
TUGboat, Volume 41 (2020), No. 3 299

Functions and expl3
Enrico Gregorio

Abstract
In this tutorial we discuss expl3 functions, their role,
definition and variants, also touching on variables.

1 Introduction
The term function is not used in standard LATEX, but
is a very important concept in the expl3 language.
The language itself had no precise name until a couple
of years ago, when it was eventually decided that
its name would be expl3 just like the package that
provided it (now merged in the LATEX kernel).

In the language, care is taken to distinguish
between variables and functions. Variables store
some value that can change during the LATEX run,
whereas functions perform some action.

A special kind of variable is the constant, whose
value is supposed not to change during the run. Well,
the name seems to conflict with the nature, but
mathematicians are used to this kind of stretched
terminology: you who are not a mathematician, don’t
worry and carry on, just smile at mathematicians’
bizarre way of thinking.

We’ll be mostly interested in functions, but vari-
ables can be the staple food of functions, so we’ll
also need to know a bit about them.

Let me give an example using legacy concepts.
The standard document classes, and most nonstan-
dard ones as well, have the command \title. How
does this work? This very paper has
\title{Functions and \expliii}

at its start. When LATEX processes this instruction,
it will do something like
\gdef\@title{Functions and \expliii}

so it will be able to use \@title when doing its
typesetting job related to \maketitle.

There is a big conceptual difference between
\title and \@title. The former performs an action,
the latter is simply a container. In expl3 terms, the
former will be a function, the latter a variable: this
function’s action is to store a value in the specified
variable.

At the user level the distinction is blurred; with
\newcommand{\CC}{\mathbb{C}}

is \CC be a function or a variable? Fortunately, it’s
not important to decide, because this is essentially a
user’s shorthand and at this level the distinction is
almost irrelevant.
Simultaneously published in Italian for the GuIT 2020
conference, guitex.org.

The issue comes up when programming. In ‘cor-
rect’ LATEX programming we have a user level com-
mand which calls a function that performs an action:
\NewDocumentCommand{\title}{m}
{
\example_title:n { #1 }

}
%
\tl_new:N \g_example_title_tl
%
\cs_new_protected:Nn \example_title:n
{
\tl_gset:Nn \g_example_title_tl { #1 }

}

Then the user level command \maketitle will use
the value stored in the variable, via other functions.

This (imaginary) example shows many of the
concepts we’ll be discussing. We define a user-level
command in terms of a function; this function has
one argument (the given title) and its job is to set
the value of a particular variable to the specified
value. The variable has been declared in advance:

• \title is a user-level command; these are not
the subject of this paper;

• \g_example_title_tl is a variable, defined us-
ing \tl_new (tl = token list);

• \example_title:n is a function, defined using
\cs_new_protected (cs = control sequence).

We’ll be discussing all of this in detail.

2 Naming conventions
A common problem with TEX is that it has no con-
cept of namespace, which only became common in
computer science circles much later. Name conflicts
were frequent in the olden days of LATEX, and such
conflicts still appear now and then. It might be
appealing for a package to use \@x and \@y for coor-
dinates, but package authors should be aware that if
a simple name appeals to them, other authors have
probably thought the same.

In expl3, variables should have a name of the
form
\l_〈prefix〉_〈proper name〉_〈type〉
\g_〈prefix〉_〈proper name〉_〈type〉
\c_〈prefix〉_〈proper name〉_〈type〉
where the distinct parts are important and necessary:

• l, g and c declare that the variable is local,
global or constant, respectively;

• 〈prefix〉 should be a unique string of letters for
the package we’re writing or the code in the
document;

• 〈proper name〉 is an arbitrary string of letters
possibly split into parts separated by an under-
score;

Functions and expl3

300 TUGboat, Volume 41 (2020), No. 3

• 〈type〉 is the type of variable.
The most common types of variables are:

• tl, for token list;
• seq, for sequence;
• clist, for comma list;
• prop, for property list;
• int, for integer ;
• dim, for dimension;
• box, for box;
• fp, for floating point.

There are several others, but as the purpose of this
tutorial is to talk about functions, I’ll skip the more
esoteric ones for now, only touching them when need
comes.

Function names are similar:
\〈prefix〉_〈proper name〉:〈signature〉

The 〈prefix〉 and 〈proper name〉 are the same as
before, but the 〈signature〉 must be explained. It can
be an arbitrary string of characters among
c e f n N o v V w x T F

Each character given, except w, denotes an argument
to the function. We’ll be going into details soon.

Mathematical functions can depend on one or
more arguments (well, also zero, but then they’re
constant functions) and the same is true for expl3
functions. The purpose of the signature is to precisely
specify how many arguments the function depends
on and their type. For instance, the commonly used
function
\seq_set_split:Nnn

takes three arguments, one of type N and two of type
n in that order. An argument of type N should be
a single token, the nature of which depends on the
function; in the above case, it should be a sequence
variable. An argument of type n should be a braced
list of tokens. In our example, the title of the paper
is an n-type argument to \title. This is a bit
stretched, but should explain the concept.

The w type is an exception, because it specifies
nothing except that the arguments to the function
are weird, and one must refer to the package/code
documentation in order to know how many there
are and what syntax they have. Generally speaking,
w-type arguments should only appear in low-level
functions.

A call to the previously mentioned function
might be something like
\seq_set_split:Nnn

\l_example_test_seq
{ || }
{ a || b || c }

(more likely on one line in a source file; split here
because of the paper’s formatting). It doesn’t matter
now to know what this code does; seq_set_split is
usually called as part of other processing and receives
the arguments from other calls. The important thing
is to see that the arguments follow the naming con-
vention: the first one is a single token, the other two
are braced lists of tokens.

A function can have no arguments, but the colon
is still required. Although TEX will not balk if you
define a function with a nonconforming name, stick-
ing to the convention will help to avoid conflicts and
to have more easily parsable code. A typical func-
tion with no arguments is \scan_stop:, which is
nothing other than our old friend \relax. Maybe
the expl3 name is less poetic, but it expresses what
the function’s main purpose is.

3 Defining functions
There are many kernel functions which define func-
tions. All of them share the cs prefix. The main
ones are
\cs_new:Nn
\cs_new_protected:Nn

We’ll discuss the others later. According to the
naming conventions given, we can see that both have
two arguments: the first argument is a single token,
the name of the function to be defined, the second
being the replacement text, that is, the code that will
be substituted to the function’s call.

While expl3 tries hard to emulate a functional
language, it is still implemented in TEX, which only
knows primitives, macros and registers. This fact
needs to be kept in mind when programming. On the
other hand, the new language makes for simpler con-
structions, avoiding the clumsy (or fun, depending on
the programmer’s attitude) chains of \expandafter
or \noexpand often seen in traditional TEX, under-
standing which is often quite hard.

A simple example is the internal function for
managing the document’s title, which we saw earlier:
\cs_new_protected:Nn \example_title:n
{
\tl_gset:Nn \g_example_title_tl { #1 }

}

Since the function’s name has signature :n (strictly
speaking, the colon is not part of the signature, but
it’s convenient to use it as a marker), expl3 knows
that the replacement text can use #1 to refer to the
argument supplied at call time.

Why are we using the protected instruction
and not the simpler cs_new? Because our function
will set the value of a variable. This is something

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 301

that for years has frustrated a horde of LATEX pro-
grammers and has required the distinction between
robust and fragile commands. Nowadays the issue
is less relevant because almost all fragile commands
have been ‘robustified’, but it can still bite.

What is the problem? If we define, in legacy
LATEX, something like
\newcommand{\foo}[1]{%

\renewcommand{\baz}{#1}%
}

which is the common way to store a value into a
macro, and then somehow \foo ends up in \write or
\edef, even under their wrappers \protected@write
or \protected@edef, a long list of error messages ap-
pears. The traditional way of avoiding this is to use
\DeclareRobustCommand instead of \newcommand.

Any function that works by setting variables or
calling other protected functions should generally be
protected itself. In case of doubt, protect.

Beware! The signature of the function to be
defined can only consist of the characters N or n.
Well, T and F are also allowed, but these are a special
topic that we’ll touch later on. How do the other
characters listed above get into signatures? This is
a good question!

3.1 Generating variants
Suppose we’re doing a general purpose function for
setting tl (token list) variables to contain some ma-
terial we need to use at later points. The user inter-
face would utilize \setvar for storing the value and
\usevar for delivering the value.

We face a problem: how can the user specify
the name of a variable inside the document where
the expl3 names are not allowed? Indeed, in normal
text, the underscore cannot be used in a command
name, so something like
\setvar{\l_example_var_a_tl}{something}

would bomb out. We’d like instead that the user
types in
\setvar{a}{something}
\usevar{a}

(at different points of the document, of course). Let’s
proceed at a slow pace. We’ll define the user interface
afterwards. First we define a function that allocates
a variable and stores a value in it; then a function
that delivers the contents of a variable:
\cs_new_protected:Nn \example_setvar:Nn
{
\tl_clear_new:N #1
\tl_set:Nn #1 { #2 }

}
\cs_new:Nn \example_usevar:N

{
\tl_use:N #1

}

The tl_clear_new instruction clears a possible pre-
ceding value or allocates a new variable. Then the
tl_set function does the setting job; it’s not pro-
tected because it does no dangerous processing. How-
ever, this does not solve the problem we face. Here’s
where the concept of variants comes into the scene.
We do
\cs_generate_variant:Nn \example_setvar:Nn

{ cn }
\cs_generate_variant:Nn \example_usevar:N

{ c }

which effectively defines two new functions named
\example_setvar:cn
\example_usevar:c

What does c mean? It means that the new functions
expect a braced argument, which it will build a
command name from (in this case the name of a
variable, in other cases it could be the name of a
function). So now we can define the user interface:
\NewDocumentCommand{\setvar}{mm}
{
\example_setvar:cn

{ l_example_var_#1_tl }
{ #2 }

}
\NewExpandableDocumentCommand{\usevar}{m}
{
\example_usevar:c { l_example_var_#1_tl }

}

Sites on LATEX are plagued with questions about
code doing nasty things such as \def\c{something},
asking why this breaks.

With the approach just outlined we set up a
namespace for our variables, which can just be called
by their ‘outer’ name, leaving to the implementation
the details about how to avoid conflicts.
[We could certainly define the user level commands in legacy
LATEX. A typical implementation would be
\newcommand{\setvar}[2]{%

\expandafter
\def\csname example@var@#1\endcsname{#2}%

}
\newcommand{\usevar}[1]{%

\csname example@var@#1\endcsname
}

I won’t quarrel with people maintaining this is simpler. But
I’ll remain with my opinion that it isn’t.]

Let’s add something to the game: now we want
to allow the user to copy the value of a variable into
another, say by doing \copyvar{b}{a}, where b is
the new one and a the existing one. We only need a
new variant, namely

Functions and expl3

302 TUGboat, Volume 41 (2020), No. 3

\cs_generate_variant:Nn \example_setvar:Nn
{ cv }

and then define the user interface with
\NewDocumentCommand{\copyvar}{mm}
{
\example_setvar:cv

{ l_example_var_#1_tl }
{ l_example_var_#2_tl }

}

We now have at our disposal another function, namely
\example_setvar:cv, which takes two braced argu-
ments. The second one is scanned like c, producing
a symbolic token which should be a variable of some
kind and then will deliver the contents of the variable
as a braced argument to the main function.
[I leave as an easy exercise on \expandafter how to do this
in legacy LATEX programming (hint: use \let and two
\expandafters, cleverly positioned).]

It’s not necessary to write two distinct calls for
defining the variants, we can create them both at
once with:
\cs_generate_variant:Nn

\example_setvar:Nn
{ cn, cv }

The v variant is a special case of the V variant, which
is almost the same, but the capital letter reminds
us that a single token (a variable’s name) should be
used without braces. Suppose we have a function
that does something with its argument:
\cs_new:Nn \example_foo:n { -- #1 -- }

(just some nonsense to illustrate the concept). How-
ever, in some cases we need to pass the function
something that has been stored in a tl variable:
nothing simpler, because we can do
\cs_generate_variant:Nn \example_foo:n

{ V }

allows us to do
\example_foo:V \l_tmpa_tl

If, say, \l_tmpa_tl has been set to contain abc, then
calling \example_foo:V \l_tmpa_tl is exactly the
same as doing \example_foo:n {abc}.

Bear in mind that variants do not come into
existence without first generating them. Kernel func-
tions come predefined with several variants that have
proven to be useful; they’re listed together with the
main function in interface3.pdf. What if we don’t
know whether a variant has already been defined?
No problem at all! The generation will be silently
ignored and, even if it weren’t, there should be no
problem either, because variants are generated in a
uniform way.

We could avoid generating variants. For in-
stance the job of \example_setvar:cv could be ac-
complished by
\exp_args:Ncv \example_setvar:Nn

(which is actually how the variant is defined), but
there’s no point in complicating our life this way.
Modern TEX and friends’ implementations have lots
of memory available, and the times when memory
was in very short supply and tricks saving just a
few tokens in order to spare memory were necessary
are only remembered by old dinosaurs like Frank,
Chris, David and myself. I remember well the time I
saw the dreaded “This can’t happen” error message
because I was using PICTEX.

Let’s go back to theory. Are there variants to the
function-defining functions? Yes, of course there are!
There are times when we want to define a function
whose name is decided at runtime. The example
below is a bit silly, but should give the idea: the call
\cs_new:cn { example_foo:n } { -- #1 -- }

is the same as the definition of \example_foo:n
above, because the name, including the signature,
will be formed before the underlying \cs_new:Nn
function does its job. One can use anything inside
the braces corresponding to the c argument type,
so long as the final result, after full expansion, just
consists of characters. Oh! Expansion! What is it?
Be patient. First there are other bits to discuss.

3.2 Local, global, and 〈extra〉s
Everybody should know about local and global. In
LATEX, if we perform some command definition inside
an environment, it is local to the environment and
will disappear when it ends. Other assignments of
meaning are instead global: operations on counters,
for instance. We don’t need a full discussion on local
versus global, but there are aspects of the problem
that are relevant for functions.

All \cs_new〈extra〉:Nn declarations are always
global. Even if performed inside a group, their effect
will also be carried on at the outer levels. Further,
they will check whether the function is already de-
fined and issue an error message if so. The 〈extra〉
part will be described next. Variable allocation (not
setting) is also always global: the instruction
\tl_new:Nn \l_example_foo_tl

defines the variable at all levels and will balk if the
variable already exists.

However, sometimes we need locally defined aux-
iliary functions, that have no fixed meaning and need
to be redefined according to the context. For these
there is the family:
\cs_set〈extra〉:Nn

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 303

The syntax is exactly the same as with \cs_new, as
are the available variants.

Which one to prefer? The new or the set family?
The answer is easy: the former, unless the function
is required to change its definition according to the
context. Rarely, if ever, will a high level function be
defined with set.

Thus, the very nature of the language invites
programmers to code in layers. For instance, we
could have done:

\NewDocumentCommand{\setvar}{mm}
{
\tl_clear_new:c

{ l_example_var_#1_tl }
\tl_set:cn

{ l_example_var_#1_tl }
{ #2 }

}

without defining \example_setvar:Nn at all. I dis-
courage this kind of programming: our code should
sit on top of expl3 and provide APIs for the program-
mer to employ. As I said before, there is no point
in sparing a function, even more so if we consider
that once our API is available, we can easily define
variants thereof for particular jobs.

What’s the complete list of 〈extra〉s available
after \cs_new or \cs_set? Here it is:

\cs_new:Nn
\cs_new_protected:Nn
\cs_new_nopar:Nn
\cs_new_protected_nopar:Nn
\cs_set:Nn
\cs_set_protected:Nn
\cs_set_nopar:Nn
\cs_set_protected_nopar:Nn
\cs_gset:Nn
\cs_gset_protected:Nn
\cs_gset_nopar:Nn
\cs_gset_protected_nopar:Nn

In all cases, the first argument is the name of the
function to be defined and the second argument is
the replacement text.

You probably already have an idea of what
protected does: it arranges things so that the func-
tion is not expanded when full expansion is enforced.
In particular, a protected function cannot be used
in a c-type argument, because it wouldn’t be ex-
panded and it is not a character.

The nopar variety disallows \par tokens in the
function’s argument (when called). Unless we’re
dealing with special situations where \par does not
make sense in a function’s argument, there is no need
to use it.

The gset family is almost the same as new,
but no check is performed about the function being
defined.
[For the TEX gurus that are reading these notes, new and gset
use \gdef, whereas set uses \def; the \long prefix is added
except with nopar.]

What are the available variants? Here’s the
complete list for all of the above functions:
Nn cn Nx cx

What’s this mysterious x? It’s intended to bring to
mind fully expanded. There will be a section later
on the topic.

3.3 Parameters
Some people will now be complaining that they have
seen different ways to define functions and they’re
right. There is a whole new family like the one above
but where the signature has a strange p between
N and n, namely
\cs_new:Npn
\cs_new_protected:Npn
\cs_new_nopar:Npn
\cs_new_protected_nopar:Npn
\cs_set:Npn
\cs_set_protected:Npn
\cs_set_nopar:Npn
\cs_set_protected_nopar:Npn
\cs_gset:Npn
\cs_gset_protected:Npn
\cs_gset_nopar:Npn
\cs_gset_protected_nopar:Npn

The p is a reserved argument type just for these
functions and variants thereof: all of them come
along with the variants
Npn cpn Npx cpx

and stand for parameter text. The two lines below
are completely equivalent:
\cs_new:Nn \example_usevar:n {...}
\cs_new:Npn \example_usevar:n #1 {...}

The same for the other functions. In the second
instance, the parameter text is explicitly written
out. Remember that when the expl3 programming
conventions are in force, spaces are ignored, so for
two parameters we can have
\cs_new:Nn \example_foo:nn {...}
\cs_new:Npn \example_foo:nn #1 #2 {...}
\cs_new:Npn \example_foo:nn #1#2 {...}
\cs_new:Npn \example_foo:nn #1 #2{...}
\cs_new:Npn \example_foo:nn #1#2{...}

and the last four lines are completely equivalent.
Personally, I prefer the first way that’s ‘more logical’;
others prefer the second way. Beware! The second
way doesn’t check for consistency of the signature
with the parameter text and it even allows for ‘wrong’

Functions and expl3

304 TUGboat, Volume 41 (2020), No. 3

signatures, but this fact should not be exploited:
LATEX will not balk if you type
\cs_new_protected:Npn

\example_setvar:cn #1 #2
{...}

but this doesn’t mean that you can avoid the two-step
procedure of first defining \example_setvar:Nn and
then creating the variant. Doing the definition this
way is wrong. The second family of functions even
allows for no signature at all, actually, so they can
be used for defining user level commands, although
the path with \NewDocumentCommand (or siblings) is
recommended.1

The p way is necessary when the parameter text
is ‘nonstandard’, in the sense that we’re defining a
function with delimited arguments; in this case, the
signature should be w. If we want a function that
sets three variables to the year, month and day given
an ISO-format date such as 2020-10-15, we can do
\int_new:N \l_example_year_int
\int_new:N \l_example_month_int
\int_new:N \l_example_day_int
\cs_new_protected:Nn \example_setdate:n
{
__example_setdata:w #1 \q_stop

}
\cs_new_protected:Nn

__example_setdate:w #1-#2-#3 \q_stop
{
\int_set:Nn \l_example_year_int { #1 }
\int_set:Nn \l_example_month_int { #2 }
\int_set:Nn \l_example_day_int { #3 }

}

Here I introduce another useful convention: if the
〈prefix〉 is preceded by a double underscore, the func-
tion is considered lower level than the others and
should never be called outside its specific uses by
standard functions (without the double underscore).
The idea is that the standard functions are the ‘pro-
grammer’s interface’, whereas the others are auxiliary
whose actual implementation should not concern the
programmer. The distinction when writing personal
code is not so important, but it is crucial for pack-
age writers. Standard functions (without the double
underscore) can be used by other packages, whereas
one should not count on the lower level ones (with
the double underscore) to even be defined in later
versions of the package.

This should clarify why the code above splits
the work into two levels; we have the high level
function \example_setdate:n function which relies
on a lower level one to do the dirty work. Maybe

1 expl3 can also be used with plain TEX, and in this case
this is the only way to define user level commands.

the package writer will discover a better way to
accomplish the task, but this would only influence
the lower level and not the main function, which will
be possible to call forever. Maybe the definition of
\example_setdate:n will change in the future, but
this won’t affect code that uses it.

4 Expansion
There can be no full understanding of TEX with-
out some knowledge on how expansion works. In
functional programming languages, if g is a func-
tion of one variable returning an array of three data,
whereas f is a function of three variables, a call
f(g(x))

would be permissible (from a mathematical point
of view, at least, maybe a particular functional lan-
guage requires some tweak). This is not the same in
TEX, which goes from outside to inside, rather than
conversely.

If we have a one-argument \example_a:n func-
tion that returns three braced lists of tokens, and
another function \example_b:nnn that takes three
arguments, a call such as
\example_b:nnn { \example_a:n {x} }

would fail miserably. That’s how TEX works and no
clever code can change this. The outer function will
look for three arguments and the given braced list
of tokens is just one.

As an example of how to handle this, suppose
that \example_a:n can be fed a date in ISO format
and from 2020-10-15 it returns {2020}{10}{15},
whereas \example_b:nnn takes three arguments and
produces a date in a different format, say “day ‘name
of the month’, year”: in this case it should output
“15 October, 2020”.

We need an indirect approach, in order to allow
feeding an ISO date to the general function out-
putting the date in that format. Let’s see how the
general function might be defined:
\cs_new:Nn \example_date:nnn
{ % #1 = year, #2 = month, #3 = day
#3˜
\int_case:nn { #2 }
{
{1}{January}
{2}{February}
...
{12}{December}

}
,˜#1

}

The \int_case:nn function examines its first argu-
ment against the list given as its second argument
(the code is incomplete, but you can guess how to

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 305

fill it in) consisting of pairs of braced items; the first
contains an integer, the second something to output
when a match is found. The ˜ here is not a nonbreak-
ing space in the expl3 programming environment, but
a normal space.

We also need a function that is given a date in
ISO format (2020-10-15) and returns it split into
the three constituent parts, {2020}{10}{15}:
\cs_new:Nn __example_isodate:n
{
__example_isodate:w #1 \q_stop

}
\cs_new:Npn

__example_isodate:w #1-#2-#3 \q_stop
{
{#1}{#2}{#3}

}

The input to the second function is split at the hy-
phens and at the terminator, so we’re using delimited
arguments, a detail I’ll skim over. Here, we just need
to know that the call
__example_isodate:n {2020-10-15}
will eventually return {2020}{10}{15} to the input
stream.

How do we combine these? There are several
ways, but all of them require understanding the con-
cept of full expansion. TEX only knows macros; when
it finds one, it knows how many arguments it takes
and looks for them in the input stream; upon finding
them, it replaces the whole sequence of tokens so
found with the replacement text of the macro.

The main problem is that most of the time we
don’t know how many steps of expansion it will take
to get from __example_isodate:n {2020-10-15}
to {2020}{10}{15}. In this case it would be easy
to count them, but this is just a simple example.
If we knew, a suitable chain of \expandafter com-
mands would suffice, but this is prone to errors and
inconsistencies if the implementation changes.

What we’d like is for __example_isodate:n
to go all the way down to the final result in one
swoop. Here’s a way:
\exp_last_unbraced:Ne

\example_date:nnn
{ __example_isodate:n {2020-10-15} }

What \exp_last_unbraced does is fully expand its
second argument and return the result in the input
stream with no braces around it.

There are other ways. One is to define a new
helper function:
\cs_new:Nn \example_date:n
{
__example_date:Ne

\example_date:nnn

{ __example_isodate:n { #1 } }
}

\cs_new:Nn __example_date:Nn
{
#1 #2

}
\cs_generate_variant:Nn

__example_date:Nn { Ne }

upon which \example_date:n {2020-10-15} would
produce the intended result.

There are still more ways, but here the idea
is to present how we can exploit the full expansion
variants.

In sum, there are three kinds of them, namely
e, x and f. The last of these is the most restricted,
because it performs recursive expansion of the to-
kens as soon as they are placed in the input stream
and ends at the first unexpandable token it finds.
Notwithstanding this limitation it has several uses.

The x type is nowadays less important because
all TEX engines supporting LATEX have the primi-
tive \expanded, which is itself expandable. Only
Knuthian TEX (the engine that one launches with
tex on the command line) lacks it, since it is kept
with no extensions, according to Knuth’s desiderata.
[What does \expanded do? It is essentially like \edef, with
the difference that no macro is defined. The argument to
it is subject to full recursive expansion which doesn’t stop
when an unexpandable token is found, but just jumps over
it and continues from the next token, until exhausting the
supplied token list. The result is then placed on the input
stream (without braces).]

4.1 Full expansion with e

The e argument type tells LATEX to first fully expand
the given argument and then supply the result to the
original function. This is very important if the argu-
ment contains a variable which we want to deliver
the value of at call time.

We can see an example in a post on TEX.Stack-
Exchange.2 The question is about adding to end-
notes, via the endnote package, the page number
where the endnote actually appears. We want to use
\pageref through an automatically supplied label:
\NewDocumentCommand{\MyEndNote}{m}
{
\polyv_myendnote:ne

{ #1 }
{ \int_eval:n { \arabic{endnote}+1 } }

}

\cs_new_protected:Nn \polyv_myendnote:nn
{
\endnote

2 https://tex.stackexchange.com/a/438715/. The code
there uses f, because e wasn’t available yet.

Functions and expl3

306 TUGboat, Volume 41 (2020), No. 3

{
#1˜(page\nobreakspace
\pageref{#2:endnote})

}
\label{\arabic{endnote}:endnote}

}
\cs_generate_variant:Nn

\polyv_myendnote:nn
{ ne }

What’s the problem to be solved? The endnote
number is incremented after the endnote is processed,
so a \label command gets this new number. So we
can’t use
\pageref{\arabic{endnote}:endnote}

because this would refer to the previous endnote.
Thus the internal function uses e expansion in order
to generate the successor to the current value of
the endnote counter. Without this full expansion,
all the endnotes declared with \MyEndNote would
contain the equivalent of
\pageref{%

\int_eval:n{\arabic{endnote}+1}:endnote
}

and so the final result would be undefined cross ref-
erences, because \arabic{endnote} would always
expand to the final value of the counter. For in-
stance, if the last endnote was number 10, we’d end
up with \pageref{11:endnote}. Instead, with full
expansion, the current value is used and passed to
the main function. At the first endnote, the counter
has value 0, so the end result is the same as
\endnote{The text of the endnote

(page\nobreakspace\pageref{1:endnote})}
\label{1:endnote}

We could as well have used f or x for this partic-
ular application, but e is the most efficient of the lot.
The difference from x is that functions using x are
not expandable, so they have to be of the protected
kind. Indeed the process is a two-step one: first a
temporary token list is set using
\tl_set:Nx \l__exp_internal_tl {...}

(which internally uses good old \edef).
The introduction of e-type full expansion has

been a significant step forward, because it allows for
things that were almost impossible before.

However, as seen above, there are uses for x:
for instance there is no \cs_new:Ne variant and it
would be less efficient than \cs_new:Nx (which is
just \edef).

5 Another essential variant: V for variables
In the list of argument types above there are V and
v, which have been touched upon briefly. Now it’s
time to discuss the former in greater detail.

Type v is nearly the same as V; it just adds
the ability of building the name of the variable by
supplying data at runtime. The main one is V.

Again, let’s suppose we have our favorite func-
tion that splits an ISO date into components and
outputs the date in another format, and that it’s
named \example_date:n. (Its implementation is
irrelevant.)

Suppose now we have a date stored in a tl
variable. Since this is just a macro under cover, at
the beginning of expl3, the way to process this was
\cs_generate_variant:Nn

\example_date:n { o }

to be called like
\example_date:o { \l_tmpa_tl }

but this is bad because it depends on the knowledge
of the implementation of tl variables. Also, it is
not generalizable to other kinds of variables. The
o variants do a single expansion step in the braced
argument; while this works with the straightforward
implementation of token list variables it would fail
spectacularly with fp variables (which contain float-
ing point numbers).

The best method is to do
\cs_generate_variant:Nn

\example_date:n { V }

to be called like
\example_date:V \l_tmpa_tl

This will deliver the contents of the variable, suitably
braced, to the main function. So if we did
\tl_set:Nn \l_tmpa_tl { 2020-10-15 }

then the call \example_date:V \l_tmpa_tl would
be equivalent to \example_date:n {2020-10-15}.

An example with a different kind of variable,
namely int. We want to feed in such a variable and
the result should pad it with zeros to get four digits:
\cs_new:Nn \example_pad:n
{
\prg_replicate:nn

{ 4 - \tl_count:n { #1 } }
{ 0 }

#1
}

\cs_generate_variant:Nn
\example_pad:n { V }

\int_set:Nn \l_tmpa_int { 43 }
\example_pad:V \l_tmpa_int

This will print 0043. This may seem of academic
interest only, but with the sibling v type, we can
transform this into

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 307

\cs_generate_variant:Nn
\example_pad:n { v }

\example_pad:v { c@page }

knowing that \c@page is the LATEX name of the reg-
ister containing the page number and an application
can be immediately thought of. This exploits the fact
that standard TEX counters are exactly like expl3
int variables. Using the V or v variants we’re passing
the main function the actual value as a list of digits,
so we can count it, which would be impossible with
the ‘abstract value’.

What variable types can be used this way? Sev-
eral: tl, int, fp; also clist and others more eso-
teric. Essentially, all variables that can deliver some
sensible output. This cannot be expected from seq
or prop variables and, indeed, using those will crash.

I’ve sometimes found it useful to define the
\cs_set:NV variant for \cs_set:Nn in order to use
a tl variable where the desired replacement text has
been stored and modified via some regular expres-
sion replacement.3 By the way, it is not possible to
have a \cs_set:NpV variant, because the generator
\cs_generate_variant:Nn can only accept a func-
tion with a signature consisting of N or n characters.

6 True or false?
There are two other interesting argument types: T
and F, and the title of the section should suggest
that they’re connected with truth and falsehood.

Exactly so! They are argument specifiers in the
signature of conditional functions. Example:
\int_compare:nTF

is a function that takes three standard braced argu-
ments; the first is a numeric relation between integers
to test, the second the code to execute if the relation
is true, the third the code to execute if the relation
is false. So
\int_compare:nTF { 0<1 } { A } { B }
\int_compare:nTF { 0>1 } { A } { B }

will result in printing A and B respectively. So, why
isn’t it more simply \int_compare:nnn? Indeed, it
used to be this way in the first versions of expl3,
but it was realized that having different argument
specifiers is handier, because we can also have
\int_compare:nT
\int_compare:nF

3 https://tex.stackexchange.com/a/355576/

when we have nothing to execute for the false or true
branch respectively. Of course
\int_compare:nF { 〈relation〉 } { B }
\int_compare:nTF { 〈relation〉 } { } { B }

are completely equivalent, but the former shows more
clearly that we want to do nothing if the 〈relation〉
turns out to be true. With the :nnn signature, empty
arguments would be always required. Also, the pres-
ence of either T or F (or both) immediately alerts us
that the function is a conditional.

All kernel conditional functions are available
with ending TF, T or F; some conditional-like func-
tions even have the version with neither. For in-
stance we can see in interface3.pdf that there
is \str_case:nn, but also \str_case:nnTF . The
strange-looking TF means that all three combina-
tions TF, T and F available.

Why such a “pseudo-conditional”? The func-
tion \str_case:nn is not a conditional (being re-
lated to letter case), but we can use the extended
version to output something if there is, or is not, a
match. The version which is most likely to be used
is \str_case:nnF to output something in case of no
match, maybe an error message or a default output.

To generate proper conditionals, variants should
be defined with
\prg_generate_conditional_variant:Nnn

rather than with \cs_generate_variant:Nn. For
instance, if we plan to store some 〈relation〉s for
\int_compare:nTF into tl variables, the correct way
to generate the variant is
\prg_generate_conditional_variant:Nnn

\int_compare:n { V } { p, TF, T, F }

This will at once generate the variants
\int_compare:VTF
\int_compare:VT
\int_compare:VF

as well as the ‘predicate form’
\int_compare_p:V

to be used in boolean expressions. But this is outside
the scope of the present paper.

� Enrico Gregorio
Dipartimento di Informatica,

Università di Verona
enrico dot gregorio (at) univr

dot it

Functions and expl3

