
TUGboat, Volume 42 (2021), No. 1 41

\NewDocumentCommand versus \newcommand

versus . . .

Joseph Wright

Creating new document commands in LATEX has
traditionally been the job of \newcommand. This lets
you create a command with mandatory arguments,
and also support a first optional argument. However,
it can’t create more complex commands: LATEX uses
stars, multiple optional arguments, and plenty more.
To define commands using such syntaxes, the kernel
itself uses lower-level TEX programming. But this
is opaque to many users, and a variety of packages
have been created to ease the burden.

Over the last decade, the LATEX team have de-
veloped xparse, a generic document command parser,
as a way to unify many ideas and provide a single
consistent way to create document commands. The
bulk of that code has now been moved to the LATEX

kernel, and in a parallel article (starts on the preced-
ing page) I’ve provided some ideas about how best
to exploit that.

In this article, I want to look at a related issue:
why to use this ‘xparse’ approach, and how it com-
pares to existing solutions, both in the LATEX kernel
and the wider package sphere. Here, I’m going to
avoid talking about ‘simple’ shortcuts (things such as
\newcommand\myname{Joseph}): these are best left
to \newcommand. Instead, I want to deal with com-
mands which take arguments and have some element
of ‘programming’ to them.

What I’ll seek to highlight here is that using
\NewDocumentCommand, we get a single consistent
and reliable way to create a variety of commands.
There’s no need to worry about clashes between
approaches, and it all ‘just works’.

1 Preliminaries: Protected commands and
optional arguments

Before we start, a couple of things are worth mention-
ing. First, there is the idea of ‘protected’ commands.
In some places, we need commands not to ‘expand’
(turn into their definition). With a modern TEX
system, that can be arranged by the engine itself
(pdfTEX or similar), using ε-TEX’s \protected prim-
itive (built-in). The LATEX kernel doesn’t use that
mechanism in \newcommand, but lots of other tools
do. I’m going to assume that we want to make protec-
ted commands unless I mention otherwise. Almost
always, unless you are creating a ‘shortcut’ for some
text, you want your commands to be protected.

The second thing to note is that TEX itself has
no concept of optional arguments, so they are al-
ways arranged using some clever look-ahead code.
In xparse, nested optional arguments are handled
automatically, but again, \newcommand and similar
do not do that.

2 The kernel: versus \newcommand

The kernel’s \newcommand can, as I’ve said, create
commands with multiple mandatory arguments but
with only one optional one. A simple example:

\newcommand\foo[3][default]{%

Code perhaps using #1 and

definitely using #2 and #3%

}

We can of course create an equivalent command using
\NewDocumentCommand:

\NewDocumentCommand\foo{+O{default} +m +m}{%

Code perhaps using #1 and

definitely using #2 and #3%

}

doi.org/10.47397/tb/42-1/tb130wright-newdoccmd

\NewDocumentCommand versus \newcommand versus . . .



42 TUGboat, Volume 42 (2021), No. 1

You may notice that I’ve used +m for both of the
mandatory arguments, as that matches \newcommand:
the arguments can accept paragraphs (is \long, in
TEX terms). With \newcommand, all arguments either
accept \par or do not: with \NewDocumentCommand

we can select on a per-argument level what happens.
The optional argument with a default works

using O{default}, and the result will be the same
functionality as \newcommand. We gain the idea that
nested optional arguments are parsed properly, some
better error messages if we use \foo incorrectly, and
an engine-robust definition of \foo.

We can’t do a lot more with \newcommand, so
rather than try to show other \NewDocumentCommand
features here, we’ll first consider how we might make
more complex syntaxes using just the classical LATEX
kernel.

3 . . . versus \def: The primitive

Using the TEX primitive \def, plus the kernel in-
ternal commands \@ifstar and \@ifnextchar, we
can construct more complex syntaxes. For example,
let’s create the syntax for \section: a star, an op-
tional argument and a mandatory one. I’ll assume
we have @ defined as a letter here. I’m also going
to pass the presence of a star as the text true or
false, as it makes things clearer.

\newcommand\section{%

\@ifstar

{\section@auxi{true}}

{\section@auxi{false}}%

}

\def\section@starred#1{%

\@ifnextchar[%]

{\section@auxii{#1}}

{\section@auxii{#1}[]}%

}

\long\def\section@auxii#1[#2]#3{%

% Here:

% #1 is "true"/"false" for a star

% #2 is the optional argument

% #3 is the mandatory argument

}

As you can see, this is a bit tricky already, and
it doesn’t cover the case where we want to have the
optional argument default to the mandatory one,
when it’s not given. It also doesn’t allow for nested
optional arguments, and it’s not engine-robust. We
might of course use more complex paths for the star:
we could have independent routes.

Using \NewDocumentCommand, things are much
easier:

\NewDocumentCommand\section{s +O{#3} +m}{%

% Here:

% #1 is "true"/"false" for a star

% #2 is the optional argument

% #3 is the mandatory argument

}

The minor difference now is that #1 is a special
token that we can test for truth using \IFBooleanTF.
I’ve also allowed for the optional argument picking
up the mandatory one (#3), when it’s not given.

We could make more complex examples, but the
bottom line is: using \NewDocumentCommand, we are
going to have simple one-line interface descriptions,
and the behind-the-scenes TEX argument parsing is
hidden away.

4 . . . versus \newrobustcmd: etoolbox

The etoolboxpackage offers \newrobustcmd as a com-
plement to \newcommand. It provides exactly the
same interface as \newcommand, except it uses ε-TEX
to make engine-protected commands. Here’s an in-
terface point of view, there’s nothing new here.

5 . . . versus \newcommandtwoopt: twoopt

The twoopt package supports a syntax similar to
\newcommand but for creating two optional argu-
ments. We’ll take an example from its documenta-
tion:

\newcommandtwoopt\bsp[3][AA][BB]{%

\typeout{\string\bsp: #1,#2,#3}%

}

This is reasonably clear: we have an optional argu-
ment #1, and optional argument #2 and a mandatory
argument #3. The two optional arguments each here
have a default.

How does this look with \NewDocumentCommand?

\NewDocumentCommand\bsp{+O{AA} +O{BB} +m}{%

\typeout{\string\bsp: #1,#2,#3}%

}

You’ll see that we stay consistent here: the same syn-
tax is used to create one, two or even more optional
arguments. I wouldn’t recommend using multiple
optional arguments in most cases, but when we do,
it’s a lot easier using \NewDocumentCommand.

One thing that \NewDocumentCommand can do,
but twoopt cannot, is create optional arguments that
are not in the first or second positions. With two-
opt, that would require either the TEX coding we’ve
already seen, or using a different tool again.

Joseph Wright



TUGboat, Volume 42 (2021), No. 1 43

6 . . . versus \withsuffix: suffix

The suffix package allows one to extend an existing
command to look for an optional token (‘suffix’)
immediately after the command name. Taking a
simple example from StackExchange (https://tex.
stackexchange.com/a/4388), we start with

\newcommand\foo{blah}

\WithSuffix\newcommand\foo*{blahblah}

which translates to

\NewDocumentCommand\foo{s}{%

\IFBooleanTF{#1}

{blah}

{blahblah}

}

This means we only need one line for the inter-
face set up, and don’t need, for example, to split
up grabbing optional arguments into two different
places (as in the previous example with \section).

7 . . . versus \newcommandx: xargs

The xargs package is perhaps the most complete ap-
proach to extending \newcommand as far as optional
arguments are concerned. It provides \newcommandx,
which has the same syntax as \newcommand but
where the second optional argument is a key–value
list, which then describes which arguments are op-
tional, and what their defaults are. Taking an ex-
ample from the documentation:

\newcommandx*\coord[3][2=1,3=n]{%

(#2_{#1},\ldots,#2_{#3})}

would create a command with two optional argu-
ments, #2 and #3 (each with defaults), leaving #1

mandatory. Translating into \NewDocumentCommand

syntax might make that clearer!

\NewDocumentCommand\coord{m O{1} O{n}}{%

(#2_{#1},\ldots,#2_{#3})%

}

The xargs package has the idea of usedefault,
which allows [] to be the same as [default]. That’s
not something xparse does, as it is pretty confusing:
what happens when you want an empty optional
argument? This links to something I’ve said be-
fore: avoid consecutive optional arguments unless
the second is dependent on the first.

8 . . . versus newcommand.py: newcommand

Stepping outside of TEX itself, Scott Pakin’s Py-
thon script newcommand.py provides a description
language somewhat like xparse, and converts this into
a ‘template’ of TEX code, allowing a ‘fill in the blanks’
approach to creating commands. It can cover several
of the ideas that xparse can, including a few that will

not be migrated to the LATEX kernel. It can also set
up a command taking more than 9 arguments, but
that’s always going to be tricky as a user.

What is important is that using a script means
we have to work in two steps, and it’s hard to see
what’s happening from the TEX source. It also
doesn’t offer anything that the kernel doesn’t already
do: no protected commands, no nested optional ar-
guments, no improved error messages. So in many
ways this is using techniques we’ve already seen, just
made a little more accessible, at least if you have
Python installed.

9 . . . versus \NewEnviron: environ

As well as document commands, the xparse syntax
can be used to create document environments: the
same relationship we have between \newcommand and
\newenvironment. What people sometimes want to
do is grab an entire document environment body and
use it like a command argument. Classically, one
does that using the environ package. Again, taking
an example from the documentation:

\NewEnviron{test}{%

\fbox{\parbox{1.5cm}{\BODY}}\color{red}

\fbox{\parbox{1.5cm}{\BODY}}%

}

would grab all of the body of the environment test
and typeset it twice, the first time in red. That is,
the environment body is saved as \BODY.

Using \NewDocumentEnvironment, we have a
syntax similar to \newenvironment

\NewDocumentEnvironment{test}{+b}{%

\fbox{\parbox{1.5cm}{#1}}\color{red}

\fbox{\parbox{1.5cm}{#1}}%

}{}

with the argument grabbed in the normal way as
(here) #1. We can therefore have ‘real’ arguments
first, then grab the body.

10 Summary

Using the tools set up in \NewDocumentCommand, we
can have a consistent way of creating a wide range
of document commands. Rather than use a mixture
of tools, from the kernel, the TEX engine, and the
package sphere, it is far preferable to use the single
interface of \NewDocumentCommand for defining new
commands today.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

\NewDocumentCommand versus \newcommand versus . . .


