
34 TUGboat, Volume 41 (2020), No. 1

LATEX News
Issue 31, February 2020

Contents

Experiences with the LATEX -dev formats 1

Concerning this release . . . (LuaLATEX engine) 1

Improved load-times for expl3 1

Improvements to LATEX font selection: NFSS 2
Extending the shape management in NFSS . . 2
Extending the font series management in NFSS 2
Font series defaults per document family 3
Handling of nested emphasis 3
Providing font family substitutions 3
Providing all text companion symbols by default 3
New alias size function for use in .fd files . . 4
Suppress unnecessary font substitution warnings 4

Other changes to the LATEX kernel 4
UTF-8 characters in package descriptions . . . 4
Fix inconsistent hook setting when

loading packages 4
Avoid spurious warning if LY1 is made the

default encoding 4
Ensure that \\ remains robust 4
Make math delimiters robust in a different way 4
Allow more write streams with filecontents

in LuaTEX 4

Changes to packages in the graphics category 4
Make color/graphics user-level commands robust 4

Changes to packages in the tools category 5
Fixed column depth in boxed multicols 5
Ensure that multicols does not lose text . . . 5
Allow spaces in \hhline arguments 5

LATEX requirements on engine primitives 5

Experiences with the LATEX -dev formats
As reported in the previous LATEX News, we have made
a pre-release version of the LATEX kernel available as
LATEX-dev. Overall, the approach of having an explicit
testing release has been positive: it is now readily
available in TEX systems and is getting real use
beyond the team.
The current release has been tested by a number of

people, and we have had valuable feedback on a range

of the new ideas. This has allowed us to fix issues in
several of the new features, as described below.
We wish to thank all the dedicated users who have

been trying out the development formats, and we
encourage others to do so. Pre-testing in this way does
mean that, for the vast majority of users, problems are
solved before they even appear!

Concerning this release . . . (LuaLATEX engine)
The new LuaHBTEX engine is LuaTEX with an
embedded HarfBuzz library. HarfBuzz can be used by
setting a suitable renderer in the font declaration. A
basic interface for that is provided by fontspec. This
additional font renderer will greatly improve the shaping
of various scripts when using LuaLATEX, many of which
are currently handled correctly only by X ETEX, which
always uses HarfBuzz.

To simplify testing of the new engine, binaries have
already been added to MiKTEX and TEX Live 2019
and both distributions have already now changed the
LuaLATEX-dev format to use it.

Going forward, LuaLATEX (and LuaLATEX-dev) will
both use the LuaHBTEX engine. The timing of the
switch to the LuaHBTEX engine depends on the
distribution you use (for TEX Live this will be with
TEX Live 2020).

Improved load-times for expl3
The LATEX3 programming layer, expl3, has over the
past decade moved from being largely experimental to
broadly stable. It is now used in a significant number of
third-party packages, most notably xparse, for defining
interfaces in cases where no expl3 code is “visible”. In
addition, most LATEX documents compiled using X ETEX
or LuaTEX load fontspec, which is written using expl3.

The expl3 layer contains a non-trivial number of
macros, and when used with the X ETEX and LuaTEX
engines, it also loads a large body of Unicode data. This
means that even on a fast computer, there is a relatively
large load time when using expl3.

For this release, the team have made adjustments in
the LATEX2ε kernel to pre-load a significant portion of
expl3 when the format is built. This is transparent to
the user, other than the significant decrease in document
processing time: there will be no “pause” whilst loading
the Unicode data files. Loading expl3 in documents and

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2020, all rights reserved.

LATEX News #31

TUGboat, Volume 41 (2020), No. 1 35

packages can continue to be done as usual; eventually, it
will be possible to omit

\RequirePackage{expl3}

entirely but, to support older formats, this is still
recommended at present.

Improvements to LATEX’s font selection
mechanism (NFSS)

Extending the shape management in NFSS

Over time, more and more fonts have become available
for use with LATEX. Many such font families offer
additional shapes such as small caps italic (scit), small
caps slanted (scsl) or swash (sw). By using \fontshape

those shapes can be explicitly selected. For the swash
shapes there is also \swshape and \textsw available.

In the original font selection implementation a request
to select a new shape always overrode the current shape.
With the 2020 release of LATEX this has changed and
\fontshape can now be used to combine small capitals
with italic, slanted or swash letters, either by explicitly
asking for scit, etc., or by asking for italics when
typesetting already in small caps, and so forth.

Using \upshape will still change italics or slanted
back to an upright shape but will not any longer alter
the small caps setting. To change small capitals back
to upper/lower case you can now use \ulcshape (or
\textulc) which in turn will not change the font
with respect to italics, slanted or swash. There is one
exception: for compatibility reasons \upshape will
change small capitals back to upright (n shape), if the
current shape is sc. This is done so that something like
\scshape...\upshape continues to work as before, but
we suggest that you don’t use that deprecated method
in new documents.

Finally, if you want to reset the shape back to normal
you can use \normalshape which is a shorthand for
\upshape\ulcshape.

The way that shapes combine with each other is not
hardwired; it is customizable and extensible if there is
ever a need for this. The mappings are defined through
\DeclareFontShapeChangeRule and the details for
developers are documented in source2e.pdf.

The ideas for this interface extension have been
pioneered in fontspec by Will Robertson for Unicode
engines, and in fontaxes by Andreas Bühmann and
Michael Ummels for pdfTEX; they are by now used in
many font support packages.

Extending the font series management in NFSS

Many of the newer font families also come provided
with additional weights (thin, semi-bold, ultra-bold,
etc.) or several running widths, such as condensed or
extra-condensed. In some cases the number of different
values for series (weight plus width) is really impressive:

for example, Noto Sans offers 36 fonts, from ultra-light
extra condensed to ultra-bold medium width.

Already in its original design, NFSS supported 9
weight levels, from ultra-light (ul) to ultra-bold (ub),
and also 9 width levels, from ultra-condensed (uc) to
ultra-expanded (ux): more than enough, even for a font
family like Noto Sans. Unfortunately, some font support
packages nevertheless invented their own names, so in
recent years you have been able to find all kinds of
non-standard series names (k, i, j and others), making
it impossible to combine different fonts successfully
using the standard NFSS mechanisms.

Over the course of the last year a small number
of individuals, notably, Bob Tennent, Michael Sharpe
and Marc Penninga, have worked hard to bring this
unsatisfactory situation back under control; so today
we are happy to report that the internal font support
files for more than a hundred font families are all
back to following the standard NFSS conventions.
Combining them is now again rather nice and easy, and
from a technical perspective they can now be easily
matched; but, of course, there is still the task of choosing
combinations that visually work well together.

In the original font selection implementation, a request
to select a new series always overrode the current one.
This was reasonable because there were nearly no fonts
available that offered anything other than a medium or
a bold series. Now that this has changed and families
such as Noto Sans are available, combining weight and
width into a single attribute is no longer appropriate.
With the 2020 release of LATEX, the management of
series therefore changed to allow independent settings of
the weight and the width attributes of the series.

For most users this change will be largely transparent
as LATEX offers only \textbf or \bfseries to select
a bolder face (and \textmd and \mdseries to return
to a medium series): there is no high-level command
for selecting a condensed face, etc. However, using the
NFSS low-level interface it is now possible to ask for, say,
\fontseries{c}\selectfont to get a condensed face
(suitable for a marginal note) and that would still allow
the use of \textbf inside the note, which would select
a bold-condensed face (and not a rather odd-looking
bold-extended face in the middle of condensed type).

The expectation is that this functionality will be
used largely by class and package designers but, given
that the low-level NFSS commands are usable on the
document level and that they are not really difficult to
apply, there are probably also a number of users who
will enjoy using these new possibilities that bring LATEX
back into the premier league for font usage.

The ways in which the different series values
combine with each other is not hardwired but is again
customizable and extensible. The mappings are defined

LATEX News #31

36 TUGboat, Volume 41 (2020), No. 1

through \DeclareFontSeriesChangeRule and the
details for developers are documented in source2e.pdf.

Font series defaults per document family

With additional weights and widths now being available
in many font families, it is more likely that somebody
will want to match, say, a medium weight serif family
with a semi-light sans serif family, or that with one
family one wants to use the bold-extended face when
\textbf is used, while with another it should be bold
(not extended) or semibold, etc.

In the past this kind of extension was provided
by Bob Tennent’s mweights package, which has been
used in many font support packages. With the 2020
release of LATEX this feature is now available out of
the box. In addition we also offer a document-level
interface to adjust the behavior of the high-level series
commands \textbf, \textmd, and of their declaration
forms \bfseries and \mdseries, so that they can have
different effects for the serif, sans serif and typewriter
families used in a document.

For example, specifying

\DeclareFontSeriesDefault[rm]{bf}{sb}

\DeclareFontSeriesDefault[tt]{md}{lc}

in the document preamble would result in \textbf

producing semi-bold (sb) when typesetting in a roman
typeface. The second line says that the typewriter
default face (i.e., the medium series md) should be a
light-condensed face. The optional argument here can be
either rm, sf or tt to indicate one of the three main font
families in a document; if omitted you will change the
overall document default instead. In the first mandatory
argument you specify either md or bf and the second
mandatory argument then gives the desired series value
in NFSS nomenclature.

Handling of nested emphasis

In previous releases of LATEX, nested \emph commands
automatically alternated between italics and upright.
This mechanism has now been generalised so that you
can now specify for arbitrary nesting levels how emphasis
should be handled.

The declaration \DeclareEmphSequence expects a
comma separated list of font declarations corresponding
to increasing levels of emphasis. For example,

\DeclareEmphSequence{\itshape,%

\upshape\scshape,\itshape}

uses italics for the first, small capitals for the second,
and italic small capitals for the third level (provided you
use a font that supports these shapes). If there are more
nesting levels than provided, LATEX uses the declarations
stored in \emreset (by default \ulcshape\upshape) for
the next level and then restarts the list.

The mechanism tries to be “smart” by verifying
that the given declarations actually alter the current
font. If not, it continues and tries the next level—the
assumption being that there was already a manual font
change in the document to the font that is now supposed
to be used for emphasis. Of course, this only works if the
declarations in the list’s entries actually change the font
and not, for example, just the color. In such a scenario
one has to add \emforce to the entry, which directs the
mechanism to use the entry, even if the font attributes
appear to be unchanged.

Providing font family substitutions

Given that pdfTEX can only handle fonts with up to
256 glyphs, a single font encoding can only support
a few languages. The T1 encoding, for example, does
support many Latin-based scripts, but if you want
to write in Greek or Cyrillic then you will need to
switch encodings to LGR or T2A. Given that not every
font family offers glyphs in such encodings, you may
end up with some default family (e.g., Computer
Modern) that doesn’t blend in well with the chosen
document font. For such cases NFSS now offers
\DeclareFontFamilySubstitution, for example:

\DeclareFontFamilySubstitution{LGR}

{Montserrat-LF}{IBMPlexSans-TLF}

tells LATEX that if you are typesetting in the sans serif
font Montserrat-LF and the Greek encoding LGR is
asked for, then LATEX should use IBMPlexSans-TLF to
fulfill the encoding request.

The code is based on ideas from the substitutefont

package by Günter Milde, but the implementation is
different.

Providing all text companion symbols by default

The text companion encoding TS1 was originally not
available by default, but only when the textcomp

package was loaded. The main reason for this was
limited availability of fonts with this encoding other
than Computer Modern; another was the memory
restrictions back in the nineties. These days neither
limitation remains, so with the 2020 release all the
symbols provided with the textcomp package are
available out of the box.

Furthermore, an intelligent substitution mechanism
has been implemented so that glyphs missing in some
fonts are automatically substituted with default glyphs
that are sans serif if you typeset in \textsf and
monospaced if you typeset using \texttt. In the past
they were always taken from Computer Modern Roman
if substitution was necessary.

This is most noticeable with \oldstylenums which are

now taken from TS1 so that you no longer get 1234 but

1234 when typesetting in sans serif fonts and 1234 when

using typewriter fonts.

LATEX News #31

TUGboat, Volume 41 (2020), No. 1 37

If there ever is a need to use the original (in-
ferior) definition, then that remains available as
\legacyoldstylenums; and to fully revert to the old
behavior there is also \UseLegacyTextSymbols. The
latter declaration reverts \oldstylenums and also
changes the footnote symbols, such as \textdagger,
\textparagraph, etc., to pick up their glyphs from the
math fonts instead of the current text font (this means
they always keep the same shape and do not nicely blend
in with the text font).

With the text companion symbols as part of the
kernel, it is normally no longer necessary to load the
textcomp package, but for backwards compatibility this
package will remain available. There is, however, one
use case where it remains useful: if you load the package
with the option error or warn then substitutions will
change their behavior and result in a LATEX error or a
LATEX warning (on the terminal), respectively. Without
the package the substitution information only appears
in the .log file. If you use the option quiet, then even
the information in the transcript is suppressed (which is
not really recommended).

New alias size function for use in .fd files

Most of the newer fonts supported in TEX have been
set up with the autoinst tool by Marc Penninga. In
the past, this program set up each font using the face
name chosen by that font’s designer, e.g., “regular”,
“bold”, etc. These face names were then mapped by
substitution to the standard NFSS series names, i.e.,
“m” or “b”. As a result one got unnecessary substitution
warnings such as “Font T1/abc/bold/n not found,

using T1/abc/b/n instead”.

We now provide a new NFSS size function, alias,
that can and will be used by autoinst in the future. It
provides the same functionality as the subst function
but is less vocal about its actions, so that only significant
font substitutions show up as warnings.

Suppress unnecessary font substitution warnings

Many sans serif fonts do not have real italics but usually
only oblique/slanted shapes, so the substitution of
slanted for italics is natural and in fact many designers
talk about italic sans serif faces even if in reality they
are oblique.

With nearly all sans serif font families, the LATEX
support files therefore silently substitute slanted if you
ask for \itshape or \textit. This is also true for
Computer Modern in T1 encoding but in OT1 you got a
warning on the terminal even though there is nothing
you can do about it. This has now been changed to
an information message only, written to the .log file.

(github issue 172)

Other changes to the LATEX kernel

UTF-8 characters in package descriptions

In 2018 we made UTF-8 the default input encoding
for LATEX but we overlooked the case of non-ASCII
characters in the short package descriptions used
in declarations, e.g., in the optional argument to
\ProvidesPackage. They worked (sometimes) before,
but the switch to UTF-8 made them always generate an
error. This has been corrected. (github issue 52)

Fix inconsistent hook setting when loading packages

As part of loading a package, the command
\package.sty-h@@k gets defined. However, attempting
to load a package a second time resulted in this hook
becoming undefined again. Now the hook remains
defined so that extra loading attempts do not change
the state of LATEX (relevant only to package developers).

(github issue 198)

Avoid spurious warning if LY1 is made the default encoding

Making LY1 the default encoding, as is done by some
font support packages, gave a spurious warning even
if \rmdefault was changed first. This was corrected.

(github issue 199)

Ensure that \\ remains robust

In the last release we made most document-level
commands robust, but \\ became fragile again
whenever \raggedright or similar typesetting
was used. This has been fixed. (github issue 203)

Make math delimiters robust in a different way

Making math delimiters robust caused an issue in some
situations. This has been corrected. This also involved
a correction to amsmath. (github issue 251)

Allow more write streams with filecontents in LuaTEX

Most TEX engines only support a maximum of sixteen
concurrently open write streams, and when those have
been used up, then filecontents or any other code
trying to open one will fail. In LuaTEX more write
streams are available and those can also now be utilised.

(github issue 238)

Allow spaces in filecontents option list

Leaving spaces or newlines in the option list prevented
the options from being correctly recognized. This
has been corrected. (github issue 256)

New reverselist Lua callback type

A new callback type, reverselist, was added:
post_mlist_to_hlist_filter and
post_linebreak_filter are now of this type.

LATEX News #31

38 TUGboat, Volume 41 (2020), No. 1

Changes to packages in the graphics category

Make color & graphics user-level commands robust

Some of the user-level commands in color, graphics and
graphicx, such as \textcolor or \includegraphics,
were still fragile so didn’t work in moving arguments.
All of these are now robust. (github issue 208)

Changes to packages in the tools category

Fixed column depth in boxed multicols

The multicols environment was setting \maxdepth

when splitting boxes; but, due to the way the internal
interfaces of LATEX are designed, it should have
used \@maxdepth instead. As a result, balanced
boxed multicols sometimes ended up having different
heights even if they had exactly the same content.

(github issue 190)

Ensure that multicols does not lose text

The multicols environment needs a set of consecutively
numbered boxes to collect column material. The way
those got allocated could result in disaster if other
packages allocated most boxes below box 255 (which
TEX always uses for the output page). In the original
implementation that problem was avoided because
one could only allocate box numbers below 255, but
nowadays the LATEX allocation routine allows allocating
box numbers both below and above 255. So the
assumption that when asking for, say, 20 boxes you
always get a consecutive sequence of 20 box register
numbers became no longer true: some of the column
material could end up in box 255, where it would get
overwritten. This has now been corrected by allocating
all necessary boxes with numbers above 255 whenever
there aren’t enough lower-numbered registers available.

(github issue 237)

Allow spaces in \hhline arguments

The \hhline command, which allows the specification
of rule segments in tabular environments, now
allows (but ignores) spaces between its tokens: so
\hhline{: = : =} is now allowed and is equivalent to
\hhline{:=:=}. This matches similar token arguments
in LATEX such as the [h t p] argument on floats. A
similar change has been made to the extended \hhline

command in the colortbl package. (github issue 242)

LATEX requirements on engine primitives

Since the finalization of ε-TEX in 1999, a number
of additional ‘utility’ primitives have been added to
pdfTEX. Several of these are broadly useful and have
been required by expl3 for some time, most notably
\pdfstrcmp. Over time, a common set of these ‘post-ε-
TEX’ primitives have been incorporated into X ETEX and
(u)p-TEX; they were already available in LuaTEX.

A number of these additional primitives are needed to
support new or improved functionality in LATEX. This is
seen for example in the improved UTF-8 handling, which
uses \ifincsname. The following primitive functionality
(which in LuaTEX may be achieved using Lua code) will
therefore be required by the LATEX kernel and core
packages from the start of 2021:

• \expanded

• \ifincsname

• \ifpdfprimitive

• \pdfcreationdate

• \pdfelapsedtime

• \pdffiledump

• \pdffilemoddate

• \pdffilesize

• \pdflastxpos

• \pdflastypos

• \pdfmdfivesum

• \pdfnormaldeviate

• \pdfpageheight

• \pdfpagewidth

• \pdfprimitive

• \pdfrandomseed

• \pdfresettimer

• \pdfsavepos

• \pdfsetrandomseed

• \pdfshellescape

• \pdfstrcmp

• \pdfuniformdeviate

For ease of reference, these primitives will be referred
to as the ‘pdfTEX utilities’. With the exception of
\expanded, these have been present in pdfTEX since
the release of version 1.40.0 in 2007; \expanded was
added for TEX Live 2019. Similarly, the full set of these
utility primitives has been available in X ETEX from the
2019 TEX Live release, and has always been available in
LuaTEX (some by Lua emulation). The Japanese pTEX
and upTEX gained all of the above (except \ifincsname)
for TEX Live 2019 and will both have that primitive also
from the 2020 release onward.

At the same time, engines which are fully Unicode-
capable must provide the following three primitives:

• \Uchar • \Ucharcat • \Umathcode

Note that it has become standard practice to check
for Unicode-aware engines by using the existence of
the \Umathcode primitive. As such, this is already a
requirement: engines lacking these primitives cannot use
Unicode features of the LATEX 2ε kernel or expl3. Note
also that upTEX can handle Unicode but it is not classed
as a Unicode engine by the base LATEX code.

References

[1] Frank Mittelbach: The LATEX release workflow and the

LATEX dev formats. In: TUGboat, 40#2, 2019.
https://latex-project.org/publications/

[2] LATEX Project Team: LATEX 2ε font selection.
https://latex-project.org/help/documentation/

fntguide.pdf

[3] LATEX documentation on the LATEX Project Website.
https://latex-project.org/help/documentation/

LATEX News #31

