
Creating macros in OpTEX

Petr Oľsák

Introduction

OpTEX [1] is an extended plain TEX. We can create
macros as in plain TEX. In particular, this means
that we use TEX primitives like \def, \edef, \ifx,
\expandafter, \csname, \hbox, \vbox, \hrule, and
so on. Likewise, we use basic plain TEX macros like
\newcount, \llap and many others. I wrote a sum-
mary of these TEX and plain TEX tools in [2].

OpTEX keeps the plain TEX philosophy: it does
not create any new syntactic, semantic, or thought
layers over TEX, so the commands mentioned above
are principal ones, basic for creating macros. For
example, OpTEX doesn’t try to provide anything sim-
ilar to \newcommand, nor anything similar to expl3.
The main message is: if you know TEX, you can
make your macros.

On the other hand, OpTEX provides many el-
ementary macros which can make macro program-
ming easier. And there are a few conceptual rec-
ommendations especially to separate different name-
spaces when your macros will be used for public
purposes. This article summarizes these tools and
principles. More detailed information can be found
in the OpTEX manual [3].

Naming conventions and namespaces

When you are creating macros for your use then you
can use arbitrary alphabetical names for newly de-
clared control sequences. Moreover, you can redefine
existing names, if you decide that it is useful and
you never are using them in their original meaning.
For example, you can define \def\box{...} without
any problem, as long as you use it only with your
declared meaning. It doesn’t matter that \box is a
TEX primitive in its original meaning. OpTEX inter-
nally uses copies of all primitive names and internal
macro names, _box in this case.

In other words, when OpTEX starts, all inter-
nal sequences are duplicated (both \box and _box

are present, with the same meaning) and OpTEX
uses only the name _box in its internal macros. A
user can redefine \box if he or she finds it useful, or
doesn’t know that the name is already used. There is
only one requirement: if you re-declare a control se-
quence then it cannot be used in its original meaning
in your document. For example, \def\def{...} is
possible but then you cannot use \def as a primitive
command in your next text.

TUGboat, Volume 44 (2023), No. 1 121

The alphabetical control sequences like \foo,
\SomethingOther, \hbox are considered in “public
namespace” from the OpTEX point of view. On the
other hand, alphabetical control sequences begin-
ning with “_” (like _foo) are reserved in special
namespaces. The character “_” has category code 11
(letter) in OpTEX.* This means that you have full
access to the internal control sequences like _foo

without any category dancing. You don’t need to say
something like \makeatletter ... \makeatother.
You can use these internal sequences in “read-only”
mode without any restrictions. You can redefine
them too, but if you decide to do that then you
hopefully know what you are doing, and what inter-
nal process in OpTEX will be changed.

As mentioned above, “OpTEX’s private name-
space” includes names beginning with “_” followed
by normal letters. There are copies of all TEX prim-
itives and internal OpTEX macros here. An internal
macro of a macro package uses its “package’s private
namespace” _pkg_foo, where “pkg” is a shortcut of
the package. A package writer uses the _namespace
declaration for dealing with such control sequences
more comfortably; see below, the section “writing
public macro packages”.

The single-letter control sequences (like \$, \/,
\,) are declared similarly to plain TEX** and are not
used in internal OpTEX macros. Users can re-declare
them freely without affecting the behavior of OpTEX.

Basic macros for macro programmers

OpTEX provides a few basic macros:

• \sdef{〈cs-name〉} defines a control sequence
whose name is given by the 〈cs-name〉 string.
Thus, \sdef {T\the\mycount}#1:#2{...} is
(roughly speaking) an equivalent to \def\T42

#1:#2{...} if \mycount=42.
• \sxdef{〈cs-name〉} is similar to \sdef, but the
\xdef primitive is used behind the scenes in-
stead of \def.
• \slet{〈cs-name1 〉}{〈cs-name2 〉} is (roughly

speaking) equivalent to \let 〈cs-name1 〉=
〈cs-name2 〉.

* There is a little trick to enable use of this char-
acter with its normal plain TEX meaning in math
mode without changing this category. But it works.

** Not all single letter control sequences from plain
TEX are available. Control sequences for accents like
\", \’ are undefined by default because we suppose
that accented letters are directly written in Unicode
(the current year is 2023). But a conservative user
can enable them with the \oldaccents declaration.

doi.org/10.47397/tb/44-1/tb136olsak-optexmac

Creating macros in OpTEX

• \adef 〈character〉 sets the 〈character〉 to be
active and defines it like \def〈character〉. For
example, \adef *{...} or \adef @#1#2{...}.
• \optdef\macro [〈default〉]〈params〉 is similar

to \def\macro 〈params〉 but the \macro can
be used with an optional argument given like
\macro[〈text〉] before scanning other parame-
ters. If the optional syntax is used then the
token register \opt includes 〈text〉. Otherwise,
it includes 〈default〉.
• \eoldef\macro #1{...} defines \macro with

a single parameter delimited by the end of the
current line. This parameter is #1, and it can
be used in the macro body. Such a \macro can
be used only when lines of text are read, not
inside other macros.
• \cs{〈text〉} is a shortcut for the commonly-used
\csname 〈text〉\endcsname.
• \trycs{〈text〉}{〈else〉} does \cs{〈text〉} only

if \cs is defined, otherwise the 〈else〉 part is
processed.

There is a useful shortcut of the \expandafter

primitive: \ea. Of course, it is safer to use _ea

because control sequences with short names tend to
be re-declared later by a user.

Additional simple macros include:

• \ignoreit{〈text〉} does nothing.
• \useit{〈text〉} does 〈text〉.
• \ignoresecond{〈A〉}{〈B〉} does 〈A〉.
• \usesecond{〈A〉}{〈B〉} does 〈B〉.

You can add a given text to a parameterless
macro:

• \addto\macro{〈text〉} appends 〈text〉 to the
\macro body.
• \aheadto\macro{〈text〉} prepends 〈text〉 to the
\macro body.

You can globally increase a counter by one by
\incr〈counter〉 and decrease it by \decr〈counter〉.
\opwarning{〈message〉} prints a message to the ter-
minal and log file.

Branching macro processing

Of course, you can use all of TEX’s \if* primitives.
OpTEX also provides the following \is* conditionals
with the general syntax being one of:

\isfoo...\iftrue 〈true-text〉\else 〈false-text〉\fi
or
\isfoo...\iffalse 〈false-text〉\else 〈true-text〉\fi

The macro \isfoo calculates the condition and
gobbles the \iftrue or \iffalse. You have to
use this syntax because the \isfoo block can be

122 TUGboat, Volume 44 (2023), No. 1

skipped by another outer \if condition and the pairs
\if . . . \fi must match.

The \isfoo macros are:

• \isempty{〈text〉}\iftrue is true if 〈text〉 is
empty.
• \isequal{〈text-A〉}{〈text-B〉}\iftrue is true

if the string 〈text-A〉 is equal to 〈text-B〉. These
parameters are treated as strings. The category
code of the characters has no effect.
• \ismacro\macro{〈text〉}\iftrue is true if the

body of the parameterless \macro is equal to
given 〈text〉.
• \isdefined{〈cs-name〉}\iftrue is true if the
〈cs-name〉 is defined.
• \isinlist\list{〈text〉}\iftrue is true if the
〈text〉 is included in the \list macro body.
• \isfile{〈file-name〉}\iftrue is true if the file

named 〈file-name〉 exists and is accessible by
TEX for reading.
• \isfont{〈font-name〉}\iftrue is true if the

font named 〈font-name〉 exists. You can use
[〈font-file〉] instead of 〈font-name〉 too.

All these \is-macros are fully expandable. The
following \is-macro has different syntax than the
macros mentioned above, but it is also expandable:

• \isnextchar 〈char〉{〈true-text〉}{〈false-text〉}.
If the next character is equal to 〈char〉 then
〈true-text〉 is processed else 〈false-text〉 is pro-
cessed.

OpTEX provides the \afterfi{〈text〉} macro
which can be used inside \if . . . \else . . . \fi. The
macro closes the \if . . . \fi block and runs 〈text〉
after it is closed. For example

\ifx\a\b ... \afterfi{do something}%

\else ... \afterfi{do something else}%

\fi

This is almost the same as _ea 〈token〉\else or
_ea 〈token〉\fi but the \afterfi parameter can
include more than a single token.

A nested \if . . . \fi block can be inside the
\afterfi parameter and \afterfi macros can be
here too. It means that nested \afterfi macros
work as expected. You don’t need to escape from
a nested \if . . . \fi block by a larger number of
\expandafters.

We must recall that usage of primitive condi-
tionals with \if . . . \fi blocks hides one potential
problem: if you are designing a macro that reads a
TEX macro code token by token then your #1 might
be \if or \else or something similar. Usage of such
#1 inside your \if . . . \fi block in your macro causes
TEX to give an error. What can you do in such a

Petr Oľsák

case? Here’s one example, when looking for a specific
token (~, here):

\ifx ~#1\ea\ignoresecond\else \ea\ignorefirst\fi

{〈true text with #1, we know that #1 is ~〉}
{〈else text with #1〉}%

Branching with more structural macros

OpTEX provides macros \caseof and \xcaseof to
switch among more alternatives. Usage of \caseof:

\caseof 〈token〉
〈token A〉 {〈text A〉}
〈token B〉 {〈text B〉}
〈token C 〉 {〈text C 〉}
...

_finc {〈else text〉}%

If 〈token〉 is 〈token A〉 then only 〈text A〉 is pro-
cessed, if 〈token〉 is 〈token B〉 then only 〈text B〉 is
processed, etc. If 〈token〉 differs from all declared
tokens, then 〈else text〉 is processed.

The \xcaseof macro is similar, but you can
specify an arbitrary primitive \if-test instead of a
token comparison only. The fragment of the code
above with one condition more can be written as

\let\next=〈token〉
\xcaseof

{\ifx\next A} {〈text A〉}
{\ifx\next B} {〈text B〉}
{\ifx\next C} {〈text C 〉}
{\ifnum\mynum=12 } {〈text 12 〉}
...

_finc {〈else text〉}%

A \caseof block is skippable by an outer \if . . . \fi
block but \xcaseof is not.

If there is more than one “true” result of the
conditions given by \xcaseof, then the first condi-
tion wins and the others are skipped.

The _finc separator followed by {〈else text〉}
is obligatory. Of course, you can declare empty 〈else
text〉. The separator must be written as _finc

separator, not \finc. The reason is that the same
syntax is given for _caseof and _xcaseof macros.

The spaces between \caseof or \xcaseof pa-
rameters are ignored but not the last space after
the {〈else text〉}. Note the percent character in the
examples.

\caseof and \xcaseof are fully expandable
macros.

Loops

You can use the classical plain TEX \loop macro.
The one difference from plain’s \loop is that OpTEX

TUGboat, Volume 44 (2023), No. 1 123

allows you to declare \if . . . \else . . . \repeat. But
nothing more. There are still limitations here: \loop
is not expandable and \loop inside \loop is possible
only if the inner \loop is in a group.

OpTEX provides two additional looping macros,
\foreach and \fornum. They are fully expandable
and can be arbitrarily nested without declaring a
group. The body of these macros is processed with-
out opening and closing a group. The syntax of the
\foreach macro is one of:

\foreach 〈text〉\do {〈body〉}
or
\foreach 〈text〉\do 〈parameter-spec〉{〈body〉}

The first variant runs 〈body〉 for each token* from the
〈text〉. The current token (current parameter) can be
processed inside the 〈body〉 as #1. If the \foreach

block is included inside another macro then you have
to use ##1; if it is inside a macro in a macro, or
inside another \foreach or \fornum body, then use
####1, etc.

The second variant with 〈parameter-spec〉 en-
ables scanning of the given 〈text〉 with an arbitrary
parameter specification like with \def. You can de-
clare separators for these parameters. For example,
suppose we are creating a macro \macro which gets
a parameter as a list of pairs in parentheses:

\macro{(a,b); (c,d); (1,42)}

and we want to read this and print these pairs in
reverse order and with a different format: b/a d/c

42/1. We can do this by:

\def\macro#1{%

\foreach #1\do ##1(##2,##3){##3/##2 }%

}

The unused ##1 is there because we want to ignore
an optional “; ” before the opening (.

This \macro is expandable, so you can use it
inside the parameter of the \message primitive, for
example.

The \fornum and \fornumstep macros have the
following syntax:

\fornum 〈from〉..〈to〉 \do {〈body〉}
or
\fornumstep 〈step〉: 〈from〉..〈to〉 \do {〈body〉}

The 〈body〉 is repeated for numbers starting at 〈from〉
and ending at 〈to〉. The \fornum increments the
number by one. The second case uses the given
〈step〉. The parameters 〈from〉, 〈to〉, 〈step〉 can be

* Not always a single token: if the 〈text〉 includes
{...} then all tokens inside these braces are taken at
once, similar to the scanning of a macro parameter.

Creating macros in OpTEX

any arbitrary expression accepted by the \numexpr

primitive. The current number is accessible in 〈body〉
as #1 (or ##1 inside macros, etc.).

You may notice that there is a name conflict: the
same control sequence \foreach is used by the TikZ
package with different syntax and different features.
OpTEX enables loading TikZ by \load[tikz]. If this
is done then the \foreach from TikZ is available only
within the \tikzpicture . . . \endtikzpicture en-
vironment. Outside this environment, the \foreach

from OpTEX is active. Moreover, your macro code
can use the private _foreach from OpTEX if you
want to be sure what you are using. With _foreach,
you have to use the _do separator, instead of \do.

Why is there such a naming conflict? My macros
are several decades old; older than TikZ. I don’t want
to rename this control sequence only due to TikZ
(especially when I personally hardly use TikZ).

Key–value syntax for parameters

Calling \readkv{〈list〉} or \readkv\list reads a
given 〈list〉 or a \list macro in 〈key〉=〈value〉 for-
mat. These pairs are comma-separated, and the
=〈value〉 may be missing. Once the 〈list〉 is read,
you can access the 〈value〉 by expandable macro
\kv{〈key〉}. If you only need to know whether the
〈key〉 was used then \iskv{〈key〉}\iftrue returns
the answer.

You can also declare 〈code〉 to be processed
whenever a particular 〈key〉 is encountered during
\readkv. This is done with \kvx{〈key〉}{〈code〉}.
The 〈code〉 can access the scanned 〈value〉 as #1.
Specifying \nokvx{〈other code〉} declares common
〈other code〉 to process for all 〈keys〉 not declared
by \kvx. The 〈other code〉 can use #1 to access the
〈key〉 and #2 to access the 〈value〉.

The 〈key〉=〈value〉 data are stored in and read
from a dictionary with the name \kvdict, which
is a token register. It is empty by default, i. e. the
default dictionary has an empty name. You can
manage more dictionaries by changing it.

The following example is borrowed from the
OpTEX documentation. We define a macro \myframe

which can scan optional parameters in [...] key–
value format and sets colors and dimensions by these
parameters. When we use, for example

\myframe [rule-width=2pt, frame-color=\Blue]

{text}

then a frame around the given text with rule width
2pt in blue color is created. The macro can be defined
like this:

124 TUGboat, Volume 44 (2023), No. 1

\def\myframedefaults{% defaults:

frame-color=\Black, % color of rules

text-color=\Black, % color of the text

rule-width=0.4pt, % width of rules

margins=2pt, % space between text and rules

}

\optdef\myframe []#1{%

\bgroup

\readkv\myframedefaults \readkv{\the\opt}%

\rulewidth=\kv{rule-width}%

\hhkern=\kv{margins}%

\vvkern=\kv{margins}\relax

\kv{frame-color}%

\frame{\kv{text-color}\strut #1}%

\egroup

}

The \myframe macro from this example runs the
\frame macro provided by OpTEX. Its parameters
\rulewidth, \hhkern and \vvkern are set from val-
ues given in key–value format when \myframe is used.
The \myframedefaults macro clearly specifies the
default values and any user-given values are read
from the optional argument from the \opt tokens
register. The \readkv macro is used twice: first the
default values are read and second, the user-specified
values are read. The last assignment wins.

Expressions

In addition to the well-known \numexpr primitive
from ε-TEX, OpTEX provides the expandable macro
\expr{〈expression〉}, which calls the Lua interpreter
(OpTEX always runs under LuaTEX) and does arith-
metic with decimal numbers. The number of dec-
imal digits of the result is 3 by default; this can
be overridden with the optional argument, as in
\expr[〈digits〉]{〈expression〉}. Examples:

\expr{2*(4-1.3)} % 5.400

\expr{math.sqrt(1/3)} % 0.577

\expr[14]{math.pi} % 3.14159265358979

The OpTEX macro \bp{〈dimen〉} provides an
expandable conversion of 〈dimen〉 to the decimal
number which expresses the given value in bp units.
The 〈dimen〉 can be an arbitrary expression accepted
by the \dimexpr primitive. The result is a decimal
number without a unit. It can be used in, for exam-
ple, arguments to the \pdfliteral literal where we
are using such numbers without units in low-level
PDF commands. For example, \bp{\parindent} re-
turns 19.925 in this document, because \parindent
is set to 20pt here.

You can use the \bp{〈dimen〉} as operands in
the \expr{〈expression〉}. This is very useful when
we are programming graphics using \pdfliteral.

Petr Oľsák

More programming tools

The list of macros provided for macro programmers
cannot be complete in this short article. There are
many macros specialized for particular problems like
math macros, color macros, font macros, reference
macros, citation–bib macros, etc. See the OpTEX
documentation [3] for more information. There are
plenty of macro programming tips on the OpTEX
tricks page [4] too. Here, I will demonstrate only
two more cases of useful macros.

First case: \replstring\buff{〈from〉}{〈to〉}
replaces all occurrences of 〈from〉 text by 〈to〉 text
in the “buffer” macro \buff. For example:

\def\buff{A text is here.}

\replstring\buff{ }{{ }}

\ea\foreach\buff \do{[#1]}

It returns: [A][][t][e][x][t][]%

[i][s][][h][e][r][e][.]

We have used \replstring in this example to “pro-
tect” spaces. Each space is replaced by { }. So,
the next macro \foreach (which reads token by to-
ken via an internal macro taking an undelimited
parameter #1) can read spaces too.

Second case: We can set the current type-
setting position anywhere by \setpos[〈label〉] and
then read this position elsewhere with the (expand-
able) commands \posx[〈label〉], \posy[〈label〉] and
\pospg[〈label〉]. The first two commands return
the x, y coordinates of the absolute position of the
\setpos point on the page (measured from the left-
bottom corner). The values are given in the format
〈number〉sp. You can convert to bp units (for exam-
ple) with \bp{\posx[〈label〉]} or read into a variable
with \mydimen=\posx[〈label〉]\relax. The last one
(\pospg) returns the global page number of the doc-
ument where the \setpos point was set. The data
is available after a second run of TEX because an
external .ref file is used for this purpose.

Writing public macro packages

When you are writing macros for your usage, there
are no rules for naming the control sequences. You
can write any macro code and test it. If you plan
to release such a macro code as a public package,
however, then I recommend the following naming
conventions described here. You can look at the
code of the math.opm package [5] for inspirations and
examples of how to create packages for OpTEX. This
package deals with options, math macros, and there
is a special section about writing public packages
too.

TUGboat, Volume 44 (2023), No. 1 125

First of all, you may set a package shortcut. I’ll
use the shortcut pkg in the following examples. If
you select a shortcut used by another package, then
users are unable to load both these packages at one
time: OpTEX reports an error. So, it is a good idea
to see what public packages for OpTEX are available
and thus choose a shortcut that isn’t already being
used.

First, two code lines (after optional comments)
in the package file (which should be named pkg.opm

for our example) should be

_def_pkg_version {0.07, 2023-01-14}

_codedecl \supermacro {Title <_pkg_version>}

The first argument of the _codedecl macro (in
this example, \supermacro) is a macro name that
_codedecl checks for being already defined; if it is,
\endinput is executed, so that the package is not
read twice. The idea is that \supermacro is a macro
never used before and will be defined in this package.
The second argument of the _codedecl macro is
printed to the log file. The Title should be a short
title for the package.

The macro code that follows has to be sur-
rounded by

_namespace{〈package-shortcut〉}
...

_endnamespace

I. e. _namespace{pkg} . . . _endnamespace in our
example. Also, the _endcode macro has to be
called just after _endnamespace. It is similar to
\endinput, but has more features (described below).

Suppose that you have tested your macros with
names in the public namespace. Now, rename all
used control sequences by the following rules:

• If it is a TEX primitive or an OpTEX macro, add
the “_” prefix: use _foo instead of \foo.
• If it is your macro, defined and used in the

package, add the “.” prefix.

Each \.foo is transformed to _pkg_foo automat-
ically inside the _namespace . . . _endnamespace
scope. A macro programmer is thus not forced to
write and read his package shortcut again and again
for essentially all internal control sequences in the
macro code.

If you decide that a macro is intended for users
in the public namespace, export it from the package
namespace to the public namespace using:
_nspublic〈list of control sequences〉;
In our example, we could do:

_def \.supermacro #1#2#3{...}

_nspublic \supermacro ;

Creating macros in OpTEX

The _pkg_supermacro and \supermacro control
sequences are now defined, with the same meaning.

The _nspublic command checks if the given
macro is defined already in the public namespace.
If so, then it is redefined, but a warning about it is
shown on the terminal.

Maybe there is no reason to declare both the in-
ternal copy of a control sequence \.foo and the pub-
lic copy \foo. You can declare \foo directly, as in
_mathchardef\foo, _newcount\foo, _def\foo,
etc. But it is highly recommended to prefix such a
declaration by _newpublic. For example:

_newpublic _newcount \foo

_newpublic _mathchardef \bar = "123456

This prefix does the same check as _nspublic: if
a declared control sequence is already defined, it is
redefined but with a warning printed.

You can add documentation text to individual
macros in a _doc . . . _cod block. These parts are
skipped when your macros are read. For example:

_doc

The \‘\supermacro‘ reads parameters and does

a supertrick A and then does a supertrick B.

_cod

_def \.supermacro #1#3#3{...A...B.}

_nspublic \supermacro ;

It is recommended to append more extensive docu-
mentation of the package after the _endcode com-
mand. This text is not read, because _endcode

executes \endinput. This way, you have code and
documentation together in a single file, making it
much more convenient to manage the package.

You can append a special block _doc . . . _cod
to the documentation after _endcode, to include
commands used by the \docgen command from
OpTEX. Typical usage of this final _doc . . . _cod
scope could be:

_doc

\load [doc] % provides \printdoc, etc.

\tit Package which enables super-\TeX/ing

\hfill Version: _pkg_version \par

\centerline{\it Au. Thor\/\fnotemark1, 2023}

\fnotetext{\url{https://au.thor.or}}

\notoc\nonum\sec Table of contents

\maketoc

\printdoctail pkg.opm % prints the doc.

% written after _endcode

\sec Implementation

\printdoc pkg.opm % prints doc. of code

126 TUGboat, Volume 44 (2023), No. 1

% before _endcode

\nonum\sec Index

\begmulti 3

\tt \makeindex % prints index, 3 columns

\endmulti

\bye

_cod

The macros provided by \load[doc] are described
in the OpTEX documentation [3], section 2.40.

Now, you have everything you need in a single
file: the code itself, technical short documentation,
detailed documentation, and commands to generate
a whole document including title, table of contents,
index, etc. The macro code is ready to be used
directly without docstrip pre-processing.

A user can load your package with \load[pkg]

or can generate a complete documentation by the
command line:

optex -jobname pkg \\docgen pkg

You can try to use this command for the real existing
package:

optex -jobname math \\docgen math

Run this command three times because TEX needs to
generate the correct table of contents and the index.

If you write a package for OpTEX, please let me
know about it. I’ll add a notice about it into [3],
section 1.7.3.

References

1. OpTEX. petr.olsak.net/optex/

2. P. Oľsák: TEX in a Nutshell. 2020, 30 pp.
https://petr.olsak.net/ftp/olsak/optex/

tex-nutshell.pdf

3. OpTEX manual.
https://petr.olsak.net/ftp/olsak/optex/

optex-doc.pdf

4. OpTEX tricks.
https://petr.olsak.net/optex/

optex-tricks.html

5. OpTEX macros for doing math more
comfortably.
https://petr.olsak.net/ftp/olsak/optex/

math-doc.pdf

� Petr Oľsák
Czech Technical University
in Prague
https://petr.olsak.net

Petr Oľsák

