
TUGboat, Volume 41 (2020), No. 1 69

Typesetting Bangla script with LuaLATEX
Ulrike Fischer, Marcel Krüger

In [2], Md Qutub Uddin Sajib describes some expe-
riences and insights concerning typesetting Bangla.

While we don’t know Bangla, we want to share
some additional information about the LuaLATEX
side, especially about how to use the possibilities of
the new HarfBuzz library.

1 HarfBuzz in LuaLATEX — the engine choice
Typesetting a script is more than placing glyphs side
by side. Even in the rather simple western scripts
there are already ligatures, kerning and accents to
handle and many scripts have much more complex
rules. Up to now LuaLATEX wasn’t very good with
such scripts. This wasn’t due to a fundamental
deficiency, but a lack of manpower: To implement
the shaping rules one needs people knowing the script,
knowing Lua and having the time and the will to put
both together. The experience with xetex was much
better as this engine relied on an external library
from the start — these days on HarfBuzz [3]. For
quite some time there has been a wish for luatex to
also support use of HarfBuzz.

In 2019, this became possible: with harftex [1]
and luahbtex, two engines with built-in HarfBuzz
support were available. After some discussion the
LATEX team decided to base LuaLATEX in TEX Live
2020 on luahbtex and integrated in fall 2019 the
necessary Lua code into luaotfload. As an engine
change is a major step the two TEX distributions
TEX Live and MiKTEX added the new engine already
in November 2019 and the LuaLATEX-dev format has
been mapped to it. This allowed beginning “real
world” tests.

So, from the various LuaLATEX variants men-
tioned by Sajib, only the following should be consid-
ered if HarfBuzz is wanted:
TEX Live 2019 / before April 2020
lualatex-dev = luahbtex + LATEX-dev
TEX Live 2020 / after April 2020
lualatex = luahbtex + LATEX
lualatex-dev = luahbtex + LATEX-dev

To make the best use of the new HarfBuzz inte-
gration it is important to keep one’s TEX distribution,
notably including luaotfload, up to date to benefit
from the development and corrections of bugs.

2 Using HarfBuzz in LuaLATEX
With X ELATEX HarfBuzz is always used to shape a
font (with the exception of legacy TEX fonts). This
doesn’t hold for LuaLATEX. Here one can choose on

Table 1: Example rendering with the various modes

base কণ্যা এখন কি করিবে?

node কণ্যা এখন িক কিরেব?

harf কণ্যা এখন �ক ক����?

a font-by-font basis between the base mode (mostly
used for math fonts), node mode (used for text) and
the new harf mode (which has a number of sub-
modes). HarfBuzz is an addition to, not a replace-
ment for, the existing font shapers. If the library
isn’t used the new engine behaves like luatex.

Table 1 shows the rendering of an example text
in the three modes. In comparing the output one
can see — even if one doesn’t understand the script —
that base mode doesn’t know much, node mode a
bit and harf mode a lot about the script. E.g., the
third word is U+0995 U+09BF (corresponding to the
Bengali letters “KA”: ক and “I”: ি ). While the
simpler base mode just prints these letters next to
each other, the more advanced modes node and harf
reverse the order. The first word in the examples
shows that node mode is still missing some shaping
rules that harf mode applies.

When using the fontspec package the mode
can be chosen with the Renderer option. It is also
important to specify the correct script. The harf
mode in table 1, for example, can be done with this
font declaration:
\setmainfont{Noto Sans Bengali}

[Renderer=HarfBuzz,Script=Bengali]

3 The “dotted circle” mystery
In [2], Sajib also discusses how to typeset a glyph
without getting an unwanted dotted circle as a base
character. With X ELATEX it isn’t easy to overrule
the rendering that the HarfBuzz library considers to
be correct (though \XeTeXglyph can be used). But
in LuaLATEX it can be done by switching to another
mode of typesetting. Compare the output of e.g.
\char"90BE:

harf mode: �া base/node mode: া

4 Coloring glyphs
The standard LATEX color commands insert specials
or literals. This interrupts the input and so can
disturb the font shaping. Figure 1 shows an example
where the color commands inhibit the reordering of
the glyphs.

With LuaLATEX one can use attributes instead
by loading the luacolor package. With it, the code
in figure 1 gives this output: �ক �ক

At first glance this looks okay but the coloring
is actually odd. The code asks to color the KA red

Typesetting Bangla script with LuaLATEX



70 TUGboat, Volume 41 (2020), No. 1

\char"0995\char"09BF \quad
\color{red}\char"0995
\color{green}\char"09BF

িক কি◌
Figure 1: Wrong shaping due to color commands

(ক) and the I green (ি ) but in the output the colors
are reversed. This shows a general problem with this
approach: the attributes are attached to the input
chars. When getting back the shaped output from
HarfBuzz (in this case in reversed order) luaotfload
doesn’t always know how the input and the output
relate and has to guess how to reattach the attributes.
Switching to node mode solves the problem for this
specific case as in this mode luaotfload has full
control over the shaping and so can make a better
decision how to set the color.

But the core of the problem lies deeper: font
shaping takes a cluster of n input chars and outputs
m glyphs and there is not always a clear mapping
between attributes of an input char to the attributes
of the output glyphs. As an example, take the in-
put \color{red}f\color{green}f\color{blue}i:
what color should the output ffi-ligature glyph be?

5 Coloring the output glyphs
We’ve seen that adding color commands to the in-
put does not always lead to satisfactory results.
What about color instructions that target the out-
put glyphs? The code in figure 2 (which requires
luaotfload 3.12) shows that this is possible. The
code defines a color scheme that maps colors to out-
put glyphs and uses it in the font declaration.

The difficulty with this method is to correctly
reference the desired output glyphs. The code shows
two different methods: by name (“ivowelsignbeng”)
and by index, the GID, of the glyph. Both methods
have drawbacks.

Glyph names can fail as not every font uses the
same names for the same glyphs, and some fonts
don’t contain them at all. The name “t” for example
works fine with TEX Gyre Heros but not with Arial.
The handling of glyph names also differs between the
modes: With the HarfBuzz renderer glyph names
currently work only with ttf fonts (this will probably
change with the next HarfBuzz version).

Index numbers are more reliable but they are
different for every font (and can change if a font is
updated). The GID of “t” is 87 in Arial and 106 in
TEX Gyre Heros.

A third possibility, more difficult to implement,
is to use the ToUnicode mapping of the glyph. The
problems here are several: different glyphs can have
the same ToUnicode, some glyphs (e.g., accented

\directlua{
luaotfload.add_colorscheme("my_scheme",
{ ["FF0000"] = {"kabeng"},

["00FF00"] = {"ivowelsignbeng"},
["0000FF"] = {369} % GID of "nadarabeng"

})}
\newfontface\colorbengali{Noto Sans Bengali}

[Renderer=Harfbuzz,
Script=Bengali,
RawFeature={color=my_scheme}]

{\colorbengali
\char"0995 \char"09BF
\char"09A8 \char"09CD \char"09A6
\char"09CD \char"09B0}

�কন্দ্র

Figure 2: Coloring glyphs in a font

characters) can have more than one ToUnicode value
(and which one is used in a document cannot always
be easily predicted), some glyphs are clusters and
so have quite long values, and finally, some have no
ToUnicode mapping at all.

So while the results of coloring output glyphs
can be quite good, this clearly requires some skill
and the right fonts.

6 Coloring parts of a glyph
The methods mentioned above don’t help to color
the parts of a single glyph, e.g., ন্দ্র. While the input
consists of five chars (ন্দ্র) the output is one glyph
in the font and coloring parts of a glyph can only
be done if the font has special support for it. Here
the only option is to enhance the font with color
support or to draw the glyph with TikZ or some
graphic application and color it manually.

References
[1] K. Hosny. Bringing world scripts to LuaTEX:

The HarfBuzz experiment. TUGboat 40(1):38–43,
2019. https://tug.org/TUGboat/tb40-1/
tb124hosny-harfbuzz.pdf

[2] M. Q. U. Sajib. Typesetting the Bangla script in
Unicode TEX engines — experiences and insights.
TUGboat 40(3):263–269, 2019. https://tug.org/
TUGboat/tb40-3/tb126sajib-bangla.pdf

[3] The FreeType Project. HarfBuzz, a text shaping
library. https://harfbuzz.org

� Ulrike Fischer
Mönchengladbach
ulrike.fischer (at) latex-project.org

� Marcel Krüger
Hamburg
marcel.krueger (at) latex-project.org

Ulrike Fischer, Marcel Krüger


