Data display, plots and graphs

Peter Wilson

1 Introduction

Some years ago tex.stackexchange.com (TeX.SE) seems to have taken over from comp.text.tex for asking about (LA) $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and friends. A perennial question on TeX.SE seems to be asking what (LA) $T_{E} X$ is useful for apart from typesetting mathematical papers. There have been many answers to this and I would like to suggest one more: displaying data. In this note I'll mention a couple of ways that I found that $\mathrm{LATEX}_{\mathrm{E}}$ could help with tables, graphs, and plots of data. The impetus for this was when I was strongly advised by my local hospital to keep a check on my blood pressure (BP).

2 Practicalities

Following the consultant's suggestion I measure my BP three times a day (morning, afternoon, and in the evening) and average them to get a reading for the day. I do this every day and it is surprising, to me at least, how it varies. I felt that I needed to keep a record of all this so I could present it to the medical experts in case of any problems (like blackouts or falling downstairs - don't ask).

I decided that I needed at least three kinds of records: a tabulation of the BP readings; a plot of the BP; and a graph of the BP.

In the following the data shown is for a hypothetical individual I have designated as Q^{1} and have no relationship with any actual BP readings.

3 Tabulation

I just used the normal table environment with the booktabs package to produce a tabulation along the following lines, resulting in the example below for Q at a single day per week (Wk.).

```
% \usepackage{booktabs} % in the preamble
\begin{tabular}{lcllll} \toprule
Date & Wk. & Morn. & Aft. & Eve. & Average
                                \\\midrule
4/4 & 1 & & & 179/109 &
                                179/109 \\
11/4 & 2 & 156/109 & 147/89 & 149/93 &
                        150/97 \\
etc. \\
\bottomrule
\end{tabular}
```

[^0]| Date | Wk. | Morn. | Aft. | Eve. | Average |
| :--- | :---: | :--- | :--- | :--- | :--- |
| $4 / 4$ | 1 | | | $179 / 109$ | $179 / 109$ |
| $11 / 4$ | 2 | $156 / 109$ | $147 / 89$ | $149 / 93$ | $150 / 97$ |
| $18 / 4$ | 3 | $158 / 108$ | $142 / 92$ | $146 / 92$ | $149 / 97$ |
| etc. | | | | | |

The higher readings are for the systolic (maximum) blood pressure and the lower ones for the diastolic (minimum) pressure during the heartbeat's cycle.

4 Plotting

According to the user manual for my BP monitor, the World Health Organization (WHO) have developed a BP classification scheme. I decided that it might be useful to plot the BP against this scheme as shown for the Q individual.

WHO describe 6 regions in their classification. These are: Optimal BP, Normal BP, Normal Systolic, Mild Hypertension, Moderate Hypertension, and Severe Hypertension.

I have used the standard picture environment for producing the plot. The only special macros that I used were
\% bored with typing \makebox (0,0)
\newcommand\{\zbox\}[1]\{\makebox $(0,0)\{\# 1\}\}$
\% plot symbol
\newcommand*\{\mk\}\{\zbox\{\$\bullet\$\}\}
$\%$ \plotit\{location\}\{week\}
\newcommand\{\plotit\}[2]\{\put(\#1)\{\mk\}\}
The first two to minimise typing and the last for plotting a BP reading at the \put location. With \backslash makebox $(0,0)\{$ text $\}$ the reference point for plotting 'text' is at the center, vertically and horizontally, of text.

This is an outline of the code I used for the picture.
\setlength\{\unitlength\}\{0.8cm \}
\begin\{picture\} } (8 , 1 1)

\thicklines

```
\% the horizontal and vertical lines
\(\backslash\) put \((0,0)\{\backslash \operatorname{line}(1,0)\{9\}\}\)
\(\backslash\) put \((9,0)\{\backslash\) vector \((1,0)\{0\}\}\)
\(\backslash\) put \((0,0)\{\backslash\) line \((0,1)\{10\}\}\)
\(\backslash\) put \((0,10)\{\backslash \operatorname{vector}(0,1)\{0\}\}\)
\(\backslash\) multiput \((0,0)(1,0)\{9\}\{\backslash \operatorname{line}(0,1)\{0.1\}\}\)
\(\backslash\) multiput \((0,0)(0,1)\{10\}\{\backslash \operatorname{line}(1,0)\{0.1\}\}\)
```

\% the axis labels
\put (1,10.3) \{\zbox\{SYSTOLIC\}\}
$\backslash \operatorname{put}(1.4,-1.0)\{\backslash z b o x\{D I A S T O L I C\}\}$
\backslash put (1,-0.3) $\{\backslash$ zbox $\{75\}\}$

```
% etc
\put(8,-0.3){\zbox{110}}
\put(-0.5,1){\zbox{110}}
% etc
\put(-0.5,9){\zbox{190}}
% the regions
\put (0,2){\line(1,0){2}}
\put (2,0){\line(0,1){2}}
    \put (1,1){\zbox{Optimal}}
% etc
\put(0,8){\line(1,0){8}}
\put (8,0){\line(0,1){8}}
\put(4,7){\zbox{Moderate hypertension}}
\put(5,9){\zbox{Severe hypertension}}
\% etc
\put (8,-0.3) \{\zbox\{110\}\}
\(\backslash\) put (-0.5,1) \{\zbox\{110\}\}
\% etc
\(\backslash\) put \((-0.5,9)\{\backslash\) zbox \(\{190\}\}\)
\% the regions
\(\backslash\) put \((0,2)\{\backslash \operatorname{line}(1,0)\{2\}\}\)
\(\backslash\) put \((2,0)\{\backslash\) line \((0,1)\{2\}\}\)
\put \((1,1)\{\backslash\) zbox\{Optimal\}\}
\% etc
\(\backslash\) put \((0,8)\{\backslash\) line \((1,0)\{8\}\}\)
\(\backslash\) put \((8,0)\{\backslash\) line \((0,1)\{8\}\}\)
\put \((4,7)\{\backslash z b o x\{M o d e r a t e ~ h y p e r t e n s i o n\}\}\)
\put \((5,9)\{\backslash z b o x\{S e v e r e ~ h y p e r t e n s i o n\}\}\)
```

\% the BPs
\plotit\{7.8,6.5\}\{1\}
\% etc
\plotit\{0.8,3.6\}\{33\}
\end\{picture\} }
\vspace\{10mm
\% caption
\{\emph\{Scatter plot with
WHO classification of blood~pressure\}
\vspace\{\baselineskip\}
\par\}

DIASTOLIC
Scatter plot with WHO classification of blood pressure
\% the BPs
\plotit\{7.8,6.5\}\{1\}
\plotit\{0.8,3.6\}\{33\}
\end\{picture\} }
\vspace\{10mm \}
\% caption
\{\emph\{Scatter plot with WHO classification of blood~pressure\}
\vspace\{\baselineskip\}
\par\}

The result shows that the hypothetical Q person's BP is typically in the range of Normal Systolic to Mild Hypertension but with some outliers. ${ }^{2}$

5 Graphing

For graphing BP I used the regular picture environment. Nothing special about drawing the axes. The thing of interest here is the use of the \polyline macro from the curve2e package. This takes a list of coordinates like (x, y) and draws straight lines between them.

Graph of blood pressure over time

Here is a brief outline of the code I used for the graph showing the use of \backslash polyline.

```
\begin{center}
\setlength{\unitlength}{5.5pt}
\begin{picture}(41,81)
% draw axes, etc., then the BP graphs
% scaled to the size of the axes
% first the systolic
\polyline
```

[^1]```
(6,65)(7,46)(8,46) (9,40) (10,38)(11,35)%
(12,37)}(13,30)(14,34)(15,34)(16,34)(17,32)
(18,42) (19,40) (20,43) (21,42)% etc
% then the diastolic
\polyline
(6,26) (7,23) (8,23) (9, 18) (10,15) (11, 13)%
(12,11) (13,10) (14,13) (15,13) (16,13) (17,9)%
(18,12)}(19,15)(20,16)(21,16)% et
\end{picture}
% caption
\emph{Graph of blood pressure over time}
\vspace{\baselineskip}
\end{center}
```

The dashed lines indicate the upper limits of the WHO Normal Systolic regime.

The graphs show that after an initial worrying period Q's BP settled down to a fairly regular pattern albeit with some fits and starts.

## 6 Histogram

Another way of displaying data is by a histogram which shows the number of data points noted within sets of ranges. The following is a histogram of Q's diastolic BP for 5 mg ranges.


Nothing special about the code. I used the \framebox macro for drawing the rectangular regions and created a macro to reduce the number of characters needed for specifying its location and size.
\newcommand\{\histit\}[2]\{\put(\#1, 0.0)\%
$\{\backslash$ framebox $(1, \# 2)\}\}\}$
where the first argument is the x location of the framebox and the second is its height.

I must say that I found the scatter plot more informative than the histogram, although the latter highlighted the unusual high diastolic readings.

## 7 Summary

I have shown four different ways of displaying data. Edward Tufte ${ }^{3}$ has shown many other ways.

There are many applications for ( $\mathrm{L}_{\mathrm{A})} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and friends. Among those noted on TeX.SE, apart from mathematical and scientific publications, are:
Books fiction and non-fiction
Correspondence
Games Bridge, Chess, Crosswords, Noughts and Crosses (aka Tic-tac-toe), Sudoku

## Greeting cards

Invoices
Literature Critical editions, Multilingual
Mars Rover (programmed via $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ )
Music
Newsletters
Poetry
Postcards
Presentations (slides)

I hope that my small application might give thoughts towards suitable additions to the above list.

```
\(\diamond\) Peter Wilson 12 Sovereign Close Kenilworth, CV8 1SQ UK herries dot press (at)
earthlink dot net
```

[^2]
[^0]:    ${ }^{1}$ I'm a fan of the original Bond books.

[^1]:    ${ }^{2}$ As a non-medical person I cannot comment on what this might mean for our imaginary person.

[^2]:    ${ }^{3}$ Edward R. Tufte, The Visual Display of Quantitative Information, Graphics Press, 1983.

