
Reflections on \globaldefs in plain TEX

Udo Wermuth

Abstract

This article discusses a single integer parameter of
the program TEX: It looks at the history of the in-
vention of \globaldefs, describes the behavior of
this internal parameter and tries to list useful ap-
plications. It also warns about constructions that
might lead to faulty results. Moreover, it explains
why one must do a careful verification of someone
else’s code if that code should be reused under a
setting of \globaldefs.

1 Introduction

The core design model of TEX, the box/glue/penalty
model, hasn’t changed since its creation in April
1977 [9, p. 142]. And one of the model’s realizations
hasn’t changed much either: After the debugging in
March 1978, the code of the line-breaking algorithm
was only once overhauled (June 1980) [9, ch. 3] and
received in November 1982 an important fix in one
of its computations [7, pp. 274–276]. But neverthe-
less the program TEX mainly grew because of the
addition of new internal parameters and primitives,
i.e., commands that are implemented in the program
and aren’t defined as macros. Luckily, we are able to
follow how TEX evolved as TEX’s author, Donald E.
Knuth, decided to keep a detailed log file about
all changes that he applied since March 10, 1978;
see [5]. This log contains the descriptions of bug
fixes as well as enhancements like generalizations.
The above mentioned changes to the line-breaking
algorithm are the entries #461 and #554.

Knuth stated that he wanted to create a type-
setting language but early users pushed him to add
more and more programming features [9, p. 648].
Obviously, his intention was to keep the language
TEX concentrated on its application domain: type-
setting texts.

A new parameter. One generalization is listed in
the aforementioned log as entry #623, dated Jan-
uary 20, 1983: “Add a new \globaldefs feature.”
Knuth describes that a generalization often occurred
when people presented him with new applications [7,
p. 281]: “When I couldn’t handle the new problem
nicely with the existing TEX, I usually would end up
changing the system.” From other notes in the log
file one sees that he was working on The TEXbook

chapters 16 and 17 and on Appendix G; these are
the chapters about typesetting math. The param-
eter \globaldefs has neither a direct influence on

TUGboat, Volume 44 (2023), No. 1 127

the typesetting of mathematics nor is it used in the
text of The TEXbook. Moreover, the entry in the log
doesn’t carry a name of another person as is done
with other entries (see, for example, entry #631). It
seems that no one individual suggested the creation
of this parameter.

I guess that the idea for this generalization was
born during the work on entry #621, which is la-
beled “a cleanup for consistency or clarity”. In [7,
p. 245] this type of enhancement is described as:
“Here I changed the rules of the language to make
things easier to remember and/or more logical.” The
cleanup of January 19 touches TEX’s procedure pre-
fixed command [4, §1211] which got, with #623, the
code for the parameter \globaldefs in §1214.

Thus, I surmise the question “Why was the pa-
rameter \globaldefs added to TEX?” should re-
ceive an answer like “because this generalization was
an ad hoc idea about a programming feature that
could easily be implemented” instead of “because a
detailed study showed that this programming fea-
ture lets TEX gain a lot of capabilities to solve cer-
tain problems more nicely.”

Please note, I use “ad hoc” without implying
that the implementation was spontaneous or un-
planned. Knuth defined the parameter \globaldefs
one day after #621. Thus he had time to think about
it and to design its implementation.

The creation of \globaldefs, as documented
in entry #623 of [5], didn’t implement the function-
ality that this feature has today. On June 7, 1983,
Knuth states in entry #710 that he made a cleanup
for the rules of \globaldefs. One month later he
had to apply a fix to this feature; see entry #748.
It’s a fix of type “forgotten function” which is de-
scribed as [7, p. 245]: “Here I didn’t remember to
do everything I had intended, when I actually got
around to writing a particular part of the code.”
Section 2 explains the impact of these two changes.

Not much coverage in the literature. The TEX-

book [3] mentions \globaldefs in only three places.
No exercise applies this parameter nor is it used
in the format file plain.tex. A brief description
appears between two blocks with syntax rules on
page 275. Pages 206 and 215 indirectly explain fix
#710; the impact of #748 is mentioned on page 238.

Well, The TEXbook cannot explain everything
in detail but other books about TEX might fill the
gap. Unfortunately, all books that I own either don’t
mention \globaldefs or they just repeat what is
written in The TEXbook on page 275. At last I
found on CTAN one that uses it: [1, p. 306] applied
\globaldefs mainly to save keystrokes.

doi.org/10.47397/tb/44-1/tb136wermuth-globaldefs

Reflections on \globaldefs in plain TEX

So what are the use cases of \globaldefs? Un-
der which conditions does the saving of keystrokes
create a real benefit? And is it only used to save
keystrokes or are there other useful applications?

Another place to search for use cases is the
archive of TUGboat [10]. I found only one article
by another author; the text describes how to com-
bine TEX-formatted labels with PostScript files; see
TUGboat 13:3, page 332. Nowadays it is difficult to
say why the parameter is used as the code to which
\globaldefs is applied isn’t completely known. But
it’s very likely that its use merely avoids the input of
a handful of \globals. Again, \globaldefs is used
to save keystrokes.

One can find \globaldefs in code on CTAN

too. As an example, look at twimac.tex by Knuth
[6]. It’s a macro package to support the program
TWILL [8] and contains \globaldefs four times. He
used this program in 1985 to create the extremely
useful mini-indexes for TEX : The Program [4].

Contents. The rest of this section briefly reviews
the concepts known as “local” and “global”. Sec-
tion 2 describes what \globaldefs does including
all special cases. Section 3 looks at the applications
of a non-default setting for \globaldefs; it lists four
use cases. Another non-default setting is analyzed in
section 4. At its end I formulate a fifth use case with
a recommendation for the use of \globaldefs. Sec-
tion 5 discusses what can happen if \globaldefs
with different settings are nested. At the end of this
section I extend the recommendation of section 4.
Section 6 briefly examines technical aspects inside
of TEX, especially a possibility to save memory. The
article ends with some personal remarks in section 7.

Local and global. It is well known that TEX obeys
with assignments and macro definitions the group
level in which it executes the command.

Example 1: Local assignment restored

\dimen0=10.01pt

{\dimen0=20.02pt A: \the\dimen0 }% a group

\quad B: \the\dimen0

TEX output

A: 20.02pt B: 10.01pt

(The rectangle in the gutter—here at the end of
the part “TEX output”—marks the end of the ex-
ample.) TEX prints 20.02pt and then 10.01pt be-
cause the second assignment occurs inside a group.
The new value is only locally known, i.e., only inside
this group level. One must apply the prefix \global

to change \dimen0 inside the group with a global ef-
fect, i.e., to keep the new value after the ‘}’. Then
the code prints 20.02pt twice.

128 TUGboat, Volume 44 (2023), No. 1

Example 2: Global assignment kept

\dimen0=10.01pt

{\global\dimen0=20.02pt A: \the\dimen0 }%

\quad B: \the\dimen0

TEX output

A: 20.02pt B: 20.02pt

But, let’s note that not all statements that ap-
pear as if they were an assignment are such to TEX.
For example, \openout associates a stream number
to a file name and accepts an equal sign in its syn-
tax but isn’t an assignment. It cannot be prefixed
by \global. Well, it doesn’t need to be prefixed as
the association is by default global.

There are a few commands and quantities which
TEX treats with global effect. For example, changing
a box dimension, i.e., an assignment to \wd, \ht, or
\dp of a box, is always global in the sense that the
box dimension is changed for this box permanently.
Only if the box number is restored at the end of a
group the restored box has its former dimensions.

Some primitives that always act globally are
simple commands without the form of an assign-
ment. For example, a switch of the interaction mode
from the default \errorstopmode to \batchmode is
a global change. See page 277 of The TEXbook [3]
for the syntactic rule 〈global assignment〉 that col-
lects all the statements that act globally. One can
use the prefix \global in front of \errorstopmode
or \batchmode but it doesn’t make a difference.

2 What does the parameter do?

The value of the integer parameter is simply changed
by an assignment of the form \globaldefs = n, in
which n is any valid TEX integer. But the param-
eter \globaldefs acts only in three different ways
because TEX only checks if n > 0, n = 0, or n < 0.
• With n > 0 TEX starts to execute commands

listed under 〈simple assignment〉 (see [3, p. 276]) and
〈macro assignment〉 (see p. 275)— in short: all as-
signments, arithmetic commands, and all control se-
quence definitions including \font and \read—as if
the prefix \global was specified. Thus, TEX doesn’t
care if \global occurs in the code or not. It operates
on these statements as if it saw the prefix.

Note that TEX must execute the code to assign
the prefix; for example, a \def inside a \def doesn’t
become global during the definition. Similarly, the
\relax equivalent of a \csname/\endcsname con-
struct in a test or after \expandafter\show, etc.,
which is otherwise an undefined control sequence,
does not become a global \relax as it isn’t executed.
• With n = 0 \globaldefs is neutral or switched

off; this is the default value of the TEX program.

Udo Wermuth

Thus, a statement that’s influenced by \global (ex-
cept those that always act globally) has to receive
the prefix \global to change a value not only inside
the current group level; see example 2.
• With n < 0 \globaldefs switches the prefix

\global off: \global has no impact on the following
command and operates like \relax. But as a prefix
it must still be used only with 〈simple assignment〉
and 〈macro assignment〉. For example, you cannot
write \global\begingroup as \begingroup doesn’t
accept \global and therefore TEX raises an error.

The primitives \gdef and \xdef behave like
\def and \edef, respectively; this was the cleanup
in #710 of [5]. Thus, we can treat \gdef and \xdef

as equivalent to \global\def and \global\edef.
The always-global commands listed as 〈global

assignment〉 in [3] keep their global effect.

Get \globaldefs’ value. As an internal param-
eter \globaldefs’ value can be shown, printed, or
assigned to an integer register or parameter. That
is, \showthe\globaldefs shows the current value
on the terminal; \number\globaldefs typesets its
value (use it in math mode as the value can be
negative), and, for example, \count9=\globaldefs
stores its value in the count register number 9.

A special case. When TEX scans the tokens in the
preamble of an \halign or \valign it collects them
for the templates of the rows or columns, respec-
tively. TEX processes a few tokens during this scan:
(1) the alignment character, ‘&’; (2) the expand to-
ken, \span; (3) the parameter character, ‘#’; (4) the
end-of-preamble tokens \cr and \crcr; and (5) the
\tabskip token with its following glue specification.
Everything else belongs to the templates.

This means that \global cannot be applied to
assignments to \tabskip in the preamble as TEX
puts this \global into the template. It also means
that the \tabskip cannot be placed in a group to
make the assignment local: Even in such a case the
new \tabskip value in the preamble is extracted
and used for the space inserted between the follow-
ing columns or rows. But at the end of the alignment
TEX forgets all non-global changes to \tabskip. The
last change to \tabskip in the preamble never de-
termines its value after the alignment except when
the alignment starts under \globaldefs > 0. Then
all assignments in the alignment are global; with fix
#748 of [5], including the ones to \tabskip in the
preamble, as probably anticipated by the users.

3 Use cases for \globaldefs=1

Two use cases for \globaldefs=1 were already men-
tioned. In section 1 we learned that it can be used

TUGboat, Volume 44 (2023), No. 1 129

to avoid the repetitive input of \global. Section 2,
subsection “A special case”, showed that it’s re-
quired to make a \tabskip in a preamble global.

UC1: global \tabskip. As explained in section 2
a \tabskip assignment in the preamble cannot use
\global. Inside the table entries the value can be
globally modified: use \global\tabskip followed by
a glue specification. It has no effect on the rôle of
\tabskip in the preamble: The white space between
columns or rows of the alignment isn’t changed.

To be honest, I hesitate to call this a use case
for \globaldefs=1 as it is quite extreme to apply
this setting to have global assignments to \tabskip

in the preamble. Without \globaldefs=1 just in-
sert \noalign{\global\tabskip=\tabskip} after
the preamble’s \cr to make the preamble’s last value
of \tabskip global; no other statement is affected.

UC2: saving keystrokes. Sure, a \globaldefs=1

followed by at least four statements that should oth-
erwise be prefixed by \global and a \globaldefs=0
can save at least 2 keystrokes as the prefixes aren’t
required in the input: 2 × 13 keystrokes vs. 4 × 7.
Let’s write it explicitly although I use just two as-
signments not four; you see later why.

Example 3: Saving keystrokes with \globaldefs=1

\globaldefs=1 \count9=123 \dimen9=123.45pt

\globaldefs=0

One should observe that the second assignment to
\globaldefs is a global assignment too. But this as-
signment can be avoided as all statements are global
except the \globaldefs=1; so, inside a group, TEX
restores only the value of \globaldefs. Now one
saves a keystroke if there are just two assignments.

Example 3 continued: Simpler input

{\globaldefs=1 \count9=123 \dimen9=123.45pt }

One shouldn’t do this without need. (If you
have to create the group you don’t save keystrokes.)
Check [1] and the first occurrence in [6] and you
see that the authors are forced to open a group be-
cause of a catcode change; it might be hidden in an
\obeylines. The setting \globaldefs=1 allows to
enter the code that belongs to the outer level of the
macro package as if it were not in a group. Often
in such a group, only \def is used; thus, one saves
only a ‘g’ and not a ‘\global’ in the statements.

But keystroke savings aren’t the only point. If
the catcode change isn’t needed anymore one can
easily remove the group and the \globaldefs=1.
Then the code integrates well with the rest. (See,
for example, file ctwimac.tex in the directory of
twimac.tex; the first \globaldefs=1 of the latter
isn’t used in the former anymore.)

Reflections on \globaldefs in plain TEX

The application of \globaldefs=1 in front of a
loop is similar. Here is an example using the prefix
\global (such a case appears in [6]):

Example 4: Several \global in a loop

\newcount\nn \newcount\maxnn \maxnn=200

\global\nn=100

\loop \global\count\nn=0 \global\dimen\nn=0pt

\global\skip\nn=0pt \global\muskip\nn=0mu

\global\toks\nn={}%

\ifnum\nn<\maxnn \global\advance\nn by 1 \repeat

To limit the scope of \globaldefs=1 a group
encloses the whole \loop/\repeat construction.

Example 4 continued: Loop with \globaldefs=1

\newcount\nn \newcount\maxnn \maxnn=200

{\globaldefs=1 \nn=100

\loop \count\nn=0 \dimen\nn=0pt \skip\nn=0pt

\muskip\nn=0mu \toks\nn={}%

\ifnum\nn<\maxnn \advance\nn by 1 \repeat}

One advantage is that the material between \loop

and \repeat is more compact and might be easier
comprehended. A side effect in this scenario is that
the \body in the macro \loop becomes global too.

UC3: global expand. Here \globaldefs=1 is ap-
plied to a token register, a macro, or a TEX file that
contains definitions and assignments. When TEX ex-
pands the register with \the, executes the macro, or
inputs the file all statements receive \global. Such
a construction can be used, for example, inside the
output routine to make the data in the register or
the macro available to the outer level. (For a bet-
ter but more advanced example, read “Processing
by TEX” in [8, p. 7] together with [6], if you can un-
derstand high level descriptions of output routines.)

Example 5: Apply \global to a collection

Here is a very simple example of how statements that
were collected in a token register are executed inside a
group with \globaldefs=1. Assignments to \hsize and
\vsize via \setsize and macros to get their product
are placed into the register. I omit all error checking.

TEX input

{\catcode‘_=11 \newcount\area_sqmm

\newtoks\area_cmds % the collection

\global\area_cmds={\area_sqmm=0 }% initialize

\gdef\set_area(#1){% #1: dimen w/o unit mm

\ifnum\area_sqmm=0 \area_sqmm=#1\relax

\else \multiply\area_sqmm by #1\fi}

\gdef\setsize#1#2mm{% #1: h/v; #2: dimen w/o mm

\area_cmds=\expandafter{\the\area_cmds

\csname#1size\endcsname=#2mm\set_area(#2)}}

\gdef\prtarea{\message{Area: \the\area_sqmm

sqmm.}\area_cmds={\area_sqmm=0 }}% reset

}\setsize h176mm\setsize v250mm% fill collection

{\catcode‘_=11 \globaldefs=1 \the\area_cmds}

\prtarea % shows 176mmx250mm = 44000sqmm

130 TUGboat, Volume 44 (2023), No. 1

Without the \globaldefs the \hsize and \vsize

settings aren’t global and \area_sqmm would be zero
in the message. We can add \global to the defini-
tions, but then the collection cannot be executed
without \globaldefs=-1 for a local application.

UC4: keep code and output in sync. Journals
like TUGboat publish TEX input and also its typeset
output. To stay in sync TUGboat suggests to use
the following construction; here demonstrated with
additional code from me. The first example of this
article was more or less coded as

\verbatim[\inputfromfile{example1.tex}]

\endverbatim\exout \input example1.tex \exend

where the macro \exout outputs “TEX output” in
boldface and opens a group that ends in \exend.
The first line reads example1.tex and typesets its
contents verbatim. Line 2 executes the code in this
file inside the \exout/\exend group. In this group
and in front of the \input a register value from a
previous example might be entered or a parameter
implied from the current topic like \parfillskip

is set. Example 1 doesn’t need anything of this kind.
Here is an example in which the environment

of \exout might start with \globaldefs=1. In this
example a file is opened for writing. Just one line
is written to this file and this line contains a macro
that was defined inside the example. TEX executes
the \write delayed, i.e., the file gets the line with
the next \shipout; see [3, pp. 226–227].

Example 6: Code and its output

First, we look at the contents of the file example6.tex.

TEX input

\toks9={Hello world!}\openout5=ex6outfile.tex

\def\textforex6{\number\pageno: \the\toks9 }%

\write5{\textforex6}\closeout5

This code cannot be executed inside a group. The
\write waits for the next page break and when it
occurs TEX expands the token list of this \write

and stumbles over \textforex because outside of
the group it’s undefined. One could add \immediate

to \openout, \write, and \closeout; or use \gdef
for \textforex and \global in front of the \toks

assignment. This destroys the example if the author
wants to keep the code as simple as possible.

We don’t want to change anything in the input
file example6.tex that contains the code of the ex-
ample. And we want to keep the code of \exout (and
\exend). Thus we must make the assignment and
the definition global, i.e., we must use \globaldefs.

Example 6 continued: Code used for execution

\exout\globaldefs=1 \input example6.tex \exend

We are only allowed to do this as we know the code
in the file. It doesn’t work always; see example 11.

Udo Wermuth

4 Use cases for \globaldefs=-1

Of course, the use of \globaldefs=-1 can be eas-
ily replaced if the code to which it should be ap-
plied doesn’t contain other settings of \globaldefs.
As \relax passes prefixes on to the next token we
can code \let\global=\relax and the code \long
\global\def still generates a \long\def.

But there’s a difference between an deactivated
\global by \globaldefs=-1 and the above \let.
If you scan tokens one by one and compare them
against \relax then the new \global executes a
wrong branch of the test. The solution consists of
a replacement text that uniquely identifies \global
as well as \gdef and \xdef.

Example 7: Avoiding \globaldefs=-1

\let\CPglobal=\global \let\CPgdef=\gdef

\let\CPxdef=\xdef

% use for them unique replacement texts

\def\global{\relax\relax}\def\gdef{\relax\def}%

\def\xdef{\relax\edef}%

... % code with inactive \global, \gdef, \xdef

% restore \global, \gdef, \xdef with the copies

\let\global=\CPglobal \let\gdef=\CPgdef

\let\xdef=\CPxdef

Use cases from section 3. Obviously, one cannot
save keystrokes with the setting \globaldefs=-1 as
only existing \global tokens are affected. So there
are no use cases that correspond to UC1 or UC2.
UC3 can be turned into a “local expand” variant
if the collection contains the prefix \global. In the
scenario of UC4 \globaldefs=-1 can only be used if
the code doesn’t contain necessary \global. Thus,
it helps in some sense only for badly written code.

Example 8: Case where \global is necessary

Is testscript.sh’s first line a so-called shebang line,
signaling that it is a Bourne shell script?

TEX input

\def\uncatcodespecials{% see The TeXbook, p. 380

\def\do##1{\catcode‘##1=12 }\dospecials}

\edef\shebangline{\string#!/bin/sh}%Bourne shell

% the code with \read in a group

\newread\infile \openin\infile=testscript.sh

\def\readin{{\uncatcodespecials \endlinechar=-1

\global\read\infile to \lineofinfile}}\readin

\ifx\lineofinfile\shebangline

\message{Bourne shell}\fi \closein\infile

If the \global\read isn’t global because of an active
\globaldefs=-1 then the \ifx doesn’t produce a
reliable result as \lineofinfile is either undefined
or contains data from another assignment.

Reuse unknown code. One might think a good
use case for the parameter \globaldefs with a neg-
ative number is to limit the effect of a file that con-

TUGboat, Volume 44 (2023), No. 1 131

tains macros. But of course, \globaldefs=-1 must
not eliminate a necessary \global. One must be
careful if it should be applied to reuse code.

For example, assume that calmacros.tex con-
tains macros for calendrical computations like the
Day of Repentance and Prayer for a given year. (It’s
celebrated eleven days before the first Sunday of Ad-
vent, so its month is November.) Another file con-
sists of macros that belong to the same domain; it’s
very likely that the files share, for example, regis-
ter names. Assume that in the second file the Day
of Repentance and Prayer is required and that the
package calmacros.tex provides a macro with the
name \CalcRepPrayDay to compute that day.

Example 9: Avoiding global changes with \input

\newcount\repprayday {\globaldefs=-1

\input calmacros \repprayday=\CalcRepPrayDay2023

\globaldefs=0 \global\repprayday=\repprayday}

The main file has then access to \repprayday but all
macro names, register names etc. of calmacros.tex
are gone when the group ends. Nevertheless, exam-
ple 8 warns us: the result might be wrong!

Even if the code doesn’t throw an error one
cannot trust the result. In calmacros.tex compu-
tations might occur inside a group and the final re-
sult made available to the outside only through an
assignment prefixed by \global. This doesn’t hap-
pen if \globaldefs=-1. Thus, the result value is
restored when the group ends; the result becomes a
“random” value.

One must verify that a file with macros that
one wants to reuse in a group with \globaldefs=-1

contains at most unnecessary \globals in the code
paths that are called.

Another more concrete example from this text:

Example 10: Which number is output after “A:”?

\globaldefs=-1 {\input example3 }%

A: $\number\globaldefs$

The result is either 0 or −1; it depends if the black
box example3.tex refers to the version with the two
\globaldefs or to the one with the group. More-
over, we also cannot answer the question if we use
\globaldefs=1 instead of \globaldefs=-1.

What has been found out is known [2] but it
should become common knowledge.

UC5: reuse known code. To eliminate the effect
of \global one might execute code inside a group
with the setting \globaldefs=-1. But one must ver-
ify that it doesn’t deactivate a necessary \global.

In general follow this recommendation: Never
apply \globaldefs 6= 0 to code that you don’t com-
pletely know or fully understand in all its details
because you might get a random result.

Reflections on \globaldefs in plain TEX

5 Nested \globaldefs

A programmer might ask if code can be written in
such a way that it protects itself against bad results
if someone reuses this code inside a group with a
non-zero \globaldefs. Of course, there is a simple
solution: Start your code with \globaldefs=0. This
cancels a \globaldefs=-1 and with \globaldefs=1

only the \globaldefs=0 becomes global.
Let’s assume that we want to execute all state-

ments under the setting of \globaldefs except if
this would cause an error. Then the protection with
\globaldefs=0 is a valid solution for \globaldefs=
-1 if the reused code has only necessary \globals.
For \globaldefs=1 it isn’t a solution.

Protection against \globaldefs=1. Let’s state
the goal precisely. A programmer wants to protect
code so that it still executes correctly if someone
takes this code and places it inside a group starting
with {\globaldefs=1. To simplify the discussion
}\globaldefs=0 \global\globaldefs=0 is used at
the end of the group; thus a change of \globaldefs’
value inside the group isn’t important. The solu-
tion to start the code with \globaldefs=0 is not
considered to be valid. Only the code that must be

protected because otherwise the original code does
something wrong should be protected. Everything
else should be executed using \globaldefs=1.

I admit it sounds like an unrealistic scenario.
But we might learn from it.

Example 11: Try to protect against \globaldefs=1

The following code should be protected to allow execu-
tion in a group that sets \globaldefs=1. It’s artificial
code to keep the size of the often repeated example small.

TEX input

\dimen9=1000pt \count9=0

{{\catcode‘\e=3 ex^2e}%

\global\advance\count9 by 2 }%

\divide\dimen9 by\count9 \count8=\count9

It’s clear why this code cannot be executed under a
\globaldefs=1 without throwing an error. The cat-
code change becomes globally active and thus an un-
defined control sequence \advanc is reported later.

A setting \globaldefs=-1 or 0 must be placed
in front of the catcode change to keep it local in its
group. Let’s apply −1.

Example 11 continued: A failed attempt

\dimen9=1000pt \count9=0

{{\globaldefs=-1 \catcode‘\e=3 ex^2e}%

\global\advance\count9 by 2 }%

\divide\dimen9 by\count9 \count8=\count9

This code throws an error too. As TEX executes
the new assignment globally, \globaldefs=-1 sur-
vives the end of the inner group and deactivates the

132 TUGboat, Volume 44 (2023), No. 1

\global in front of the \advance. Thus, TEX re-
stores \count9 at the next }, finds a division by 0
in the last line, and reports “Arithmetic overflow”.

Thus, the code for the protection needs an im-
provement. The \global\advance must stay global.
We can put a \globaldefs=0 in front of that state-
ment. But as another group ends, the next line isn’t
globally executed. Should we use \globaldefs=0 in-
stead of \globaldefs=-1 in the inner group?

Example 11 continued: A successful attempt?

\dimen9=1000pt \count9=0

{{\globaldefs=0 \catcode‘\e=3 ex^2e}%

\global\advance\count9 by 2 }%

\divide\dimen9 by\count9 \count8=\count9

This code runs without generating an error and it
protects the code. But the last statements are still
protected although that shouldn’t happen. In es-
sence it’s more or less equivalent to the initial solu-
tion which was rejected above because of this effect.

We must find another solution: Let’s keep the
\globaldefs=-1 in the inner group to signal that
the catcode change must be local; but its influence
must be stopped when this group ends. As the code
must work with initial values 0 or 1 for \globaldefs
its value should be reset after the other group.

Example 11 continued: The final attempt

\dimen9=1000pt \count9=0

\edef\SAVEglobaldefs{\number\globaldefs}%

{{\globaldefs=-1 \catcode‘\e=3 ex^2e}%

\globaldefs=0 \global\advance\count9 by 2 }%

\globaldefs=\SAVEglobaldefs

\divide\dimen9 by\count9 \count8=\count9

The current value is captured in a macro and then
restored at the correct place. This does what was
requested above. But, in this version, two of the
original four lines contain additional code and the
other two lines are now accompanied by new lines.
The amount of code is nearly doubled.

Extension of the recommendation. I don’t sug-
gest that programmers protect their code against an
execution with a non-zero setting of \globaldefs;
at least not with a \globaldefs=0 at the start of
the file. But we should extend the recommendation
stated in UC5: You are responsible to protect the
code that you reuse from generating erroneous out-
put because of your setting of \globaldefs. And
you are responsible to ensure that \globaldefs’
value outside of the group that you opened is re-
stored if that is required.

6 Technical advantages

Up to now we looked at the parameter \globaldefs
to see what advantages its application has in the

Udo Wermuth

input of a user. But, of course, there are techni-
cal payoffs too. The first is obvious: An input file
needs fewer bytes, i.e., it needs less storage space and
might load faster, if at least two \global are saved
for each \globaldefs=1. Is there anything more
about the introduction of \globaldefs? Can it save
memory? Knuth worked hard in the late 1970s and
early 1980s to get TEX into the then-available mem-
ory space of the then-available computers.

Let’s do a little experiment with the two ver-
sions of example 4: Execute the two code snippets
with \tracingstats=1 in front of the code and with
an \end after it. Next, compare the statistics at the
end of the log files. The \globaldefs variant saves
twelve memory words on my system.

The effect seen in example 4 doesn’t occur al-
ways. For other scenarios the number of memory
words doesn’t change. For example, create two files.
Once “\tracingstats=1 \global\count3=4 \end”
and the second replaces the global assignment by
“\globaldefs=1 \count3=4”. Except for the value
of buffer size the statistics are identical. The re-
sult is the same if \count is replaced by \dimen,
\skip, \muskip, or \toks with appropriate right
hand sides. Even a block with all five register types
has the same number of memory words.

The opportunities to apply \globaldefs are
quite rare. Thus, we cannot hope that it helps to
save any significant amount of memory in a project.

7 Personal remarks

I confess that I haven’t used \globaldefs often in
my TEX projects. I used it when I was forced to
do so in an unusual macro project (TUGboat 43:1,
p. 63) to protect the code from the problems of sec-
tion 5. (I suggest on p. 72 to use \let\globaldefs=
\undefined as the protection cannot be perfect.)
There are other TEX primitives that I seldom use,
for example, \valign; but I thought I had used this
primitive more often. It is part of the typographic
language that Knuth wants to put into the fore-
ground. I assumed Knuth had a good reason to add
\globaldefs to the program TEX. At least its addi-
tion makes the language more complicated to learn.

I don’t deny that UC2 is useful: Saving key-
strokes is a nice feature and example 4 looks much
better with \globaldefs=1. But its use could be
easily avoided here as well as in UC3. Only UC4

needs \globaldefs if code shouldn’t be changed.
But an alternative with changed code isn’t hard to
create: Use sed (or similar) to insert \global auto-
matically into the code and write a new file that’s
used after \exout. I’m convinced that UC5 is of lim-
ited use. And I would never apply it to \newread as

TUGboat, Volume 44 (2023), No. 1 133

in thumbpdf.sty on CTAN; it isn’t my programming
style to use such tricks. So I asked: Has a TEX with-
out \globaldefs problems that must be solved with
this parameter? Is it important to save keystrokes?

The reader might say, “Wasn’t the introduction
of \xdef in #370 of [5] similar, as it just saves one
\global?” No, I think it does more: The language
becomes easier to learn with the pairs \def/\gdef
and \edef/\xdef. And Knuth was asked to imple-
ment this change.

I wrote this article to understand \globaldefs

better. I learned: All listed use cases have other solu-
tions without complicated tricks. Moreover, nesting
\globaldefs can create problems as described in
section 5. And even with the results of section 6, I
wonder why \globaldefs became a part of TEX.

References

[1] Paul W. Abrahams, Kathryn A. Hargreaves, Karl
Berry, TEX for the Impatient, 2003.
ctan.org/tex-archive/info/impatient/book.pdf

[2] David Carlisle, comment on tex.sx, 2022-06-30.
tex.stackexchange.com/questions/649425/is-it-

safe-to-use-globaldefs-for-setting-global-pgf-

key-value-pairs/649437#comment1618526_649425

[3] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984.

[4] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986.

[5] Donald E. Knuth, “The Errors of TEX”,
Software—Practice and Experience 19 (1989),
607–685; reprinted as Chapters 10 and 11 in [7],
243–339. The log, i.e., Chapter 11, is still updated:
ctan.org/tex-archive/systems/knuth/dist/

errata/errorlog.tex

[6] Donald E. Knuth, twimac.tex.
ctan.org/systems/knuth/local/lib/twimac.tex

[7] Donald E. Knuth, Literate Programming, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 27, 1992.

[8] Donald E. Knuth, “Mini-Indexes for Literate Pro-
grams”, Software—Concepts and Tools 15 (1994),
2–11; reprinted as Chapter 11 in [9], 225–245.

[9] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999.

[10] TUGboat, archive of all publicly available articles.
tug.org/TUGboat/contents.html

⋄ Udo Wermuth
Dietzenbach, Germany
u dot wermuth (at) icloud dot com

Reflections on \globaldefs in plain TEX

