
300 TUGboat, Volume 43 (2022), No. 3

New directions in math fonts
Hans Hagen, Mikael P. Sundqvist

1 Introduction
After trying to improve math rendering of OpenType
math fonts, the authors have ended up with a mix of
improving the engine and fixing fonts runtime, and
we are rather satisfied with the results so far.

However, as we progress and also improve the
more structural and input-related features of Con-
TEXt, we wonder why we aren’t more drastic when
it comes to fonts. The OpenType specifications are
vague, and most existing OpenType math fonts use
a mixture of the OpenType features and the old TEX
habits, so we are sort of on our own. The advantage
of this situation is that we feel free to experiment
and do as we like.

In another article we discuss our issues with Uni-
code math, and we have realized that good working
solutions will be bound to a macro package anyway.
Also, math typesetting has not evolved much after
Don Knuth set the standard, even if the limitations
of those times in terms of memory, processing speed
and font technologies have been lifted for quite a
while. And right from the start Don invited users to
extend and adapt TEX to one’s needs.

Here we will zoom in on a few aspects: font
parameters, glyph dimensions and properties and
kerning of scripts and atoms. We discuss OpenType
math fonts only, and start with a summary of how we
tweak them. We leave a detailed engine discussion to
a future article, since that would demand way more
pages, and could confuse the reader.

2 Tweaks, also known as goodies
The easiest tweaks to describe are those that wipe
features. Because the TEX Gyre fonts have many bad
top accent anchors (that is, the anchors sit above
the highest point of the shape) the wipeanchors
tweak can remove them, and we do that per specified
alphabet.

7̂
In a similar fashion we wipeitalics (italic cor-

rections) from upright shapes. Okay, maybe they
can play a role for subscript placement, but then
they can also interfere, and they do not fit with the
OpenType specification. The wipecues tweak zeros
the dimensions of the invisible times and friends so
that they don’t interfere, and wipevariants gets rid
of bad variants of specified characters.

The fixers is another category, and the names
indicate what gets fixed. Tweaks like these take lists

of code points and specific properties to fix. We
could leave it to your imagination what
fixaccents fixanchors fixellipses
fixoldschool fixprimes fixradicals
fixslashes
do, but here are some details.

Starting with fixaccents: Inconsistencies in
the dimensions of accents make them jump all over
the place so we normalize them. We support hori-
zontal stretching at the engine level.

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑢 + 𝑣 +𝑤 + 𝑥 + 𝑦
This required only a few lines of code, thanks to
scaling features that were already present.

fixanchors: Anchors can be off so we fix these
to look better, especially on italic shapes. We make
sure that the automated sizing works consistently,
as this is driven by width and overshoot.

fixellipses: Several kind of ellipses can be
inconsistent with each other as well as with periods
(both shape- and sizewise) so we deal with that.

fixoldschool: TEX (TFM) fonts have a limited
set of widths, heights, and depths. We need to fix
for instance fences of various size because we want
to apply kerns to scripts on the four possible corners,
for which we need to know the real height and depth,

fixprimes: Discussing primes would take many
paragraphs so we stick to mentioning that they are
a mess. We now have native prime support in the
engine, and we assume properly dimensioned symbols
to be used.

fixradicals: TFM dimensions for the parts of
a radical (e.g., square root) sign are, shall we say,
unusual. Let’s fix them.

fixslashes: Slashes are used for skewed frac-
tions so we’d better make sure they are set up right.

The replacealphabets tweak is a nice goodie
of another kind. We use this to provide alternative
script (roundhand) and calligraphic (chancery) alpha-
bets (we have both natively in ConTEXt, although
Unicode combines them in one alphabet). Many
available OpenType math fonts come with one of the
two alphabets only, some with roundhand and some
with chancery. For the record: this tweak replaces
the older variants tweak, which filtered scripts from
a stylistic font feature.

We also use the replacealphabets tweak to
drop in Arabic shapes so that we can do bidirec-
tional math. In practice that doesn’t truly boil down
to a replacement but more to an addition. The add-
mirrors features accompanies this, and it is again a
rather small extension to the engine to make sure we
can do this efficiently: when a character is looked up
we check a mirror variant when we are in r2l mode,

doi.org/10.47397/tb/43-3/tb135hagen-mathchange

Hans Hagen, Mikael P. Sundqvist

https://doi.org/10.47397/tb/43-3/tb135hagen-mathchange

TUGboat, Volume 43 (2022), No. 3 301

just like we look up a smaller variant when we’re in
compact font mode (a ConTEXt feature).

��
∑
��=��

�𞸃�=�𞸃�
١+��−�𞸃�−١

(١≠��)��−١

Another application of replacealphabets is to
drop in single characters from another font. We use
this for instance to replace the ‘not really an alpha’
in Bonum by one of our own liking. Here we show
the Bonum math italic ‘a’ and its original alpha,
together with the modified alpha:

𝑎 +α+ 𝛼

For this we ship a companion font. On our disks
(and in the distribution) you can find, in the directory
/tex/texmf-fonts/fonts/data/cms/companion:
RalphSmithsFormalScript-Companion.otf
TeXGyreBonumMath-Companion.otf
XITSMath-Companion.otf

These are efficient drop-ins that are injected
by the replacealphabets, some under user control,
some always. We tried to limit the overhead, and
bidirectional math could be simplified, which also
had the benefit that when one does tens of thousands
of bodyfont switches a bit of runtime is gained.

There are more tweaks: addactuarian creates
the relevant actuarial symbols which is a right-sided
radical (the engine has support for two-sided radi-
cals). It takes a bit of juggling with virtual glyphs
and extensible recipes, but the results are rewarding.

̄𝐴2 1
𝑚 � 𝑥 :𝑛 �

In a similar fashion we try to add missing ex-
tensible arrows with addarrows, bars with addbars,
equals with addequals and again using the radical
mechanism fourier notation symbols (like hats) with
addfourier. That one involves subtle kerning be-
cause these symbols end up at the right top of a
fence-like symbol.

�̂� ∗ 𝑔 ∗ ℎ(𝜉) = (𝑓 ∗ 𝑔 ∗ ℎ)
�

(𝜉)
This was one of the reasons to introduce a more

advanced kerning mechanism in the engine, which is
not entirely trivial because one has to carry around
more information, since all this is font- and character-
bound, and when wrapped in boxes that gets hard
to analyze. The addrules tweak makes sure that
we can do bars over and under constructs properly,
and addparts is there to add extensible recipes to
characters.

Some of these tweaks are not new and are also
available in MkIV, but more as features (optionally
driven by the goodie file). An example is addscripts
that is there for specially positioned and scaled signs

(high minus and such) but that tweak will proba-
bly be redone as part of “deal with all these plus
and minus issues”. The (dedicated to Alan Braslau)
addprivates tweak is an example of this: we add
specific variants for unary minus and plus that users
can enable on demand, which in turn of course gives
class-specific spacing, but we promised not to discuss
those engine features here.

∫
2

1
[(𝑥 + 2)

1
2 − (𝑥 + 2)−

1
2]𝑑𝑥

There is a handful of tweaks that deal with fixing
glyph properties (in detail). We mention: dimen-
sions and accentdimensions that can reposition in
the bounding box, fix the width and italic correction,
squeeze and expand, etc. The kernpairs tweak adds
kern pairs to combinations of characters, while the
kerns tweak provides a way to add top left, bottom
left, top right and bottom right kerns — and those
really make the results look better so we love it!

(
1

1 + 𝑥2
)
𝑛

𝑥2/(1 + 𝑥)

The margins tweak sets margin fields that the
engine can use to better calculate accent position-
ing over the base character. The same is true for
setovershoots that can make accents lean over a
bit. The staircase feature can be used to add the
(somewhat complicated) OpenType kerns. From all
this you can deduce that the engine has all types of
kerning that OpenType requires, and more.

Accents as specified in fonts can be a pain to
deal with, so we have more tweaks for them: copy-
accents moves them to the right slots and extend-
accents makes sure that we can extend them. Not
all font makers have the same ideas about where
these symbols should sit and what their dimensions
should be.

The checkspacing tweak fixes bad or missing
spacing related to Unicode character entries in the
font, because after all, we might need them. We need
to keep MathML in mind, for instance, which means:
processing content that we don’t see and that can con-
tain whatever an editor puts in. The replacements
feature replaces one character by another from the
same font, while substitutes replaces a character
by one from a stylistic feature.

Relatively late we added the setoptions feature
which was needed to control the engine for specific
fonts. The rendering is controlled by a bunch of
options (think of kerning, italic correction, and such).
Some are per font, many per class. Because we can
(and do) use mixed math fonts in a document, we
might need to adapt the engine-level options per font,

New directions in math fonts

302 TUGboat, Volume 43 (2022), No. 3

and that is what this tweak does: it passes options
to the font so that the engine can consult them
and prefer them over the ‘global’ ones. We needed
this for some fonts that have old school dimensions
for extensibles (like Lucida), simply because they
imitated Computer Modern. Normally that goes
unnoticed, but, as mentioned before, it interferes
with our optional kerning. The fixoldschool tweak
sort of can fix that too so setoptions is seldom
needed. Luckily, some font providers are willing to
fix their fonts!

We set and configure all these tweaks in a so-
called goodie file, basically a runtime module that
returns a Lua table with specifications. In addition
to the tweaks subtable in the math namespace, there
is a subtable that overloads the font parameters: the
ones that OpenType specifies, but also new ones that
we added. In the next section we elaborate more on
these font-bound parameters.

3 Font parameters
At some point in the upgrading of the math machin-
ery we discussed some of the inconsistencies between
the math constants of the XITS and STIX fonts. Now,
one has to keep in mind that XITS was based on a
first release of STIX that only had Type 1 fonts so
what follows should not to be seen as criticism, but
more as observations and reason for discussion, as
well as a basis for decisions to be made.

One thing we have to mention in advance: we
often wonder why weird and/or confusing stuff in
math fonts goes unnoticed. We have some ideas:

• The user doesn’t care that much how math
comes out. This can easily be observed when
you run into documents on the Internet or posts
on forums. And publishers don’t always seem
to care either. Consistency with old documents
sometimes seems to be more important than
quality.

• The user switches to another math font when
the current one doesn’t handle its intended math
domain well. We have seen that happen and it’s
the easiest way out when you have little control
anyway (for instance when using online tools).

• The user eventually adds some skips and kerns
to get things right, because after all TEX is also
about tweaking.

• The user doesn’t typeset math that is partic-
ularly complex. It’s mostly inline math with
an occasional alignment (also in text style) and
very few multi-level displays (with left and right
fences that span at most a fraction).
We do not claim to be perfect, but we care

for details, so let’s go on. Table 1 shows the math

constants as they can be found in the STIX (two)
and XITS (one) fonts. When you typeset with these
fonts you will notice that XITS is somewhat smaller,
so two additional columns show the values used to
compensate for the axis height and accent base height.
For the relevance column: (1) ‘mandatory’ means a
design-related value the font designer must supply;
(2) ‘optional’ means apparently redundant values
that would normally be identical; (3) a blank cell
(the vast majority) means a value likely needed to
be configured at the macro/document level.

As you can see in the table, very few values are
the same. So, what exactly do these constants tell
us? You might even wonder why they are there at all.
Just think of this: we want to typeset math, and we
have an engine that we can control. We know how we
want it to look. So, what do these constants actually
contribute? Plenty relate to the height and depth of
the nucleus and/or the axis. The fact that we have
to fix some in the goodie files, and the further fact
that we need more variables that control positioning,
makes for a good argument to just ignore most of the
ones provided by the font, especially when they seem
somewhat arbitrary. Can it be that font designers
are just gambling a bit, looking at another font, and
starting from there?

The relationship between TEX’s math font pa-
rameters and the OpenType math constants is not
one-to-one. Mapping them onto each other is pos-
sible but font dependent. However, we can assume
that the values of Computer Modern are leading.

The AxisHeight, AccentBaseHeight and
FlattenedAccentBaseHeight are set to the
x-height, a value that is defined in all fonts. The
SkewedFractionVerticalGap also gets that value.
Other variables relate to the em-width (or \quad),
for instance the SkewedFractionHorizontalGap
that gets half that value. Of course these last
two then assume that the engine handles skewed
fractions.

Variables that directly map onto each other are
StretchStackGapBelowMin → bigopspacing1,
StretchStackTopShiftUp → bigopspacing3,
StretchStackGapAboveMin → bigopspacing2,
StretchStackBottomShiftDown → bigopspacing4.
However, these clash with other mappings:
UpperLimitGapMin → bigopspacing1,
LowerLimitGapMin → bigopspacing2,
UpperLimitBaselineRiseMin → bigopspacing3,
LowerLimitBaselineDropMin → bigopspacing4.
While in traditional fonts these are the same, in
OpenType they can be different. Should they be?

Internally we use different names for variables,
simply because the engine has some parameters that

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3 303

Table 1: OpenType math parameters, compared; bold indicates an unchanged value.
See text for explanation of relevance.

constant STIX XITS base axis relevance
AccentBaseHeight 450 480 480 464 optional**
AxisHeight 250 258 267 258 mandatory
DelimitedSubFormulaMinHeight 1500 1325 1600 1548
DisplayOperatorMinHeight 1450 1800 1547 1496
FlattenedAccentBaseHeight 662 656 706 683 optional**
FractionDenominatorDisplayStyleGapMin 198 150 211 204
FractionDenominatorDisplayStyleShiftDown 700 640 747 722
FractionDenominatorGapMin 66 68 70 68
FractionDenominatorShiftDown 480 585 512 495
FractionNumeratorDisplayStyleGapMin 198 150 211 204
FractionNumeratorDisplayStyleShiftUp 580 640 619 599
FractionNumeratorGapMin 66 68 70 68
FractionNumeratorShiftUp 480 585 512 495
FractionRuleThickness 66 68 70 68 optional
LowerLimitBaselineDropMin 600 670 640 619
LowerLimitGapMin 150 135 160 155
MathLeading 150 150 160 155
MinConnectorOverlap 50 100 53 52 mandatory
OverbarExtraAscender 66 68 70 68
OverbarRuleThickness 66 68 70 68 optional*
OverbarVerticalGap 198 175 211 204
RadicalDegreeBottomRaisePercent 70 55 75 72 mandatory
RadicalDisplayStyleVerticalGap 186 170 198 192
RadicalExtraAscender 66 78 70 68
RadicalKernAfterDegree −555 −335 -592 -573
RadicalKernBeforeDegree 277 65 295 286
RadicalRuleThickness 66 68 70 68
RadicalVerticalGap 82 85 87 85
ScriptPercentScaleDown 75 70 80 77
ScriptScriptPercentScaleDown 60 55 64 62
SkewedFractionHorizontalGap 300 350 320 310
SkewedFractionVerticalGap 66 68 70 68
SpaceAfterScript 41 40 44 42
StackBottomDisplayStyleShiftDown 900 690 960 929
StackBottomShiftDown 800 385 853 826
StackDisplayStyleGapMin 462 300 493 477
StackGapMin 198 150 211 204
StackTopDisplayStyleShiftUp 580 780 619 599
StackTopShiftUp 480 470 512 495
StretchStackBottomShiftDown 600 590 640 619
StretchStackGapAboveMin 150 68 160 155
StretchStackGapBelowMin 150 68 160 155
StretchStackTopShiftUp 300 800 320 310
SubSuperscriptGapMin 264 150 282 272
SubscriptBaselineDropMin 50 160 53 52
SubscriptShiftDown 250 210 267 258
SubscriptTopMax 400 368 427 413
SuperscriptBaselineDropMax 375 230 400 387
SuperscriptBottomMaxWithSubscript 400 380 427 413
SuperscriptBottomMin 125 120 133 129
SuperscriptShiftUp 400 360 427 413
SuperscriptShiftUpCramped 275 252 293 284
UnderbarExtraDescender 66 68 70 68
UnderbarRuleThickness 66 68 70 68 optional*
UnderbarVerticalGap 198 175 211 204
UpperLimitBaselineRiseMin 300 300 320 310
UpperLimitGapMin 150 135 160 155

New directions in math fonts

304 TUGboat, Volume 43 (2022), No. 3

OpenType math does not. So for bigopspacing5,
we have limit_above_kern and limit_below_kern.

A couple of parameters have different values for
(cramped) displaystyle:
FractionDelimiterSize → delim2,
FractionDelimiterDisplayStyleSize → delim1,
FractionDenominatorShiftDown → denom2,
FractionDenominatorDisplayStyleShiftDown
→ denom1, and their numerator counterparts from
num2 and num1. The Stack* parameters also use
these. The sub1, sub2, sup1, sup2, sup3, supdrop
parameters can populate the Sub* and Super* pa-
rameters, also in different styles.

The rest of the parameters can be defined in
terms of the default rulethickness, quad or x-height,
often multiplied by a factor. For some we see the
1/18 show up, a number we also see with muskips.
Some constants can be set from registers, such as
SpaceAfterScript which is just \scriptspace.

If you look at the LuaTEX source you will find
a section where this mapping is done in the case
of a traditional font, that is: one without a math
constants table. In LuaMetaTEX we don’t need to do
this because font loading happens in Lua. So we sim-
ply issue an error when the math engine can’t resolve
a mandatory parameter. The fact that we have a par-
tial mapping from math constants onto traditional
parameters and that LuaTEX has to deal with the
traditional ones too make for a somewhat confusing
landscape. When in LuaMetaTEX we assume wide
fonts to be used that have a math constants table,
we can probably clean up some of this.

We need to keep in mind that Cambria was
the starting point, and it did borrow some concepts
from TEX. But TEX had parameters because there
was not enough information in the glyphs! Also,
Cambria was meant for Word, and a word processor
is unlikely to provide the level of control that TEX
offers, so it needs some directions with respect to
e.g. spacing. Without user control, it has to come
up with acceptable compromises. So actually the
LuaMetaTEX math engine can be made a bit cleaner
when we just get rid of these parameters.

So, which constants are actually essential? The
AxisHeight is important and also design-related.
By definition, this is where the minus sits above the
baseline, and this is usually true even in practice. It
is used for displacements of the baseline so that for
instance fractions nicely align. When testing scripts
anchored to fences we noticed that the parenthesis
in XITS had too little depth while STIX had the
expected amount. This relates to anchoring relative
to the math axis.

Is there a reason why UnderbarRuleThickness
and OverbarRuleThickness should differ? If not,
then we only need a variable that somehow tells
us what thickness fits best with the other top and
bottom accents. It is quite likely the same as the
RadicalRuleThickness, which is needed to extend
the radical symbol. So, here three constants can be
replaced by one design-related one. The parameter
FractionRuleThickness can also be derived from
that, but more likely is that it is a quantity that
the macro package sets up anyway, maybe related to
rules used elsewhere.

The parameters MinConnectorOverlap and
RadicalDegreeBottomRaisePercent also relate to
the design although one could abuse the top accent
anchor for the second one. So they are important.
However, given the small number of extensibles, they
could have been part of the extensible recipes.

The parameters AccentBaseHeight and
FlattenedAccentBaseHeight might relate to the
margin that the designer put below the accent as
part of the glyph, which is kind of a design-related
constant. Nevertheless, we fix quite a lot of accents
in the goodie files because they can be inconsistent.
That makes these constants somewhat dubious too.
If we have to check a font, we can just as well set
up constants that we need in the goodie file. Also,
isn’t it weird that there are no bottom variants? (In
OpenType; Knuth didn’t need them for TAOCP.)

We can forget about MathLeading as it serves no
purpose in TEX. The DisplayOperatorMinHeight
is often set wrong so although we fix that in the
goodie file it might be that we just can use an internal
variable. It is not the font designer who decides
that anyway. The same is true for the parameter
DelimitedSubFormulaMinHeight.

If we handle skewed fractions, SkewedFraction-
HorizontalGap and SkewedFractionVerticalGap
might give an indication of the tilt but why do we
need two? It is design-related though, so they have
some importance, when set right.

The rest can be grouped, and basically we can
replace them by a consistent set of engine parameters.
We can still set them up per font, but at least we
can then use a clean set. Currently, we already have
more. For instance, why only SpaceAfterScript
and not one for before, and how about prescripts
and primes? If we have to complement them with
additional ones and also fix them, we might as well
set up all these script-related variables.

For fractions, the font provides:
FractionDenominatorDisplayStyleGapMin,
FractionDenominatorDisplayStyleShiftDown,
FractionDenominatorGapMin,

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3 305

FractionDenominatorShiftDown,
FractionNumeratorDisplayStyleGapMin,
FractionNumeratorDisplayStyleShiftUp,
FractionNumeratorGapMin,
FractionNumeratorShiftUp. We might try to come
up with a simpler model.

Limits have:
LowerLimitBaselineDropMin,
LowerLimitGapMin,
UpperLimitBaselineRiseMin,
UpperLimitGapMin. Limits are tricky anyway as
they also depend on abusing the italic correction for
anchoring.

Horizontal bars are driven by:
OverbarExtraAscender,
OverbarVerticalGap,
UnderbarExtraDescender,
UnderbarVerticalGap, but for e.g. arrows we are
on our own, so again not such a useful set.

Then radicals; we need some more than these:
RadicalDisplayStyleVerticalGap,
RadicalExtraAscender,
RadicalKernAfterDegree,
RadicalKernBeforeDegree,
RadicalVerticalGap. Because we definitely need
to check and fix these, there is no gain having them
in the font.

Isn’t it more a decision by the macro package
how script and scriptscript should be scaled? Cur-
rently we listen to ScriptPercentScaleDown and
ScriptScriptPercentScaleDown, but maybe it re-
lates more to usage.

We need more control than just SpaceAfter-
Script and an engine could provide it more consis-
tently. It’s a loner.

How about StackBottomShiftDown,
StackBottomDisplayStyleShiftDown,
StackDisplayStyleGapMin,
StackGapMin,
StackTopDisplayStyleShiftUp,
StackTopShiftUp? And aren’t these more for the
renderer to decide: StretchStackBottomShiftDown,
StretchStackGapAboveMin,
StretchStackGapBelowMin,
StretchStackTopShiftUp?

This messy bit can also be handled more conve-
niently, so what exactly is the relationship with the
font design of: SubSuperscriptGapMin,
SubscriptBaselineDropMin,
SubscriptShiftDown,
SubscriptTopMax,
SuperscriptBaselineDropMax,
SuperscriptBottomMaxWithSubscript,
SuperscriptBottomMin,

SuperscriptShiftUp,
SuperscriptShiftUpCramped?

Just for the record, here are the (font-related)
ones we added so far. A set of prime-related con-
stants similar to the script ones:
PrimeBaselineDropMax,
PrimeRaisePercent,
PrimeRaiseComposedPercent,
PrimeShiftUp,
PrimeShiftUpCramped,
PrimeSpaceAfter,
PrimeWidthPercent.

We also added SpaceBeforeScript just because
we want to be symmetrical in the engine where we
also have to deal with prescripts.

These we provide for further limit positioning:
NoLimitSupFactor, NoLimitSubFactor;
these for delimiters: DelimiterPercent,
DelimiterShortfall;
and these for radicals in order to compensate for
sloping shapes: RadicalKernAfterExtensible,
RadicalKernBeforeExtensible because we have
double-sided radicals.

Finally, there are quite some (horrible) accent
tuning parameters: AccentBaseDepth,
AccentBottomOvershoot,
AccentBottomShiftDown,
AccentExtendMargin,
AccentFlattenedBaseDepth,
AccentSuperscriptDrop,
AccentSuperscriptPercent,
AccentTopOvershoot,
AccentTopShiftUp,
FlattenedAccentBottomShiftDown,
FlattenedAccentTopShiftUp, but we tend to move
some of that to the tweaks on a per accent basis.

Setting these parameters right is not trivial,
and also a bit subjective. We might, for instance,
assume that the math axis is set right, but alas,
when we were fixing the less and greater symbols in
Lucida Bright Math, we found that all symbols were
designed for a math axis of 325, instead of the given
value 313, and that difference can be seen. If you
look closely, the points on the greater than sign and
the braces are slightly below the minus sign in “Old
Lucida” on the left, and aligned completely on the
right. (The greater than sign is also larger in size.
See the accompanying article on Lucida for more
examples and discussion of this particular font.)

2 > −{
1

1+𝑥2} 2 > −{
1

1+𝑥2}

Old Lucida New Lucida

New directions in math fonts

306 TUGboat, Volume 43 (2022), No. 3

The assumption is that the axis goes through
the middle of the minus. Luckily it was relatively
easy to fix these two symbols (they also had to be
scaled, maybe they originate in the text font?) and
adapt the axis. We still need to check all the other
fonts, but it looks like they are okay, which is good
because the math axis plays an important role in
rendering math. It is one of the few parameters that
has to be present and right. A nice side effect of this
is that we end up discussing new (ConTEXt) features.
One can for instance shift all non-character symbols
down just a little and lower the math axis, to get a
bit more tolerance in lines with many inline fractions,
radicals or superscripts, that otherwise would result
in interline skips.

A first step in getting out of this mess is to
define all these parameters in the goodie file where
we fix them anyway. That way we are at least not
dependent on changes in the font. We are not a word
processor so we have way more freedom to control
matters. And preset font parameters sometimes do
more harm than good. A side effect of a cleanup can
be that we get rid of the evolved mix of uppercase and
lowercase math control variables and can be more
consistent. Ever since LuaTEX got support for Open-
Type, math constants’ names have been mapped and
matched to traditional TEX font parameters.

4 Metrics, especially italic corrections
By “metrics”, we refer to the dimensions and other
properties of math glyphs. The origin of digital math
fonts is definitely Computer Modern and thereby the
storage of properties is bound to the TFM file format.
That format is binary and can be loaded fast. It
can also be stored in the format, unless you’re using
LuaTEX or LuaMetaTEX where Lua is the storage
format. A TFM file stores per character a width,
height, depth and italic correction. The file also
contains font parameters. In math fonts there are
extensible recipes and there is information about
next-in-size glyphs. The file has kerning and ligature
tables too.

Given the times TEX evolved in, the format is
rather compact. For instance, the height, depth
and italic correction are shared and indices to three
shared values are used. There can be only 16 distinct
heights, 16 depths and 64 italic corrections. That
way much fits into a memory word.

The documentation tells us that “The italic cor-
rection of a character has two different uses. (a) In
ordinary text, the italic correction is added to the
width only if the TEX user specifies ‘\/’ after the
character. (b) In math formulas, the italic correction

is always added to the width, except with respect to
the positioning of subscripts.”

It is this last phenomenon that gives us some
trouble with fonts in OpenType math. The fact that
traditional fonts cheat with the width and that we
add and selectively remove or ignore the correction
makes for fuzzy code in LuaTEX, although splitting
the code paths and providing options to control all
this helps a bit. In LuaMetaTEX we have more
control but also expect an OpenType font. In Open-
Type math there are italic corrections, and we even
have the peculiar usage of it in positioning limits.
However, the idea was that staircase kerns do the
detailed relative positioning.

Before we dive into this a bit more, it is worth
mentioning that Don Knuth paid a lot of attention
to details. The italic alphabet in Computer Modern
math uses nearly the same shapes as the CM text
italic but metrics are quite different, as shown be-
low. We have also met fonts where it looked like
the text italics were used, and the math metrics han-
dled via more excessive italic corrections, sometimes
combined with staircase kerns that basically were
corrections for the side bearing. This is why we al-
ways come back to Latin Modern and Cambria when
we investigate fonts: one is based on the traditional
TEX model, with carefully chosen italic corrections,
and the other is based on the OpenType model with
staircase kerning. They are our reference fonts.

Latin Modern Roman (text) italic:

abcdefghijklmnopqrstuvwxyz
Latin Modern Roman math italic:

𝑎𝑏𝑐𝑑𝑒𝑓𝑔ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟𝑠𝑡𝑢𝑣𝑤𝑥𝑦𝑧

In ConTEXt MkIV we played a lot with italic
correction in math and there were ways to enforce,
ignore, selectively apply it, etc. But, because fonts ac-
tually demand a mixture, in LuaMetaTEX we ended
up with more extensive runtime patching of them.
Another reason for this was that math fonts can have
weird properties. It looks like when these standards
are set and fonts are made, the font makers can do
as they like as long as the average formula comes
out right, and metrics to some extent resemble a
traditional font. However, when testing how well a
font behaves in a real situation there can be all kinds
of interferences from the macro package: inter-atom
kerning, spacing correction macros, specific handling
of cases, etc. We even see OpenType fonts that
seem to have the same limited number of heights,
depths and italic corrections. And, as a consequence
we get for instance larger sizes of fences having the

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3 307

same depth for all the size variants, something that is
pretty odd for an OpenType font with no limitations.

The italic correction in traditional TEX math
gets added to the width. When a subscript is at-
tached to a kernel character it sits tight against that
character: its position is driven by the width of the
kernel. A superscript on the other hand is moved over
the italic width so that it doesn’t overlap or touch the
(likely) “sticking out bit” of the kernel. This means
that a traditional font (and many OpenType math
fonts are modelled after Computer Modern) have to
find compromises of width and italic correction for
characters where the subscript is supposed to move
left (inside the bounding box of the kernel).

The OpenType specification has some vague
remarks about applying italic correction between the
last in a series of slanted shapes and operators, as well
as positioning limits, and suggests that it relates to
relative super- and subscript positioning. It doesn’t
mention that the correction is to be added to the
width. However, the main mechanism for anchoring
scripts are these top and bottom edge kerns. This is
why in fonts that provide these, we are unlikely to
find italic correction unless it is used for positioning
limits.

It is for that reason that an engine can produce
reasonable results for fonts that either provide italics
or provide kerns for anchoring: having both on the
same glyph would mean troubles. It means that
we can configure the engine options to add italic
correction as well as kerns, assuming distinct usage
of those features. For a font that uses both we need to
make a choice (this is possible, since we can configure
options per font). But that will certainly not lead to
math that is always nicely typeset. In fact, without
tweaks many fonts will still look right because in
practice they use some mixture. But we are not
aiming at partial success, we want all to look good.

Here is another thing to keep in mind (although
now we are guessing a bit). There is a limited number
of heights and depths in TEX fonts possible (16),
but four times as many italic corrections can be
defined (64). Is it because Don Knuth wanted to
properly position the sub- and subscripts? Adding
italic correction to the width is pretty safe: shapes
should not overlap. Choosing the right width for a
subscript needs more work because it’s more visual.
In the end we have a width that is mostly driven by
superscript placement! That also means that as soon
as we remove the italic correction things start looking
bad. In fact, because upright math characters also
have italic correction the term ‘italic’ is a bit of a
cheat: it’s all about script positioning and has little
to do with the slope of the shapes.

4.1 Spacing
One of the reasons why for instance spacing between
an italic shape and an upright one in TEX works out
okay is that in most cases they come from a different
font, which can be used as criterion for keeping the
correction; between a sequence of same-font charac-
ters it gets removed. However, in OpenType math
there is a good chance that all comes from the same
font (at least in ConTEXt), unless one populates
many families as in traditional TEX. We have no
clue how other macro packages deal with this but
it might well be the case that using many families
(one for each alphabet) works better in the end. The
engine is shape- and alphabet-agnostic, but one can
wonder if we should add a glyph property indicat-
ing the distinctive range. It would provide engine
level control over a run of glyphs (like multiplying
a variable represented by a greek alpha by another
variable represented by an upright b).

But glyph properties cannot be easily used here
because we are still dealing with characters when
the engine transforms the noad list into a node list.
So, when we discussed this, we started wondering
how the engine could know about a specific shape
(and tilt) property at all, and that brought us to
pondering about an additional axis of options. We
already group characters in classes, but we can also
group them with properties like tilted, dotless,
bold. When we pair atoms we can apply options,
spacing and such based on the specific class pair, and
we can do something similar with category pairs.

It boils down to, for instance, a new \mccode
that binds a character to a category. Then we add a
command like \setmathcategorization (analogue
to \setmathspacing) that binds options to pairs of
categories. An easier variant of this might be to let
the \mccode carry a (bit)set of options that then get
added to the already existing options that can be
bound to character noads as we create them. This
saves us some configuration. Deciding what suits
best depends on what we want to do: the fact that
TEX doesn’t do this means that probably no one
ever gave it much thought, but once we do have this
mechanism it might actually trigger demand, if only
by staring at existing documents where characters
of a different kind sit next to each other (take this
‘a’ invisible times ‘x’). It would not be the first time
that (in ConTEXt) the availability of some feature
triggers creative (ab)usage.

4.2 Moving towards kerns
Because the landscape has settled, because we haven’t
seen much fundamental evolution in OpenType math,
because in general TEX math doesn’t particularly

New directions in math fonts

308 TUGboat, Volume 43 (2022), No. 3

evolve, and because ConTEXt in the past has not
been seen as suitable for math, we can, as mentioned
before, basically decide what approach we follow. So,
that is why we can pick up on this italic correction in
a more drastic way: we can add the correction to the
width, thereby creating a nicely bounded glyph, and
moving the original correction to the right bottom
kern, as that is something we already support. In
fact, this feature is already available, we only had to
add setting the right bottom kern. The good news
is that we don’t need to waste time on trying to get
something extra in the font format, which is unlikely
to happen anyway after two decades.

It is worth noticing that when we were exploring
this as part of using MetaPost to analyze and visual-
ize these aspects, we also reviewed the wipeitalics
tweak and wondered if, in retrospect, it might be a
dangerous one when applied to alphabets (for digits
and blackboard bold letters it definitely makes sense):
it can make traditional super- and subscript anchor-
ing less optimal. However, for some fonts we found
that improper bounding boxes can badly interfere
anyway: for instance the upright ‘f’ in EB Garamond
sticks out left and right, and has staircase kerns that
make scripts overlap. The right top of the shape
sticks out a lot and that is because the text font
variant is used. We had already decided to add a
moveitalics tweak that moves italic kerns into the
width and then setting a right bottom kern that com-
pensates it that can be a pretty good starting point
for our further exploration of optimal kerns at the
corners. That tweak also fixes the side bearings (neg-
ative llx) and compensates left kerns (when present)
accordingly. An additional simplifykerns tweak
can later migrate staircase kerns to simple kerns.

So, does all this free us from tweaks such as
dimensions and kerns? Not completely. But we
can forget about the italic correction in most cases.
We have to set up fewer lower right kerns and maybe
correct a few. It is just a more natural solution. So
how about these kerns that we need to define? After
all, we also have to deal with proper top kerns, and
like to add kerns that are not there simply because
the mentioned compromise between width, italic cor-
rection, and their combination was impossible. More
about that in the next section.

5 Kerning
In the next pictures we will try to explain more
visually what we have in mind and are experimenting
with as we write this. In the traditional approach
we have shapes that can communicate the width,
height, depth and italic correction to the engine so
that is what the engine can work with. The engine

also has the challenge of anchoring subscripts and
superscripts in a visually pleasing way.

two characters width only with italic
In this graphic we show two pseudo-characters.

Each shown bounding box indicates the width as
seen by the engine. An example of such a shape is
the math italic ‘f ’, and as it is used a lot in formulas
it is also one of the hardest to handle when it comes
to spacing: in nearly all fonts the right top sticks
out and in some fonts the left part also does that.
Imagine how that works out with scripts, fences and
preceding characters.

When we put two such characters together they
will overlap, and this is why we need to add the italic
correction. That is also why the TEX documentation
speaks in terms of “always add the italic correction
to the width”. This also means that we need to
remove it occasionally, something that you will notice
when you study for instance the LuaTEX source,
that has a mix of traditional and OpenType code
paths. Actually, compensating can be done either by
changing the width property of a glyph node or by
explicitly adding a kern. In LuaMetaTEX we always
add real kerns because we can then trace better.

The last graphic in the above set shows how we
compensate the width for the bit that sticks out. It
also shows that we definitely need to take neighboring
shapes into account when we determine the width
and italic correction, especially when the latter is
not applied (read: removed).

kernel subscript superscript
Here we anchored a super- and subscript. The

subscript position is tight to the advance width, again
indicated by the box. The superscript however is
moved by the italic correction and in the engine
additional spacing before and after can be applied
as well, but we leave that for now. It will be clear
that when the font designer chooses the width and
italic correction, the fact that scripts get attached
has to be taken into account.

two characters width only

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 3 309

In this graphic we combine the italic correction
with the width. Keep in mind that in these examples
we use tight values but in practice that correction
can also add some extra right side bearing (white
space). This addition is an operation that we can
do when loading a font. At the same time we also
compensate the left edge for which we can use the
x-coordinate of the left corner of the glyph’s real
bounding box. The advance width starts at zero and
that corner is then left of the origin. By looking at
shapes we concluded that in most cases that shift
is valid for usage in math where we don’t need that
visual overlap. In fact, when we tested some of that
we found that the results can be quite horrible when
you don’t do that; not all fonts have left bottom
kerning implemented.

The dot at the right indicates the old italic
correction. Here we let it sit on the edge but as
mentioned there can be additional (or maybe less)
italic correction than tight.

kernel subscript superscript

Finally we add the scripts here. This time we
position the superscript and subscript at the top and
bottom anchors. The bottom anchor is, as mentioned,
the old italic correction, and the top one currently
just the edge. And this is what our next project
is about: identify the ideal anchors and use these
instead.

In the ConTEXt goodie files (the files that tweak
the math fonts at runtime) we can already set these
top and bottom anchors and the engine will use them
when set. These kerns are not to be confused with
the more complicated staircase kerns. They are much
simpler and lightweight. The fact that we already
have them makes it relatively easy to experiment
with this.

It must be noted that we talk about three kinds
of kerns: inter-character kerns, corner kerns and
staircase kerns. We can set them all up with tweaks
but so far we’ve only done that for the most sig-
nificant ones, like integrals. The question is: can
we automate this? We should be careful because
the bad top accent anchors in the TEX Gyre fonts
demonstrate how flawed heuristics can be. It’s inter-
esting to remark that the developers of these font
used MetaPost and are highly qualified in that area.
And for us using MetaPost is also natural!

The approach that we follow is somewhat in-
teractive. When working on the math update we

like to chat (with Zoom) about these matters. We
discuss and explore plenty and with these kerns we
do the same. Because MetaPost produces such nice
and crisp graphics, and because Metafun is well-
integrated into ConTEXt we can link all these sub-
systems and just look at what we get. A lot is about
visualization: if we discuss so-called ‘grayness’ as
related to kerning, we end up with calculating areas,
then look at what it tells us and as a next step figure
out some heuristic. And of course we challenge each
other into new trickery.

We are sure that getting this next stage in the
perfection of math typesetting in ConTEXt and Lua-
MetaTEX will take quite some time, but the good
news is that all machinery is in place. We also have
to admit that it might not all work out well, so we
end up sticking to what we have now. But at least
we had the fun then. It is also a nice example of both
applying mathematics and programming graphics.

That said, if it works out well, we can populate
the goodie files with output from MetaPost, tweak
a little when needed, and that saves us some time.
One danger is that when we try to improve rendering
the whole system also evolves which in turn will give
different output, but we can always implement all
this as features because after all ConTEXt is very
much about configuration. And it makes for nice
topics for articles and talks too!

The kerns discussed in the previous paragraphs
are not the ones that we find in OpenType fonts.
There we have ‘staircase’ kerns that stepwise go up or
down by height and kern. So, one can have different
kerns depending on the height and sort of follow the
shape. This permits quite precise kerning between
for instance the right bottom of a kernel and left
top of a subscript. So how is that used in practice?
The reference font Cambria has these kerns but close
inspection shows that these are not that accurate.
Fortunately, we never enter the danger zone with
subscripts, because other parameters prevent that.
If we look at for instance Lucida and Garamond,
then we see that their kerns are mostly used as side
bearings, not as staircase kerns.

New directions in math fonts

310 TUGboat, Volume 43 (2022), No. 3

𝛽
(65,-430)

(65,420)

(0,1431)

(-200,-430)

(-200,100)

(-130,844)

(0,1431)

832

Τ
(-192,0)

(-192,824)

(-4,1365)

(-40,0)

(-40,900)

(80,1365)
612

𝓌
(0,-16)

(0,220)

(80,974)

(-60,-16)

(-60,620)

(80,974)

(-180,-16)

(-180,420)

(-95,690)

(0,974)

1200 𝚸
(-276,0)

(-276,632)

(0,1365)

(0,0)

(0,616)

(65,1365)

𝜌
(65,-432)

(65,0)

(0,972)

(0,-432)

(0,664)

(20,972)

(-80,-432)

(-80,384)

(-65,690)

(0,972)

716

U+1D6FD U+003A4 U+1D4CC U+1D6B8 U+1D70C

In these figures you see a few glyphs from Cam-
bria with staircase kerns and although we show them
at a small size, you will notice that some kern bound-
aries touch the shape. As subscripts never go that
high it goes unnoticed but it also shows that sticking
to the lowest boundary makes sense.

We conclude that we can simplify these kerns,
and just transform them into our (up to four) corner
kerns. It is unlikely that Cambria gets updates and
that other fonts become more advanced. One can
even wonder if multiple steps really give better results.
The risk of overlap increases with more granularity
because not every pair of glyphs is checked. Also,
the repertoire of math characters will likely not grow
substantially, or include shapes that differ much from
what we can look at now. Reducing these kerns to
simple ones, that can easily be patched at will in a
goodie file, has advantages. We could even simplify
the engine that way.

6 Conclusion
So, how can we summarize the above? The first
conclusion is that we can only get good results when
we runtime patch fonts to suit the engine and our
(ConTEXt) need. The second conclusion is that we
should seriously consider to drop (read: ignore) most
math font parameters, and/or to reorganize them.
There is no need to be conforming, because these pa-
rameters are often not that well implemented (thumb
in mouth). The third conclusion, or perhaps obser-
vation, is that we should get rid of the excessive
use of italic correction, and go for our new corner
kerns instead. Last, we can conclude that it makes
sense to explore how we can use MetaPost to analyze
the shapes in such a way that we can improve inter-
character kerning, corner kerns and maybe even, in
a limited way, staircase kerns.

And, to come back to accents: very few char-
acters need a top kern. Most can be handled with
centered anchors, and we need tweaks for margins
and overshoot anyway. The same is true for many
other tweaks: they are there to stay.

This is how we plan to go forward:
• We pass no italic corrections in the math fonts to

the engine, but instead we have four dedicated
simple corner kerns, top and bottom anchors,
and we also compensate for a negative left side
bearing. We should have gone that route earlier

(as a follow-up on a MkIV feature) but were still
in some backward compatibility mindset.

• The LuaMetaTEX math engine might then be
simplified by removing all code related to italic
correction. Of course it hurts that we spent
so much time on that over the years. We can
anyway disable engine options related to italic
correction in the ConTEXt setup. Of course the
engine is less old school generic then but that is
the price of progress.

• A default goodie file is applied that takes care of
this when no goodie file is provided. We could
do something in the engine, but there is no real
need for that. We can simplify the mid-2022
goodie files because we have to fix fewer glyphs.

• If we end up needing italic corrections again
(that is: backtrack) then we can use the (new)
\mccode option code that can identity sloped
shapes. But, given that ignoring the correction
between sloped shapes looks pretty bad, we can
as well forget about this. After all, italic correc-
tion was never so much about correcting italics,
but more about anchoring scripts.

• Staircase kerns can be reduced to simple corner
kerns and the engine can be simplified a bit
more. In the end, all we need is true widths and
simple corner kerns.

• We reorganize the math parameters and get rid
of those that are not truly dependent on the
font design. This also removes a bit of overlap.
This will be done as we document.

• Eventually we can remove tweaks that are no
longer needed in the new setup, which is a good
thing as it also saves us some documenting and
maintenance.
All this will happen in the perspective of Con-

TEXt and LuaMetaTEX but we expect that after a
few years of usage we can with confidence come to
some conclusions that can trickle back into the other
engines so that other macro packages can benefit
from a somewhat radically different, but reliable,
approach to math rendering, one that works well
with both old and new fonts.

⋄ Hans Hagen
Pragma ADE

⋄ Mikael P. Sundqvist
Department of Mathematics
Lund University
Box 118
221 00 Lund
Sweden
mickep (at) gmail dot com

Hans Hagen, Mikael P. Sundqvist

	Introduction
	Tweaks, also known as goodies
	Font parameters
	Metrics, especially italic corrections
	Spacing
	Moving towards kerns

	Kerning
	Conclusion

