the
control word \raggedright to typeset paragraphs
unjustified [8, p. 356]. LATEX provides a flushleft en-
vironment and a \raggedright declaration; see [11,
pp. 111–112]. The latter control word has a differ-
ent implementation than the plain TEX version; the
next section will discuss this further.

For centuries, book printing has applied justifi-
cation to nearly all paragraphs with one important
exception: epics or poetry in general. These texts

TUGboat, Volume 41 (2020), No. 1 73

were often printed unjustified. But in the modern
interpretation of traditional typesetting, book de-
signers and typographers started to apply ragged-
right margins to all kinds of books, occasionally even
novels, at least in the 20th century [16, p. 20]. As in
the case of justification, certain best practices and
guidelines to avoid bad looking results have been
formulated to typeset such texts unjustified.

Motivation. I am aware that ragged-right typeset-
ting is a difficult topic. Once I needed ragged-right
typesetting for a German text and the TEX macro
\raggedright didn’t gave a result that I liked (too
many hyphens) and I fixed it manually. Much later I
looked up unjustified typesetting in my books about
typography, and tried to develop macros that imple-
ment ragged right for a larger variety of measures. I
describe some of them in this article, but I have to
admit that my experience with them is still limited.
And note, this is the first time that I apply them to
an English text. Thus, I look at this article as a start
to the discussion of how to approach the problem of
automated ragged-right typesetting with TEX.

This paper discusses neither the readability of
unjustified margins nor the situations when they
shall be applied. A lot of factors are involved but
here the assumption is made that the designer has
determined that the needs of the text request or at
least allow ragged-right typesetting.

Two words in German. German typographers
translate “ragged-right margins” with two German
words: Rauhsatz and Flattersatz. (“Satz” is type-
setting; “rauh” has here the meaning “raw” or “un-
treated”; “flattern” means “to flutter”.) The two
German words are not synonyms but rather show
two different sets of rules—or better, recommen-

dations—formulated to distinguish layouts by the
significance of the visual effect of the right margin.
Their difference is very important as the former is
considered low quality typesetting compared to the
latter. (“Rauhsatz damages the language, it is only
acceptable for cheap, short-lived works” [16, p. 90];
my translation.) Rauhsatz is used with small line
widths; Flattersatz is applied for wider measures or
as an alternative for justified text. It requests that
the right margin forms a rhythmical pattern: Lines
shall alternate in length. Precise descriptions follow
in section 4.

I don’t know why English typographers use only
one word instead of the two that are considered nec-
essary by German typographers. It might be that
the concept of “Flattersatz” is so distinct from the
English ragged-right typesetting as the line lengths
vary so much—probably due to the longer average

An attempt at ragged-right typesetting

word length in German—that no separate English
word is needed because the effect doesn’t indepen-
dently stand out in English typesetting. But as the
traditions for different languages have different rec-
ommendations it might be useful to have a more
complicated ragged-right typesetting macro that is
flexible enough to reflect these diverse traditions.

Contents. First, section 2 discusses some available
implementations in TEX to typeset text unjustified
and section 3 presents a few examples of bad ragged-
right output. Section 4 describes some recommen-
dations, and section 5 tries to capture them in TEX
macros. Modern TEX installations run fast and we
can throw more code at the problem than in ear-
lier days. A general approach to define a ragged-
right typesetting macro is introduced in section 6.
Section 7 applies the results to English and Ger-
man examples. Control sequences to set line breaks
manually in this context are the topic of section 8.
A short summary in section 9 concludes the article.

2 What do TEX and LATEX implement?

First, the definition for ragged-right typesetting in
plain TEX is discussed. Actually, there are two def-
initions in plain.tex [8, pp. 355–356]. I change the
format and replace a constant-value register by its
content to enhance readability. Plain TEX does not
have a command that switches back to justification
so that the command is normally used in a group,
else it is active for the rest of the document.

\def\raggedright{\rightskip=0pt plus 2em

\spaceskip=0.3333em \xspaceskip=0.5em\relax}

\def\ttraggedright{\tt

\rightskip=0pt plus 2em\relax}

How does the first definition work? The line-
breaking algorithm of TEX includes two globs of
glue, the \leftskip and the \rightskip, which are
placed at the beginning and the end of every cre-
ated line [8, p. 100]. The default value in plain TEX
for both skips is 0 pt, so they have no effect. Here
the \rightskip keeps the natural width of 0 pt but
adds stretchability. This allows a line to end before
it covers the entire width of \hsize.

The next two assignments change how TEX de-
termines the amount of white space that it puts
between words. Usually these interword spaces are
based on the values of certain \fontdimen param-
eters defined by the current font. But the above
assignments make interword spaces a fixed width,
with a larger value after colons, periods, exclama-
tion marks, and question marks. More precisely, the
\spaceskip defines the interword space while the
\xspaceskip sets the space after characters with a

74 TUGboat, Volume 41 (2020), No. 1

space factor ≥ 2000 [8, p. 76 and p. 351]. The val-
ues are given in the unit “em” to set them with
respect to the font that is active when the macro
is called. Only this font should be used in the text.
(If more fonts are involved, then all \fontdimen3
and \fontdimen4 values for interword stretch and
shrink should be cleared and \spaceskip shouldn’t
be used.) For cmr10, \spaceskip’s natural width
equals the value of the font’s interword space, i.e.,
\fontdimen2, but the \xspaceskip is larger than
the sum of \fontdimen2 and \fontdimen7, the ex-
tra space, which is 0.44444 em; see [8, p. 433].

It is a specialty of American English typeset-
ting to have more white space after certain punctu-
ation marks; in [3, pp. 29–30], this practice is clas-
sified deprecated as space itself is a kind of punctu-
ation. The article [13] represents a longer example
of ragged-right typesetting by an American typog-
rapher and type designer; it applies extra space af-
ter end-of-sentence periods. For German texts, the
book [4, p. 183] requests the normal interword space
after the period for the end of the sentence. But
an old rule is mentioned that recommends setting a
larger white space manually in certain circumstances
to support the identification of a sentence’s end: a
small interword space and an abbreviation that ends
with a period and that occurs at the end of a sen-
tence.

The second definition does essentially the same
for monospaced fonts as the first does for propor-
tional fonts. The former has by default a fixed-width
interword space, so the assignments to the parame-
ters \spaceskip and \xspaceskip can be omitted.
Note however that the font is explicitly selected be-
fore the assignment to \rightskip is made to get
the correct value for the unit “em”.

On page 338 of The METAFONTbook [9] code
from the file testfont.tex is shown that “improves
on plain TEX’s \raggedright”:

\ifdim\fontdimen6\testfont<10pt

\rightskip=0pt plus 20pt

\else

\rightskip=0pt plus 2em

\fi

\spaceskip=\fontdimen2\testfont

\xspaceskip=\fontdimen2\testfont

\advance\xspaceskip by \fontdimen7\testfont

The improvements are: \rightskip’s stretchability
is set to min(20 pt, 2 em) and interword spaces use
the relevant \fontdimen parameters of the font that
is tested.

LATEX2ε’s \raggedright uses a similar setup.
Again I format the code for the column width and
replace constant-valued registers by their contents.

Udo Wermuth

% see ltmiscen.dtx

\newskip\@rightskip

\@rightskip=0pt plus 0pt minus 0pt

\def\raggedright{\let\\=\@centercr

\@rightskip=0pt plus 1fil

\rightskip=\@rightskip

\leftskip=0pt plus 0pt minus 0pt

\parindent=0pt}

Two backslashes are used to implement a line
break; see [11, p. 112]. This aspect of the macro is
not analyzed further in this article.

As in the plain TEX macro, \rightskip gets
a new value. Here it is done in two steps involving
the skip register \@rightskip. The first difference is
that infinite stretchability is assigned, which makes
very short lines acceptable. It creates “very ragged-
looking paragraphs” [12, p. 103]. The second differ-
ence is that nothing is done to the interword spaces,
they keep their stretch- and shrinkability. Moreover,
the macro suppresses indentation.

3 What is bad ragged-right typesetting?

Of course, we are interested in good ragged-right
typesetting. But the word “good” is sometimes dif-
ficult to define whereas it is quite easy to show some
aspects that should not happen when a paragraph is
typeset ragged right. So let’s learn first what should
be avoided, at least according to German tradition.

To start, the right margin shouldn’t create a
contour like an arrowhead, i.e., lines get longer in
small steps and after the longest line the next lines
decrease their length in small steps. Such structures
are easily spotted by a reader and distract him from
the text. (In the case that such a shape is wanted,
use TEX’s \parshape [8, p. 101] or a package like
shapepar from CTAN.)

Example 1: Description

A short plain TEX example of ragged-right typesetting
with several criticizable aspects.

TEX input

\ninepoint\raggedright\noindent

The text of this example is typeset ragged

right with the macro of plain \TeX; it is

designed to demonstrate some bad things that

happen if the line breaks are not manually

improved. For example, the first three lines

and the last three lines build a pair of

inverse slopes.

TEX output

The text of this example is typeset ragged right with
the macro of plain TEX; it is designed to demonstrate
some bad things that happen if the line breaks are not
manually improved. For example, the first three lines
and the last three lines build a pair of inverse slopes.

TUGboat, Volume 41 (2020), No. 1 75

The macro \ninepoint is defined in tugboat.sty.
In the next two paragraphs the line lengths vary

and don’t build a contour; but other problems occur.

Example 1 continued: TEX input

\noindent

Another kind of problem is shown in the next

line: The last word sticks out as the other

two lines are a little bit shorter; it looks

similar to the first lines.

\noindent

Surprise! This is a new paragraph. But as it

is not indented it is very hard to see that in

the output.

TEX output

Another kind of problem is shown in the next line:
The last word sticks out as the other two lines are a
little bit shorter; it looks similar to the first lines.
Surprise! This is a new paragraph. But as it is not
indented it is very hard to see that in the output.

Of course, the “a” at the end of one line and
the identification of the last line of the paragraph
should be improved. In [7], Fig. 5 [10, p. 83], the
first situation is called the “sticking-out problem”.

The problem that the start of a paragraph is
not clearly signaled occurs with justified typesetting
too. And in justified texts it can happen that one
word is repeated at the start or the end of several
consecutive lines. Such stacks can appear too if the
text is typeset ragged right. But it can also happen
that the text itself forms an unintended shape.

Example 1 continued: TEX input

\noindent

This text creates a known pattern at its right

end. A twist of fate\Dash or it happens to be bad

luck with \TUB’s measure. No, not at all, I

designed the text. I {\sl placed\/} the

uppercase letters at the {\sl end\/} of the

lines; I wanted to make them build this pattern.

TEX output

This text creates a known pattern at its right end. A
twist of fate—or it happens to be bad luck with TUG-

boat’s measure. No, not at all, I designed the text. I
placed the uppercase letters at the end of the lines; I
wanted to make them build this pattern.

Okay, we have seen a few problems which might
occur with ragged-right typesetting but not with
justified text and we have seen that some problems
of justified typesetting can also appear with ragged
right. The three problems of the first group that we
saw are: Either the right margin or the words at the
line ends build a shape and a single word might stick
out into the margin. To the common problems be-
long the identification of the start of a paragraph if
it has no indentation and the occurrence of stacks.

An attempt at ragged-right typesetting

Of course the output is so bad that the whole
text of the example must be reformatted. How to fix
the situation? In the first paragraph a \break be-
tween “are not” avoids any contour. A tie after the
colon fixes the second paragraph. A break between
“not indented” in the third paragraph and one be-
tween “text. I” together with a tie in “I wanted” in
the fourth improves the rest of the output.

Example 1 continued: TEX output improved

The text of this example is typeset ragged right with
the macro of plain TEX; it is designed to demonstrate
some bad things that happen if the line breaks are
not manually improved. For example, the first three
lines and the last three lines build a pair of inverse
slopes.

Another kind of problem is shown in the next line: The
last word sticks out as the other two lines are a little
bit shorter; it looks similar to the first lines.

Surprise! This is a new paragraph. But as it is not
indented it is very hard to see that in the output.

This text creates a known pattern at its right end. A
twist of fate—or it happens to be bad luck with TUG-

boat’s measure. No, not at all, I designed the text.
I placed the uppercase letters at the end of the lines;
I wanted to make them build this pattern.

The output is not perfect yet but much bet-
ter than before. This little example shows what ty-
pographers state about the manual rework of line
breaks: The processing of ragged-right texts is labo-
rious and the time expenditure is higher than with
justified text [4, p. 152].

A closer look at the sticking-out problem.

We saw that plain TEX’s \raggedright sets fixed-
width interword spaces and assigns stretchability to
\rightskip. With this setup the sticking-out prob-
lem cannot occur very often.

First, let’s define what the phrase “sticking-out
problem” means for us, exactly. Let’s assume that a
one- or two-letter word (or word part) is placed by
TEX at the end of a line. This word sticks out if the
line without the word and its preceding interword
space is longer than both neighboring lines and the
line is recognizable as neither the last nor the next
to last.

This definition declares a word part with two
letters and a hyphen at its end as short. And the
word doesn’t stick out if instead of an interword
space a hyphen or a dash connects it to the previous
word in the line. The last two lines are excluded but
that doesn’t mean that a short word at their end
looks good or is in any way acceptable if it sticks
out.

For later use: Longer words that are captured
in a rhythmical pattern can be tolerated. That is,

76 TUGboat, Volume 41 (2020), No. 1

we look at a five-line block if the neighboring lines
are shorter than the line with the floating word. And
this scenario is acceptable if the first and/or last line
of this block have at least nearly the same length as
the middle line.

Let’s try to find out under which circumstances
a short word isn’t moved to the next line in a nor-
mal text. To keep it simple let’s assume that neither
penalties nor additional demerits are involved. Then
the demerits for a line are computed by

(\linepenalty+ \badness)2 ; (1)

see [8, pp. 97–98]. With fixed-width interword spaces
the badness of a line is represented by the used
amount of the stretchability of the \rightskip [8,
p. 30]. In other words: The badness can be read off
from the length of a line. Different line lengths usu-
ally have different badness values if the stretchabil-
ity of \rightskip isn’t extremely large: The longer
a line the smaller the badness, except for the last line
whose badness is always 0 if its width is less than
\hsize and \parfillskip has its default setting.

So we have a line of badness β if the word that
sticks out (let’s call it w) and the space in front of it
are deleted. The second line is shorter than this line.
Thus its badness is larger: β + κ. And the first line
with w has a smaller badness: β−µ. If w is moved to
the second line the badness of this line gets smaller
too: β + κ − ν.

We can assume β > µ > 0 and we know κ ≥ 0
as the second line without w is shorter than the first
line without w and that µ ≥ ν − κ as the first line
with w is longer than the second with w. And we have
ν ≥ µ as the badness is based on a cubic function
(see [8, p. 97] or equation (3) in section 5) and a
longer line reduces its badness by a smaller amount
than a shorter if the same amount of text is added.

Let’s name the \linepenalty λ; then (1) gives
two sums for the demerits of the two lines. If w sticks
out the demerits of the two lines are

(λ+ β − µ)2 + (λ+ β + κ)2

and when w is moved to the second line we get

(λ+ β)2 + (λ+ β + κ− ν)2 .

The sticking-out problem is avoided if the second
sum is smaller than the first.

(λ+β−µ)2 + (λ+β+κ)2 > (λ+β)2 + (λ+β+κ−ν)2

µ2 − 2(λ+ β)µ > ν2 − 2(λ+ β + κ)ν⇐⇒
(µ− 2λ− 2β)µ > (ν − 2λ− 2β − 2κ)ν.⇐⇒

The negative value of the right-hand side does not
get smaller if the factor ν is replaced by µ ≤ ν. Thus

µ > ν − 2κ

µ+ κ > ν − κ⇐⇒

Udo Wermuth

which is always true if κ > 0 as µ ≥ ν − κ. In other
words: A word cannot stick out if the following line
has a larger badness than the line without the word.

But badness is computed by a heuristic. So a
line might be shorter than another although both
have the same badness value.

Example 2: Description

Show that a word in the third-last line can stick out.

TEX input

\tenpoint\raggedright\noindent

Look: Never odd or even OR: neve ro ddo reveN, I

mean: Never odd or even OR: never odd or even.

It’s a palindrome!

TEX output

Look: Never odd or even OR: neve ro ddo reveN, I
mean: Never odd or even OR: never odd or even.
It’s a palindrome!

The width of the second line is 216.63643 pt; the
first line up to and including the comma measures
216.77533 pt. Thus the “I” sticks out. This happens
as the badness values are small and they give iden-
tical demerits independent of a line break in front of
“I”. (In older versions of TEX with, for example, a
different formula to compute the demerits this was
probably not the case. See [10, p. 94].)

How to avoid this unwanted sticking-out prob-
lem without manual intervention? The only way I
know for this case is to change the sequence of how
TEX selects the breakpoints; see [14, pp. 372–373].
So either use \looseness or a three-line specifica-
tion for \parshape without effect.

Example 2 continued: TEX definitions

\parshape 3 0pt \hsize 0pt \hsize 0pt \hsize

TEX output

Look: Never odd or even OR: neve ro ddo reveN,
I mean: Never odd or even OR: never odd or even.
It’s a palindrome!

On the other hand if the second line has bad-
ness 0 independent of the contents then the calcula-
tion to avoid the sticking-out problem requires that
(λ + β − µ)2 + λ2 > (λ + β)2 + λ2 which is only
possible for µ > 2λ+ 2β. This implies a negative λ
as β > µ > 0. Thus, if the last line of a paragraph in
our ragged-right scenario has badness 0, a sticking-
out look alike can easily occur in the second-last line
as shown in example 1 that uses λ = 10.

Therefore, the \parshape technique doesn’t re-
move the ‘a’ that sticks out in example 1. But it can
be avoided by changing the value of \linepenalty.

Example 3: Description

Avoid the sticking out of ‘a’ in a paragraph of example 1.

TEX input

\linepenalty=-154

TUGboat, Volume 41 (2020), No. 1 77

TEX output

Another kind of problem is shown in the next line:
The last word sticks out as the other two lines are
a little bit shorter; it looks similar to the first lines.

But such a value of \linepenalty means that
TEX likes lines with a high badness, i.e., short lines
for ragged-right paragraphs. This generates not very
good-looking output (see also [15, pp. 410–411]). As
(1) excludes penalties and additional demerits, other
ways to avoid this sticking-out scenario exist in this
case as, for example, the parameter \adjdemerits

plays a rôle. The assignment of a negative value to
this parameter helps: It must be set to ≤ −24296 to
get the output of example 3. It isn’t always advan-
tageous to avoid a sticking-out word in the penulti-
mate line by setting parameters to extreme values.

And there are other effects: Even if the second
line is a little bit longer and has therefore a smaller
badness value than the first, the visual impression
that a word sticks out might occur.

Example 4: Description

Show that a word in the third-last line might appear to
stick out.

TEX input

\ninepoint\raggedright\noindent

See this: Never odd or even OR neve ro ddo

reveN, I mean: Never odd or even. AND Never

odd or even. It’s a palindrome!

TEX output

See this: Never odd or even OR neve ro ddo reveN, I
mean: Never odd or even. AND Never odd or even.
It’s a palindrome!

Thus one consequence of the above is that an
author who uses TEX’s \raggedright has to check
the right margin of the typeset text and to fix un-
wanted effects like the sticking-out problem.

4 What is good ragged-right typesetting?

What are the recommendations of typographers for
ragged-right texts? They do not seem to be univer-
sally established in a way that they can be written
down as “rules”. Different people describing what
they understand as good typography for the same
language might list different sets of recommenda-
tions. Is it best to find the intersection of several
sets— the universal recommendations accepted by
several typographers—or should a consistent set of
a widely recognized typographer be used?

I decided to follow one typographer, Friedrich
Forssman. For the German language I use a text
that discusses many details and gives several exam-
ples of good and bad ragged-right outputs; it is the
book [4] by Forssman and R. de Jong. The book [16],

An attempt at ragged-right typesetting

co-authored by Forssman, contains additional exam-
ples. Of course, the recommendations are tailored
for German texts and German readers. Therefore I
compare the recommendations with the statements
in R. Bringhurst’s book [3], a much shorter text
which aims for brevity [3, p. 9], to identify signifi-
cant differences for English texts. An example text
by R. Southall is taken from TUGboat [13].

Ten recommendations. Here is the list of recom-
mendations that I extracted from [4]. These recom-
mendations are not copied verbatim from the book.
They are my interpretation of the information given
in the text and the examples.

R1 “zone”. A zone at the right margin is defined
that must be entered by a line before it can be bro-
ken. That is, except for the last lines of the para-
graphs the lines cannot get arbitrarily short; at least
they must reach the left boundary of the defined
zone. Its width is determined by the hyphenation
parameters (see R9 “hyphens”) and manual rework-
ing. In a narrow column it should not be too wide or
the margin looks frayed out. [4, p. 152, p. 158, p. 159]

R2 “flutter”. Ideally short and long lines should
occur in turn; the back and forth of the line ends
should form a rhythmical pattern. Notably, the right
margin inside the zone should not look like an un-
successful try to reach justification. [4, p. 124, p. 152]

R3 “exceed”. The zone must not end at \hsize if
the line lengths are varying considerably. Since the
right margin is not evident in this case, the length of
the longest line is allowed to be wider than \hsize.
In two-sided printing, the longest lines of the reverse
side might show through from its straight left mar-
gin. [4, p. 152]

R4 “no shape”. The end of the lines should not
form a contour or a shape, to avoid distracting the
reader from the text. With restricted hyphenation
(see R9 “hyphens”, case b) even four consecutive
lines with line lengths that increase in small steps
are objectionable if the measure is wide enough and
the line lengths can vary properly. [4, p. 154, p. 158]

R5 “end of line”.A short word should not occur at
the end of a line if the neighboring lines are shorter,
i.e., the sticking-out problem should be avoided; es-
pecially one-letter words must be eliminated. Longer
words at the end of a long line that stick out should
be supported at least by words from two lines above
or below, i.e., from one neighboring long line (see R2
“flutter”), if the zone is not narrow. [4, pp. 152–154,
p. 155, p. 157]

R6 “last line”. If the paragraphs have no inden-
tation then the last line of each paragraph must
leave enough white space between its end and the

78 TUGboat, Volume 41 (2020), No. 1

left boundary of the zone if the start of paragraphs
isn’t signaled in another way. That is, the end of
a paragraph must be identifiable and it should not
look like a line that has the minimal length. The
distance from the left boundary of the zone should
be between 2 and 4 em. [4, p. 143, p. 154]

R7 “indent”. In small columns an indentation of
the first line is often unwelcome. [4, p. 143, p. 154]

R8 “spaces”. The interword spaces are all of equal
width. Only their natural widths are used, the set-
tings for their stretch- and their shrinkability are
ignored. [4, p. 124, p. 146, p. 152, p. 154]

R9 “hyphens”. Hyphenation occurs in two forms.
a) The settings of justified text for the length of the
parts can be kept. Larger stacks of hyphens, i.e.,
consecutive lines ending with a hyphen or a dash,
are tolerated than in justified texts.
b) Long syllables and good hyphenation points are
preferred, i.e., the break shall respect the semantic
structure of the word. In this case it is recommended
to have at least four characters (and the hyphen) on
the first line and at least four on the second; in this
article, this structure is named (4, 4). Even better
are five letters in both cases, i.e., (5, 5). That is,
words that are broken must have at least eight or
better ten letters. [4, p. 124, p. 155, p. 158]

R10 “exceptions”. In an emergency R8 “spaces”
and R9 “hyphens” might be violated but only in
a very limited way. Interword spaces might not be
fixed: A very small amount, at most 0.015 em, can
be used to shrink the interword spaces but only if
no other solution is found. In R9b the pair (3, 4)
instead of (4, 4) might be used. [4, p. 124, p. 155]

Measurements in the examples of [4] with line
widths between 10.5 pc and 33 pc show that the zone
widths vary from 23 pt to 57 pt; 48 pt for the widest
measure. The ratio of zone width to \hsize lies be-
tween 12 and 20%; 27% creates a frayed out margin.

The two cases in R9 “hyphens” mark the ma-
jor distinction why in German two words are in use
for ragged-right typesetting as each case implies the
settings for other recommendations. With case R9a
the right margin becomes more compact and the line
widths vary not much; this implements Rauhsatz. It
is the method of choice if the \hsize is small. The
case R9b is considered to be the artistic ragged-right
typesetting, the Flattersatz. In this setup R2 “flut-
ter” should be obeyed as strictly as possible.

What does “as strictly as possible” mean? The
recommendations describe an ideal that an author
cannot achieve perfectly in all cases. In two exam-
ples on pages 152 and 154 of [4] three to five lines ap-
pear in blocks of nearly the same line length, page 20

Udo Wermuth

of [16] has five lines with increasing lengths, and
page 91 contains a 5-line block in which the lengths
of first three lines increase in small steps, the lengths
of the fourth and fifth decrease by a small and a large
width, respectively. So it builds a shape but isn’t as
eye-catching as the contour in example 1.

As indicated above, other typographers recom-
mend more or other criteria. For example, [2, p. 45]
adds to R2 “flutter” that at least one third of the
lines shall be “sufficiently” filled.

The comparison. The book [3], p. 29, gives a self-
involved example of ragged-right typesetting. It dis-
tinguishes between a ragged-right margin looking
like a “neatly pinched piecrust” that is generated
with the default typesetting parameters for hyphen-
ation, spaces, etc., and a “hard rag” which is applied
in the book. Let’s check whether the ten recommen-
dations above are covered.

R1 “zone”: no (and yes). A zone isn’t mentioned
and the text contains the statement that “no mini-
mum line” is defined. But of course, the shortest
non-last line and the \hsize form a zone.

R2 “flutter”: no. This topic isn’t described in
the text and the example doesn’t obey it.

R3 “exceed”: unknown. Again not mentioned in
the text but as the paragraph with the ragged-right
margin appears between justified paragraphs no line
exceeds the measure.

R4 “no shape”: unknown. The aspect isn’t men-
tioned in the text. But the example has once four
lines whose lengths increase in small steps. Thus the
trend goes toward: no.

R5 “end of line”: unknown. There are no long
lines in the sense of R2 “flutter” so the concept
doesn’t seem to be applicable. But the example has
no short words that stick out at the end of a line.

R6 “last line”: probably yes. Again not expli-
citly mentioned in the text but the last line of the
example is much shorter than the other lines.

R7 “indent”: unknown. Indentation is in gen-
eral recommended on page 39 without mentioning
ragged right. The example uses a wide measure and
starts with an ornament to clearly distinguish it
from the indented justified paragraphs.

R8 “spaces”: yes. The text states to use “fixed
word spaces”.

R9b “hyphens”: yes. The text requires that hy-
phenation can occur only at explicit hyphens or at
manually inserted hyphenation points.

R10 “exceptions”: unknown: not mentioned in
the text and not obviously applied in the example.

Half of the recommendations cannot be decided
because of lack of information; three times there

TUGboat, Volume 41 (2020), No. 1 79

seems to be an agreement, and two have received
a “no”. These two topics aren’t explained in the
book. That there is no minimum line has mainly to
do with the unwillingness to hyphenate words but
there is no short line without need.

In total I cannot say that the ideal of [3] for
ragged-right typesetting is reflected by the ten rec-
ommendations that I extracted from [4]. The con-
cept of alternate line length with its consequences
isn’t found in [3]. The text [13] doesn’t help. Learn-
ing by example is in this case suboptimal: The first
paragraph has alternating line lengths but two para-
graphs later a contour is built; the last paragraph in
section 5 has five strictly increasing line lengths and
two paragraphs later a two-letter word sticks out.

Recommendations vs. \raggedright. Let’s look
at plain TEX first. The assignment \rightskip=0pt
plus 2em implements R1 “zone”. This defines the
zone width before the text is manually adjusted; in
a strict sense it’s violating R1. The zone measures
2 em in the first pass and 3

√
2 × 2 em ≈ 2.52 em in

the second and third pass; see formula (2) below.
The other assignments \spaceskip=0.3333em

and \xspaceskip=0.5em address R8 “spaces”, al-
though, of course, two widths are used instead of
a single interword space, this being for American
English and not German.

Hyphenation is not affected by the macro, so it
is the case R9a in which the settings of justified text
are used; i.e., for German texts it implements Rauh-
satz. All other recommendations are not covered.

As shown above, LATEX2ε’s \raggedright as-
signs infinite stretchability to \rightskip. This vio-
lates R1 “zone” because there is no controlled zone:
All lines have badness 0 ([8, p. 101]). TEX’s main
criteria to judge about the quality of a line is lost.
And as the interword spaces aren’t fixed width the
LATEX implementation violates R8 “spaces” too. To
switch off indentation completely doesn’t obey R7
“indent” which looks at the \hsize.

For better ragged-right typesetting—according
to the ten recommendations—an author should use
the (currently unmaintained) package ragged2e; see
[12, pp. 105–106]. It reassigns plain TEX’s value to
\rightskip and provides new parameters to change
not only this glue but also \leftskip, \parindent,
and \parfillskip. And it sets fixed-width inter-
word spaces so that it obeys R8 “spaces”.

Out of scope. The recommendations are for para-
graphs but, of course, the page layout must be con-
sidered too. A page that contains paragraphs that
are typeset ragged right with a wide zone needs a dif-
ferent optical alignment for a centered page number

An attempt at ragged-right typesetting

at the bottom of the page than a page with justified
text. On the other hand, in a two-column layout
the white space between the columns (the gutter)
might be smaller if the text is unjustified; it must
only be larger than the interword space [4, p. 153].
A line that separates columns should be placed close
to the straight margin [16, p. 93].

The opacity of the paper in double-sided print-
ing has already been mentioned. Substantial trans-
parency might let the straight left margin of the re-
verse page soothe the ragged-right margin [4, p. 152].

5 Implementation of the recommendations

As shown in the previous section plain TEX provides
a macro that puts its focus only on the zone and
the interword spaces. The user has to decide how
to handle aspects like indentation of the first line,
hyphenation, etc., and thus the user must invoke
other commands or change parameter values.

Before we decide what a plain TEX command
for ragged-right typesetting should do, techniques of
TEX are analyzed to consider how each recommen-
dation can be implemented. In this analysis more
than the obvious solution will be discussed.

Figure 1a) on the next page shows how plain
TEX’s \raggedright typesets the first paragraph of
a fairy tale with a measure of 150 pt. The complete
English text is available in [10, pp. 84–85, Fig. 6].

R1 “zone”. Above, an imperfect implementation
of the zone was stated by using \rightskip. With
a natural width of 0 pt and a finite stretchability
the zone is defined up front. Even if the glue has
to stretch more than its plain stretchability, i.e.,
the badness of the line is > 100, the \tolerance

guarantees that there is a zone of limited width. Of
course, this width must be chosen carefully with re-
spect to the available line length. If \pretolerance
equals \tolerance, the width of the zone does not
depend on TEX’s pass. If the stretchability of the
\rightskip is named r+ and the current tolerance
τ , then the width of the zone in the pass is given by

3

√

τ

100
× r+. (2)

With τ = 100, only the specified amount r+ is avail-
able to fill the line. But we can make use of a little
bit wider zone in a second pass. For example, if the
width should be 20 pt in the first pass and 22 pt in
the second pass, then we set \pretolerance = 100
and \tolerance = 133 as 100(22/20)3 = 133.1 so

that 3
√
1.33× 20 pt ≈ 1.0997× 20 pt ≈ 22 pt.

And there are other ways to define a zone. One
implementation is given in [7] ([10, pp. 93–94]). In

80 TUGboat, Volume 41 (2020), No. 1

this setup \rightskip isn’t used; instead the spaces
are made active and become a sequence of three
items: a horizontal skip with the stretchability for
the zone and 0 pt natural width, a penalty of value 0,
and a second horizontal skip, which has the natu-
ral width of an interword space and the negative
stretchability of the first skip. It creates identical
output to the version implemented in plain TEX
with \raggedright. (At the time [7] was written,
\rightskip had not yet been invented [10, p. 154].)

A zone can also be defined using natural width
and shrinkability of the same size for \rightskip.
However, because glue cannot shrink more than the
stated value, a \tolerance greater than 100 is with-
out effect; thus there is only one zone width. An-
other disadvantage is that lines with less content
have smaller badness values: TEX prefers lines with
lengths near the left boundary of the zone.

TEX prefers filled lines if the stretchability of
the glue \rightskip defines the zone. The length of
the line represents its badness: A line that reaches
the left boundary of the zone has a higher badness
than a line that needs all of \hsize. Is it good to
treat them differently as both lines have made it into
the zone? Let’s assume that the tolerance is 0 so that
all lines reaching the zone have equal badness.

If the heuristic to calculate the badness β for a
line that stretches is interpreted as an equation

β = 100

(

used stretchability

available stretchability

)3

(3)

then we want to have β at most 0.49 so that it
rounds down to 0. The available stretchability, that
is, the stretchability of \rightskip, is then the max-
imal used stretchability, i.e., the zone width, divided
by 3

√

0.49/100 ≈ 0.17. Thus 1/0.17 = 5.8875 times
the intended zone width has to be assigned to the
stretchability of \rightskip. For example, a zone
width of 20 pt needs a stretchability for \rightskip
of 117.75 pt. It’s hard to see any advantage com-
pared to simply setting \pretolerance = 100 and
a direct assignment of the zone width to the stretch-
ability of \rightskip. Several other parameters like
penalties and additional demerits should be changed
too but it isn’t clear how to assign values to them
to fix the situation. And if we think of the theory
about the sticking-out problem then the scenario of
example 2 becomes common.

My implementation defines the zone via the
stretchability of \rightskip with a \pretolerance

of 100 as it seems to be the best idea. Let’s as-
sume that the (temporary) dimen registers \rrTd

and \rrTdd contain the width of the zone for the
first pass and the width of the zone for the second

Udo Wermuth

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king’s castle
lay a great dark forest, and un-
der an old lime-tree in the forest
was a well, and when the day was
very warm, the king’s child went
out into the forest and sat down
by the side of the cool fountain,
and when she was bored she took
a golden ball, and threw it up on
high and caught it, and this ball
was her favorite plaything.

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king’s castle
lay a great dark forest, and under
an old lime-tree in the forest was
a well, and when the day was
very warm, the king’s child went
out into the forest and sat down
by the side of the cool fountain,
and when she was bored she took
a golden ball, and threw it up on
high and caught it, and this ball
was her favorite plaything.

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king’s castle
lay a great dark forest, and un-
der an old lime-tree in the forest
was a well, and when the day
was very warm, the king’s child
went out into the forest and sat
down by the side of the cool foun-
tain, and when she was bored she
took a golden ball, and threw
it up on high and caught it, and
this ball was her favorite play-
thing.

Figure 1: a) \raggedright & \noindent; b) and \adjdemerits = −10000; c) and \adjdemerits = −40000.

pass or 0 pt, respectively. The second case is used if
the default value 200 is used for the \tolerance.

\pretolerance=100 % define zone width of 1st pass

\advance\rightskip by 0pt plus \rrTd minus 0pt

\ifdim\rrTdd=0pt % use default \tolerance

\tolerance=200

\else

\ifdim\rrTd>\rrTdd \errhelp=\rrEbadtolerance

\errmessage{Width for 2nd pass must not be

smaller than for 1st}%

\tolerance=100

\else % set \tolerance for 2nd zone width

\rrHcompbad\rrTd=100(\rrTdd/\rrTd)^3

\rrHassign\tolerance=[\rrTd]

\fi\fi

The code uses two support macros directly and
then two more are called. Two count registers \rrTc
and \rrTcc appear in the code snippet.

\def\rrHassign#1=[#2]{% #1: count register

% #1 gets integer part of (dimen #2/pt)

\expandafter#1\expandafter

\rrHinteger\the#2\end\ignorespaces}

\def\rrHcompbad#1=100(#2/#3)^3{%

% #1: dimen register; #2, #3: dimens

#1=#3\relax \rrHassign\rrTc=[#1]

#1=#2\relax \rrHassign\rrTcc=[#1]

% \rrTc=int(#3/pt) and \rrTcc=int(#2/pt)

#1=\rrTcc pt % #1=int(#2/pt)pt, short: #1=#2

\rrHmuldiv#1*\rrTcc/\rrTc\end % #1=#2^2/#3

\rrHmuldiv#1*\rrTcc/\rrTc\end % #1=#2^3/#3^2

\rrHmuldiv#1*100/\rrTc\end % #1=100*#2^3/#3^3

\advance#1 by 0.5pt \ignorespaces}% round up

The next two support macros have simple im-
plementations.

TUGboat, Volume 41 (2020), No. 1 81

\def\rrHinteger#1.#2\end{#1\ignorespaces}

\def\rrHmuldiv#1*#2/#3\end{%

% #1: dimen register; #2, #3: numbers

\divide #1 by #3\relax

\multiply #1 by #2\ignorespaces}

R2 “flutter”. If we want to have lines of differ-
ent length then we want lines of different badness.
A short line has a large badness, a long line gets a
badness near 0. So we want very loose lines to be fol-
lowed by decent lines and vice versa. The parameter
\adjdemerits with value 10000 tries to guide TEX’s
line-breaking algorithm to avoid such combinations,
that is, we need to change its value. Although the
value of −10000 makes TEX work harder to find the
best line breaks it seems to be worth assigning a neg-
ative value in order to support this recommendation.
The paragraph in Fig. 1b) has one less hyphenated
line end. Don’t overreact: smaller values might give
worse results for this aspect as Fig. 1c) shows.

An assignment to \rightskip for R1 “zone” is
applied to all lines of a paragraph. There is no way to
change it for odd and even line numbers. If the zone
is implemented via active spaces something can be
implemented to change the stretchability. Unfortu-
nately, it is impossible to know where the line breaks
occur, so whatever scheme is implemented for the
switch it is guesswork.

Another possibility is to change \hsize. Well,
this parameter is fixed for all lines of a paragraph
like the \rightskip. But TEX has the command
\parshape which can be used to define independent
line lengths. Of course, the maximal number of lines

An attempt at ragged-right typesetting

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king’s castle
lay a great dark forest, and un-
der an old lime-tree in the forest
was a well, and when the day was
very warm, the king’s child went
out into the forest and sat down
by the side of the cool fountain,
and when she was bored she took
a golden ball, and threw it up
on high and caught it, and this
ball was her favorite plaything.

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in
her face. Close by the king’s cas-
tle lay a great dark forest, and
under an old lime-tree in the for-
est was a well, and when the
day was very warm, the king’s
child went out into the forest
and sat down by the side of the
cool fountain, and when she was
bored she took a golden ball, and
threw it up on high and caught
it, and this ball was her favorite
plaything.

In olden times when wishing still
helped one, there lived a king
whose daughters were all beau-
tiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone in
her face. Close by the king’s
castle lay a great dark forest, and
under an old lime-tree in the
forest was a well, and when the
day was very warm, the king’s
child went out into the forest and
sat down by the side of the cool
fountain, and when she was bored
she took a golden ball, and
threw it up on high and caught
it, and this ball was her favorite
plaything.

Figure 2: a) short is \hsize− 6 pt b) and start short; c) short is \hsize− 9 pt.

that the paragraphs of the text will reach must be
set in advance to have different line lengths in every
paragraph. Therefore a limit is declared that a user
can increase to cover all number of lines in the para-
graphs. As the \parshape command is reset after
each paragraph [8, p. 103], its specification must be
activated for each paragraph by \everypar.

But if we have a fixed parshape that, for ex-
ample, indents the first line there is no chance to
start a paragraph without indentation. Therefore
the parshape specification must be built anew for
each paragraph. Besides the indentation two other
aspects should be made flexible. First, it should be
possible to switch off the specification and to use
\hsize for all lines. This helps to avoid the sticking-
out problem as shown in example 2. Second, the se-
quence of alternate line lengths should be able to
start with a short line instead of a long line. This
might give more choices for the first line break.

Figure 2 shows three outputs with different line
lengths for odd and even numbered lines. It uses
plain TEX’s \raggedright. The figure adds only
in each case a parshape specification. Thus the ob-
served zone width is increased by the amount that
short lines are shorter than long lines.

My implementation consists of two parts.
As mentioned above the parshape specification must
be built anew for every paragraph because several
aspects should be covered: (1) indent or not, (2) be-
gin with a long or a short line, and (3) use only long
lines, i.e., create a neutral \parshape.

Let \rrCmax be a constant that is larger than
the number of lines of any paragraph in the text. We

82 TUGboat, Volume 41 (2020), No. 1

need some parts to build the lines for \parshape:
\rrPl is a single long line without indent, i.e., it is
0pt \hsize, \rrPil is an indented long line, \rrPs
is a short line without indent, and \rrPis is short
and indented. Two blocks of line pairs, each of them
with \rrCmax/2−2 pairs, are built for long and short
line specifications and for long lines only. The first
block is named \rrPpair, the second \rrPlong.

The creation of the parshape parts is not com-
plicated. Assume that \rrTd contains the amount
by which the short lines are shorter than \hsize

and \rrTdd contains the value for the indentation.
\rrTddd is a third dimen register.

\rrTddd=\hsize % create long lines

\edef\rrPl{0pt \the\rrTddd}% no indent

\advance\rrTddd by -\rrTdd

\edef\rrPil{\the\rrTdd\space\the\rrTddd}% indent

\rrTddd=\hsize \advance\rrTddd by -\rrTd

\edef\rrPs{0pt \the\rrTddd}% short, no indent

\advance\rrTddd by -\rrTdd

\edef\rrPis{\the\rrTdd\space\the\rrTddd}% indent

The two blocks of long/short and long/long line
pairs are created via a loop.

\edef\rrPpair{\rrPl\space\rrPs}% pair long/short

\edef\rrPlong{\rrPl\space\rrPl}% two long lines

\rrTc=\rrCmax \advance\rrTc by -4

\loop

\ifnum\rrTc>0 \advance\rrTc by -2

\edef\rrPpair{\rrPpair\space

\rrPl\space\rrPs}% add a pair

\edef\rrPlong{\rrPlong\space

\rrPl\space\rrPl}% here too

\repeat

Udo Wermuth

The macro that builds the parshape specifica-
tion makes use of three flags for the above mentioned
cases: \ifrrInoi which is true if no indentation is
wanted, \ifrrIsl which is true if the first line is
short, and finally \ifrrIlongonly which is true if
the alternate line lengths shall be ignored.

\def\rrMparshape{%

\begingroup % needed for \aftergroup

\aftergroup\parshape % start \parshape

\aftergroup\rrCmax % number of lines

\aftergroup\space

\ifrrIlongonly % check for one length

\ifrrInoi % check for indent

\aftergroup\rrPl % no indent

\else

\aftergroup\rrPil% indent

\fi

\aftergroup\rrPl % the other lines

\aftergroup\rrPlong

\else

\ifrrInoi % check for indent

\ifrrIsl % check start short

\else

\aftergroup\rrPl

\fi

\aftergroup\rrPs % pair if started long

\else

\ifrrIsl % indent short

\aftergroup\rrPis

\else % indent long, a pair

\aftergroup\rrPil

\aftergroup\rrPs

\fi\fi

\aftergroup\rrPpair% add a lot of lines

\ifrrIsl

\aftergroup\rrPl % complete a short start

\fi\fi

\endgroup}

This macro is invoked for each paragraph. (A
box from \indent is removed using \lastbox.)

\everypar={{\setbox0=\lastbox}\rrMparshape}%

R3: extended zone. The parameter \hfuzzmight
be used to allow TEX to go beyond \hsize [8, p. 30].
The command does not increase the line length; it
merely suppresses an overfull-line warning as long
as the line sticks out less than the width given by
\hfuzz. Thus this parameter is only used if TEX
isn’t able to typeset the text without error; its value
is not available for TEX’s decisions and that is not
exactly what is recommended. The dimen \hfuzz

should be kept as an emergency tool for the user
and not be used in a setup.

If the \parshape command is used then the
length of the long lines can be changed indepen-
dently from the line length of the shorter lines. But

TUGboat, Volume 41 (2020), No. 1 83

then TEX tries to fill all long lines beyond \hsize

as this gives the lowest badness. Again this is not
exactly what is recommended.

The third idea avoids these disadvantages: Add
shrinkability to \rightskip. If a line uses its natural
width or stretches then nothing is changed. But now
a line can shrink too. The shrinkability r− of the
\rightskip adds to the total line length if the line
shrinks. Long lines can therefore reach the length
\hsize + r−. Of course, r− is added for long and
short lines if a parshape specification is used.

Figure 3 on the next page applies r− = 2pt and
r− = 4pt to previously shown examples.

My implementation changes, i.e., advances,
\rightskip with shrinkability. If the dimen register
\rrTd contains the amount by which lines shall be
extended then the following assignment does the job:

\advance\rightskip by 0pt plus 0pt minus \rrTd

Such simple assignments to TEX parameters are
not shown anymore in the following subsections; the
description in plain English should be sufficient.

R4: no shape. The first three recommendations
are technical, thus a translation into TEX macros
and parameters was not too difficult, although a ro-
bust proof of their usefulness is lacking. However,
the fourth recommendation is highly subjective.

Using long and short lines seems to avoid most
shapes if the line lengths are sufficiently different.
But, for example, the sequence of a short short, a
short long, a long short, and a long long line might
create the unwanted case of four lines with increas-
ing length. More complicated designs for \parshape
might avoid this effect. Or a negative \adjdemerits
can trade the effect for words that stick out.

R5: short words at the end of a line. This sit-
uation cannot be avoided in all cases. It was shown
that plain TEX’s \raggedright doesn’t like words
that stick out. And if it happens, a neutral parshape
specification might help; such a specification is pro-
vided in the implementation of R2 “flutter”.

But with lines of different length the conditions
are changed and short words might appear at the
end of long lines. This sometimes gets fixed if the se-
quence of long/short pairs is changed and the para-
graph is started with a short line. The above stated
implementation of R2 “flutter” allows this.

Of course, one can tie short words to their suc-
cessors. But that should only be done to fix bad
breaks.

R6: last line. It is well known that the last line
receives TEX’s \parfillskip; by default it is 0pt

plus 1fil [8, p. 30]. But that is not acceptable if

An attempt at ragged-right typesetting

In olden times when wishing still
helped one, there lived a king
whose daughters were all beau-
tiful, but the youngest was so
beautiful that the sun itself, which
has seen so much, was astonished
whenever it shone in her face.
Close by the king’s castle lay a
great dark forest, and under an
old lime-tree in the forest was a
well, and when the day was very
warm, the king’s child went out
into the forest and sat down by
the side of the cool fountain, and
when she was bored she took a
golden ball, and threw it up on
high and caught it, and this ball
was her favorite plaything.

In olden times when wishing still
helped one, there lived a king
whose daughters were all beau-
tiful, but the youngest was so
beautiful that the sun itself, which
has seen so much, was astonished
whenever it shone in her face.
Close by the king’s castle lay a
great dark forest, and under an
old lime-tree in the forest was a
well, and when the day was very
warm, the king’s child went out
into the forest and sat down by
the side of the cool fountain, and
when she was bored she took
a golden ball, and threw it up on
high and caught it, and this ball
was her favorite plaything.

In olden times when wishing still
helped one, there lived a king
whose daughters were all beau-
tiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king’s castle
lay a great dark forest, and under
an old lime-tree in the forest
was a well, and when the day was
very warm, the king’s child went
out into the forest and sat down
by the side of the cool fountain,
and when she was bored she took
a golden ball, and threw it up
on high and caught it, and this
ball was her favorite plaything.

Figure 3: a) Fig. 1a) with r−=2pt; b) Fig. 1b) with r−=4pt; c) Fig. 2c) with r−=2pt.

the last line should be much shorter, in order to be
easily distinguished from the left boundary of the
zone if the start of a paragraph isn’t signaled by
indentation or other methods. The natural width of
\parfillskip can be set to the zone width of the
second pass plus the difference of the widths of long
and short lines, w, and at least 2 em:

3

√

\tolerance

100
× r+ + w + 2 em. (4)

The recommendation states more precisely that
the last line shall be 2 to 4 em shorter than the other
lines if the \hsize allows this. Instead of using only
the natural width of \parfillskip it seems bet-
ter to add 4 em instead of 2 em in (4) and to use a
shrinkability of 2 em. This assigns some demerits if
the last line is only 2 em shorter so TEX more likely
avoids such a short difference.

Of course, this setting might produce overfull
lines. But this is a good indicator that something
must be fixed by the author. And it is easy to en-
ter \parfillskip=0pt plus 1fil at the end of a
paragraph to restore the default behavior.

Another common problem is that a new line
with only a word part is created. A large value for
\finalhyphendemerits might fix such a situation.

Figures 4a) and 4b) on the next page apply
the ideas. The first column uses \raggedright with
\parfillskip=65pt plus 1fil minus 20pt and the
next column adds \finalhyphendemerits=50000.

R7: no indentation for small \hsize. The plain
TEX macro keeps TEX’s default behavior for inden-
tation of the first line of a paragraph. To change
that either the \parindent is set to 0 pt or all of

84 TUGboat, Volume 41 (2020), No. 1

the paragraphs are started with a \noindent. A par-
shape specification similar to R2 “flutter” sets the
indentation for all paragraphs to a given parameter
and provides with a Boolean flag a way to start a
paragraph without indentation. So the author must
make the decision either not to indent all paragraphs
or to manually enter a command to suppress the in-
dentation.

As the test paragraph is typeset without inden-
tation, Fig. 4c) goes the other way and uses an in-
dentation of 20 pt with plain TEX’s \raggedright.

My implementation invokes the above men-
tioned Boolean flag to avoid indentation:

\let\rrnoindent=\rrInoitrue

R8: fixed interword space. As mentioned above,
interword spaces are usually built from \fontdimen

parameters that TEX reads from the font metric file
of the font, while a nonzero \spaceskip overrides
these font parameters as glue specification of in-
terword spaces and a nonzero \xspaceskip defines
the interword space if the \spacefactor is ≥ 2000.
Both parameters store a glue specification with three
components for the natural width, the stretchabil-
ity, and the shrinkability. But in ragged-right type-
setting only the natural width shall be used.

Of course, the interword spaces should usually
not deviate much from the font designer’s setting
documented in \fontdimen2. Note that a specifi-
cation in the unit “em” involves \fontdimen6, the
width of the font’s quad [8, p. 60].

The recommendation requests a single width for
interword spaces, that is, the value of \xspaceskip
should stay at 0 pt.

Udo Wermuth

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in
her face. Close by the king’s cas-
tle lay a great dark forest, and
under an old lime-tree in the for-
est was a well, and when the day
was very warm, the king’s child
went out into the forest and sat
down by the side of the cool foun-
tain, and when she was bored she
took a golden ball, and threw it
up on high and caught it, and
this ball was her favorite play-
thing.

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in
her face. Close by the king’s cas-
tle lay a great dark forest, and
under an old lime-tree in the
forest was a well, and when the
day was very warm, the king’s
child went out into the forest
and sat down by the side of the
cool fountain, and when she was
bored she took a golden ball, and
threw it up on high and caught
it, and this ball was her favorite
plaything.

In olden times when wish-
ing still helped one, there lived
a king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was as-
tonished whenever it shone in her
face. Close by the king’s castle
lay a great dark forest, and un-
der an old lime-tree in the forest
was a well, and when the day was
very warm, the king’s child went
out into the forest and sat down
by the side of the cool fountain,
and when she was bored she took
a golden ball, and threw it up on
high and caught it, and this ball
was her favorite plaything.

Figure 4: a) changed \parfillskip; b) and \finalhyphendemerits; c) Fig. 1a) without \noindent.

R9: hyphenation. In case a) normal hyphenation
rules are applied, so we can concentrate on R9b).
It seems that the code of TEX must be changed to
get “sense-conveying hyphenation” (see [6]), so this
cannot be implemented by macros.

The assignment of 10000 to the two parameters
\hyphenpenalty and \exhyphenpenalty switches
off hyphenation. Smaller values define the cost of hy-
phens and thus their desirability. The default value
for both parameters is 50 [8, pp. 96–97].

The first parameter sets the penalty that TEX
uses in the formula for the line demerits [8, p. 98]
if the break occurs either at a hyphen that was in-
serted by TEX or at a discretionary break in the
text that the author has entered with \-. The sec-
ond parameter stands for the penalty that a break
receives if it occurs after a hyphen or a sequence of
hyphens inside the text, i.e., hyphens entered by an
author as -, --, or ---. In order to be able to in-
fluence hyphenation the value for \hyphenpenalty
must be less than 10000. Then an author can in-
sert discretionary breaks to improve the output. Hy-
phenation can also be influenced by changing the
values of the parameters \doublehyphendemerits

and \finalhyphendemerits [8, p. 98].

If a word is given to TEX’s hyphenation algo-
rithm it first checks that it is a word of length ≥
\lefthyphenmin + \righthyphenmin. Such a word
might be split into parts of at least \lefthyphenmin
letters on the first line and \righthyphenmin letters
on the second. In case R9b) it is recommended to
assign one of the values (4, 4), or (4, 5), or (5, 5)
to the pair (\lefthyphenmin,\righthyphenmin) so

TUGboat, Volume 41 (2020), No. 1 85

that only words that have more than eight, nine, or
ten letters get hyphenated; see [8, p. 454].

Figure 5 on the next page shows the effects of
some of these parameters.

R10: emergency. The two methods that are sug-
gested can be easily realized by TEX macros. The
shrinkability of interword spaces can be used to im-
plement the emergency shrink. Two assignments to
\lefthyphenmin and \righthyphenmin change the
length of word parts during hyphenation (see R9).
And the default \parfillskip can be used.

Above, the dimension parameter \hfuzz was
explained; it shall be left to the author for an emer-
gency. And \emergencystretch is another option
for problematic situations. As interword spaces can-
not stretch it extends the width of the zone.

My implementation makes one change per-
manent; the other works only for a single paragraph.
The macro \rremergencyshrink is named similar
to the macro \emergencystretch and makes a per-
manent change. The help from a less restricted hy-
phenation is for a single paragraph only; an author
might not know how to switch back to the settings
that were active before.

Let’s assume that the current settings of the pa-
rameters \spaceskip and \xspaceskip were cap-
tured in the macro \rrMresetspaces. The macro
\rremergencyshrink is implemented in two simple
steps. First, \rrTd gets the value by which the in-
terword spaces shall shrink.

\def\rremergencyshrink{% shrink interword spaces

\afterassignment\rrMshrinkspaces \rrTd}

An attempt at ragged-right typesetting

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone
in her face. Close by the king’s
castle lay a great dark forest,
and under an old lime-tree in the
forest was a well, and when the
day was very warm, the king’s
child went out into the forest
and sat down by the side of the
cool fountain, and when she was
bored she took a golden ball, and
threw it up on high and caught
it, and this ball was her favorite
plaything.

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone
in her face. Close by the king’s
castle lay a great dark forest,
and under an old lime-tree in the
forest was a well, and when the
day was very warm, the king’s
child went out into the forest and
sat down by the side of the cool
fountain, and when she was bored
she took a golden ball, and threw
it up on high and caught it, and
this ball was her favorite play-
thing.

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone in
her face. Close by the king’s
castle lay a great dark forest, and
under an old lime-tree in the
forest was a well, and when the
day was very warm, the king’s
child went out into the forest and
sat down by the side of the cool
fountain, and when she was bored
she took a golden ball, and
threw it up on high and caught
it, and this ball was her favorite
plaything.

Figure 5: Fig. 1a) and a) \hyphenpenalty = 10000; b) hyphenmins (4, 4); c) Fig. 2c) with hyphenmins (5, 5).

The second step can now test \rrTd; a negative
value is not allowed and it must not be larger than
0.015 em; \rrHabsdim makes the value positive and
gives a warning if a negative value occurs. We have
to be careful not to apply the macro more than once
to \spaceskip. In the code, \rrTs is a skip register.

\def\rrMshrinkspaces{%

\rrHabsdim\rrTd=[\rrTd] % absolute value

\ifdim\rrTd>0.015em \errhelp\rrEbadshrink

\errmessage{Interword spaces shouldn’t

shrink more than 0.015em}\rrTd=0.015em

\fi

\rrTs=0pt plus 0pt minus \rrTd

\rrMresetspaces % only one change is allowed

\ifdim\spaceskip>0pt

\advance\spaceskip by \rrTs

\ifdim\xspaceskip>0pt

\advance\xspaceskip by \rrTs

\fi\fi}

Here is the second macro \rrusehyphenmins;
it changes \lefthyphenmin and \righthyphenmin:

\def\rrusehyphenmins=(#1,#2){% change hyphenmins

% #1: lefthyphenmin; #2: righthyphenmin;

\rrMdefaulthyphenmins % reset to initial values

\ifnum#1<\lefthyphenmin

\message{^^J\string\lefthyphenmin\space

is not changed}%

\else \lefthyphenmin=#1\relax \fi

\ifnum#2<\righthyphenmin

\message{^^J\string\righthyphenmin\space

is not changed}%

\else \righthyphenmin=#2\relax \fi

\ignorespaces}

86 TUGboat, Volume 41 (2020), No. 1

The code uses \rrMdefaulthyphenmins; a new
macro that sets the values of \lefthyphenmin and
\righthyphenmin back to the settings defined for
the current language. In order to switch back to the
values set by the ragged-right scheme a reset macro
for the two “hyphenmins” is also coded. It is named
\rrMresethyphenmins.

Addendum. Several times we saw that pa-
rameters have to be reset or tested for each para-
graph. Thus, as the last code snippet, the new im-
plementation of \par is presented.

\def\par{\endgraf % end the paragraph

\ifnum\prevgraf>\rrCmax % test for more lines

\message{^^JRagged right needs more lines:

\the\prevgraf^^J}\fi

\rrMresethyphenmins % reset parameters & flags

\rrInoifalse \rrIslfalse \rrIlongonlyfalse

\rrMresetparfillskip % see section 6

\rrMresetparskip}% see section 8

R2 “flutter” uses a constant \rrCmax for the
maximum number of lines that a paragraph should
have. At the end of each paragraph this is now
checked and a violation is reported.

6 A generator for ragged-right macros

Except for R2 “flutter” and R1 “zone”— if the zone
widths instead of the tolerance values shall be pro-
cessed—the recommendations that can be imple-
mented need only one or two assignments to TEX’s
parameters. That many parameters influence the
typesetting of \raggedright is documented by the
15 different outputs shown in Figs. 1 to 5. So one can

Udo Wermuth

combine the assignments into a single macro with a
similar structure as \raggedright.

But for my experiments I find it much more
convenient to have a kind of input mechanism that
assigns default values to unused parameters. Then
the switch to a new scheme resets all values and
only the defined ones affect the new scheme. In to-
tal eight macros are called: (1) to set the zone for
1st and 2nd pass, (2) to create the macros used to
build the \parshape command with indent and the
amount by which short lines are reduced, (3) to add
natural width and shrinkability to \parfillskip,
(4) to make the interword spaces fixed width, (5) to
assign the minimal length of word parts for hyphen-
ation, (6) to set the two penalties and (7) the two
additional demerits parameters that are involved in
hyphenation, and (8) to support the typesetting by
changing \adjdemerits and by declaring an over-
shoot. The main macro has the following structure:

\def\defraggedrightscheme #1: #2\end{%

% #1: name of the scheme; #2: parameter set

\let\rrMresetparskip=\relax % make names

\let\rrMresetparfillskip=\relax % known for

\let\rrMresethyphenmins=\relax % \par

\expandafter\def\csname #1\endcsname{% scheme

\rightskip = 0pt plus 0pt minus 0pt % init

% macros for the recommendations

\rrMsetzone #2 zone 1st,2nd:(0pt,0pt) \end

\rrMsetparshape #2 %

flutter indent,short:(0pt,0pt) \end

\rrMsetparfillskip #2 %

last nw,sh:(0pt,0pt) \end

\rrMsetspaces #2 %

space word,punct:(0pt,0pt) \end

\rrMsetlrmins #2 %

hyphenmins left,right:(0,0) \end

\rrMsetpenalties #2 %

hyphenpens ex,im:(0,0) \end

\rrMsetdemerits #2 %

hyphendems dbl,fin:(0,0) \end

\rrMsetsupport #2 %

aid exceed,adj:(0pt,0) \end

% change \par; see ‘‘Addendum’’ in section 5

\rrMenhancepar}}

The three macros used in the definition of \par
(see the “Addendum” in section 5) get the meaning
\relax so that \par can be executed. As unused
parameters are reset to plain TEX’s defaults the call

\defraggedrightscheme justified:\end

creates \justified that ends TEX’s \raggedright
and restores justified typesetting and

\defraggedrightscheme rrplain:

zone 1st,2nd:(2em,0pt)

space word,punct:(0.3333em,0.5em)\end

TUGboat, Volume 41 (2020), No. 1 87

makes \rrplain equivalent to TEX’s \raggedright;
only \par keeps its new coding. As a more complex
example, here is the specification for Fig. 3c):

\defraggedrightscheme figIIIc:

zone 1st,2nd:(2em,0pt)

space word,punct:(0.3333em,0.5em)

flutter indent,short:(0pt,9pt)

aid exceed,adj:(2pt,10000)\end

It doesn’t seem to be necessary to show all eight
macros. Larger parts of the code for the first two
were presented above, so let’s concentrate on the
third to explain the general idea.

\def\rrMsetparfillskip

#1last nw,sh:(#2,#3) #4\end{% def last line

% #1: some other parameters (not used here)

% #2: natural width of \parfillskip

% #3: its shrinkability

% #4: like #1 or empty: then use defaults

\def\next{#4}\ifx\next\empty

\parfillskip = 0pt plus 1fil minus 0pt

\else % use only positive dimen parameters

\rrHabsdim\rrTd=[#2] \rrHabsdim\rrTdd=[#3]

\parfillskip = \rrTd plus 1fil minus \rrTdd

\fi

\edef\rrMresetparfillskip{% to the new setting

\parfillskip=\the\parfillskip}}

\def\rrplainsparend{\parfillskip 0pt plus 1fil

\par}% omit new specification in an emergency

If the \parfillskip isn’t set in a ragged-right
scheme, i.e., there is no “last nw,sh:(x, y)” in its def-
inition, then #4 is empty as the keywords of the
\def are matched by the strings given at the end of
\rrMsetparfillskip in the code of the above listed
macro \defraggedrightscheme. Otherwise this in-
stance must occur in #4 and the statements in the
\else are executed. So #2 and #3 define the natu-
ral width and the shrinkability of \parfillskip.

The macro \rrMresetparfillskip assigns the
values of the scheme for \parfillskip with every
\par (see “Addendum” in section 5).

7 Experiments

As one might expect, no parameter setting produces
the ideal that the ten recommendations describe.
Not only that some cannot be mapped into TEX
macros, the developed macros cannot guarantee that
their output avoids all shapes, words that stick out,
etc. Moreover, other problems remain, for example,
overfull lines might occur that must be fixed. Hence
the author must accept compromises.

Thus our interest must be to reduce manual ad-
justments as much as possible. This section concen-
trates on the macros; only a few ties are used. Man-
ual line breaks are discussed in section 8.

An attempt at ragged-right typesetting

In olden times when wishing still helped one, there
lived a king whose daughters were all beautiful,
but the youngest was so beautiful that the sun it-
self, which has seen so much, was astonished when-
ever it shone in her face. Close by the king’s cas-
tle lay a great dark forest, and under an old lime-
tree in the forest was a well, and when the day was
very warm, the king’s child went out into the for-
est and sat down by the side of the cool fountain,
and when she was bored she took a golden ball,
and threw it up on high and caught it, and this
ball was her favorite plaything.

Figure 6: TEX’s \raggedright and \noindent.

Okay, let’s start with examples. TUGboat’s col-
umns have a width of 225 pt. The \raggedright

macro together with a \noindent produces for our
single paragraph the output shown in Fig. 6. It is
clear that too many hyphens occur for such a wide
measure and too many of them appear in a sequence.

In a new ragged-right scheme for TUGboat I
keep the width of the zone and the width of the inter-
word spaces, including the larger space after certain
punctuation marks. To make the lines flutter I intro-
duce short lines which get the width \hsize− 5 pt.
As the measure is wide but indentation suppressed
the last line should be much shorter than any short
line. Finally, hyphenation shall only be applied to
words with at least eight characters and even then
it should cost more than in plain TEX. Moreover,
consecutive hyphenated lines and a hyphenated sec-
ond last line shall be very expensive. As the text is
mixed with justified paragraphs I don’t apply the
exceed parameter.

Thus I use the following scheme for TUGboat:

\defraggedrightscheme secVII:

zone 1st,2nd:(2em,0pt)

space word,punct:(0.3333em,0.5em)

flutter indent,short:(0pt,0.5em)

last nw,sh:(6.5em,2em)

hyphenmins left,right:(4,4)

hyphenpens ex,im:(100,200)

hyphendems dbl,fin:(20000,50000)\end

Figure 7 shows the output if the test paragraph
is typeset with this scheme: With the same number
of lines all hyphens disappear and more lines ap-
proximate the right margin. But there is no proper
alternation of line lengths.

Whenever I see this effect I first try to start with
a short line if “flutter” is specified in the ragged-
right scheme: Figure 8a) shows the result. The line
lengths are varying a little bit better and more lines
are sufficiently filled; but new hyphens occur. As

88 TUGboat, Volume 41 (2020), No. 1

In olden times when wishing still helped one, there
lived a king whose daughters were all beautiful,
but the youngest was so beautiful that the sun
itself, which has seen so much, was astonished
whenever it shone in her face. Close by the king’s
castle lay a great dark forest, and under an old
lime-tree in the forest was a well, and when the
day was very warm, the king’s child went out
into the forest and sat down by the side of the
cool fountain, and when she was bored she took a
golden ball, and threw it up on high and caught it,
and this ball was her favorite plaything.

Figure 7: Using the scheme \secVII.

specified, the word parts have at least four charac-
ters. The new hyphen in the second last line can
only be avoided if a \break is inserted somewhere
as it is the only way to typeset the paragraph with
this scheme. A change to \parfillskip can change
this with the risks that a lot of new line breaks oc-
cur and that the start of the next paragraph is not
easily identified. Figure 8b) adds \rrplainsparend
(see section 6) at the end of the paragraph. It length-
ens the last line, changes all but five line breaks, and
creates a single-letter word that sticks out.

In olden times when wishing still helped one,
there lived a king whose daughters were all beau-
tiful, but the youngest was so beautiful that the
sun itself, which has seen so much, was aston-
ished whenever it shone in her face. Close by the
king’s castle lay a great dark forest, and under
an old lime-tree in the forest was a well, and
when the day was very warm, the king’s child
went out into the forest and sat down by the
side of the cool fountain, and when she was bored
she took a golden ball, and threw it up on high
and caught it, and this ball was her favorite play-
thing.

a) The scheme \secVII and \rrstartshort.

In olden times when wishing still helped one,
there lived a king whose daughters were all beau-
tiful, but the youngest was so beautiful that the
sun itself, which has seen so much, was aston-
ished whenever it shone in her face. Close by the
king’s castle lay a great dark forest, and under an
old lime-tree in the forest was a well, and when
the day was very warm, the king’s child went out
into the forest and sat down by the side of the
cool fountain, and when she was bored she took a
golden ball, and threw it up on high and caught
it, and this ball was her favorite plaything.

Figure 8: b) Like a) but with the default \parfillskip.

Udo Wermuth

Der Froschkönig

oder der eiserne Heinrich

In den alten Zeiten, wo das
Wünschen noch geholfen hat,
lebte ein König, dessen Töchter
waren alle schön, aber die
jüngste war so schön, daß die
Sonne selber, die doch so vieles
gesehen hat, sich verwunderte
sooft sie ihr ins Gesicht schien.
Nahe bei dem Schlosse des Königs
lag ein großer dunkler Wald,
und in dem Walde unter einer
alten Linde war ein Brunnen:
wenn nun der Tag sehr heiß war,
so ging das Königskind hinaus
in den Wald und setzte sich an
den Rand des kühlen Brunnens:
und wenn sie Langeweile hatte,
so nahm sie eine goldene Kugel,
warf sie in die Höhe und fing sie
wieder; und das war ihr liebstes
Spielwerk.
Nun trug es sich einmal zu, daß
die goldene Kugel der Königs-
tochter nicht in ihr Händchen
fiel, das sie in die Höhe gehalten
hatte, sondern vorbei auf die
Erde schlug und geradezu ins
Wasser hineinrollte. Die Königs-
tochter folgte ihr mit den Augen
nach, aber die Kugel verschwand,
und der Brunnen war tief, so
tief, daß man keinen Grund sah.
Da fing sie an zu weinen und
weinte immer lauter und konnte
sich gar nicht trösten. Und wie
sie so klagte, rief ihr jemand zu
‘was hast du vor, Königstochter,
du schreist ja daß sich ein Stein
erbarmen möchte.’ Sie sah sich
um, woher die Stimme käme, da
erblickte sie einen Frosch, der

seinen dicken häßlichen Kopf
aus dem Wasser streckte. ‘Ach,
du bists, alter Wasserpatscher,’
sagte sie, ‘ich weine über meine
goldene Kugel, die mir in den
Brunnen hinabgefallen ist.’ ‘Sei
still und weine nicht,’ antwortete
der Frosch, ‘ich kann wohl
Rat schaffen, aber was gibst du
mir, wenn ich dein Spielwerk
wieder heraufhole?’ ‘Was du
haben willst, lieber Frosch,’
sagte sie, ‘meine Kleider, meine
Perlen und Edelsteine, auch
noch die goldene Krone, die ich
trage.’ Der Frosch antwortete
‘deine Kleider, deine Perlen und
Edelsteine, und deine goldene
Krone, die mag ich nicht: aber
wenn du mich lieb haben willst,
und ich soll dein Geselle und
Spielkamerad sein, an deinem
Tischlein neben dir sitzen, von
deinem goldenen Tellerlein essen,
aus deinem Becherlein trinken,
in deinem Bettlein schlafen:
wenn du mir das versprichst,
so will ich hinuntersteigen und
dir die goldene Kugel wieder
heraufholen.’ ‘Ach ja,’ sagte
sie, ‘ich verspreche dir alles, was
du willst, wenn du mir nur die
Kugel wiederbringst.’ Sie dachte
aber ‘was der einfältige Frosch
schwätzt, der sitzt im Wasser bei
seines Gleichen und quackt, und
kann keines Menschen Geselle
sein.’
Der Frosch, als er die Zusage
erhalten hatte, tauchte seinen
Kopf unter, sank hinab, und über
ein Weilchen kam er wieder
heraufgerudert; hatte die Kugel

im Maul und warf sie ins Gras.
Die Königstochter war voll
Freude, als sie ihr schönes Spiel-
werk wieder erblickte, hob es auf
und sprang damit fort. ‘Warte,
warte,’ rief der Frosch, ‘nimm
mich mit, ich kann nicht so laufen
wie du.’ Aber was half ihm,
daß er ihr sein quak quak so laut
nachschrie, als er konnte! Sie
hörte nicht darauf, eilte nach
Haus und hatte bald den armen
Frosch vergessen, der wieder in
seinen Brunnen hinabsteigen
mußte.
Am andern Tage, als sie mit dem
König und allen Hofleuten sich
zur Tafel gesetzt hatte und von
ihrem goldenen Tellerlein aß,
da kam, plitsch platsch, plitsch
platsch, etwas die Marmortreppe
heraufgekrochen, und als es oben
angelangt war, klopfte es an
der Tür und rief ‘Königstochter,
jüngste, mach mir auf.’ Sie lief
und wollte sehen wer draußen
wäre, als sie aber aufmachte, so
saß der Frosch davor. Da warf sie
die Tür hastig zu, setzte sich
wieder an den Tisch, und war
ihr ganz angst. Der König sah
wohl, daß ihr das Herz gewaltig
klopfte, und sprach ‘mein Kind,
was fürchtest du dich, steht
etwa ein Riese vor der Tür
und will dich holen?’ ‘Ach nein,’
antwortete sie, ‘es ist kein Riese,
sondern ein garstiger Frosch.’
‘Was will der Frosch von dir?’
‘Ach lieber Vater, als ich gestern
im Wald bei dem Brunnen saß
und spielte, da fiel meine goldene
Kugel ins Wasser. Und weil ich

Figure 9a: First part of the Brothers Grimm fairy tale “The Frog King” in German (see, e.g., [5, pp. 39–43]).

I wrote in the introduction that I developed the
macros to typeset German texts. So the next ex-
periment switches the language. The column width
is again narrow (148 pt; 30 digits create an overfull
line) as this is a typical case to use ragged-right type-
setting. Figure 9 shows the typeset output (over two
pages).

There are a couple of problems if a German text
is typeset with plain TEX. First, the umlauts (like ä)

TUGboat, Volume 41 (2020), No. 1 89

must be entered with an accent and second the es-
zet (ß) is a control sequence; words with these let-
ters cannot be hyphenated in plain TEX. Moreover,
for hyphenation in general, the wrong patterns are
loaded. I suppressed wrong hyphenations by declar-
ing a few exceptions: zauderte, goldenes, goldenen,
zweitenmal, and Spiel-kamerad. Three words with
umlauts that occur frequently—Königskind (king’s
child), Königstochter (king’s daughter), Königssohn

An attempt at ragged-right typesetting

so weinte, hat sie der Frosch
wieder heraufgeholt, und weil
er es durchaus verlangte, so
versprach ich ihm, er sollte mein
Geselle werden, ich dachte aber
nimmermehr, daß er aus seinem
Wasser heraus könnte. Nun ist er
draußen und will zu mir herein.’
Indem klopfte es zum zweitenmal
und rief

‘Königstochter, jüngste,
mach mir auf,
weißt du nicht, was gestern
du zu mir gesagt
bei dem kühlen Brunnenwasser?
Königstochter, jüngste,
mach mir auf.’

Da sagte der König ‘was du
versprochen hast, das mußt du
auch halten; geh nur und mach
ihm auf.’ Sie ging und öffnete
die Türe, da hüpfte der Frosch
herein, ihr immer auf dem Fuße
nach, bis zu ihrem Stuhl. Da saß
er und rief ‘heb mich herauf zu
dir.’ Sie zauderte bis es endlich
der König befahl. Als der Frosch
erst auf dem Stuhl war, wollte
er auf den Tisch, und als er da
saß, sprach er ‘nun schieb mir
dein goldenes Tellerlein näher,
damit wir zusammen essen.’ Das
tat sie zwar, aber man sah wohl,
daß sies nicht gerne tat. Der
Frosch ließ sichs gut schmecken,
aber ihr blieb fast jedes Bißlein
im Halse. Endlich sprach er
‘ich habe mich satt gegessen
und bin müde, nun trag mich
in dein Kämmerlein und mach
dein seiden Bettlein zurecht,
da wollen wir uns schlafen
legen.’ Die Königstochter fing

an zu weinen und fürchtete sich
vor dem kalten Frosch, den
sie nicht anzurühren getraute,
und der nun in ihrem schönen
reinen Bettlein schlafen sollte.
Der König aber ward zornig und
sprach ‘wer dir geholfen hat, als
du in der Not warst, den sollst
du hernach nicht verachten.’ Da
packte sie ihn mit zwei Fingern,
trug ihn hinauf und setzte ihn in
eine Ecke. Als sie aber im Bette
lag, kam er gekrochen und sprach
‘ich bin müde, ich will schlafen
so gut wie du: heb mich herauf,
oder ich sags deinem Vater.’ Da
ward sie erst bitterböse, holte
ihn herauf und warf ihn aus
allen Kräften wider die Wand,
‘nun wirst du Ruhe haben, du
garstiger Frosch.’
Als er aber herabfiel, war er kein
Frosch, sondern ein Königssohn
mit schönen freundlichen Augen.
Der war nun nach ihres Vaters
Willen ihr lieber Geselle und
Gemahl. Da erzählte er ihr, er
wäre von einer bösen Hexe
verwünscht worden, und niemand
hätte ihn aus dem Brunnen
erlösen können, als sie allein, und
morgen wollten sie zusammen in
sein Reich gehen. Dann schliefen
sie ein, und am andern Morgen,
als die Sonne sie aufweckte, kam
ein Wagen herangefahren mit
acht weißen Pferden bespannt,
die hatten weiße Straußfedern
auf dem Kopf und gingen in
goldenen Ketten, und hinten
stand der Diener des jungen
Königs, das war der treue Hein-
rich. Der treue Heinrich hatte

sich so betrübt, als sein Herr
war in einen Frosch verwandelt
worden, daß er drei eiserne Bande
hatte um sein Herz legen lassen,
damit es ihm nicht vor Weh und
Traurigkeit zerspränge. Der
Wagen aber sollte den jungen
König in sein Reich abholen;
der treue Heinrich hob beide
hinein, stellte sich wieder hinten
auf und war voller Freude über
die Erlösung. Und als sie ein
Stück Wegs gefahren waren, hörte
der Königssohn, daß es hinter
ihm krachte, als wäre etwas
zerbrochen. Da drehte er sich
um und rief

‘Heinrich, der Wagen bricht.’
‘Nein, Herr, der Wagen nicht,
es ist ein Band von meinem
Herzen,
das da lag in großen Schmerzen,
als ihr in dem Brunnen saßt,
als ihr eine Fretsche (Frosch) wast
(wart).’

Noch einmal und noch einmal
krachte es auf dem Weg, und
der Königssohn meinte immer
der Wagen bräche, und es waren
doch nur die Bande, die vom
Herzen des treuen Heinrich
absprangen, weil sein Herr erlöst
und glücklich war.

The following scheme was used:

\defraggedrightscheme flatterXXX:

zone 1st,2nd:(2em,3em)

flutter indent,short:(0pt,0.5em)

last nw,sh:(6.5em,2em)

space word,punct:(0.33333em,0pt)

hyphenmins left,right:(4,4)

hyphenpens ex,im:(50,500)

hyphendems dbl,fin:(10000,20000)

aid exceed,adj:(2pt,0)\end

Figure 9b: Second part of “The Frog King”, and the ragged-right scheme used to typeset the text.

(king’s son)—are entered with a discretionary hy-
phen, for example, K\"onigs\-tochter. This is nec-
essary to avoid overfull lines. I made hyphenation
expensive and both “hyphenmins” are set to 4; see
recommendation R9. But nevertheless, the result
cannot be optimal as a second pass isn’t able to
utilize all possible hyphenation points.

For a German text I set all interword spaces
to the same width, that is, the zero skip is used

90 TUGboat, Volume 41 (2020), No. 1

for \xspaceskip. The gutter is set to only 11 pt. I
allow lines to overflow by 2 pt so that at least 9 pt
separate the columns. This is more than two times
the interword space and should be sufficient for a
reader to identify the end of a line. As the column
width is small I decided to make the last line in the
worst case only 1 em shorter than the left side of the
zone in a short line. Short lines are 5 pt shorter than
long lines. Thus the zone width measures ≈ 35 pt

Udo Wermuth

The communications of the TEX
Users Group are published irregu-
larly at Providence, Rhode Island,
and are distributed as a benefit of
membership both to individual and
institutional members.

Submissions to TUGBOAT are
for the most part reproduced with
minimal editing, and any questions
regarding content or accuracy
should be directed to the authors,
with an information copy to the
Editor.

The deadline for submitting items
for Vol. 7, No. 2, is April 28, 1986;
the issue will be mailed in late June.

Manuscripts should be submit-
ted to a member of the TUGBOAT
Editorial Committee. Articles of
general interest, those not covered
by any of the editorial departments
listed, and all items submitted on
magnetic tape or as camera-ready
copy should be addressed to the
Editor, Barbara Beeton.

Contributions in camera
copy form are encouraged, as is
electronic submission of items on
magnetic tape, via electronic mail,
or transferred directly to the AMS
computer; for instructions, write or
call Barbara Beeton.

I carefully read the November issue
of TUGBOAT and was shocked to
see that I did not acknowledge the
contributions of Pierre MacKay,
Michael Spivak, and the founders
of our organization. I correct this
by thanking them and the AMS
for creation of a good productive
organization. Organizations like
TUG always depend upon some
good people contributing of their
time. These people have really
set a solid foundation for us to
build upon.

Michael Spivak has resigned
from the Steering Committee
since he is now strictly in the TEX
community for financial gain. I
am sure that he will continue to
be available as a sounding board.

Figure 10: TUGboat 7:1 (1986) a) & b) five paragraphs from page 2; c) two paragraphs from page 7.

(only two lines are tight) or a rather large ≈ 23% of
the \hsize to compensate for missed hyphens. See
the end of Fig. 9 for the complete definition.

I made three additional changes. The text af-
ter the quotation in the first column of Fig. 9b was
forced to start with a short line; same for the follow-
ing paragraph. Moreover I added a tie to remove a
short word that sticks out in the middle column of
Fig. 9a: versprichst, so~will.

Of course, the result is not perfect; the ideal de-
scribed by the above-discussed recommendations is
not reached. But the output is much better than the
result with TEX’s \raggedright and \noindent.
That creates four overfull lines, the start of two
paragraphs are not identifiable as the last lines of
the previous paragraphs are nearly filled, and many
more lines end with a hyphen.

Back to English: TUGboat Volume 7:1, issue
no. 14, published in March 1986, is special; see [1].
First, it has two guest editors, David Kellermann
and Barry Smith, and second, a unique layout de-
signed by Martha Gannett is used. On pages with
three columns the column width seems to be 150 pt,
the main font is cmr9, and all paragraphs are set
ragged right. I assume the editors adjusted some line
breaks manually. This offers an opportunity to see
how the macros of this article handle this situation.

I took seven paragraphs from the issue: The
first five are from page 2, the inside cover. These are
the first five paragraphs in this issue. Two are copied
from page 7, the first two paragraphs of the regular
column “From the President”. I don’t know which
macros and parameter settings were used by the ed-

TUGboat, Volume 41 (2020), No. 1 91

itors. I guessed some values from the output and
added others freely to try to achieve a good result,
according to the recommendations we have seen.

\defraggedrightscheme issueXIV: % used with cmr9

zone 1st,2nd:(20pt,26pt) % guess

flutter indent,short:(20pt,5pt)

space word,punct:(3.3333pt,4.4444pt) % guess

hyphenmins left,right:(4,4)

hyphenpens ex,im:(50,500)

hyphendems dbl,fin:(10000,20000)

aid exceed,adj:(2pt,0)\end

Figure 10a) shows the first two paragraphs. The
first has the same line breaks as the one published;
the second is one line longer because line 4 has in
the issue a width of more than 150.9 pt, i.e., it is
overfull and only the high \hfuzz of 1 pt avoids the
overfull bar. In Fig. 10a) this line is short and can
only have 147 pt.

The three paragraphs in Fig. 10b) have identi-
cal right margins to the ones in the issue; the last
one is started with a short line though. I typed
submit\-ted as this hyphen isn’t found with the
(4, 4) setting for the “hyphenmins”. I accepted this
as the hyphen occurs in the original too.

The first paragraph in Fig. 10c) is different from
the original. It has the same length in lines but
avoids a word that sticks out. A tie in this paragraph
between “build upon” lengthens the last line; other-
wise “set” in the penultimate line appears at the end
of the third last line. The second paragraph would
add the word “be” in the penultimate line compared
to the output in issue 14. This was changed by using
a tie between “be available”.

An attempt at ragged-right typesetting

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone in
her face. Close by the king’s
castle lay a great dark forest,
and under an old lime-tree in
the forest was a well, and when
the day was very warm, the
king’s child went out into the
forest and sat down by the side
of the cool fountain, and when
she was bored she took a golden
ball, and threw it up on high and
caught it, and this ball was her
favorite plaything.

In olden times when wishing still
helped one, there lived a king
whose daughters were all beau-
tiful, but the youngest was so
beautiful that the sun itself, which
has seen so much, was aston-
ished whenever it shone in her
face. Close by the king’s castle
lay a great dark forest, and under
an old lime-tree in the forest
was a well, and when the day was
very warm, the king’s child went
out into the forest and sat down
by the side of the cool foun-
tain, and when she was bored she
took a golden ball, and threw
it up on high and caught it, and
this ball was her favorite play-
thing.

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone in
her face. Close by the king’s
castle lay a great dark forest, and
under an old lime-tree in the
forest was a well, and when the
day was very warm, the king’s
child went out into the forest
and sat down by the side of the
cool fountain, and when she was
bored she took a golden ball, and
threw it up on high and caught it,
and this ball was her favorite
plaything.

Figure 11: Using a) \secVII; b) \secVIIn; c) \secVIIn and high penalties.

Let’s look again at our single paragraph. Using
the \hsize of Figs. 1–5 the scheme \secVII creates
the output of Fig. 11a). The scheme \secVIIn—
that is similar to the \secVII but without a change
to the penalty or demerits parameters for hyphens
and with some overshoot—gives a very different re-
sult, as shown in Fig. 11b): The lines are filled with
more material but four hyphens appear now. If the
two penalties are set in the scheme \secVIIn to the
values of scheme \secVII a third set of line breaks
is found; see Fig. 11c). Note the outputs in Fig. 11
differ from the 15 variants shown in Figs. 1–5.

\defraggedrightscheme secVIIn:

zone 1st,2nd:(2em,0pt)

space word,punct:(0.3333em,0.5em)

flutter indent,short:(0pt,0.5em)

last nw,sh:(6.5em,2em)

hyphenmins left,right:(4,4)

aid exceed,adj:(2pt,10000)\end

8 Manual adjustments

There are at least two insights that one can learn
from Fig. 11. First, each parameter influences the
output; this is of course a well-known fact. Second,
it seems to be impossible to find a set of parame-
ters that works for a couple of paragraphs as each
paragraph seems to be so sensitive to the chosen
parameters of the scheme. That is, each paragraph
might require its own set of parameters or a lot of
manual intervention to be typeset in the best way.

Some commands to change the parameters tem-
porarily have been presented in R10 “exceptions”.

92 TUGboat, Volume 41 (2020), No. 1

The implementation of R2 “flutter” adds macros like
\rrstartshort and others. Moreover, the useful-
ness of ties was already shown. Although an author
possesses a lot of techniques for fine tuning it is nec-
essary to add control sequences to our toolbox to
allow manually inserted line breaks too.

The simplest forms are to enter \hfil\break

or \break. But this often works only if an existing
break is used; otherwise lines might become over- or
underfull or previous line breaks change. It is better
to use a variant of the answer to exercise 14.15 of
The TEXbook [8]. A command first ends the para-
graph with a larger zone and with more overshoot.
Then a new paragraph is started. This permits using
a different parshape for the next lines. For example,
the next line can be made long or short or the par-
shape could use long lines only.

\def\rrHbreakhere{%

\parfillskip 0pt plus 1.5em minus 1.5em\par

\parskip=0pt \rrnoindent}

\let\rrbreakls=\rrHbreakhere

\def\rrbreaksl{\rrHbreakhere\rrstartshort}

\def\rrbreakll{\rrHbreakhere\rrnoparshape}

\edef\rrMresetparskip{\parskip=\the\parskip}

The values of \parfillskip and \parskip are
reset by \par so no group is needed. (See “Adden-
dum” at the end of section 5.) The shrinkability of
\parfillskip glue allows extending the line beyond
the value of \hsize similar to the way \rightskip

was changed in R3 “extended zone” of section 5.
Of course, since these new control sequences are for
fine control, the complexity to find the best action
in problematic situations increases.

Udo Wermuth

In olden times when wishing
still helped one, there lived a
king whose daughters were all
beautiful, but the youngest was
so beautiful that the sun itself,
which has seen so much, was
astonished whenever it shone
in her face. Close by the king’s
castle lay a great dark forest, and
under an old lime-tree in the
forest was a well, and when the
day was very warm, the king’s
child went out into the forest
and sat down by the side of
the cool fountain, and when she
was bored she took a golden
ball, and threw it up on high and
caught it, and this ball was her
favorite plaything.

In olden times when wishing still
helped one, there lived a king
whose daughters were all beau-
tiful, but the youngest was so
beautiful that the sun itself, which
has seen so much, was astonished
whenever it shone in her face.
Close by the king’s castle lay a
great dark forest, and under an
old lime-tree in the forest was
a well, and when the day was very
warm, the king’s child went out
into the forest and sat down by
the side of the cool fountain, and
when she was bored she took
a golden ball, and threw it up on
high and caught it, and this ball
was her favorite plaything.

The deadline for submitting items
for Vol. 7, No. 2, is April 28, 1986;
the issue will be mailed in late June.

Manuscripts should be submit-
ted to a member of the TUGBOAT
Editorial Committee. Articles of
general interest, those not covered
by any of the editorial departments
listed, and all items submitted
on magnetic tape or as camera-ready
copy should be addressed to the
Editor, Barbara Beeton.

Contributions in camera copy
form are encouraged, as is elec-
tronic submission of items on
magnetic tape, via electronic mail,
or transferred directly to the AMS
computer; for instructions, write or
call Barbara Beeton.

Figure 12: a) one fix in Fig. 11a); b) four fixes in Fig. 11c); c) Fig. 10b) and two fixes.

Why 1.5 em in \rrHbreakhere? Well, it is clear
that the stretch- and shrinkability should depend
on the font, thus the unit “em”. What is needed
is to adjust the line breaks by moving a few char-
acters from one line to another. The specification
\parfillskip 0pt plus 1fil minus \maxdimen or
something similar acts much more strongly but it
might change earlier line breaks; for example, see
Fig. 8b. This should not happen.

Applications. Does the sample paragraph require
manual adjustment? If the recommendations of [3]
are followed then the text should have no hyphens.
The text was typeset without hyphens only four
times in Figs. 1–5 and 11: 5a), 5c), 11a), and 11c).
The simple case 5a) already fulfills all the explicitly
stated criteria. Nevertheless, the longest line width
in this output measures only ≈ 145.6 pt and not
many lines reach a similar length. Fig. 11a) has the
problem that a two-letter word sticks out. It can be
fixed by applying \rrbreaksl after “shone”; the re-
sult is shown in Fig. 12a). Its longest line measures
≈ 147.4 pt. But most lines are much shorter.

And Fig. 5a) is far from obeying the recommen-
dations for Flattersatz. The lines do not alternate
well in their lengths and especially the first four lines
build a “staircase down” violating R4 “no shape”.
This problem occurs in Fig. 12a) too, although it
does not have the second staircase in lines 13–16
anymore.

Applying the latest used scheme of Fig. 11c)
I entered four line breaks: \rrbreaksl after “still”
and \rrbreakls after “was”, “took”, and “on”. And
in the last line I suppressed the overfull line warning

TUGboat, Volume 41 (2020), No. 1 93

with \rrbreakll. Thus, I tolerate a hyphen in the
second line as it seems to be impossible to avoid all
hyphens in the text and I accept that the start of
the next paragraph might be difficult to identify.

It’s simple to move the word “should” one line
up in Fig. 10a) to make this paragraph identical to
the one in the issue. A fix for the B-like contour that
two paragraphs built in Fig. 10b) is more complex.
With \rrbreakls in each paragraph (after “submit-
ted” and “copy”) the result of Fig. 12c) is accom-
plished. It has one more hyphenated line though.

9 Summary

To typeset a text with a straight-left and a ragged-
right margin, typographers recommend certain set-
tings for the interword spaces, the indentation and
the length of the last line of a paragraph. Moreover,
topics like hyphenation and the length of line pairs
play a major rôle. The occurrence of a structure at
the right margin adds a new aesthetic element but it
should not attract the attention of the reader. Thus,
it increases the complexity of finding a pleasing set
of line breaks. And it raises the question: When does
the ragged-right margin look acceptable?

There is more than one idea of how ragged-right
output should look. German typographers use dif-
ferent words to distinguish two concepts. One works
with small measures and accepts a lot of hyphen-
ated words; this is called “Rauhsatz”. The other re-
quests less hyphenation and can be used with larger
\hsizes, even as a replacement for justified type-
setting, the “Flattersatz”. English tradition for good
ragged-right typesetting agrees with some aspects of

An attempt at ragged-right typesetting

the Flattersatz but it seems to deviate not only for
hyphenation but also in how to rate a ragged-right
margin as good.

This article extracts ten recommendations for
ragged-right typesetting from the statements of a
well-known German typographer. The plain TEX
macro \raggedright implements only two of them.
The article tries to identify for the others which pa-
rameter settings and macros support plain TEX’s
\raggedright to typeset text in Flattersatz.

1. Two assignments, one to the stretchability of
\rightskip and one to the \tolerance, im-
plement a zone once for the first and once for
the second and third pass.

2. The creation of a \parshape command from
pairs of lines with different line lengths seems
to avoid most unwanted shapes of the right mar-
gin. But even a neutral \parshape helps to
avoid words that stick out and is quite useful.

3. As no straight right margin is visible an assign-
ment to the shrinkability of \rightskip lets
lines extend beyond the \hsize.

4. If the start of a paragraph is mainly signaled by
the length of the last line of the previous para-
graph then the natural width and the shrink-
ability of \parfillskip should make last lines
2 to 4 em shorter than any other line.

5. With narrow line lengths indentation should be
avoided, i.e., \parindent set to 0 pt if the in-
dentation isn’t specified in the \parshape.

6. Either the natural width of \spaceskip is used
to get fixed-width interword spaces or the three
\fontdimen 3, 4, 7 of all fonts are set to 0 pt.

7. To control hyphenation, six parameters shall be
considered: a) two penalties: \hyphenpenalty
and \exhyphenpenalty, b) the length of word
parts: \lefthyphenmin and \righthyphenmin,
and c) two demerits: \doublehyphendemerits
and \finalhyphendemerits. At least the val-
ues for the word parts should be larger than for
justified typesetting; e.g., set both to 4.

8. In an emergency a very small amount of shrink-
ability can be used for \spaceskip: ≤ 0.015 em.

9. Use a \parfillskip that has small amounts of
stretch- & shrinkability for manual line breaks.

An author must be aware that a lot of time-
consuming manual adjustments to the text—apply-
ing among other things no. 9— remain necessary.

References

[1] Barbara Beeton (ed.), TUGboat 7:1 (1986);
guest editors David Kellermann and Barry Smith;
layout design Martha Gannett.
tug.org/TUGboat/tb07-1/tb14complete.pdf

94 TUGboat, Volume 41 (2020), No. 1

[2] Max Bollwage, Typografie kompakt,
Berlin, Germany: Springer-Verlag, 2001.

[3] Robert Bringhurst, The Elements of Typographic

Style, Seattle, Washington: Hartley & Marks
Publishers, 4th edition, version 4.2, 2016.

[4] Friedrich Forssman & Ralf de Jong,
Detailtypographie, 3rd edition, Mainz, Germany:
Verlag Hermann Schmidt, 2004.

[5] Brüder Grimm, Kinder- und Hausmärchen, 14th
edition, Darmstadt: Wissenschaftliche Buchgesell-
schaft, 1991; under license by Winkler Verlag,
München, 1949.

[6] Yannis Haralambous: “New hyphenation
techniques in Ω”, TUGboat 27:1 (2006), 98–103.
tug.org/TUGboat/tb27-1/tb86haralambous-hyph.

pdf

[7] Donald E. Knuth and Michael F. Plass, “Breaking
paragraphs into lines”, Software—Practice and

Experience 11 (1981), 1119–1184; reprinted with
an addendum as Chapter 3 in [10], 67–155.

[8] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[9] Donald E. Knuth, The METAFONTbook,
Volume C of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[10] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[11] Leslie Lamport, LATEX: A Document Preparation

System, 2nd edition, Reading, Massachusetts:
Addison-Wesley, 1994.

[12] Frank Mittelbach and Michael Goossens,
The LATEX Companion, 2nd edition,
Boston, Massachusetts: Addison-Wesley, 2004.

[13] Richard Southall, “First principles of typographic
design for document production”, TUGboat 5:2
(1984), 79–90. Errata in TUGboat 6:1 (1985), 6.
tug.org/TUGboat/tb05-2/tb10south.pdf

tug.org/TUGboat/tb06-1/tb11gendel.pdf

[14] Udo Wermuth, “Tracing paragraphs”, TUGboat

37:3 (2016), 358–373; Errata in TUGboat 38:3
(2017), 414 (see [15]).
tug.org/TUGboat/tb37-3/tb117wermuth.pdf

[15] Udo Wermuth, “A note on \linepenalty”,
TUGboat 38:3 (2017), 400–414;
Errata in TUGboat 39:1 (2018), 87.
tug.org/TUGboat/tb38-3/tb120wermuth.pdf

tug.org/TUGboat/tb39-1/tb121wermuth-adem.pdf

[16] Hans Peter Willberg, Friedrich Forssman,
Lesetypographie, 2nd printing, Mainz, Germany:
Verlag Hermann Schmidt, 2005.

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

TUGboat, Volume 41 (2020), No. 1 95

Webnotes: Practical variations

David Walden

Over the past several years, I was involved with three
published papers that had many more endnotes and
references than could fit within the publishing jour-
nal’s page quota. Instead, some of the less important
notes and references were posted on the Web; we
called them “webnotes”. Thus we needed methods
of generating a separate set of notes than those that
were part of the published paper and ways of cross
referencing between webnotes and the published pa-
pers. We (the authors and I) used a slightly different
approach to the generating and cross-referencing in
each case.

The three papers were all published in the IEEE
Annals of the History of Computing. They were:

• The Font Wars, parts 1 and 2, by Charles
Bigelow, Annals vol. 42, no. 1, 2020

• Interleaf, Inc.—1981 to 2000, by Mark Dionne
and David Walden, Annals vol. 42, no. 1, 2020

• TEX: A branch in desktop publishing
evolution, parts 1 and 2, by Barbara Beeton,
Karl Berry, and David Walden, Annals vol. 40,
no. 3, 2018, and vol. 41, no. 2, 2019

All three papers were part of the history-of-desktop-
publishing project described at history.computer.
org/annals/dtp. The Interleaf and TEX papers
were composed in LATEX; the Font Wars paper was
composed in Word.

1 Webnotes for the TEX paper

For the earliest paper, on TEX history, Karl Berry
and I chose to model our webnotes approach on
non-fiction books which avoid footnotes and even
superscripted note numbers in the main text by
starting each note or reference at the end of the
book with a page number from the main text and
a short quote from that page indicating the virtual
position in the main text of the end-of-book note.
Perhaps you have seen such a book. An example
of our webnotes in this style is at tug.org/pubs/

annals-18-19/part-2-webnotes.pdf.
We used the LATEX endnotes package for the

notes and references that fit within the journal’s
page quota, and they were referenced from the main
text with a single sequence of superscripted numbers
(as in this paper).

For the webnotes, I modified the endnotes pack-
age and called it Webnotes.sty. My approach to
the modification was trial and error. I only changed
enough to get the capability we needed (I didn’t do a
complete rework of the package). Mainly I searched
for instances of the text “endnote” and replaced “end”

by “Web”. I also added a few commands to the pa-
per’s main LATEX file to interface to the modified
style file. My trial and error approach is useful be-
cause it allows me to change LATEX or its packages
to accomplish what I need even though I don’t have
real LATEX expertise.

See Appendix A for more details.

2 Webnotes for the Font Wars paper

The Font Wars paper was composed in Word by its
author. He and I also decided to have webnotes for
the notes and references that would not be included
in the published paper. He put the text “[Note n]” in
his Word file where he wished he could have another
note or reference, and he put all the notes to go on
the Web in a separate Word file where each note had
a heading like “Note n”. (With a change of which
part of IEEE produced the Annals, we hoped that
putting webnote numbers in the published articles
would be possible, and they accepted this approach.)

The author sent that file to me, and I put a Word
bookmark at each instance of “Note n” throughout
the file and added to the top of the file a list of
note numbers with links to the bookmarks. You can
see the result at history.computer.org/annals/

dtp/fw. The HTML version of the file was created
with “Save As .html” in Word, and the PDF file
was done using Word’s “Save As .pdf” option for
PDF/A. Word’s .docx to HTML conversion has some
limitations, but it is good enough.

3 Webnotes for the Interleaf paper

The Interleaf paper used superscripted lowercase let-
ters in the main text to refer to webnotes. An exam-
ple of this is in line 51 at tug.org/TUGboat/tb41-1/
webnotes/interleaf-main-page.pdf. Using the
letters required a small modification to what had
been done in modifying the endnotes package for
the TEX history paper, which was then renamed
ILWebnotes.sty. Again my approach to modifying
the .sty file included trial and error; however, in
the end I asked Karl Berry how to do something I
seemed unable to figure out.

See Appendix B for more details.

4 Observations

I enjoyed having LATEX available to create the web-
notes for the TEX and Interleaf history papers. I
would not have tried to create the HTML version of
webnotes for the Font Wars paper had this not been
easy to do with Word.

Appendix A

You can see Webnotes.sty at tug.org/TUGboat/tb41-1/
webnotes/tex-webnotes.txt and compare it with the

Webnotes: Practical variations

96 TUGboat, Volume 41 (2020), No. 1

unmodified endnotes.sty. The following went in the
preamble of our LATEX file and is explained below.

%for webnotes for published version

\newcounter{Mythepage}

%set starting page number

\addtocounter{Mythepage}{29}

\def\Nextpage{\stepcounter{Mythepage}}

%for webnotes published or not

\makeatletter \input{Webnotes.sty}\makeatother

\newcounter{Webnotecounter}

\def\Webnotecnt{\stepcounter{Webnotecounter}%

\theWebnotecounter}

\def\ieeecsNonDisplayingText#1#2%

{\textsuperscript{}%

\Webnotetext[\theMythepage]% thepage or

% theMythepage

{\quad\textbf{#1}\quad{}#2\vspace{4pt}}}

%[\Webnotecnt]}}

The following went at the end of the file:

\pagestyle{empty}%no page numbers on webnotes

\newpage

%webnotes don’t have a section heading

\renewcommand{\notesname}{}

%the webnotes do have a header and

%some explanation about the webnotes

\textbf{Additional references and notes for

\TeX: A branch in desktop publishing

evolution}

... explanation about end notes ...

{\frenchspacing\theWebnotes}

I will come back to the first five lines of the com-
mands added to the preamble. The next three commands
load the modified style file (I didn’t bother to think about
how to make \usepackage work). The next three lines
define a webnote counter for use in superscripted webnote
numbers; we didn’t think the IEEE would allow us to use
these in the published paper, but they are handy to have
for composing the paper and its webnotes.

The rest of the lines for the preamble define a new
command to use like \endnote in the main text. It has
two arguments: a quote from the main text, and the
webnote itself. (We were submitting our paper using an
IEEE style which didn’t allow any user defined commands;
helpfully, however, the IEEE style maintainer was willing
to add the command \ieeecsNonDisplayingTex to the
IEEE style defined to throw away its two arguments.
Thus we didn’t have to embed our webnote commands
in if-statements that were switched on and off depending
if the output was for us or the IEEE.)

The (empty) argument of the \textsuperscript{}

command in the first line of the definition produces
a superscript in the main text—nothing in the pub-
lished version. However, while composing and editing
the paper, we could have the command [\Webnotecnt]

be the argument of the \textsuperscript command,
and \Webnotecnt would increment our webnote counter
and put a superscript number in the main text (the

square brackets are to distinguish the webnote numbers
from the regular endnote superscripted numbers). When
doing this for ourselves, we replaced the two final right
curly braces of the definition with the text in the com-
ment on the next line, passing the webnote number to
the webnote pages.

Now let’s look at the first five lines added to the
preamble that I skipped over above. A new page number
counter is defined and set to 29, which was the first page
of part 2 of the paper in the published journal. With
the published paper in hand, I found in our LATEX file
the locations of page breaks in the published paper and
inserted a call there to \Nextpage which steps our page
counter. (While we developed the paper, we instead
used \thepage, so the page numbers were numbered
from 1.) The command \Webnotetext on the third line
of the definition of \ieeecsNonDisplayingText passes
this page number to the webnotes pages via the .Went

file. (A generic call to \endnote puts macro calls and
the note text, etc., in a file named \Jobname.ent; and
\theendnotes inputs that file, and its macro calls output
the endnotes.)

Appendix B

For the Interleaf history paper, I added the following code
to the preamble of the LATEX file, where \Noprint is the
command name instead of \ieeecsNonDisplayingText
as it was in Appendix A. Some explanations are given in
comments.

\usepackage{alphalph}%generate letter sequence

\makeatletter %same as in Appendix A

\input{ILWebnotes.sty}\makeatother

\newcounter{Webnotecounter}

%

%next definition steps the webnote counter;

%\alpha will be executed as \Noprint is called

\def\Webnotecnt{\stepcounter{Webnotecounter}%

\alphalph{\theWebnotecounter}}%

%

%similar to how things worked in Appendix A,

%except the \Noprint definition puts a

%superscript lowercase letter in the main text;

%and \Webnotetext passes the quote, note, and

%note number to the .Went file for later

%processing into the webnotes.

\long\def\Noprint#1#2{%

\Webnotecnt%

\Webnotetext[\theWebnotecounter]%

{\quad\textbf{#1}\\\quad{}#2\vspace{4pt}}}

There was stuff at the end of the file as in the TEX history
paper, ending with {\frenchspacing\theWebnotes}.
Finally, the additional change to Webnotes.sty for
ILWebnotes.sty (for letters instead of numbers):
\def\theWebnote{\@arabic\c@Webnote} to
\def\theWebnote{\alphalph{\c@Webnote}}.

⋄ David Walden
walden-family.com/texland

David Walden

TUGboat, Volume 41 (2020), No. 1 97

Reading 29,000 COVID-19 papers

Jonathan Fine

On 17 March 2020, The Register wrote [5]:

A dataset of more than 29,000 scientific papers
focused on COVID-19, and the coronavirus
family as a whole, has been publicly shared
to ultimately help the medical world thwart
the bio-nasties.

Specifically, it is hoped AI-based tools can
be developed to comb through this COVID-19

Open Research Dataset (CORD-19) and dig
up vital clues and insights on how to treat
and contain the virus.

This article considers how TEX, or more ex-
actly LATEX, fits into this massive and important
research effort. We read in [1] that each paper is
represented as a single JSON object, which conforms
to a schema [2].

And now we see the LATEX problem. Even
though the source document for the PDF is an in-
formally structured document, it does not conform
to a standard. It does not have a schema. It is sure
to be machine readable by only one software system,
namely LATEX, along with the specified preamble.

Similarly, the resulting PDF is machine readable
only by a PDF reader, and in general the only ma-
chine readable semantic information it contains are
the links. In particular, screen readers often fail to
work well with LATEX-produced PDF files.

The US National Library of Medicine provides
a Journal Article Tag Suite (JATS) [4] which “is a
continuation of the NLM Archiving and Interchange
DTD work begun in 2002” by the (US) National
Center for Biotechnology Information.

My preliminary web search shows little activ-
ity in the area of JATS and LATEX, even though
JATS is an important schema for scholarly articles.
The Scholastica journal management platform [6]
provides a typesetting service (probably based on
LATEX) that will “generate HTML, PDF, and full-text
JATS XML versions of articles”.

Scholastica “was founded in 2012 in response to
a growing need in academia for an easier, more mod-
ern way to peer review research articles and publish
high-quality open access journals online” by three
people who met when they were graduate students
at the University of Chicago [7].

Fields medallist Tim Gowers is a key Editor [3]
of the journals Discrete Analysis and Advances in

Combinatorics, which are arXiv overlay journals, pub-
lished on the Scholastica platform.

We now return to the dataset of 29,000 scientific
papers focused on COVID-19. Clearly, the primary
value of these papers is the experience, training, skill
and dedication of the authors of these papers. Any
system that allows for discovery, analysis, extracting
and other use of these papers adds further value.

This is the theme of the article in The Register.
Can Artificial Intelligence help humanity make sense
of and use these 29,000 articles? I hope the answer
is Yes, because any contribution helps. We can also
ask: Has LATEX similarly helped humanity?

For us as TEX and LATEX users (and developers)
more important than a Yes or No is this question:
What can we do now, and in the future, to make
TEX more useful for scientific and human challenges
such as COVID-19?

References

[1] https://pages.semanticscholar.org/
coronavirus-research

[2] https://ai2-semanticscholar-cord-19.
s3-us-west-2.amazonaws.com/2020-03-13/

json_schema.txt

[3] https://gowers.wordpress.com/2019/10/30/
advances-in-combinatorics-fully-launched/

[4] https://jats.nlm.nih.gov/

[5] https://www.theregister.co.uk/2020/03/
17/ai_covid_19/

[6] https://scholasticahq.com/

[7] https://en.wikipedia.org/wiki/
Scholastica_(company)

⋄ Jonathan Fine

jfine2358@gmail.com

https://jfine2358.github.io

Reading 29,000 COVID-19 papers

https://pages.semanticscholar.org/coronavirus-research
https://pages.semanticscholar.org/coronavirus-research
https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/2020-03-13/json_schema.txt
https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/2020-03-13/json_schema.txt
https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/2020-03-13/json_schema.txt
https://gowers.wordpress.com/2019/10/30/advances-in-combinatorics-fully-launched/
https://gowers.wordpress.com/2019/10/30/advances-in-combinatorics-fully-launched/
https://jats.nlm.nih.gov/
https://www.theregister.co.uk/2020/03/17/ai_covid_19/
https://www.theregister.co.uk/2020/03/17/ai_covid_19/
https://scholasticahq.com/
https://en.wikipedia.org/wiki/Scholastica_(company)
https://en.wikipedia.org/wiki/Scholastica_(company)

98 TUGboat, Volume 41 (2020), No. 1

About The Art of Computer Programming,

Volume 4, Fascicle 5

David Walden

Donald E. Knuth, The Art of Computer

Programming, Volume 4, Fascicle 5.
Addison-Wesley, 2019, 382 pp., softcover, US$34.99,
ISBN 978-0-13-467179-6. tug.org/l/f5-aw

Fascicle 5 for Volume 4B of The Art of Computer

Programming (TAOCP) was published shortly before
Christmas 2019. It received some news coverage.1,2,3

I cannot presume to review Knuth’s new fascicle
in the sense of judging the mathematical or algorithm
value of its contents. Also, there is no point in
judging the presentation—Knuth always works to
his own standard of what’s “useful and beautiful”.
(Speaking about writing TAOCP with TEX, Knuth
says that what he does first has to appeal to him
and, if he didn’t like something, he would change
it.4) Instead, I will report a bit about the fascicle.

1 Topics in Fascicle 5

As shown on the cover image of Fascicle 5, its ma-
jor sections are Mathematical Preliminaries Redux,
(Introduction to) Backtracking, and Dancing Links.

Mathematical Preliminaries Redux. The fas-
cicle begins with an unnumbered section that adds

7.1 Zeros and ones

7.1.1 Boolean basics

7.1.2 Boolean evaluations

7.1.3 Bitwise tricks and techniques

7.1.4 Binary decision diagrams

7.2 Generating all possibilities

7.2.1 Generating basic combinatorial patterns

7.2.1.1 Generating all n-tuples

7.2.1.2 Generating all permutations

7.2.1.3 Generating all combinations

7.2.1.4 Generating all partitions

7.2.1.5 Generating all set partitions

7.2.1.6 Generating all trees

7.2.1.7 History and further references

[Fascicle 5 below; volume 4A above]
7.2.2 Backtrack programming

[14 unnumbered but named subsections]
7.2.2.1 Dancing links

[20 unnumbered but named subsections]
[Fascicle 5 above; Fascicle 6 below]

7.2.2.2 Satisfiability

[17 unnumbered but named subsections]

Figure 1: Contents of Volume 4A, Fascicle 5,
and Fascicle 6.6,7

more probability theory techniques to what was de-
scribed in section 1.2, Mathematical Preliminaries,
of Volume 1 of TAOCP. Knuth says that he has
“run across” various such techniques in his years of
preparing Volume 4 and would have included them
in section 1.2 if he “had been clairvoyant enough
to anticipate them in the 1960s.” These additional
mathematical preliminaries are presented with 11.5
pages of explanation and 15.5 pages of exercises.

Backtracking. This second topic in Fascicle 5 is
the first 16 subsubsections of section 7.2.2 of Vol-
ume 4 as shown in Figure 1.5

The section has 26 pages of explanation about
backtrack programming followed by 79 exercises.
The explanation introduces and compares several
(some historical) algorithms for backtracking, ways
to improve on the algorithms, and ways to better
program the algorithms (e.g., data structure tricks).

Dancing Links. This third topic is subsection
7.2.2.1 of Volume 4. Knuth’s discussion of dancing
links takes about 50 pages of explanation followed by
three sets of exercises (450 exercises total). The ex-
planation starts by noting that in backtrack program-
ming there is a lot of doing and undoing, and doubly
linked lists are helpful for this. But, when elements
are dropped out of a list, there is often a better ap-
proach than leaving a deleted list item for a garbage
collector and creating a new list item when one is
added to the list. A better approach at various points
in backtracking is to leave a deleted list item where
it is in memory and to later reconnect it to the list as
if it had never been deleted. This is “dancing links”.

David Walden

TUGboat, Volume 41 (2020), No. 1 99

Descriptive style. In both the backtracking and
dancing links portions of the fascicle, the algorithms
and some implementation examples are presented
as sort of a verbal flow chart, perhaps including
some instructions from Knuth’s MMIX computer and
assembly language, for example:

B1. [Initialize.] Set l ← 1, and initialize the data
structures needed later.

B2. [Enter level l] (Now Pl−1(x1, . . . , xl−1) holds.) If
l > n, visit x1x2 . . . xn and goto B5. Otherwise set l←
min Dl, the smallest element of Dl.

This method of sketching algorithms has been
used at least since the third edition of Volume 1; how-
ever, there seem to be fewer instances of sequences
of assembly language instructions than I remember
being in Volumes 1, 2, and 3.8,9 As a one-time com-
puter programmer, I wish that Volume 4A and the
Volume 4B fascicles used something a little closer to
a programming language for showing algorithms.

There is still plenty of discussion in the fasci-
cle of low-level ways to implement algorithms effi-
ciently. Here is some example text from the bottom
of page 65: “Interesting details arise when we flesh
out the algorithm and look at appropriate low-level
mechanisms. There’s a doubly linked ‘horizontal’
list of all the active options that involve it.” The
discussion continues on the next two pages including
two 22x16 diagrams of the list in memory.

Throughout TAOCP Knuth refers to prior vol-
umes by section number without a volume number.5

The presentation style also presumes the reader has
read the prior volumes. For example, the definition
of “visit” in step B2 above of Algorithm B is given in
Volume 1 (page 320); it means “do whatever activity
is intended as the tree is being traversed”.

Exact cover. Early on in the discussion of danc-
ing links Knuth also introduces exact covering. He
gives a simple example of exact covering on page 64.
Suppose there are the subsets {c e}, {a d g}, {b c f},
{a d f}, {b g}, and {d e g} of the set S of letters
{a b c d e f g}. The first, fourth, and fifth subsets
provide an exact cover for S, in that taken together
the three subsets contain all the items in S once and
only once. This is perhaps clearer if set up as finding
an exact cover within a 7x6 matrix of zeros and ones
(see Figure 2).

With the exact cover concept introduced and
possibilities for efficient implementation discussed,
Knuth then gives Algorithm X (for exact cover via
dancing links), the suggestion that the reader do
an exercise, and then 30 more pages of variations,
applications, and optimizations.10

a b c d e f g
row 1 0 0 1 0 1 0 0 {c e}
row 2 1 0 0 1 0 0 1 {a d g}
row 3 0 1 1 0 0 1 0 {b c f}
row 4 1 0 0 1 0 1 0 {a d f}
row 5 0 1 0 0 0 0 1 {b g}
row 6 0 0 0 1 1 0 1 {d e g}

Figure 2: A combination of Knuth’s formulas 5 and 6
on page 64 of Fascicle 5; rows 1, 4, and 5 form an exact
cover of the set {a, . . . , g}.

Puzzles. Many puzzles are about exact covers, such
as the eight queens puzzle where the goal is to place
eight queens on a chess board such that no two queens
are in the same column, row, or diagonal. Backtrack
programming, perhaps with the help of dancing links,
can often be used for finding an exact cover.

(While describing backtracking, Knuth had al-
ready noted that one of the best ways to understand
backtracking is to execute the basic backtracking
algorithm, Algorithm B, by hand for the four queens
puzzle—placing four queens on a 4 by 4 chessboard
so no queen attacks any other queen. I spent a
bunch of time doing this, and it helped me under-
stand both backtracking and the potential subtleties
of implementing it in code.)

As the dancing links discussion continues, Knuth
develops various algorithms and presents some theo-
rems, often using puzzles as illustrations, e.g., sudoku,
polyominoes, and kenken. Knuth chats about this in
the fascicle’s preface. He sees puzzles as often being
the best way to illustrate an algorithm. The odds
are good, he says, that a page selected at random
in the fascicle will mention a puzzle. He makes the
point that the methods that he is describing are use-
ful for creating puzzles as well as solving them. He
also discusses the history of the puzzles and sees the
fascicle as a contribution to the world of recreational
mathematics as well as teaching computer methods.

Knuth has said that Volume 4 covers the kind
of algorithms he enjoys most.11 A quote from the
Fascicle 5 preface: “I have had loads of fun writing
the other fascicles, but without a doubt this one has
been the funnest.”

I do wish, in addition to all the puzzle examples,
that the fascicle spent more time on real world ap-
plications. On the Internet,12 I found the following
statement, which helped me somewhat:

By far the most relevant, large size, important ap-
plication of set covering is in personnel shift plan-
ning (mainly in large airline companies). There,
elements to be covered are the single shifts (or
single flights), and sets are legal combinations of

About The Art of Computer Programming, Volume 4, Fascicle 5

100 TUGboat, Volume 41 (2020), No. 1

work/no work schedules. These easily go to mil-
lions or even billions of variables, as the number
of combinations is huge.

I guess I comprehend that the general topic of
Volume 4, combinatorics, is relevant to a wide variety
of real life problems.

Knuth lectures. If you haven’t yet bought the
book and want to know more about dancing links,
Knuth’s 2018 Christmas lecture is on the topic,13

and there is a previous (2000) Knuth lecture also on
dancing links.14 Notice that these two lectures on the
same topic are years apart; Knuth states in Volume
4A that he has been saving up various methods and
examples for years to eventually select among them
for Volume 4 of TAOCP. (He also emphasizes that
there is much he doesn’t cover; he has to “cut, cut
cut”, keeping only what he believes will remain of
fundamental importance for decades.)

Knuth’s 2019 Christmas lecture15 is nominally
about π; among other things, he gives a bunch of
examples of π being used in his books as a source
of random data. In the lecture Knuth also talks
about Fascicle 5, gives examples (especially puzzle
examples) from the fascicle, and promotes it (“it
will be a good Christmas present”). Talk about
Volume 4B starts at about minute 27 of the lecture’s
video, first with a bit about Fascicle 6 and then about
Fascicle 5. Giving example after example of sudoku,
Knuth says that he has studied sudoku so deeply, it
is no wonder it took him a long time to write the
book. He has said that this book is “tons of fun and
teaches a few algorithms on the side”.16

There is also a Knuth video on the subject of
Fascicle 6, satisfiability and SAT solvers.17 Figure 1
shows where Fascicle 6 fits within the topics of Vol-
ume 4 of TAOCP. Volume 4A discusses manipulation
of 0s and 1s and methods of generating basic combi-
natorial patterns; Fascicle 5 discusses backtracking
and how to do it more efficiently with dancing links;
and then Fascicle 6 on satisfiability shows the use of
those techniques to develop SAT solvers which can
be applied to many, typically massive, real world
problems. Knuth touches on some of the latter in
the video. In the Preface to Fascicle 6, Knuth says,
“The story of satisfiability is a tale of the triumph
of software engineering blended with rich doses of
beautiful mathematics.” For any readers who have
been wondering if Knuth’s emphasis on efficient algo-
rithms is still relevant with today’s computers which
are so much more powerful than in 1962 when Knuth
started TAOCP, Fascicle 6 justifies the continuing
thrust for maximum efficiency. Knuth reports that
“modern SAT solvers are able to deal routinely with
practical problems” involving “many thousands of

variables” that were “regarded as hopeless just a few
years ago”. In Fascicle 6 he is describing a rapidly de-
veloping field—especially over the past few decades.
Knuth has been actively learning and contributing to
the field in various ways, but he says that he knows
he must move on. Fascicle 6 is a 2016 snapshot of
the field, leaning toward the implementation rather
than theoretical side of things; and Knuth hopes that
it contains a “significant fraction of concepts that
will prove to be the most important as time passes”.

2 Main text, exercises, and answers

Fascicle 5 is definitely an unusual book (although
not so much for Knuth) in terms of the ratio of
main text to exercises and answers. Fascicle 5 has
100 pages of main text, 88.5 pages of exercises (663
exercises total), and 176 pages of answers. Knuth
says that he wrote 600 programs while writing this
fascicle because he needs to program things to really
understand them. A small set of the most important
programs are available, written in CWEB, to help
readers solve problems.

Digressing for a moment to Fascicle 6 (section
7.2.2.2, on satisfiability— see Figure 1), it has 132.5
pages of main text, 50.5 pages of exercises (526 ex-
ercises total), 106 pages of answers, and 310 pages
altogether in the book. This gives us, so far in
Volume 4B, 232.5 pages of main text, 139 pages of
exercises (1,189 exercises), and 282 pages of answers.

In his Notes on the Exercises near the beginning
of TAOCP Volume 4A, Knuth explains about the
benefits of exercises, noting that the exercises allow
(are designed for) “self-study as well as for classroom
use.” He continues, saying

It is difficult, if not impossible, for anyone to learn
a subject purely by reading about it, without
applying the information to specific problems and
thereby being encouraged to think about what
has been read. Furthermore, we all learn best
the things that we have discovered for ourselves.
Therefore the exercises form a major part of this
work; a definite attempt has been made to keep
them as informative as possible and to select
problems that are enjoyable as well as instructive.

Knuth has had this view a long time. I remem-
ber that in Knuth’s interview in the book Mathe-

matical People,18 he said that when first in college
he had doubts about his abilities. Therefore, he
worked all the exercises in the textbook, not just the
assigned exercises, and then found he really under-
stood things. Also there was his problem solving
course at Stanford: people we know who took this
course said it was wonderful— the teacher and stu-
dents jointly solved new problems with the teacher

David Walden

TUGboat, Volume 41 (2020), No. 1 101

using his experience to guide the students in useful
directions.19

3 What TAOCP is and isn’t

I previously spoke to what TAOCP is and isn’t: see
my 2011 “appreciation” of Volume 4A in TUGboat.20

I will repeat a couple of points here because there
has been a lot of overstatement about TAOCP in
the popular press which is all many lay people know
about the TAOCP: (1) TAOCP is not a book for
teaching computer programming to the typical per-
son learning to program. It does teach (explicitly)
analysis of algorithms and (less explicitly) problem
solving in the sense of finding algorithms to solve
problems. (2) TAOCP is not a definitive treatment of
computer science (although it may have been closer
to comprehensive at the project’s start in 1962); it
doesn’t cover lots of computer science, for exam-
ple, artificial intelligence, computer networks, and
parallel processing. What it does cover, though, it
covers unusually deeply; it also contains a significant
amount of history of mathematical and computing
algorithms. Don’t misunderstand me—TAOCP was
and remains a monumental achievement and superb
contribution to computer science and mathematics,
regardless of its present state with only two-thirds
of Volume 4B published.

TUGboat’s reviews editor has asked me about
the ideal reader for TAOCP. I think this has changed
from volume to volume and over time. When Vol-
umes 1, 2, and 3 came out in relatively rapid succes-
sion from 1968 to 1973, the volumes and their con-
tents (all organized in distinct volumes) were more
or less unprecedented. A practicing computer pro-
grammer could turn to the volumes to find the best
approach or implementation for a not-unusual prob-
lem, e.g., random number generation, hash coding, or
sorting. Later, undoubtedly partially stimulated by
Knuth’s work, many other books and papers on these
topics were published, and a programmer needing a
method might turn to one of these instead of TAOCP.

By the time Knuth got to his planned (not too
long) chapter on combinatorial algorithms, the field
was expanding rapidly (he “was confronted with . . .
a prodigious explosion of new ideas!”). Now, extrap-
olating from the length of fascicles 5 and 6, we can
expect a total count in Volumes 4A and 4B of over
1,000 pages, and Knuth’s outline continues on to Vol-
umes 4C and 4D. The reader of the primary topics
of Volume 4 is probably now a math or algorithms
specialist (or someone studying to be one), or some-
one studying a particular type of puzzle who can
find his or her way through the math, or someone
developing a solution to a big real world problem.

General computing practitioners may be more likely
to skip to the bits of history Knuth includes; these
remain fascinating.

Also, these days practitioners needing techniques
covered in Volume 4 may well be able to find needed
algorithms on the Web, perhaps even coded in the
programming language the programmer is using for
his or her larger project, perhaps even provided by
an explicit library on the topic (in some cases the
code found will be an implementation of an algorithm
from Volume 4). On the other hand, having spent
as many hours with Fascicle 5 as I have writing this
description of the book, I am tempted to spend more
time with the book in order to really understand the
backtrack and exact cover algorithms, even lacking
a problem to solve that needs the methods.

4 In conclusion . . .

Fascicle 5 (and Fascicle 6) is another spectacularly
impressive production by Knuth. It is incredible
that one man can collect the topics and prior pub-
lications, understand both the problems and the
solutions, sometimes extend them, write hundreds
of programs and develop hundreds of exercises and
answers, typeset the book himself, and do all this
carefully enough that he can offer rewards for mis-
takes that are found. And, while doing all this, he
also finds time for giving the occasional lecture, writ-
ing a major work for organ21, and who knows what
other projects he has underway. I eagerly await the
next publication from Donald Knuth.

Notes

1 slashdot.org/story/364386
2 tug.org/l/f5-xmas-pi
3 Readers of this journal likely will know, at least roughly,

the story of Don Knuth’s decades long work on his
magnum opus, The Art of Computer Programming : he
started it in 1962, published three volumes in 1968, 1969,
and 1973, suspended work in 1977 to develop TEX, and
returned to work on Volume 4 in 2001. For anyone who
wants a more detailed history, there are descriptions on
the Web about the original intention for the book(s), how
the project was originally received, and how the project
has evolved, for example: tug.org/l/taocp-amsreview,
tug.org/l/taocp-wiki, tug.org/l/taocp-softpano.

Knuth has noted that one of the reasons things have
taken so long is that he keeps discovering new content
that needs to be included.
4 youtube.com/watch?v=2BdBfsXbST8, minutes 1:36:00

to 1:38:00.
5 Section 2.2.2 begins, “Now that we know how to gen-

erate simple combinatorial patterns . . . we’re ready to
tackle more exotic patterns . . . ” Presumably we got this
know-how from reading the 223 pages of narrative and

About The Art of Computer Programming, Volume 4, Fascicle 5

102 TUGboat, Volume 41 (2020), No. 1

exercises and 149 pages of answers in section 7.2.1 in
Volume 4A.
6 In this and the other books of TAOCP, some of the

numbered and unnumbered section titles are prefixed
with an asterisk. These are sections that Knuth says
can be skipped upon first reading and come back to
later. Udo Wermuth pointed me to this explanation in
Volume 1. Udo, who is well known to readers of TUGboat,
is one of the few people Knuth acknowledges by name in
Volume 4A and Fascicles 5 and 6.
7 Donald E. Knuth, The Art of Computer Programming,

Volume 4, Fascicle 6. Addison-Wesley, 2016, 310 pp.,
softcover, US$29.99, ISBN 978-0-13-439760.
tug.org/l/f5-aw
8 In the days of MIX, before Knuth developed his MMIX

RISC computer architecture:
www-cs-faculty.stanford.edu/~knuth/mmixware.html
9Martin Ruckert has written a book which reimple-

ments the MIX code examples in Volumes 1, 2, and 3
as MMIX code examples: Martin Ruckert, The MMIX

Supplement: Supplement to The Art of Computer Pro-

gramming Volumes 1, 2, 3 by Donald E. Knuth, Addison-
Wesley, 2015.

Ruckert has also published several papers in TUGboat,
including some that stem from his work developing the
MMIX supplement, e.g., Computer Modern Roman fonts
for ebooks, TUGboat 37:3 (2016), pp. 277–280,
tug.org/TUGboat/tb37-3/tb117ruckert.pdf.
10A worked example of Algorithm X is in Wikipedia:
en.wikipedia.org/wiki/Knuth%27s_Algorithm_X
11At youtube.com/watch?v=2BdBfsXbST8, about min-
ute 32:10; keep watching for a few more minutes to hear
Knuth describe the original purpose of TAOCP. See
lexfridman.com/donald-knuth/ for a table of contents
for the video. There is a lot of interesting stuff in this
interview.
12 tug.org/l/f5-cover-use
13 tug.org/l/knuth-xmas18
14 tug.org/l/knuth-xmas00
15 tug.org/l/knuth-xmas19
16 A list of Knuth lectures, including Christmas lectures,
is at: tug.org/l/f5-xmas-list.
17 youtube.com/watch?v=g4lhrVPDUG0
18 Donald J. Albers and Gerald L. Alexanderson, Math-

ematical People: Profiles and Interviews, Mathematical
Association of America, Birkhäuser, 1985.
19 For example, see:
www-cs-faculty.stanford.edu/~knuth/papers/cs1055.pdf

i.stanford.edu/pub/cstr/reports/cs/tr/89/1269/

i.stanford.edu/pub/cstr/reports/cs/tr/87/1154/
20David Walden, An appreciation: The Art of Com-

puter Programming, Volume 4A, TUGboat 32:2 (2011),
pp. 230–232.
tug.org/TUGboat/tb32-2/tb101reviews-knuth.pdf
21 youtube.com/watch?v=e_1a6bHGQGo

⋄ David Walden
walden-family.com/texland

Book review: History of Desktop Publishing,

by Frank Romano

David Walden

Frank Romano, History of Desktop Publishing.
Oak Knoll Press, 2019, 400 pp. Hardcover, US$75.
ISBN 9781584563808.
oakknoll.com/pages/books/133473

With the History of Desktop Publishing, Frank Ro-
mano has completed a trilogy of books covering the
history of typesetting from hot metal (History of the

Linotype Company), through phototypesetting (His-

tory of the Phototypesetting Era), and now digital
desktop publishing. (The first of these was reviewed
in TUGboat.1)

The three publications are an astonishing ef-
fort—480, 340, and 400 pages of a unique and fasci-
nating story published in 2014 and 2019. It is hard
to imagine another person better positioned to re-
count this history and share recollections than Frank
Romano. He began his career in printing and pub-
lishing at Mergenthaler Linotype Company in 1959,
worked at several other companies involved with type-
setting and publishing, edited or published several
trade-press publications, collected a massive library
of books, journals, and newsletters and other arti-
facts about printing and publishing, co-founded the
Museum of Printing,2 wrote or co-authored dozens
of history and tutorial books, and consulted and
lectured widely about printing and publishing. Ro-
mano also has had a decades long affiliation with the
Rochester Institute of Technology (RIT), where TUG

plans to hold its 2020 annual conference. In particu-
lar, Romano was Melbert B. Cary, Jr. Distinguished
Professor of Graphic Arts from 1992 to 1998, an RIT

position Hermann Zapf and Charles Bigelow have
also held.3

TUGboat, Volume 41 (2020), No. 1 103

Introduction 1
1 Beginnings of desktop publishing 3
2 From scribes to secretaries 11
3 The typewriter 21
4 Word processors 31
5 Personal computers and workstations 41
6 Typesetting 55
7 Printing from computers 77
8 Steve Jobs and Apple 97
9 Aldus and PageMaker 115

10 Quark 121
11 Ventura 131
12 Other DTP programs 135
13 The rise of Adobe and PostScript 141
14 Font wars 157
15 Data storage 179
16 Screens, GUIs and WYSIWYG 185
17 The digital era begins in 1990 207
18 Graphic design 231
19 Capturing graphics and color 239
20 DTP publishing and events 263

TypeWorld chronology 279
Afterword(s) 373
References 377
Index 381

Figure 1: Table of contents of History of Desktop

Publishing

Desktop publishing history. The desktop pub-
lishing (DTP) book is based on Romano’s personal
journey over nearly 60 years; Romano has called it
a time capsule of what he has seen and materials
he has collected. The book is nominally about a
dozen years from the mid-1970s to the mid-1980s,
but Romano provides lots of background material of
what went before.

Because the book is based on Romano’s experi-
ences, the desktop publishing systems from different
companies get different levels of treatment, as can be
seen from the page numbers in the above table of con-
tents (with page numbers). For instance, Interleaf is
not covered as extensively as FrameMaker. TEX gets
little more than two-and-a-third of the book’s narrow
short columns in a chapter covering typesetting in
the pre-WYSIWYG era.4

It is not possible to summarize an author’s thesis
for this book. Rather, Romano is presenting “ev-
erything” he saw or has done, and not a succinct
overall story. He says, “This is my story of the
people, companies, technologies, and devices that
defined desktop publishing for just over a decade. It
is an amazing ride. Come along and relive it.” (It
occurs to me that one reading approach is to read
a chapter a day as a way “living through” the era
and in so doing develop my own mental picture of

the era.) While most of the story is narrated in the
third person, quite often Romano relates things more
personally (“I . . . ”)—a style I like.

The book has hundreds of photographs and
other images, numerous charts and lists, and many
sidebars—all providing a reader with insight into
desktop publishing history. To see examples of typ-
ical pages, go to the publisher’s page for the book
(oakknoll.com/pages/books/133473), click on the
book cover image on the right of the page, and then
navigate among the half dozen sample pages.

Romano’s son Richard is credited with a signifi-
cant contribution to the book—a nearly 100 page
list of all of the product announcements in Type-

World from 1983 through 1995. I see these pages as
a marvelous resource for anyone wanting to follow
the chronology of development of desktop publishing.
The archive of TypeWorld issues from which this list
was drawn is in the Romano Library at the Museum
of Printing. It would be an even more valuable re-
source if a computer searchable copy was available.
This is an instance where I wish a data CD came
with a book; paying full price for a hardbound copy
of the book and a searchable TypeWorld list would
be easy for me to justify. (By the way, Romano is
very welcoming of researchers who visit his library
at the Museum of Printing.)

This book lists a secondary author: “With Mi-
randa Mitrano”; she did the “book design” which I
take to mean final composing in InDesign (Romano
did the writing and draft composing in QuarkX-
Press). The dedication is to Jonathan Seybold for
his bringing the major desktop publishing players
together.5 Barbara Beeton gets a special thanks af-
ter the dedication, and Kim Pickard is thanked for
photographing items from Romano’s collection.

In his review of the prior Linotype book,1 Boris
Veytsman complained slightly about the format of
that book—10 1/2′′ by 8 1/2′′ landscape view (as
shown in the cover image at the beginning of this re-
view) and with three narrow columns of ragged right
text. (The phototypesetting and Linotype books
have the same shape and column characteristics.)
Romano uses landscape mode because of the num-
ber of images he wants to show across one page (for
example, top left of next page).6 Once in landscape
mode, it makes sense to have three narrower columns
than two wider columns, and with narrower columns
ragged right makes sense.

As Boris Veytsman said in his review of the
Linotype book,1 Frank Romano’s History of Desktop

Publishing is an essential book for anyone studying
the field and for many just generally interested in
the history of printing and typesetting.7 You will

Book review: History of Desktop Publishing, by Frank Romano

https://oakknoll.com/pages/books/133473

104 TUGboat, Volume 41 (2020), No. 1

find information in this book on and around desktop
publishing that you are unlikely to find anywhere
else—certainly not all collected in one place.

Phototypesetting history book. Romano’s pre-
vious book, History of the Phototypesetting Era,8

also deserves a few words. Romano calls the book
a “time capsule for a bygone era” and, as with the
desktop publishing book, states that the narrative is
primarily based on his personal recollections.

Romano notes that this book is based on his 54
years of participation in the printing and publishing
industry but the actual book was a collaborative
project. In the fall quarter of 2013, Romano served
(for the third time) as a “Research Professor from
Industry” in Cal Poly’s Graphic Communication In-
stitute which has a “learn by doing” teaching philos-
ophy.9 The book design, prepress, and printing work
was done by students with the book being printed
in the university’s graphic communication laborato-
ries (160 pages on one type of press and 188 pages
on another press, presumably to give the students
broader experience). Thirteen students are listed as
co-authors of the book. Frank’s son Richard Romano
is listed on the title page for “editorial services”, son
Robert Romano is listed for “schematics”, and Mu-
seum of Printing co-founder Kim Pickard is listed
for “original photography”.

This book is dedicated to John W. Seybold
(father of Jonathan, the dedicatee of the desktop
publishing book), “a true pioneer in automated type-
setting”, and there is a half page sketch of Seybold’s
contributions as the industry developed.10

Romano says the book covers the period roughly
from 1945 when phototypesetting first became avail-
able until 1985 when the last phototypesetter was
built. However, six of his first seven chapters cover
typesetting and printing history before the first pho-

totypesetter, and there is plenty of background de-
scription in the rest of his 28 chapters. The book
is not just about the evolution of phototypesetting
technology; it also covers development of the indus-
try, specific companies, and specific machines. The
book contains viii pages of frontmatter, 308 main
pages divided into 28 chapters, a 16-page index, a
14-page chart of second and third generation photo-
typesetters from 1952 to 1985, a one-page-26-item
bibliography, and a page with a colophon and after-
word. Within the book are numerous other charts
and diagrams and hundreds of photographs and other
images. There is so much detailed content that some
readers may not easily get the overall picture of the
era. John Seybold’s book The World of Digital Type-

setting11 has a bit more of a tutorial feel to it than
Romano’s book does; and, ending as it does with
1984, covers the same period as Romano’s book. It
might make sense to read the two books in parallel.

In any case, as with my view of the desktop
publishing book and Boris Veytsman’s review of
the Linotype book, I see Romano’s phototypeset-
ting book as being an essential resource to anyone
studying the phototypesetting era or the history of
printing and typesetting more generally.12

Given the value of Romano’s phototypesetting
and desktop publishing books, I must now order my
own copy of the Linotype book which I had previously
only looked at in the gift shop and bookstore at the
Museum of Printing.

At present, the Linotype book is available from
its publisher, Oak Knoll, or via people selling through
Amazon. The phototypesetting book is available
on Amazon from third-party sellers. The desktop
publishing book is available from publisher Oak Knoll
directly or via Amazon. I presume all three books
are on sale in the gift shop of the Museum of Printing
in Haverhill, Massachusetts.

Oak Knoll Press. Romano’s desktop publishing
history book was published by Oak Knoll Press.
Learning a bit more about the press and the book-
store with which the press is associated may be inter-
esting to people interested in fine book publishing,
the used book business, and, in particular, books
about books.

The url oakknoll.com takes one to the website
of both Oak Knoll Press and Oak Knoll Books. The
former is “publishers and distributors of fine books
about books since 1978”. The latter is a bookseller
of rare and out-of-print books, particularly books
about books. Three sources of more information
about Oak Knoll are a book by founder Robert D.
Fleck,13 a similar history on the Web,14 and an

David Walden

https://oakknoll.com

TUGboat, Volume 41 (2020), No. 1 105

interview of him.15 Since Fleck’s death in 2016, one
of his sons runs the company; the Wikipedia entry
for the company is also informative.16

The press does a good bit of co-publishing—
jointly publishing with a company or institution that
develops a new book. In this way Oak Knoll expands
its list of publications while avoiding increasing book
development costs; the financial results are split un-
der an arrangement that benefits both entities, and
visibility of the book and its distribution is expanded.
(It seems that Romano’s desktop publishing history
was at least somewhat of a co-published book as,
in addition to Mitrano preparing a designed book
in InDesign, Romano says he and Mitrano did the
prepress for the book.)

In the fall 2019 Oak Knoll Press catalog I find
books distributed for:

• Grolier Club
• Cotsen Children’s Library, Princeton University
• Edizioni Valdonega, Verona, Italy
• American Antiquarian Society
• Bibliographical Society of the University of

Virginia
• Penn Libraries/Kislak Center
• Sheridan Libraries, Johns Hopkins University
• Smithsonian Institution
• Thomas Fisher Library, University of Toronto
• AdVenture SA, Athens, Greece
• Center for Book Arts
• CODEX Australia
• CODEX Foundation
• Verso
• Douglas Stewart Fine Books

The same catalog lists Oak Knoll Press books
about bibliography, bookbinding, book collecting
and bookselling, calligraphy and writing, fine press
and artists’ books, illustration and design, libraries,
papermaking and paper decoration, printing his-
tory and publishing, type and typography, and more
books about books.

Other Oak Knoll books recently reviewed for
this journal include Nancy Stock-Allen’s book about
Carol Twombly17 and Jerry Kelly’s biography of
Herman Zapf.18

Notes

1 History of the Linotype Company, reviewed by Boris
Veytsman, TUGboat 36:1, 2015, pp. 58–59,
tug.org/TUGboat/tb36-1/tb112reviews-romano.pdf
2 museumofprinting.org/libraries
3 Romano also served as Roger K. Fawcett Distinguished

Professor of Digital Publishing from 1998 to 2005, at
which point he became a professor emeritus. In 2002
he had turned over the position of administrative chair
of RIT’s School of Printing Management to a new chair

as part of the school’s renaming to the School of Print
Media, with the goal, according to Romano, of increasing
“the benefits of an RIT education to the printing and
publishing industries” (tug.org/l/romano-chair). He
is now professor emeritus. He also received RIT’s Cary
Award (tug.org/l/romano-cary-award) and a special
recognition award (tug.org/l/romano-special-recog).
4A complementary treatment of DTP history may be

found via history.computer.org/annals/dtp.
5 For more about Jonathan Seybold, see “Seybold Sem-

inars” on page 225 of “Studying the histories of com-
puterizing publishing and desktop publishing, 2017–19”,
David Walden, TUGboat 40:3, 2019.
tug.org/TUGboat/tb40-3/tb126walden-history.pdf
6 Frank Romano email of 2019-11-25.
7Historians would be aided by maximum accessibility

into the book. However, it is impractical for the book’s
current index to comprehensively index such a massive
amount of content. Ideally a way could be found for
the entire book (not just the TypeWorld part mentioned
above) to be searchable by people who own a copy—
without sacrificing the publisher’s and author’s income.
I suspect this capability can be developed relatively inex-
pensively. For instance, the book could have a url in it.
At the url is a form into which a search term is typed,
but not a PDF of the book. Executing the search returns
a couple of lines from the book and a book page number
for each found instance of the term.
8History of the Phototypesetting Era, Graphic

Communication Institute at Cal Poly State University,
San Luis Obispo, California, 2014.
rit.edu/press/history-phototypesetting-era
9 cla.calpoly.edu/news/2015/frank-romano.

10 For more about John Seybold, see “Rocappi” on page
219 and “Seybold Reports” on page 224 of the paper
cited in note 5. Together John and Jonathan influenced
the course of publishing technology for three decades.
11

computerhistory.org/collections/catalog/102740425
12 As I said about the desktop publishing book (note 7),
I hope at some point the phototypesetting book becomes
available in searchable PDF form to better enable use of
the resource.
13Books about Books: A History and Bibliography of

Oak Knoll Press, 1978–2008, Oak Knoll Press, 2008.
oakknoll.com/pages/books/99582
14 Oak Knoll Books, tug.org/l/fleck-web-history
15Robert D. Fleck interview, Antiquarian Booksellers’
Association of America.
youtube.com/watch?v=auKxVJpipig
16

en.wikipedia.org/wiki/Oak_Knoll_Books_and_Press
17

tug.org/TUGboat/tb40-3/tb126reviews-stock-allen.pdf
18

tug.org/TUGboat/tb40-3/tb126reviews-kelly-zapfbio.pdf

⋄ David Walden
walden-family.com/texland

Book review: History of Desktop Publishing, by Frank Romano

https://tug.org/TUGboat/tb36-1/tb112reviews-romano.pdf
https://museumofprinting.org/libraries
tug.org/l/romano-chair
https://tug.org/l/romano-cary-award
https://tug.org/l/romano-special-recog
https://history.computer.org/annals/dtp
https://tug.org/TUGboat/tb40-3/tb126walden-history.pdf
https://rit.edu/press/history-phototypesetting-era
https://cla.calpoly.edu/news/2015/frank-romano
https://computerhistory.org/collections/catalog/102740425
https://oakknoll.com/pages/books/99582
https://tug.org/l/fleck-web-history
https://youtube.com/watch?v=auKxVJpipig
https://en.wikipedia.org/wiki/Oak_Knoll_Books_and_Press
https://tug.org/TUGboat/tb40-3/tb126reviews-stock-allen.pdf
https://tug.org/TUGboat/tb40-3/tb126reviews-kelly-zapfbio.pdf

106 TUGboat, Volume 41 (2020), No. 1

ArsTEXnica #27–28 (April and October
2019)

ArsTEXnica is the journal of guIt, the Italian TEX
user group (www.guitex.org).

ArsTEXnica #27 (April 2019)

Claudio Beccari, Editoriale [From the editor];
pp. 3–4

A short overview of the present issue.

Claudio Beccari, Language management and
patterns for line breaking; pp. 5–28

Language management is supported by different
files according to the language manager babel or
polyglossia; they are similar to a certain extent,
but differ in the way they handle the language pat-
terns. There are also small differences when using
X ELATEX compared to LuaLATEX. Obviously patterns
are different from language to language, but there
are also some languages with variants. Therefore
the language-supporting compiler-structure has to
manage a variety of situations.

Claudio Beccari, La bandiera europea e la
sezione aurea [The European flag and the Golden
Ratio]; pp. 29–33

The European flag contains a circle of twelve five-
pointed stars distributed at the vertices of a regular
dodecagon. This article shows how it is possible to
draw the flag using only the picture environment,
both to draw the stars and to put them in the correct
position.

Roberto Giacomelli, Parsing di opzioni in
LuaTEX [Option parsing in LuaTEX]; pp. 34–41

This paper explains how to implement a parser
in Lua—the elegant and easy to use programming
language included in LuaTEX—for a list of options
in 〈key〉= 〈value〉 format.

Such a parser is useful in package development,
allowing an option system specifically designed for
efficiency and syntax expressiveness.

Jean-Michel Hufflen, Antichi sistemi di
notazione musicale [Early musical notations];
pp. 42–52

Some music engraving programs, such as MusiX-
TEX and LilyPond, support rendering of Gregorian
chant’s square notation on four-line staves. In this
tutorial we explain how scores using this notation are
organised. Then we show how it developed until the
notations used in the early baroque era. [Originally
published in proceedings of BachoTEX 2018. (Tr.
Tommaso Gordini.)]

Joseph Wright, siunitx: passato, presente
e futuro [siunitx: Past, present and future];
pp. 53–56

[Originally published in TUGboat vol. 39, no. 2
(2018), pp. 119–121. (Tr. Tommaso Gordini.)]

Frank Mittelbach, Il concetto di ritorno al
passato per le classi e i pacchetti [A rollback
concept for packages and classes]; pp. 57–63

[Originally published in TUGboat vol. 39, no. 2
(2018), pp. 107–112. (Tr. Claudio Beccari.)]

ArsTEXnica #28 (October 2019)

Claudio Beccari, Editoriale [From the editor];
pp. 5–7

A short overview of the present issue.

Gianluca Pignalberi, Massimiliano

Dominici, Introduction to LATEX and to some of
its tools; pp. 8–46

Writing has a long history. Shorter is the his-
tory of typesetting and even shorter is the history
of digital typography. Nevertheless, the latter has
gained an unprecedented importance because of its
capability to speed up the process of giving human
beings well-composed information.

Our lessons, of which this is number zero, are
focused on a digital typesetting system that has
come to light in the late 1970s. It was intended to
typeset scientific books; it is used to typeset nearly
everything. It is TEX.

In this short course we will give an overview
of how TEX and its most famous macro package
LATEX help engineers, scientists and professionals to
compose their documents, whether they are books,
papers, reports, presentations, posters, or any other
material.

Enrico Gregorio, TEX, LATEX and math;
pp. 47–57

We discuss some aspects of mathematical type-
setting: choice of symbols, code abstraction, fine
details. Relationships between math typesetting and
international standards are examined. A final section
on typesetting of numbers and units reports on some
recent developments in the field.

Guido Milanese, Bibliographies, LATEX and
friends; pp. 58–64

This article deals with the treatment of bibli-
ographies within a LATEX framework and workflow.
A comparison of BibTEX bibliography format with
other widely used formats shows that BibTEX has
several advantages. The classical BibTEX programme
is now obsolete, and biblatex + biber offer a highly
customisable choice for bibliographies in any research

TUGboat, Volume 41 (2020), No. 1 107

area. GUI environments are also discussed, as well
as possible future developments.

Agostino De Marco, Graphics for LATEX users;
pp. 65–101

This article presents the most important ways to
produce technical illustrations, diagrams and plots,
which are relevant to LATEX users. Graphics is a
huge subject per se, therefore this is by no means an
exhaustive tutorial. And it should not be so since
there are usually different ways to obtain an equally
satisfying visual result for any given graphic design.
The purpose is to stimulate readers’ creativity and
point them in the right direction. The article em-
phasizes the role of tikz for programmed graphics
and of inkscape as a LATEX-aware visual tool. A
final part on scientific plots presents the package
pgfplots.

Grazia Messineo, Salvatore Vassallo,
Presentations with Beamer; pp. 102–109

In this article we briefly introduce the LATEX
class beamer for presentations. We give some tips
to build an effective presentation and describe the
main features of the class.

Claudio Beccari, The TOPtesi package.
Typesetting a PhD thesis with LATEX; p. 110

This article uses the information given in the
previous five tutorials in order to describe how to use
the TOPtesi LATEX package to typeset a PhD thesis.
This package has a specific option to configure the
typesetting of such a thesis in the format agreed
upon by ScuDo, the doctoral School of Politecnico
di Torino.

Ulrike Fischer, Creating accessible PDFs with
LATEX; pp. 135–137

This article describes the current state and ac-
tions planned for the future to improve the accessi-
bility of PDFs created with LATEX, as it is currently
undertaken by the LATEX Team.

D. Ahmetovic, T. Armano, C. Bernareggi,

A. Capietto, S. Coriasco, B. Doubrov,

A. Kozlovskiy, N. Murru, Axessibility 2.0:
creating tagged PDF documents with accessible
formulae; pp. 138–145

PDF documents containing formulae generated
by LATEX are usually not accessible by assistive tech-
nologies for visually impaired people (i.e., by screen
readers and Braille displays). The LATEX package
axessibility.sty that we developed manages this

issue, allowing creation of PDF documents where
the formulae are read by such assistive technologies,
through the insertion of hidden comments. In this
paper we describe the evolution of the package, that
in the latest version also automatically generates
the tagging of the formulae. The package however
does not generate documents tagged according to
the PDF/UA standard.

Gianluca Pignalberi, Uno script bash di ausilio
alla redazione di manoscritti [A bash script to help
edit manuscripts]; pp. 146–156

A manuscript editing session puts us in full
view of a series of authors’ repeated bad practices.
Entering corrections entirely by hand can be a source
of oversights. We will see how a bash script allows
us to minimize them.

Jean-Michel Hufflen, A direct bibliography
style for ArsTEXnica; pp. 157–159

We describe the mlb-arstexnica program, part
of mlBibTEX’s new version, and suitable for generat-
ing bibliographies for ArsTEXnica articles. First, we
recall the notion of direct bibliography style related
to mlBibTEX and mention the advantages of such a
program. We show that our program provides addi-
tional services suitable for ArsTEXnica, compared to
BibTEX’s bibliography style arstexnica.bst.

Claudio Fiandrino, smartdiagram: The package
and its journey; pp. 160–163

The smartdiagram package was born as a re-
sponse to a question on TeX.stackexchange. The
challenge was to emulate a feature that Microsoft
PowerPoint provides: the capability of automating
a diagram with animations. This feature allows the
creation of diagrams from lists, so the user inter-
face had to be as simple as possible, i.e., a list. In
this article, I review the basic idea that overcomes
the challenge and I expose the main features of the
package along with a bit of its history.

Claudio Vincoletto, Metamorfosi dei tipi
sublacensi [Metamorphoses of the Subiaco
typefaces]; p. 164

The first and accurate digital revival of a classic
typeface, based on medieval calligraphy and used for
the first time in Italian incunabula. A copy of this
original was employed by the last representative of
the private press movement.

[Received from Massimiliano Dominici.]

ArsTEXnica #27–28 (April and October 2019)

108 TUGboat, Volume 41 (2020), No. 1

Zpravodaj 2019/1–4

Zpravodaj is the journal of CSTUG, the TEX user
group oriented mainly but not entirely to the Czech
and Slovak languages (cstug.cz).

Petr Sojka, Úvodńık staronového předsedy
[Introductory Words from the once and future
president]; pp. 1–10

The editorial discusses CSTUG’s past three years,
possible future directions of the group, membership
issues and shaping the organization in the Internet
era, together with changes related to the publishing
of Zpravodaj CSTUG. The recent visit of the Grand
Wizard is also reported, with insights.

Go forth and participate in CSTUG to make the
bright future of TEX & Friends a reality! You can!

Dávid Lupták, Fantasia Apocalyptica: Česká
premiéra [Fantasia Apocalyptica: The Czech
première]; pp. 11–18

On Friday, October 11, 2019, the Czech première
of the multimedia organ work Fantasia Apocalyptica
by Donald Knuth took place in Brno on the occasion
of the 25th anniversary of the foundation of the
Faculty of Informatics of Masaryk University, with
the author’s participation. The article presents the
event report and the Czech version of the brochure
that we prepared for this concert.

Jano Kula, 14th ConTEXt Meeting 2020;
pp. 19–23

From Sunday, September 6, 2020 to Saturday,
September 12, 2020, the 14th ConTEXt Meeting,
organized by the ConTEXt Group, will be held in
Sibřina, Czech Republic.

Tomáš Hála, Tabulky v ConTEXtu: př́ıstupy,
možnosti, algoritmy [Tables in ConTEXt: Ways,
possibilities, algorithms]; pp. 24–43

In the publication process, the typesetting of
tables is one of the more complicated tasks. This
paper reviews old and current ways of typesetting
tables in ConTEXt (environments table, tabulate,
TABLE, xtables), and compares them mutually and
with the “rival” LATEX.

Tables can be generated from other formats such
as the frequently used CSV. Therefore, the paper
deals also with database processing.

Finally, some simple algorithms for easy exten-
sions of the available repertoire are presented.

Lucie Schaynová, Jan Šustek, Aplikace
parametr̊u řádkového zlomu a output rutiny k
formátováńı sazby v TEXu [Parameters of the
line breaking algorithm and the output routine
and their applications for typesetting in TEX];
pp. 44–65

In the paper we go through inner parts of TEX
to show how the particular characters of the .tex

input file get to the .pdf output file. First we focus
on the line breaking algorithm, explaining how its
parameters affect the paragraph alignment. Then
we focus on the output routine, showing how to put
the typeset text on the page. Finally we mention the
way to find the exact position of a particular point
on the page with an application of MetaPost figures.

Jiř́ı Rybička, Výsledky výuky zpracováńı text̊u
[The results of teaching text processing]; pp. 66–72

Teaching of text processing has been offered at
the Faculty of Business and Economics of Mendel
University in Brno as an optional subject for more
than 18 years. The concept of the subject has over
time somewhat changed from the initial more tech-
nical concept to the current one focused on more
general knowledge of typography and on technical
texts, especially the final works. The article deals
with the outline of the analysis of the learning out-
comes in this subject, by processing selected exam
results.

Petr Sojka, Ondřej Sojka, The unreasonable
effectiveness of pattern generation; pp. 73–86

[Printed in TUGboat 40:2.]

Jano Kula, ConTEXt marks; pp. 87–91
For approximately ten years now, we have seen

the separation of the ConTEXt format into ConTEXt
MkII and ConTEXt MkIV. In this article, I will
explain the naming and the differences between Con-
TEXt formats.

Peter Wilson, It Might Work VIII — Drawings;
pp. 92–104

[Printed in TUGboat 30:1. Translated
to Czech by Jan Šustek.]

[Received from Vı́t Novotný.]

TUGboat, Volume 41 (2020), No. 1 109

Die TEXnische Komödie 4/2019–1/2020

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
Non-technical items are omitted.

Die TEXnische Komödie 4/2019

Esther Bonhag, Sebastian Bonhag,

Johannes Hielscher, Nils Pickert,
Don Knuth’s 80. Geburtstag – oder: Wie
der Erlanger TEX-Stammtisch auf Polarexpedition
ging [Don Knuth’s 80th birthday — or: How
the Erlangen TEX User Group went on a polar
expedition]; pp. 11–19

It all started the day when Donald E. Knuth had
his 1178th birthday. Triggered by this event Heise
Online had published an article on the hexadecimal
dollar of Don Knuth. As usual this article made
Sebastian continue reading in Wikipedia and Don’s
homepage, where a presentation held by Knuth, “A
Possibly Swedish Pipe Organ Fantasy”, on the next
Friday at the KTH Royal Institute of Technology in
Stockholm was announced.

Uwe Ziegenhagen, “Making TEX Great Again”
– Die TEX Users Group-2019-Tagung in Palo Alto
[“Making TEX Great Again” — The TEX Users
Group 2019 Meeting in Palo Alto]; pp. 19–26

The TEX Users Group meeting for the 40th
birthday of TEX gave me the opportunity to go to
California. In this article I present impressions from
this trip.

Falk Zscheile, DANTE e.V. auf den Kieler Open
Source und Linuxtagen [DANTE at the Kiel Open
Source and Linux Days]; pp. 27—31

When DANTE e.V. asked for someone to take
care of their booth at the Open Source and Linux
days in Kiel, a mere three weeks had passed since the
DANTE folks had managed to help me significantly
when I visited their booth in Sankt Augustin. This
showed me how important personal relationships
were even in our digital world, and convinced me to
follow their call to Kiel.

Johannes Hielscher, Kirchheim „unter TEX”:
Die DANTE-Herbsttagung 2019 [Kirchheim
“unter TEX”: The DANTE Autumn Event 2019];
pp. 32–33

Besides the members meeting led by Martin
Sievers, the focus of this event was the activities
sponsored by DANTE. Doris Behrendt and Johannes
Hielscher presented their impressions from the LATEX
Village in the Chaos Communication Camp in Milden-
berg, close to Berlin.

Mathias Magdowski, Personalisierte Aufgaben
und passende Musterlösungen zu den Grundlagen
der Elektrotechnik automatisiert mit LATEX,
pgfplots und CircuiTikZ erstellen [Personalized
exercises and solutions for electronic sciences,
automated with LATEX, pgfplots and CircuiTikZ];
pp. 34–44

All students in our lecture on the basics of elec-
tronics receive their personal exercise via e-mail, can
solve this manually and send their solution electron-
ically for corrections. To reduce the effort for the
lecturers, the students correct the exercises of their
peers based on personalized solutions as well. The
method is implemented in Matlab and, being highly
automated, it also scales very well. Compared with
multiple choice or number-unit exercises, the ap-
proach and calculations can be graded well. In this
article we describe how the typesetting is generated
in LATEX with pgfplots and CircuiTikZ.

Herbert Voß, Erzeugung von animierten
PDF-Dokumenten oder GIF-Dateien [Creating
animated PDFs and GIF files]; pp. 45–52

The usage of TEX and company in schools is
limited, unfortunately. But LATEX is very useful, with
its packages covering nearly all possible aspects, in
the creation of complex animated PDF files. In this
article we show an application for use in senior math
classes.

Ulrike Fischer, The package luaotfload; p. 53
The newest version of the luaotfload package

allows one to “bolden” fonts artificially. This can,
for example, be used to create bold math fonts for
headlines, etc.

Marion Lammarsch, Elke Schubert,
Reference sheet for a thesis with LATEX 2ε and
KOMA-Script; pp. 54–74

This LATEX Reference Sheet is for writing a the-
sis with one of the KOMA-Script document classes
(scrartcl, scrreprt, scrbook) and all related pack-
ages that a thesis in the natural sciences may need.
The source code and all parts are provided for creat-
ing your own version of a reference sheet, adapted
to your personal needs.

Die TEXnische Komödie 1/2020

Doris Behrendt, Tagungsbericht GuIT meeting
[Conference report of the GuIT Meeting]; pp. 8–13

The 2
2

2

th meeting of the GuIT (Gruppo Utiliz-
zatori Italiani di TEX, the Italian TEX user group),
took place in Turin on October 26, 2019. I visited
the meeting on behalf of DANTE to deliver birthday
greetings.

110 TUGboat, Volume 41 (2020), No. 1

Walter Entenmann, LuaTEX und luamplib

[LuaTEX and luamplib]; pp. 14–30
This article describes the embedding of META-

POST code for images in a LATEX document with the
package luamplib and the engine LuaTEX. This has
the advantage that text and images are combined
in one document and only one document has to be
created, edited and maintained. The structure of
this new innovative solution is presented and the
commands are explained in detail and illustrated
using examples.

Christine Römer, Diskussion um die
Wiederverwendbarkeit von älteren Dokumenten
[Discussion about reusability of old LATEX
documents]; pp. 31–33

At the end of January there was an interesting
discussion on the internal mailing list for members
of DANTE e.V. about the reusability of old LATEX
files.

Alan Munn, Ein zweiseitiger Leitfaden für
LATEX-Pakete [A two-page guide to LATEX
packages]; pp. 35–36

This is a list of the packages that are in my
opinion the most useful for writing papers and theses
in linguistics. I have made no attempt to justify
the choices, but I find almost all of these packages
essential in my own work. The essential packages
and the basic linguistics packages (relevant to your
particular field) should probably be loaded in every
document you write. Unless noted, all packages are
part of TEX Live.

Rolf Niepraschk, Die Schriftfamilie JetBrains
Mono [The font family JetBrains Mono]; p. 37

The company JetBrains recently released the
new Typewriter font JetBrains Mono under the free
Apache 2.0 license. According to its statement, it
is particularly good for displaying program source
texts suitably.

[Received from Herbert Voß.]

TheTreasure Chest

These are the new packages posted to CTAN (ctan.
org) from October 2019–March 2020, along with a
few notable updates. Descriptions are based on the
announcements and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

Nearly all the packages in this column are in-
cluded in the TEX Live 2020 release; the few ex-
ceptions are those where the package did not meet
TEX Live’s criteria for inclusion. For notable up-
dates to the TEX engines and other software in
TL’20 (and previous years), see tug.org/texlive/

doc/texlive-en/texlive-en.html#news.
We hope this column helps people access the vast

amount of material available through CTAN and the
distributions. See also ctan.org/topic. Comments
are welcome, as always.

⋄ Karl Berry

tugboat (at) tug dot org

fonts

clara in fonts

Extensive family created by Séamas Ó Brógáin
for A Dictionary of Editing (2015).

cmupint in fonts

Upright integral symbols for Computer Modern.

domitian in fonts

Extended Palladio (Palatino) with small caps,
old-style figures, scientific inferiors, etc.

erewhon-math in fonts

Utopia-based OpenType math font.

etbb in fonts

Extended XETBook (which extended Tufte’s
ETBook).

gfsdidotclassic in fonts/greek/gfs

Classic GFSDidot font in OpenType.

haranoaji in fonts

Harano Aji fonts, Mincho and Gothic.

haranoaji-extra in fonts

Additional variants of Harano Aji fonts.

lexend in fonts

Lexend variable font.

TUGboat, Volume 41 (2020), No. 1 111

mpfonts in fonts

Computer Modern Type 3 fonts, a direct
conversion from METAFONT via MetaPost.

* newcomputermodern in fonts

OpenType Computer Modern with Greek and
Cyrillic; additions requested.

noto-emoji in fonts

Noto Color Emoji.
qualitype in fonts

45 now-free OpenType fonts from Qualitype; a
wide variety of designs.

scholax in fonts

Extended TeXGyreSchola (New Century
Schoolbook) with math support and more.

twemoji-colr in fonts

COLR/CPAL-based color emoji from the
Twemoji collection.

wasy-type1 in fonts

Type 1 version of Roland Waldi’s wasy fonts,
version 2.4.

graphics

circuit-macros in graphics

M4 macros for electric circuit diagrams.
chemplants in graphics/pgf/contrib

Process flow diagrams of chemical processes.
kblocks in graphics/pgf/contrib

Typeset control block diagrams and signal
flow graphs.

lie-hasse in graphics/pgf/contrib

Draw Hasse diagrams for Lie algebras.
pinoutikz in graphics/pgf/contrib

Draw chip pinouts.
tikz-3dtools in graphics/pgf/contrib

Manipulate 3d coordinates and other tools.
tikz-trackschematic in graphics/pgf/contrib

Create railway track diagrams.
yquant in graphics/pgf/contrib

Typeset quantum circuits from a description
that is human-readable.

info

expose-expl3-dunkerque-2019 in info

Article (in French) on using expl3 to implement
numerical algorithms.

language/japanese

bxjatoucs in language/japanese

Convert character code values from Japanese
encodings to Unicode.

language/korean

pmhanguljamo in language/korean

Poor man’s Hangul Jamo input method.

language/mongolian

xecyrmongolian in language/mongolian

Basic support for Cyrillic Mongolian in Unicode.

macros/generic

expkv-def in macros/generic

Define keys for expkv.
expkv in macros/generic

Expandable key=val implementation.

macros/latex/contrib

accessibility in macros/latex/contrib

Generate tagged and structured PDF files,
with special support for KOMA-Script.

algxpar in macros/latex/contrib

Support multiple lines of pseudo-code text.
apa7 in macros/latex/contrib

Format documents in 7th edition APA style.
autofancyhdr in macros/latex/contrib

Compute headlength for fancyhdr.
bearwear in macros/latex/contrib

Shirts for tikzbears.
biblatex2bibitem in macros/latex/contrib

Convert BibLATEX-generated bibliography to
\bibitems.

bibleref in macros/latex/contrib

Format bible citations.
brandeis-thesis in macros/latex/contrib

Class for Brandeis University M.A. theses.
circledsteps in macros/latex/contrib

Typeset circled numbers.
euclideangeometry in macros/latex/contrib

Extended picture environment for geometric
ruler and compass constructions.

fewerfloatpages in macros/latex/contrib

Produce fewer half-empty float pages. See
article in this issue, pp. 54–68.

fontsetup in macros/latex/contrib

Easily switch between different math fonts.
fontsize in macros/latex/contrib

Set main document font to an arbitrary size.
hep-paper in macros/latex/contrib

Support for high energy physics writing.
hitszthesis in macros/latex/contrib

Template for bachelor dissertations at Harbin
Institute of Technology.

hvqrurl in macros/latex/contrib

Typeset the QR code for a url in the margin.
langsci-avm in macros/latex/contrib

Attribute–value matrices and feature structures
for linguistics.

latino-sine-flexione in macros/latex/contrib

Support for Peano’s Interlingua.

macros/latex/contrib/latino-sine-flexione

112 TUGboat, Volume 41 (2020), No. 1

leiletter in macros/latex/contrib

Letter class for Leiden University.
letterswitharrows in macros/latex/contrib

Scalable arrows over math symbols.
metastr in macros/latex/contrib

Store and compose arbitrary strings.
oops in macros/latex/contrib

Framework for organizing definitions inline.
pdfpc in macros/latex/contrib

Support for pdfpc presentation viewer.
physconst in macros/latex/contrib

Macros for commonly used physical constants,
per CODATA 2018.

physunits in macros/latex/contrib

Macros for physical units, including both SI

and cgs.
pmdb in macros/latex/contrib

Poor man’s database for building exams,
homework, etc.

rest-api in macros/latex/contrib

Format a REST API description.
schulmathematik in macros/latex/contrib

Support for German-speaking teachers of
math and physics.

sdaps in macros/latex/contrib

Creating machine-readable questionnaires
processable with SDAPS.

secnum in macros/latex/contrib

Specify section numbering intuitively.
shortmathj in macros/latex/contrib

Shorten titles of mathematical journals.
simplebnf in macros/latex/contrib

Typeset Backus-Naur form expressions, possibly
annotated.

thorshammer in macros/latex/contrib

Assessment based on AcroTEX quizzes.
tkz-base in macros/latex/contrib/tkz

Drawing tools for cartesian coordinate systems.
verifica in macros/latex/contrib

Typeset exercises, especially for Italian high
schools.

xkcdcolors in macros/latex/contrib

Color names from the xkcd survey.
(xkcd.com/color/rgb)

macros/latex/contrib/beamer-contrib/themes

hitszbeamer in m/l/c/b-c/themes

Harbin Institute of Technology beamer theme.

macros/latex/contrib/biblatex-contrib

biblatex-ajc2020unofficial in
m/l/c/biblatex-contrib

BibLATEX style for the Australasian Journal

of Combinatorics.

biblatex-german-legal in
m/l/c/biblatex-contrib

Citation style for German legal texts.
biblatex-jura2 in m/l/c/biblatex-contrib

Citation style for the German legal profession.

macros/luatex

barracuda in luatex/generic

Lua package to draw barcode symbols.
emoji in luatex/latex

Emoji support.
lua-ul in luatex/latex

Underlining for LuaLATEX.
optex in luatex

LuaTEX format based on plain TEX and OPmac.

macros/xetex/latex

parsa in macros/xetex/latex

Theses and dissertations at Iranian universities.
xepersian-hm in macros/xetex/latex

Fix kashida feature in xepersian.

support

* lua-uca in support

Lua implementation of the Unicode collation
algorithm.

texlab in support

Cross-platform Language Server Protocol, for
LATEX code completion.

texlive-dummy-enterprise-linux-8 in
support/texlive

Dummy rpm to satisfy dependencies on TEX
Live resources without additional installation.

texplate in support

Create document structure based on templates.

Comic by John Atkinson (https://wronghands1.com).

TUGboat, Volume 41 (2020), No. 1 113

TUG financial statements for 2019

Karl Berry, TUG treasurer

The financial statements for 2019 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
https://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was slightly down in 2019
compared to 2018; this was the second year of offer-
ing trial memberships, and we ended the year with
1,238 members (16 more than 2018, a welcome rise).
Contributions were up sharply, about $4,500, and
product sales (mainly Lucida) and interest income
were also up. Overall, 2019 income was up ≈ 3%.

Cost of Goods Sold and Expenses highlights;
the bottom line

TUGboat production cost was up a little, due to page
count. Postage-related expenses increased; other
categories remained about the same.

The bottom line for 2019 was strongly negative,
about $8,500, though still an improvement over 2018.

Balance sheet highlights

TUG’s end-of-year asset total is down by around
$5,160 (3%) in 2019 compared to 2018, following the
bottom-line loss.

Committed Funds are reserved for designated
projects: LATEX, CTAN, the TEX development fund,
and others (https://tug.org/donate). Incoming
donations are allocated accordingly and disbursed as
the projects progress. TUG charges no overhead for
administering these funds.

The 2019 Conference number is almost entirely
from the TUG’19 conference, which essentially broke
even (despite Palo Alto being our most expensive
location to date). At this writing, we do not know if
TUG’20 will be held.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2019 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2019. The payroll liabilities are for 2019
state and federal taxes due January 15, 2020.

Upcoming

For 2019, we have increased the trial membership
fee to $30; this will result in TUG approximately
breaking even on trial members, instead of incurring
a loss. We hope to continue to gain members; ideas
are always welcome.

TUG 12/31/2019 (vs. 2018) Revenue, Expense

Dec 31, 19 Dec 31, 18

ORDINARY INCOME/EXPENSE

Income

Membership Dues 76,125 77,825

Product Sales 5,238 3,672

Contributions Income 13,995 9,463

Interest Income 1,934 870

Advertising Income 345 270

Total Income 94,952 92,879

Cost of Goods Sold

TUGboat Prod/Mailing (18,836) (17,410)

Software Prod/Mailing (2,194) (2,550)

Members Postage/Delivery (2,236) (1,470)

Lucida Sales to B&H (1,965) (1,465)

Member Renewal (420) (317)

Total COGS (25,651) (23,211)

Gross Profit 69,301 68,890

Expense

Contributions made by TUG (1,000) (2,000)

Office Overhead (13,642) (14,301)

Payroll Expense (63,091) (63,078)

Interest Expense (25) (4)

Total Expense (77,757) (79,383)

Net Ordinary Income (10,493) (18,568)

OTHER INCOME/EXPENSE

Prior year adjustment (78)

NET INCOME (8,535) (10,493)

TUG 12/31/2019 (vs. 2018) Balance Sheet

Dec 31, 19 Dec 31, 18

ASSETS

Current Assets

Total Checking/Savings 171,560 176,530

Accounts Receivable 280 470

Total Current Assets 171,840 177,000

LIABILITIES & EQUITY

Current Liabilities

Committed Funds 47,270 44,442

TUG Conference (100) 1,000

Administrative Services 1,498 2,698

Prepaid Member Income 9,175 6,375

Payroll Liabilities 1,301 1,353

Total Current Liabilities 59,244 55,869

Equity

Unrestricted 121,131 131,624

Net Income (8,535) (10,493)

Total Equity 112,596 121,131

TOTAL LIABILITIES & EQUITY 171,840 177,000

https://ctan.org/pkg/mpfonts
https://ctan.org/pkg/leiletter
https://ctan.org/pkg/letterswitharrows
https://ctan.org/pkg/metastr
https://ctan.org/pkg/oops
https://ctan.org/pkg/pdfpc
pdfpc
https://ctan.org/pkg/physconst
https://ctan.org/pkg/physunits
https://ctan.org/pkg/pmdb
https://ctan.org/pkg/rest-api
https://ctan.org/pkg/schulmathematik
https://ctan.org/pkg/sdaps
https://ctan.org/pkg/secnum
https://ctan.org/pkg/shortmathj
https://ctan.org/pkg/simplebnf
https://ctan.org/pkg/thorshammer
https://ctan.org/pkg/tkz-base
https://ctan.org/pkg/verifica
https://ctan.org/pkg/xkcdcolors
https://xkcd.com/color/rgb/
xkcd.com/color/rgb
https://ctan.org/pkg/hitszbeamer
https://ctan.org/pkg/biblatex-ajc2020unofficial
https://ctan.org/pkg/biblatex-german-legal
https://ctan.org/pkg/biblatex-jura2
https://ctan.org/pkg/barracuda
https://ctan.org/pkg/emoji
https://ctan.org/pkg/lua-ul
https://ctan.org/pkg/optex
https://ctan.org/pkg/parsa
https://ctan.org/pkg/xepersian-hm
xepersian

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

114 TUGboat, Volume 41 (2020), No. 1

TEXConsultants

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document
conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

(continued)

Veytsman, Boris (cont’d)

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Warde, Jake

Forest Knolls, CA, 94933, USA
6504681393
Email: jwarde (at) wardepub.com

Web: http://myprojectnotebook.com

I have been in academic publishing for 30+ years. I
was a Linguistics major at Stanford in the mid-1970s,

TUGboat, Volume 41 (2020), No. 1 115

then started a publishing career. I knew about TEX
from Computer Science editors at Addison-Wesley who
were using it to publish products. Beautiful, I
loved the look. Not until I had immersed myself in
the production side of academic publishing did I
understand the contribution TEX brings to the reader
experience.

Long story short, I started using TEX for
exploratory projects (see the website referenced) and
want to contribute to the community. Having spent a
career evaluating manuscripts from many perspectives,
I am here to help anyone who seeks feedback on their
package documentation. It’s a start while I expand my
TEX skills.

TEX Live 2020 news

Karl Berry

TEX Live 2020 was released online on April 10, 2020. The
TEX Collection DVD is in process.

As new versions of packages are uploaded to CTAN,
they are imported into TL, and available over the In-
ternet via the tlmgr program. See the TL web site and
documentation if needed.

As always, in the 2020 release there are pervasive
updates to hundreds of packages and programs. We can’t
list them all, but here are some major user-visible changes
in the principal programs.

General. The \input primitive in all TEX engines, in-
cluding tex, now also accepts a group-delimited filename
argument, as a system-dependent extension. The usage
with a standard space/token-delimited filename is com-
pletely unchanged. The group-delimited argument was
previously implemented in LuaTEX; now it is available
in all engines. ASCII double quote characters (") are
removed from the filename, but it is otherwise left un-
changed after tokenization. This does not currently affect
LATEX’s \input command, as that is a macro redefinition
of the standard \input primitive.

New option --cnf-line for kpsewhich, tex, mf, and
all other engines, to support arbitrary configuration set-
tings on the command line.

The addition of primitives to the engines in this and
previous years is intended to result in a common set of
functionality available across all engines; see LATEX News
#31 in this issue, pp. 34–38.

eptex, euptex. New primitives \Uchar, \Ucharcat,
\current(x)spacingmode, \ifincsname; revise
\iffontchar and \fontchar??. For euptex only:
\currentcjktoken.

LuaTEX. Integration with HarfBuzz library, as new
engines luahbtex and luajithbtex; luahbtex is now the
engine used for the lualatex format.

Loading of dso (.dll/.so) objects is now forbidden
if --shell-restricted.

New primitives \eTeXglue[stretch|shrink]order.

Scaling of virtual fonts supported.
Enhancements to tex.runtoks, which permits lim-

ited nested running of TEX.

pdfTEX. New primitive \pdfmajorversion; this merely
changes the version number in the PDF output, and has
no effect on PDF content.

\pdfximage and similar now search for image files
in the same way as \openin.

pTEX. New primitives \ifjfont, \iftfont. Also in
eptex, uptex, and euptex.

X ETEX. Fixes for \Umathchardef, \pdfsavepos,
\xetexinterchartoks.

dvips. Output encodings for bitmap fonts, for better
copy/paste capability.

tlmgr, TL infrastructure. Automatically retry (once)
packages that fail to download, try to reinitialize LWP

connection after several errors.
New option tlmgr check texmfdbs, to check con-

sistency of ls-R files and !! specifications.
Use versioned filenames for package containers, as

in tlnet/archive/pkgname.rNNN.tar.xz; should be in-
visible to users, but a notable change in distribution.

MacTEX. MacTEX and x86_64-darwin now require
macOS 10.13 or higher (High Sierra, Mojave, Catalina);
x86_64-darwinlegacy supports 10.6 and newer.

MacTEX is now notarized and command line pro-
grams have hardened runtimes, as now required by Apple
for install packages. BibDesk and TEX Live Utility are
no longer in MacTEX because they are not notarized, but
a README file lists urls where they can be obtained.

More information, including urls for all references, is
online.

⋄ Karl Berry
karl (at) freefriends dot org

https://tug.org/texlive

2020

Apr 24 – 25 Before & Beyond Typography: Text
in Global & Multimodal Perspective,
Stanford University, Stanford, California.
www.eventbrite.com/e/before-beyond-

typography-text-in-global-multimodal-

perspective-tickets-69068930029

Apr 29 –
May 3

BachoTEX2020, 28th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex

Jun 4 – 6 Markup UK 2020. A conference about
XML and other markup technologies,
King’s College, London.
markupuk.org

Jun 7 – 12 19th Annual Book History Workshop,
Texas A&M University,
College Station, Texas.
library.tamu.edu/book-history

Jun 8 –
Jul 11

TypeParis20, intensive type design
program, Paris, France. typeparis.com

TypeCon / SoTA will fund a scholarship;
see details at typecon.com

Jun 15 – 19 SHARP 2020, “Power of the written
word”. Society for the History of
Authorship, Reading & Publishing.
Amsterdam, Netherlands
www.sharp2020.nl

Jun 17 – 19 Grapholinguistics in the 21st century—
From graphemes to knowledge,
to be presented online.
grafematik2020.sciencesconf.org

Jun 29 –
Jul 2

Book history workshop, Institut d’histoire
du livre, Lyon, France. ihl.enssib.fr

Jul 1 Preprints due for TUG 2020

program

Jul 1 – 3 Eighteenth International Conference
on New Directions in the Humanities,
“Transcultural Humanities in
a Global World”, Ca’ Foscari
University of Venice, Venice, Italy.
thehumanities.com/2020-conference

116 TUGboat, Volume 41 (2020), No. 1

Calendar

Jul 13 – 17 International Society for the History and
Theory of Intellectual Property (ISHTIP),

12th Annual Workshop,
“Landmarks of Intellectual Property”.
Bournemouth University, UK.
www.ishtip.org/?p=1027

Jul 19 – 23 SIGGRAPH 2020, “Think beyond”,
Washington, DC. s2020.siggraph.org

Jul 22 – 24 Digital Humanities 2020, Alliance of
Digital Humanities Organizations,
Carleton University and the University
of Ottawa, Ottawa, Canada.
adho.org/conference

TUG 2020 Cary Graphic Arts Collection,

Rochester Institute of Technology,

Rochester, New York

Jul 23 Calligraphy workshop (participation
limited).

Jul 23 Opening reception, 4:00–6:00 pm.

Jul 24 – 26 The 41st annual meeting of the
TEX Users Group.
tug.org/tug2020

Jul 27 – 31 Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

Aug 3 Final papers due for TUG 2020

proceedings

Sep 6 – 12 14th International ConTEXt Meeting,
Prague-Sibřina, Czech Republic.
meeting.contextgarden.net/2019

Sep 13 – 18 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 29 –
Oct 2

20th ACM Symposium on Document
Engineering, San Jose, California.
www.documentengineering.org/doceng2020

Oct 2 – 4 Oak Knoll Fest XXI, “Women in the
Book Arts”, New Castle, Delaware.
www.oakknoll.com/fest

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 1 April 2020

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 41 (2020), No. 1

Introductory

4 Barbara Beeton / Editorial comments
• typography and TUGboat news

7 Karl Berry / Reporting bugs for Don Knuth (as soon as possible)
• please send in bug reports for the next TEX tuneup!

71 Peter Flynn / Typographers’ Inn
• No time for copyright; No time to learn; Proofing the unproofable

3 Boris Veytsman / From the president
• the Decameron and plagues of all centuries

Intermediate

110 Karl Berry / The treasure chest
• new CTAN packages, October 2019–March 2020

97 Jonathan Fine / Reading 29,000 COVID-19 papers
• questions about automated analysis, JATS, and LATEX

26 Ulrike Fischer / Creating accessible pdfs with LATEX
• future research, development, and issues with generating accessible pdfs

12 Yannis Haralambous / Grapholinguistics, TEX, and a June 2020 conference
• background of subject, annotated topic list, relationship to TEX

29 LATEX Project Team / LATEX3 news, issue 11, February 2018
• move to git; expl3 and l3build updates

31 LATEX Project Team / LATEX3 news, issue 12, January 2020
• new features and fixes in expl3; better support for (u)pTEX; engine requirements; more

34 LATEX Project Team / LATEX news, issue 31, February 2020
• Experiences with the LATEX-dev formats; Improvements to LATEX’s font selection mechanism (NFSS);

Primitive requirements; and more

20 Carla Maggi / The DuckBoat—Beginners’ Pond: You do not need to be Neo to cope with a TikZ matrix
• graduated examples of TikZ matrices as an alternative to tabular

95 David Walden / Webnotes: Practical approaches
• putting an article’s supplemental material on the web, with references

Intermediate Plus

69 Ulrike Fischer, Marcel Krüger / Typesetting Bangla script with LuaLATEX
• using HarfBuzz and luaotfload to achieve better shaping and colorization

8 David Fuchs / Beyond Trip and Trap: Testing the urtext WEB sources
• comprehensive range and other checking of DEK’s original sources, via a custom toolchain

43 Enrico Gregorio / TEX, LATEX and math
• aspects of mathematical typesetting: choice of symbols, abstraction, international standards, and more

54 Frank Mittelbach / The fewerfloatpages package
• avoiding relatively empty float pages

39 Joseph Wright / Case changing: From TEX primitives to the Unicode algorithm
• LATEX3 support for uppercasing, lowercasing, titlecasing, case-folding, all per Unicode

Advanced

73 Udo Wermuth / An attempt at ragged-right typesetting
• esthetics and implementations of ragged right, especially for German text

Reports and notices

2 Institutional members

98 David Walden / About The Art of Computer Programming, Volume 4, Fascicle 5
• extended description of this fascicle and its place in Knuth’s magnum opus

102 David Walden / Book review: History of Desktop Publishing, by Frank Romano
• also discussed: Romano’s previous book on phototypesetting history; and the publisher, Oak Knoll Press

109 From other TEX journals: Die TEXnische Komödie 4/2019; ArsTEXnica 27–28 (2019); Zpravodaj 2019/1–4

112 John Atkinson / Comic: Typographic map Hyphe-nation

113 Karl Berry / TUG financial statements for 2019

114 TEX consulting and production services

115 Karl Berry / TEX Live 2020 news
• brief summary of major changes in the TL’20 release

116 Calendar

