
UTF-8 installations of CWEB

Igor Liferenko

Abstract

We show how to implement UTF-8 support in CWEB

[1] by adding the arrays xord and xchr . Immedi-
ately after reading a Unicode character from an in-
put file, we convert it to an 8-bit character using
xord . On output the reverse operation is done us-
ing xchr . This allows us to leave core algorithms of
CWEB unchanged.

Incidentally, the described method allows to use
the extended character set [1] of CWEB: the char-
acters ‘↑’, ‘↓’, ‘→’, ‘≠’, ‘≤’, ‘≥’, ‘≡’, ‘∨’, ‘∧’, ‘⊂’, and
‘⊃’ can be typed as abbreviations for C language di-
graphs ‘++’, ‘--’, ‘->’, ‘!=’, ‘<=’, ‘>=’, ‘==’, ‘||’, ‘&&’,
‘<<’, and ‘>>’, respectively.

1. Initialization

(For brevity, in the diffs following, the original code
in the CWEB source is preceded with < characters,
and the new code with >. Both are sometimes re-
formatted for presentation in this article, and for
readability we sometimes leave a blank line be-
tween the pieces. The actual implementation uses
the change files comm-utf8.ch, cweav-utf8.ch and
ctang-utf8.ch, together with common-utf8.ch

[2].)

First, we add global arrays xord and xchr to
common.w [1]. We declare the size of the xord ar-
ray to be 216 bytes. This means that only values
from the basic multilingual plane (BMP) of Unicode
are permitted. We use the wchar_t data type for
characters in input files to accommodate Unicode
values.

Background: this predefined C type allocates
four bytes per character (on most systems). Char-
acter constants of this type are written as L’...’.

unsigned char xord[65536];

wchar_t xchr[256];

These same arrays must be used in cweave.w [1].

extern unsigned char xord[];

extern wchar_t xchr[];

In ctangle.w [1] only the xchr array is needed.

extern wchar_t xchr[];

We initialize the xord and xchr arrays in the
common init function of common.w. First, in xchr
we map all visible ASCII characters to themselves,
like this:

xchr[32] = ’ ’;

TUGboat, Volume 42 (2021), No. 1 81

Then we map the rest of the indexes of xchr to
127, which is the ASCII character code (DEL) that is
prohibited in text files.

for (i=0; i<32; i++) xchr[i]=127;

for (i=127; i<=255; i++) xchr[i]=127;

Elements in the xchr array are overridden using
the file mapping.w [2].

@i mapping.w

This file specifies the character(s) required for a par-
ticular installation of CWEB, for example:

xchr[0xf1] = L’ë’;

The initialization of xord comes next. All its
indexes are mapped by default to 127. Then we
make it contain the inverse of the information in
xchr .

for (i=0;i<=65535;i++) xord[i]=127;

for (i=0;i<=255;i++) xord[xchr[i]]=i;

xord[127]=127;

It remains to set the LC_CTYPE locale category. The
behavior of the C library functions used below de-
pends on this value.

setlocale(LC_CTYPE, "C.UTF-8");

Finally, we need the necessary headers.

#include <wchar.h>

#include <locale.h>

2. Input

For automatic conversion from UTF-8 to Unicode,
we change the input ln function to use fgetwc [3]
instead of getc. Also, ungetc is changed to ungetwc
[3] and EOF must be replaced with WEOF [3] (for this,
int is changed to wint_t [3]).

< int c;

> wint_t c;

< while (k<=buffer_end && (c=getc(fp))

< != EOF && c!=’\n’)

> while (k<=buffer_end && (c=fgetwc(fp))

> != WEOF && c!=L’\n’)

< if ((c=getc(fp))!=EOF && c!=’\n’) {

> if ((c=fgetwc(fp))!=WEOF && c!=L’\n’) {

< ungetc(c,fp);

> ungetwc(c,fp);

< if (c==EOF && limit==buffer) return(0);

> if (c==WEOF && limit==buffer) return(0);

The conversion with xord is done immediately
after a character is read.

< if ((*(k++) = c) != ’ ’) limit = k;

> if ((*(k++) = xord[c]) != ’ ’) limit = k;

doi.org/10.47397/tb/42-1/tb130liferenko-cweb

UTF-8 installations of CWEB

3. Output

We use xchr and printf with %lc conversion speci-
fier for characters, printed on terminal during error
reporting.

< putchar(*k);

> printf("%lc",xchr[(unsigned char)*k]);

The term write macro uses the C library func-
tion fwrite to output a range of characters. We must
use xchr for each character (except the newline char-
acter), then convert it to UTF-8 via printf , using %lc
conversion specifier.

< @d term_write(a,b) fflush(stdout),

< fwrite(a,sizeof(char),b,stdout)

> @d term_write(a,b) do { fflush(stdout);

> for (int i = 0; i < b; i++)

> if (*(a+i)==’\n’) new_line;

> else printf("%lc",xchr[(unsigned char)

> *(a+i)]); } while (0)

In cweave.w all output to files is done via the
c line write macro. This uses the C library function
fwrite to output a range of characters. Since xchr
must be used for each character, we loop over this
range and convert each character to the external en-
coding and then to UTF-8 via fprintf, using the %lc

conversion specifier.

< fwrite(out_buf+1,sizeof(char),c,

< active_file)

> for (int i = 0; i < c; i++)

> fprintf(active_file, "%lc",

> xchr[(eight_bits) *(out_buf+1+i)])

Similarly, in ctangle.w, before outputting char-
acters in C string constants, convert each of them to
the external encoding and then to UTF-8 using the
%lc conversion specifier of fprintf .

< C_putc(a);

> fprintf(C_file,"%lc",xchr[(eight_bits)a]);

We do not use the translit array when out-
putting non-ASCII characters in C identifiers. So,
in ctangle.w we again convert each such charac-
ter to the external encoding and then to UTF-8 via
fprintf using the %lc conversion specifier.

< C_printf("%s",

< translit[(unsigned char)(*j)-0200]);

> fprintf(C_file, "%lc",

> xchr[(eight_bits) *j]);

For other output code no special treatment is
needed, since all other output data is in ASCII, which

82 TUGboat, Volume 42 (2021), No. 1

is part of UTF-8 (except file names, which are al-
ready in UTF-8).

4. The file name buffer

File names must be in UTF-8. So, before appending
characters to cur file name, we convert them to the
external encoding and then to UTF-8 via C library
function wctomb [3].

< *k++=*loc++;

> { char mb[MB_CUR_MAX]; int len =

> wctomb(mb,xchr[(unsigned char)*loc++]);

> if (k<=cur_file_name_end)

> for (int i = 0; i<len; i++) *k++=mb[i];

> else k=cur_file_name_end+1; }

5. Locale considerations

cweave.w uses the locale-dependent C library func-
tions islower , isupper and tolower (the former two
via xislower and xisupper macros respectively). But
since we are assuming the UTF-8 locale, instead of
these we must use iswlower , iswupper and towlower
from wctype.h [3]. The trick is to convert from the
internal encoding to the external encoding before
using these functions.

< xislower(*x)

> iswlower(xchr[(eight_bits)*p])

< xisupper(x)

> iswupper(xchr[(eight_bits) x])

For towlower the result must be converted back
from the external encoding to the internal encoding.

< c=tolower(c)

> c=xord[towlower(xchr[(eight_bits)c])]

References

[1] Knuth, D. and Levy, S. The CWEB System of
Structured Documentation, 1993.
ISBN 0-201-57569-8

[2] Source of the present implementation.
https://github.com/igor-liferenko/cweb

[3] Single Unix Specification. Introduction to
ISO C Amendment 1 (Multibyte Support
Environment).
https://unix.org/version2/whatsnew/

login_mse.html

� Igor Liferenko
igor.liferenko (at) gmail dot com

Igor Liferenko

