
94 TUGboat, Volume 44 (2023), No. 1

LuaCAS: Symbolic computation in LATEX
Timothy All, Evan Cochrane

Abstract
LuaCAS is a portable computer algebra system, writ-
ten entirely in Lua, designed for use within LuaLATEX
via the luacas package [1]. Features include: ar-
bitrary precision integer and rational arithmetic,
number-theoretic algorithms, constructors and al-
gorithms for univariate polynomials defined over var-
ious rings, symbolic differentiation and integration,
and more.

1 Motivation
Most existing computer algebra systems such as
Maple and Mathematica allow for converting their
stored expressions to LATEX code. But this still re-
quires exporting code from LATEX to another pro-
gram, converting it to a form that the CAS is expect-
ing, performing the computation, and importing the
result, which can be tedious.

In contrast, the luacas package allows the user
to perform basic symbolic computations from within
LuaLATEX without the need for laborious and techni-
cal setup. One simply installs the package like any
other and adds \usepackage{luacas} to the pream-
ble. Indeed, this article, along with all computations
contained therein, was prepared in Overleaf.

2 An example
The main method for interacting with LuaCAS from
within LuaLATEX is to use the CAS environment. The
following example demonstrates typical usage:
\begin{CAS}

vars('x')
f = int(sin(sqrt(x)),x)

\end{CAS}
\[\print{f} = \print*{f} \]∫

sin
(√

x
)
dx = −2

√
x cos

(√
x
)
+ 2 sin

(√
x
)

The macro \print converts the contents of its ar-
gument as-is into a string formatted for LATEX and
prints the result into the document via tex.print;
the starred variant \print* evaluates and performs
some basic simplifications on its argument before the
conversion to LATEX step.

3 Development
LuaCAS began as a senior capstone at Rose-Hulman
Institute of Technology in the fall of 2021. The
primary use case we had in mind early in develop-
ment was that of a professor creating content with
dynamic examples and problems for introductory

calculus classes. We thus decided to make symbolic
differentiation/integration the end goal of the project,
as well as including basic algebraic functionality ex-
pected in any CAS.

Our first task was programming the core trees
that would be used to store expressions. Mathe-
matically speaking, an expression is a rooted tree.
The luacas package comes with a pair of macros
\parseforest (plus a starred variant that evaluates
and simplifies the argument) and @\forestresult
that allow the user to draw these rooted trees with
the help of the forest package [9]. For example,
with f defined as in the previous example, we have:
\parseforest*{f}
\bracketset{action character=@}
\begin{forest}

for tree = {font=\ttfamily}
@\forestresult

\end{forest}
ADD

MUL

-2 POW

x 1/2

cos

POW

x 1/2

MUL

2 sin

POW

x 1/2

Object-oriented Lua was chosen as our programming
paradigm, allowing for the functionality of the CAS
to be easily extensible without the need for compiling
or setting up a complicated build environment.

Given that LuaCAS is written in an interpreted
language, one can expect dramatically slower per-
formance when comparing LuaCAS to popular com-
puter algebra systems. Any mathematical operation
or structure also gets its own class under this scheme,
so there is an inevitable explosion in the number of
classes. Despite this, LuaCAS performs well within
the scope of its design and motivation.

We decided to split LuaCAS into modules, partly
to increase the potential for extensibility and partly
to reduce the time to load the CAS when only a
subset of its features are needed. At the time of this
writing, there are three modules: core, algebra, and
calculus. The luacas package loads these modules
by default.

The core module contains all of the interfaces
for expressions that other classes need to extend
(e.g., expression manipulation, substitution, etc.).
The algebra module contains polynomial algorithms
and common algebraic and trigonometric functions,
as well as interfaces for algebraic structures such as

doi.org/10.47397/tb/44-1/tb136all-luacas

Timothy All, Evan Cochrane

https://doi.org/10.47397/tb/44-1/tb136all-luacas

TUGboat, Volume 44 (2023), No. 1 95

rings and fields. Class inheritance was chosen to
mirror mathematical structures — fields inherit from
Euclidean domains since all fields are Euclidean do-
mains, and Euclidean domains likewise inherit from
rings. Concrete classes represent specific rings, such
as integers or polynomials, and objects are elements
of these rings. Finally, the calculus module con-
tains classes for differentiation and integration.

Features were implemented chronologically by
an informal notion of how mathematically ‘fundamen-
tal’ they were. Accordingly, expression simplification
via algebraic properties came first, then polynomial
factoring/root-finding, then symbolic differentiation,
and finally symbolic integration. This order turned
out to be convenient for testing purposes, since sym-
bolic integration relies on factoring for rational func-
tion integration. Algorithms for symbolic factoring
and differentiation are well-established [10], but sym-
bolic integration required significantly more tinker-
ing to balance power and efficiency. This took the
project beyond its original scope as a senior project;
development on the symbolic integrator continued
for months. Version 1.0.1 of luacas was uploaded
to CTAN on November 15, 2022.

4 Features
The CAS environment is fundamentally a glorified
\directlua. Accordingly, the CAS environment can
be used essentially anywhere in a LATEX document,
and variables declared in one instance of the CAS
environment will be remembered in the next instance
of the CAS environment. Thus, expressions can be
manipulated naturally throughout a document, as
the examples below will illustrate.

4.1 Core
At the core of any computer algebra system is the
notion of an expression. In LuaCAS, there are atomic
expressions (e.g., integers, variables) and composite
expressions. Variables must be declared or initialized
before use (like Sage in days of yore). This is done
with the vars() function within the CAS environ-
ment. Using a combination of Lua’s meta-methods
and operator overloading, composite expressions are
constructed naturally:
\begin{CAS}

vars('x')
f,g = 1-x+0*x, 1+1*x
h = f*g

\end{CAS}
\[\print{h} \]

(1− x+ 0 · x) (1 + 1x)

Essential functionality for any computer algebra sys-
tem is the process of simplification. Externally, the

user expects output from the CAS to be simple and
concise. Internally, simplification serves as a sort of
normalization procedure for expressions. Expressions
can be simplified in a couple of different ways:
\begin{CAS}
ah = h:autosimplify()
sh = h:simplify()

\end{CAS}
\[\print{ah} = \print{sh} \]

(1 + x) (1− x) = 1− x2

The autosimplify method is designed to be fast, as
it is automatically performed on expressions before
most other functions, such as factoring and expansion.
Accordingly, it perhaps does not go as far as one
might expect. For a more rigorous simplification, the
simplify method makes a rudimentary search for
the smallest expression tree equivalent to the input.

The core functionality of LuaCAS allows for
other types of expression manipulation including
substitutions:
\begin{CAS}
vars('h')
sh = substitute({[x]=x+h},sh)

\end{CAS}
\[\print{sh} \]

1− (x+ h)
2

4.2 Algebra
The Algebra module contains constructors for various
special classes and related algorithms.

4.2.1 Rings
There are constructors for the following Ring types:

• the integers,
• the integers modulo N ,
• rationals (interpreted somewhat broadly), and
• polynomials.

A rudimentary parser wrapped around the contents
of the CAS environment calls most of these construc-
tors in a natural way:
\begin{CAS}
a,b,c = 65, Mod(65,4), 63/65

\end{CAS}
\[\lprint{{a,b,c}} \]

65, 1,
63

65
But to construct a polynomial requires specific input
from the user:
\begin{CAS}
vars('x')
f,g = x^2+2*x+3, Poly({3,2,1},x)

\end{CAS}
\[\print{f} \qquad \print{g} \]

LuaCAS: Symbolic computation in LATEX

96 TUGboat, Volume 44 (2023), No. 1

x2 + 2x+ 3 x2 + 2x+ 3

The printouts of f and g look the same; but in-
ternally, LuaCAS handles these expressions quite
differently. There are several advantages to having
a dedicated polynomial class, not least of which is
computational speed.

On the other hand, the user more often than
not needn’t worry about issues pertaining to class
types. Many functions in LuaCAS are class-aware in
that they will either detect or make some attempt
at converting class types for you. For example, the
factor function applied to a = 1440 will detect that
the input is an Integer, then apply number theo-
retic algorithms to determine the prime-factorization
(specifically a combination of Pollard-Rho and Miller-
Rabin). On the other hand, when factor is given
the expression f = x3+x2+x−3, it first converts f
to the polynomial class; from there it uses special al-
gorithms to find the factorization over Q (specifically
a combination of Berlekamp [2] and Zassenhaus [10]).

\begin{CAS}
vars('x')
a,f = 1440, x^3 + x^2 + x - 3

\end{CAS}
\[\begin{aligned}

\print{f} &= \print{factor(f)} \\
\print{a} &= \print{factor(a)}

\end{aligned} \]

x3 + x2 + x− 3 = (−1 + x)
(
3 + 2x+ x2

)
1440 = 322551

4.2.2 Ring conversion
Each Ring type comes equipped with a Ring iden-
tifier. This identifier is used to cast arithmetic per-
formed on differing Ring types to the appropriate
Ring. For example, if we ask LuaCAS to add a
polynomial with integer coefficients to a rational
number, LuaCAS will fetch the Ring identifiers for
both classes and determine that the appropriate Ring
into which to cast the arithmetic is the polynomial
ring with rational coefficients:
\begin{CAS}

a,b,c = 2, 4/3, Poly({-3,1,1,1},x)
d = c+b+a

\end{CAS}
\[(\print{c}) + \print{b}

+ \print{a} = \print{d}\]

(x3 + x2 + x− 3) +
4

3
+ 2 = x3 + x2 + x+

1

3

4.2.3 Special classes
The Algebra module provides constructors for special
classes such as those for trigonometric, radical, and

logarithmic expressions, along with support for the
expected simplifications of these expressions:
\begin{CAS}
vars('x')
a,b,c=sin(4*pi/3),ln(e^(x+1)),sqrt(8/9)

\end{CAS}
\[\begin{aligned}
\print{a} &= \print*{a} \\
\print{b} &= \print*{b} \\
\print{c} &= \print*{c}

\end{aligned} \]

sin

(
4π

3

)
= −

√
3

2

ln
(
ex+1

)
= 1 + x√

8

9
=

2
√
2

3

4.2.4 Number theoretic algorithms
LuaCAS also provides basic number theoretic func-
tionality. For example, LuaCAS can run the extended
Euclidean algorithm:
\begin{CAS}
a,b = 42250, 46137
c,x,y = gcdext(a,b)

\end{CAS}
\[\print{c} = \print{a} (\print{x})

+\print{b}(\print{y}) \]

169 = 42250(−95) + 46137(87)

LuaCAS also contains factoring algorithms and pri-
mality checking for the Integer-class. For primality
checking, we use Miller-Rabin [5] and the base set
of prime witnesses p = 2, 3, . . . , 41. Accordingly, pri-
mality checking can be trusted for integers a bit
beyond 1024. For factoring, we use Miller-Rabin
combined with Pollard-Rho [4] to search for prime
factors recursively:
\begin{CAS}
a = 407808999
b = factor(a)

\end{CAS}
\[\print{a} = \print{b} \]

407808999 = 34313132

4.2.5 Polynomial algorithms
LuaCAS hosts a number of algorithms for (univariate)
polynomial arithmetic over the rationals or modulo
a prime, including: extended Euclidean algorithm,
factoring, and resultants.
\begin{CAS}
vars('x')
f = Mod(topoly(x^2+x+1),7)
ff = factor(f)

\end{CAS}

Timothy All, Evan Cochrane

TUGboat, Volume 44 (2023), No. 1 97

\[\print{f} = \print{ff} \]

x2 + x+ 1 = 1 (x+ 5)
1
(x+ 3)

1

LuaCAS also contains algorithms for symbolic
root finding over the rationals (including support-
ing algorithms like those for finding decomposition
series).
\begin{CAS}

vars('x')
f = topoly(x^4 + 4*x^3 - 8*x + 3)
r = roots(f)

\end{CAS}
\[\left\{ \lprint{r} \right\} \]{

1,−3,−1 +
√
2,−1−

√
2
}

4.3 Calculus
The Calculus module contains constructors for deriva-
tives/integrals and algorithms for symbolic differen-
tiation/integration.

4.3.1 Differentiation
Due to the nature of differentiation, LuaCAS can
quickly compute the derivatives of almost any ex-
pression that can be represented in LuaCAS.
\begin{CAS}
vars('x', 'y', 'z')
f,g = 3*ln(y)*sin(x), x^(1/(x*z))*x
dg, df = diff(g,x), diff(f,{x,3},{y,2})
\end{CAS}
\[\print{dg} = \print*{dg} \]
\[\print{df} = \print*{df} \]

d

dx

(
x

1
xz x

)
= x1+

1
x
z

(
1 +

1
x

z

)
x

− ln(x)

x2z

∂5

∂y2∂x3
(3 ln(y) sin(x)) =

3 cos(x)

y2

4.3.2 Integration
LuaCAS can evaluate a wide variety of definite and
indefinite integrals. The integrator mostly works
by calling standard methods familiar to any college
calculus student recursively (such as u-substitution,
integration-by-parts, etc.) and then searching for
the appropriate anti-derivative. For integration of
rational functions, we use the method of Lazard,
Rioboo, Rothstein and Trager [8].
\begin{CAS}

f = e^(2*x)*cos(3*x)
F = int(f, x,0,pi)

\end{CAS}
\[\print{F} = \print*{F} \]∫ π

0

e2x cos(3x) dx = − 2

13
− 2e2π

13

However, we cannot guarantee that an integral will
be able to be evaluated, even if the expression is
integrable in elementary terms.

5 Interaction with the LATEX ecosystem
Given that the CAS environment is just a glorified
lua environment, LuaCAS interacts very well with
TEX primitives and standard macros as well as the
Lua language. Indeed, the design of LuaCAS was
(in part) inspired by the potential to write reusable
code such as:
\newcommand{\Euclid}[3]{%
\begin{CAS}
vars('x')
a,b,p = #1,#2,#3
a = Mod(topoly(a),p)
b = Mod(topoly(b),p)
tex.print("\\[\\begin{aligned}")
while b.degree>0 do

q,r = a:divremainder(b)
tex.print(a:tolatex(),
"&= (",
b:tolatex(),
")(",
q:tolatex(),
")+",
r:tolatex(),
"\\\\")
a,b = b,r

end
tex.print("\\end{aligned} \\]")

\end{CAS}%
}
\Euclid{x^4+x^3+x^2+x+1}{x^3+2*x+3}{7}

x4 − x2 + 1 = (x3 + 2x+ 1)(x) + 4x2 − x+ 1

x3 + 2x+ 1 = (4x2 − x+ 1)(2x+ 4) + 4x+ 4

4x2 − x+ 1 = (4x+ 4)(x+ 4) + 6

The macro \Euclid displays the Euclidean algorithm
applied to the polynomials found in the first and
second arguments modulo the prime found in the
third argument.

The luacas package comes with the macros
\fetch and \store. These macros allow the user to
pull content out of LuaCAS in a format that’s appro-
priate for packages like TikZ/PGF [7] and Asymptote
[3]. For example:
\begin{CAS}
vars('x')
f = sin(2*x)+x/3
df = diff(f,x):autosimplify()

\end{CAS}
\store{f}\store{df}

The macro \df contains the string:
1/3 + (2 * (cos(2 * x)))

LuaCAS: Symbolic computation in LATEX

98 TUGboat, Volume 44 (2023), No. 1

Macros created via the \store command can be
called into other environments like the asypicture
environment from the asypictureB package [6]:
\begin{asypicture}{}

import graph; size(6cm,0);
real f(real x){return @f;}
real df(real x){return @df;}
draw(graph(f,-pi,pi,operator..),orange);
draw(graph(df,-pi,pi,operator..),blue);
xaxis("x",BottomTop,LeftTicks);
yaxis("y",LeftRight,RightTicks);

\end{asypicture}

−1

0

1

2

y

−3 −2 −1 0 1 2 3

x

The macro \fetch does nearly the same thing as
\store except no macro is created; in other words,
\fetch{df} can be used wherever we would have
used \df. This is particularly useful for grabbing
values out of tables built with LuaCAS:
\begin{tikzpicture}[scale=7]

\draw[orange,densely dashed] (0,0) -- (1,0);
\foreach \k in {2,...,22}{
\draw[blue]

(\fetch{F[\k]},\fetch{H[\k]})
circle (\fetch{H[\k]});

\node[below] at (\fetch{F[\k]},0)
{\small$\print{F[\k]}$};

}
\end{tikzpicture}

1
8
1
7
1
6

1
5

1
4

2
7

1
3

3
8
2
5
3
7

1
2

4
7
3
5
5
8

2
3

5
7

3
4

4
5

5
6
6
7
7
8

6 Future
In the future, we aim to expand the feature set of
LuaCAS and include at least a decent chunk of the
functionality common to popular existing computer
algebra systems. This may include:

• summation and product expressions
• symbolic limits
• symbolic differential equation solving
• irreducible factorization of multivariate

polynomials

• logic & set theory
• symbolic linear algebra
• numeric functionality

On the LATEX side of things, it would be good to
include some amount of externalization so that Lua-
CAS performs computations only when needed and
not at every compile.

7 Acknowledgements
We’d like to thank the Mathematics Department
at Rose-Hulman Institute of Technology for their
support throughout this project. A special thanks
goes to Joseph Eichholz for many helpful discussions
and constructive feedback.

References
[1] T. All, E. Cochrane. The Luacas package.

ctan.org/pkg/luacas

[2] E.R. Berlekamp. Factoring polynomials over
finite fields. Bell System Technical Journal
46(8):1853–1859, 1967.

[3] J. Bowman, A. Hammerlindl. The Asymptote
package. asymptote.sourceforge.net

[4] J.M. Pollard. A Monte Carlo method for
factorization. Nordisk Tidskr.
Informationsbehandling (BIT) 15(3):331–334,
1975.

[5] M.O. Rabin. Probabilistic algorithm for testing
primality. J. Number Theory 12(1):128–138,
1980.

[6] C. Staats III. The AsypictureB package.
ctan.org/pkg/asypictureb

[7] T. Tantau, C. Feuersänger, et al. The PGF
package. ctan.org/pkg/pgf

[8] B.M. Trager. Algebraic factoring and rational
function integration. In Proceedings of the third
ACM symposium on Symbolic and algebraic
computation, pp. 219–226, 1976.

[9] S. Živanocić. The Forest package.
ctan.org/pkg/forest

[10] H. Zassenhaus. On Hensel factorization, I.
J. Number Theory 1(3):291–311, 1969.

� Timothy All
Department of Mathematics
Rose-Hulman Institute of Technology
Terre Haute, IN 47803 USA
timothy.all (at) rose-hulman dot edu

� Evan Cochrane
cochraef (at) rose-hulman dot edu

Timothy All, Evan Cochrane

https://ctan.org/pkg/luacas
https://asymptote.sourceforge.net
https://ctan.org/pkg/asypictureb
https://ctan.org/pkg/pgf
https://ctan.org/pkg/forest

	Motivation
	An example
	Development
	Features
	Core
	Algebra
	Rings
	Ring conversion
	Special classes
	Number theoretic algorithms
	Polynomial algorithms

	Calculus
	Differentiation
	Integration

	Interaction with the LaTeX ecosystem
	Future
	Acknowledgements

