
18 TUGboat, Volume 42 (2021), No. 1

Typographers’ Inn

Peter Flynn

Page numbering revisited

In my last column [2] I mentioned retrofitting page
numbers from the PDF back into a web version of
a document, and said it was relatively trivial with
TEX. Daniel Nemenyi of KCL emailed me to ask how,
so I had to dig out the code and see.

I know others have done this, but I don’t know
if anyone has documented it anywhere. What we
implemented was for a client using XML, generating
one transformation to X ELATEX for creating PDF, and
another to HTML for their in-house web site. The
code is not proprietary but I can’t extract it directly
without exposing a lot of their in-house naming, so I
rewrote a short version for Daniel.

The implementation was done using the fwlw
package (which makes catchwords available for each
page: the first and last words on the page plus the
first word of the next page). With this, we modified
the \pagestyle provided to typeset the catchwords
at the bottom of the page, in white, so they were not
visible, and separated them by an otherwise unused
delimiter so we could extract them reliably: we used
the ASCII decimal 172 (0xAC) character (¬) or NOT
symbol (see Figure 1).

\documentclass{article}
\usepackage{lipsum,fwlw}
\usepackage{xcolor}
\makeatletter
\def\ps@pagerange{\let\@mkboth\@gobbletwo
\let\@oddhead\@empty\let\@evenhead\@oddhead
\def\@oddfoot{\rlap{\color{white}%

Page=\thepage¬First=\usebox\FirstWordBox¬%
Last=\usebox\LastWordBox¬%
Next=\usebox\NextWordBox¬}%

\hfil\thepage\hfil}%
\let\@evenfoot\@empty
\let\chaptermark\@gobble
\let\sectionmark\@gobble
\let\subsectionmark\@gobble

}
\makeatother
\pagestyle{pagerange}
\begin{document}
\lipsum[1-100]
\end{document}

Figure 1: Minimum worked example to expose
catchwords for retrieval.

For the extraction we used pdftotext, a freely-
available utility which creates a plaintext version of
a PDF document. In this, page-breaks are signalled

with an ASCII decimal 12 (0x0C) character, which is
the Control-L or FF (FormFeed). In this example, the
few lines immediately above each of the page-breaks
contains the page number preceded by the delimited
string we defined in \ps@pagerange in Figure 1.

In Figure 2 you can see two fragments of the
output, the first from page 1 and the second from
page 16 showing a problem where the page number
occasionally gets imbrangled in the ‘Next’ catchword.
This has not been resolved.

lorem lorem, interdum eu, tincidunt sit amet,
Page=1¬First=¬Last=amet,¬Next=laoreet¬
1

^Llaoreet vitae, arcu. Aenean faucibus pede eu
ante, Praesent enim elit, rutrum

tempus magna. Aliquam ut purus. Proin tellus.
Page=16¬First=amet,¬Last=tellus.¬Next=
16

Vestibulum¬

^LVestibulum ante ipsum primis in faucibus

Figure 2: Text fragments of output from Figure 1 at
pages 1 and 16.

Now that the data is plaintext, you can use
the standard grep and awk text utilities (or Perl,
or Python, or Lua, or whatever is your favourite
scripting language du jour) to pull out the lines with
the delimited page number, first, last, and next words.
You can then programmatically step through each
page number and locate the span of text delimited
by the First and Last words, using the Next word as
a cross-check.

The tricky bit is application-dependent: you
then need to be able to reliably read your source text
programmatically, find the first word on a page, scan
forward to the last, check the following word is the
next value, and then do whatever is needed to insert
the page number at whatever point is appropriate
for your document.1

In the case in point, the production text was
stored as XML, so the delimiters they used for the
line of data embedded in the PDF were actually <
and > characters, so the extracted fragments were
already XML. That way the lines extracted from the
text file were used in XSLT to identify each location
in the XML source, push the page numbers into

1 Daniel did suggest it might be more tractable to write the
page-break data to a separate external file rather than embed-
ding it: I’d be interested to hear from anyone implementing
this.

doi.org/10.47397/tb/42-1/tb130inn

Peter Flynn



TUGboat, Volume 42 (2021), No. 1 19

a Processing Instruction, and cyclically check the
accuracy each time the file was processed. If the
source is LATEX, it might be more problematic to
process.

It’s not 100%, of course: it will be thrown by fig-
ures, tables, and math occurring at a page boundary,
which our client didn’t use. But the small number
of corrections beats doing it by hand.

Type 1 (PostScript) fonts

Some of you may by now have seen Adobe’s announce-
ment2 that it will end support for Type 1 (PostScript)
fonts on 31st January 2023 in all its products (e.g.
InDesign, Illustrator, Photoshop, etc.).

If you open a document containing unembedded
Type 1 fonts with an Adobe product after that date,
the fonts will not be recognised, and will be classed
as ‘Missing’ even if you have the font files installed
in your operating system. In addition, your installed
Type 1 fonts will no longer appear in the Fonts menu
and there will be no way to use them in Adobe’s
software.

However, PostScript and PDF documents with
embedded Type 1 fonts will continue to display as
normal, so they will still be readable with Acrobat
Reader, but they will not be editable and will not
work in other Adobe products.

So what’s this all about? To be fair, Type 1 fonts
are Adobe’s invention (back in 1984), so they can call
the shots. When PostScript printers arrived, they
came with the built-in Adobe ‘35’ popular fonts3 that
have dogged DTP ever since (a much wider choice
was distributed later). Those 35 fonts became so
ingrained that software producing PostScript (and
later, PDF) only needed to reference the font by
name, with no need to embed it in the document,
because it could be guaranteed to be available on all
printers via drivers like Ghostscript. It’s also why
so many packages that create formatted output, like
statistical and numerical analysis programs, generate
PostScript and PDF output without the need to
embed the fonts. Plus they were seen as ‘free’— in
a world where font piracy is rampant, many users
became accustomed to the idea that [these] fonts
‘just came with’ every operating system and software
suite.

But the world has moved on since then, and font
technology has advanced hugely. TEX has moved
on too, from providing only Computer Modern and

2 https://helpx.adobe.com/ie/fonts/kb/
postscript-type-1-fonts-end-of-support.html

3 These are: Avant Garde, Bookman, Courier, Helvetica,
New Century Schoolbook, Palatino, Σψµβολ (Symbol), Times
New Roman, Zapf Chancery, and Zapf ✤❉■❇❂❁▼▲ (Dingbats).

other METAFONT fonts (Type 3), to updated Type 1
versions as well as the Adobe ‘35’ and other Type 1
fonts generously donated to the cause. You could
buy or download additional Type 1 fonts and install
them for use with TEX. And now we can use any
OpenType or TrueType font via X ETEX, LuaTEX,
and friends, including the TEX Gyre fonts (open
source equivalents of the Adobe ‘35’).

Does it matter to us? Well, yes . . . some. We
need to be aware that in the long term, Type 1 is
going to become a dead end. For now, if you have old
PostScript or PDF documents for which no source is
available, they will continue to display. If you want
to continue generating PostScript or PDF documents
using the Type 1 fonts that come with TEX distribu-
tions, or others you have bought or downloaded, feel
free to do so: your output documents will continue to
be displayable. TEX itself is unaffected, and so far as
I have been able to find out, neither is software from
other suppliers, so you can continue using Type 1
fonts in TEX, and in many other non-Adobe systems.

So what’s to do? The easy answer is, switch to
X ETEX or X ELATEX or LuaTEX or one of the other
variants that support OpenType or TrueType fonts.
I made that switch a couple of years ago and have
not regretted it [1]. But there are still a lot of LATEX
packages that depend on PostScript fonts or graphics
for other reasons, and if you use them, you may need
to stick with pdflatex for a while yet.

Afterthought

I couldn’t trace the quotation ‘There is not in exis-
tence a page with a rule on it that cannot be instantly
and obviously improved by taking the rule out.’ [3]
but Karl Berry pointed me at The TEXbook (end of
Chapter 21). I should have looked there first!

References

[1] P. Flynn. Typographers’ Inn—X ELATEX.
TUGboat 37(3), Sep 2016.
tug.org/TUGboat/tb37-3/tb117inn.pdf

[2] P. Flynn. Typographers’ Inn—To print or not
to print. TUGboat 41(3), Dec 2020.
tug.org/TUGboat/tb41-3/tb129inn.pdf

[3] G.B. Shaw. On Modern Typography. The
Dolphin: A Journal of the Making of Books
4(1):80–81, Fall 1940.

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie
blogs.silmaril.ie/peter

Typographers’ Inn


